WO2013046786A1 - モールドモータ及びこれを搭載した移動体 - Google Patents

モールドモータ及びこれを搭載した移動体 Download PDF

Info

Publication number
WO2013046786A1
WO2013046786A1 PCT/JP2012/061598 JP2012061598W WO2013046786A1 WO 2013046786 A1 WO2013046786 A1 WO 2013046786A1 JP 2012061598 W JP2012061598 W JP 2012061598W WO 2013046786 A1 WO2013046786 A1 WO 2013046786A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
mold
motor
rotor
mold resin
Prior art date
Application number
PCT/JP2012/061598
Other languages
English (en)
French (fr)
Inventor
喬誌 内野
田口 賢治
弘明 相良
哲司 植田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013046786A1 publication Critical patent/WO2013046786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores

Definitions

  • the present invention relates to a molded motor in which an annular stator having a stator core and a coil is covered with a mold resin. Moreover, it is related with the mobile body containing the electric vehicle carrying this mold motor.
  • the mold motor described in Patent Document 1 is a mold fixing metal for forming a portion (rotor accommodating portion) that accommodates the rotor radially inside the stator when molding, that is, when the stator is covered with mold resin.
  • a ring-shaped stator is fitted around the mold. Furthermore, the periphery of the stator is covered with a mold movable mold, both molds are clamped, and mold resin is filled into the mold to cover the stator.
  • the conventional molded motor does not take into account the molding of the stator so that the portion facing the rotor of the stator is a perfect circle in the circumferential direction of the motor. Thereby, the thickness of mold resin may become non-uniform
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a molded motor capable of suppressing the dropping of molded resin pieces inside the motor. Moreover, it aims at providing the moving body containing the electric vehicle provided with such a mold motor.
  • the present invention is a molded motor comprising an annular stator having a stator core and a rotor rotatably supported with respect to the stator, and the stator is covered with a mold resin.
  • a protruding portion that protrudes radially inward from the facing portion at a facing portion of the stator core that faces the rotor, and a tip of the protruding portion coincides with an annular inner surface of the mold resin that covers the stator It was.
  • the present invention also includes a molded motor comprising an annular stator having a stator core and a coil, and a rotor rotatably supported with respect to the stator, and the stator is covered with a mold resin.
  • a protrusion that protrudes radially inward from the facing portion is provided.
  • a molded motor capable of suppressing the falling off of the molded resin pieces inside the motor.
  • a moving body including an electric vehicle provided with such a molded motor.
  • FIG. 2 is a vertical sectional front view of a rear wheel portion of the electric vehicle shown in FIG. 1.
  • FIG. 3 is a perspective view around a molded motor shown in FIG. 2. It is a perspective view which shows the state which decomposed
  • FIG. 6 is a vertical sectional front view of a stator of the molded motor shown in FIG. 5.
  • FIG. 7 is a perspective view of the stator of FIG. 6 and shows a state before coating with a mold resin.
  • FIG. 8 is a partially enlarged perspective view of the stator shown in FIG. 7. It is a top view of the stator core of the stator shown in FIG. It is explanatory drawing which shows the structure of the stator teeth of FIG.
  • FIG. 7 is a partially enlarged vertical sectional front view of the periphery of the stator core of the stator shown in FIG. 6 and shows a portion where the stator teeth can be seen.
  • FIG. 7 is a partially enlarged vertical sectional front view of the periphery of the stator core of the stator shown in FIG.
  • FIG. 7 is a view for explaining a molding resin molding method of the stator shown in FIG.
  • FIG. 6 is a view for explaining a molding resin molding method of the stator shown in FIG. 6 and shows a state after mold clamping and before resin filling.
  • FIG. 7 is a view for explaining a molding resin molding method of the stator shown in FIG. 6 and shows a state after resin filling. It is a partial expansion perspective view of the stator of the mold motor concerning a 2nd embodiment of the present invention.
  • FIG. 18 is a partially enlarged perspective view showing the vicinity of the facing portion of the stator of FIG. 17.
  • FIG. 1 is a right side view showing an example of an electric vehicle equipped with a molded motor.
  • the electric vehicle 1 as a moving body is a motorcycle having a front wheel 2 and a rear wheel 3 as shown in FIG.
  • the electric vehicle 1 includes a main frame 4 and a swing arm 5 as a main frame.
  • the front end of the main frame 4 is bent upward, and the front wheel 2 and the handle 6 are supported by the front end so as to be steerable.
  • a seat 7 on which the driver sits and a battery housing portion 8 are provided at a substantially central portion in the front-rear direction of the electric vehicle 1.
  • the battery accommodating portion 8 is provided below the seat 7 and can accommodate a battery (not shown) therein.
  • the seat 7 also serves as a lid for the battery housing portion 8 and is attached to the battery housing portion 8 so as to be openable and closable.
  • a luggage table 9 is provided behind the seat 7 of the main frame 4 and above the rear wheel 3.
  • the swing arm 5 extends rearward from the lower part of the seat 7 and the battery housing part 8 at the rear part of the main frame 4.
  • the rear wheel 3 is supported at the rear end of the swing arm 5.
  • the swing arm 5 is provided only on the right side of the rear wheel 3 (the front side in the drawing in FIG. 1), and supports the rear wheel 3 in a cantilever state.
  • the rear wheel 3 is a drive wheel, and a mold motor 20 that drives the rear wheel 3 is provided between the rear wheel 3 and the swing arm 5.
  • the swing arm 5 is a support member whose rear end is coupled to the front end portion of the mold motor 20 and supports the rear wheel 3 via the mold motor 20.
  • a suspension case 10 is provided outside the mold motor 20.
  • a suspension unit 11 of the rear wheel 3 extends from the suspension case 10 toward the upper luggage base 9.
  • FIG. 2 is a vertical sectional front view of the rear wheel portion of the electric vehicle
  • FIG. 3 is a perspective view of the periphery of the mold motor shown in FIG. 2
  • FIG. 4 is a perspective view of a part of the components around the mold motor being disassembled. is there.
  • drawing of the rotor and the speed reduction mechanism inside the molded motor is omitted.
  • a suspension case 10, a mold motor 20, a speed reduction mechanism 30, a braking mechanism 40, and a rear wheel 3 are provided at the position of the rear wheel 3 of the electric vehicle 1 in order from the right side of the rear wheel 3, that is, the outer side of the right side in FIG. ing.
  • the mold motor 20, the braking mechanism 40, and the rear wheel 3 are arranged so as to be coaxial with each other.
  • the molded motor 20 is for an electric vehicle in which a stator 50 (see FIGS. 6 and 7), which is an annular stator described later, is coated with an insulating mold resin 21 as shown in FIGS. It is a motor.
  • the molded motor 20 is arranged close to the rear wheel 3 with the axis of the stator 50 coinciding with the axle 3 a of the rear wheel 3.
  • a rotor 22 that is a rotor of a motor and has a permanent magnet (not shown) is provided inside the mold resin 21.
  • the rotor 22 is arranged with its axis aligned with the axis of the stator 50, and is fixed to a motor shaft 23 that is rotatably provided. Therefore, the rotor 22 is rotated by driving the mold motor 20, and the power is transmitted to the motor shaft 23.
  • the speed reduction mechanism 30 is disposed at a location between the motor shaft 23 and the axle 3a.
  • the speed reduction mechanism 30 is composed of, for example, a planetary gear mechanism.
  • the braking mechanism 40 is a so-called drum-type brake disposed near the wheel 3b of the rear wheel 3.
  • the brake mechanism 40 includes a brake shoe 41, a spring 42, a brake arm 43, and a brake cover 44.
  • the brake shoe 41 is disposed inside the wheel 3b.
  • the brake shoe 41 is spaced radially inward from the wheel 3b by the action of the spring 42.
  • the brake shoe 41 is spread outward in the radial direction with respect to the axle 3 a against the elastic force of the spring 42 by the rotation of the brake arm 43.
  • the brake shoe 41 generates a frictional resistance between the wheel 3b and a drum (not shown) that rotates integrally with the wheel 3b, and brakes the rotation of the wheel 3b, that is, the rear wheel 3.
  • a brake cover 44 is attached as a lid to the portion of the wheel 3b where the brake shoe 41 is disposed, and is covered so that dust and the like do not enter the inside (see FIG. 2).
  • the brake cover 44 has a function of holding brake members such as a brake shoe 41, a spring 42, and a brake arm 43 in addition to a dustproof function for the brake mechanism 40.
  • FIG. 5 is a right side view of the mold motor unit
  • FIG. 6 is a vertical sectional front view of the stator of the mold motor
  • FIG. 7 is a perspective view of the stator, and shows the state before coating with the mold resin
  • FIG. FIG. 9 is a plan view of the stator core
  • FIG. 10 is an explanatory view showing the structure of the stator teeth
  • FIG. 11 is a partially enlarged vertical sectional front view around the stator core, and shows the portions where the stator teeth can be seen
  • FIG. 12 is a partially enlarged perspective view showing the periphery of the facing portion of the stator
  • FIG. 13 is a partially enlarged vertical sectional front view of the periphery of the stator core, showing a portion where the protrusion can be seen.
  • FIG. 14 is a diagram for explaining a molding resin molding method for a stator, showing a state before mold clamping, FIG. 15 showing a state after mold clamping and before resin filling, and FIG. 16 showing resin. It shows the state after filling.
  • FIGS. 10 to 12 the number of steel plates constituting the stator teeth is drawn in an abbreviated manner.
  • the mold motor 20 includes a stator 50 and a motor case 60 as shown in FIGS. 5 and 6 in addition to the mold resin 21, rotor 22 and motor shaft 23 described above.
  • the stator 50 has an annular shape as shown in FIGS. 6 and 7, and its periphery is covered with an insulating mold resin 21.
  • the mold resin 21 is made of a thermosetting resin containing, for example, glass fiber.
  • Inside the stator 50 there is provided a rotor accommodating portion 51 formed as a recess recessed in the mold resin 21 from the rear wheel 3 side.
  • the rotor accommodating portion 51 has a cylindrical shape, and the rotor 22 having a permanent magnet is disposed in the rotor accommodating portion 51 (see FIG. 2).
  • the motor case 60 is made of a metal such as an aluminum alloy, and is provided so as to sandwich and hold the mold resin 21 covering the stator 50 inside.
  • the motor case 60 is composed of two plate-like case members arranged so as to sandwich the mold resin 21 inside, that is, an inner case 61 and an outer case 62 shown in FIGS. As shown in FIG. 2, the inner case 61 is disposed on the rear wheel 3 side, and the outer case 62 is disposed on the suspension case 10 side opposite to the rear wheel 3 side.
  • the inner case 61 and the outer case 62 are coupled by three bolts 63 as shown in FIGS. 3 and 4.
  • stator 50 includes a stator core 52 shown in FIG.
  • the stator core 52 includes an annular stator yoke 53 and stator teeth 54 that extend from the inner peripheral portion of the stator yoke 53 so as to protrude radially inward.
  • stator teeth 54 are arranged in the circumferential direction of the molded motor 20 so as to make one round.
  • a plurality of adjacent, for example, two or four stator teeth 54 are integrally formed.
  • the stator yokes 53 obtained by dividing the stator yoke 53 into a plurality (five in the present embodiment) in the circumferential direction have an annular shape in a state of being connected to each other.
  • two or four stator teeth 54 are attached to each stator yoke 53.
  • the stator teeth 54 are formed by laminating a plurality of steel plates 55 in the motor axial direction as shown in FIGS.
  • the steel plate 55 includes a connecting steel plate 55a and a single steel plate 55b.
  • the connecting steel plate 55 a is integrally formed between adjacent stator teeth 54.
  • the single steel plate 55b has a shape corresponding to a single stator tooth 54.
  • the connecting steel plates 55a are arranged, for example, by laminating one or two sheets at the three positions of the stator teeth 54 at both ends in the motor axial direction and the central portion. For example, about 20 single steel plates 55b are laminated and disposed.
  • a groove 56 is provided on the rotor facing surface 54 a that is the facing portion facing the rotor 22 at the tip of the stator teeth 54.
  • the groove portions 56 extend in the motor axis direction and are arranged in two in the circumferential direction of the motor, and act to reduce the cogging torque by favorably balancing the number of magnetic poles and the number of coils of the molded motor 20.
  • the groove part 56 of the rotor opposing surface 54a is provided only in the single-piece
  • An insulator 57 constituting a bobbin made of an electrically insulating member is attached to the outer periphery of the stator tooth 54. Further, an electric wire is wound around the outside of the insulator 57 to form a coil 58.
  • stator 50 having such a configuration has five stator yokes 53 connected to each other, there is a possibility that the stator 50 is not formed into a perfect circle due to the coupling margin at the coupling portion and is distorted into an ellipse.
  • the insulator 57 includes a protrusion 57 a on the rotor facing surface 54 a at the tip of the stator tooth 54.
  • the protruding portion 57a is configured such that a part of the insulator 57 extends radially inward toward the rotor accommodating portion 51, and protrudes radially inward from the rotor facing surface 54a.
  • the protrusion 57 a has a tip that coincides with the annular inner surface of the mold resin 21 that covers the stator 50. Further, as shown in FIG.
  • the protrusion 57a is formed in a shape extending along the stacking direction of the single steel plates 55b, that is, the motor axial direction, at a gap between the single steel plates 55b constituting the stator teeth 54 adjacent in the motor circumferential direction.
  • the protrusions 57a are individually provided corresponding to each of the stator teeth 54 arranged in a ring shape in the circumferential direction of the motor.
  • the protrusion 57 a has a tip on an upper mold 102 (drawn with a two-dot chain line) that is a mold for forming the rotor accommodating portion 51 as shown in FIG. 13. Are in contact with each other.
  • a mold 100 including a lower mold 101 and an upper mold 102 is used for molding the mold resin 21, a mold 100 including a lower mold 101 and an upper mold 102 is used.
  • the outer case 62 of the motor case 60 is accommodated in the lower mold 101, and the stator 50 in the state shown in FIG. Housed in mold 101.
  • covered with the mold resin 21 of the stator 50 is completed at this time.
  • the lower mold 101 or the upper mold 102 is moved so that the outer case 62 and the stator 50 are covered with the mold 100 and are clamped.
  • the tip of the protrusion 57 a of the insulator 57 protruding radially inward at the location of the rotor facing surface 54 a of the stator 50 comes into contact with the upper mold 102.
  • the upper mold 102 with which the tip of the protrusion 57a abuts is a mold for forming the rotor housing 51 at a location corresponding to the rotor housing 51, and has a cylindrical shape with a substantially circular cross section.
  • the rotor facing surface 54a of the stator 50 does not contact the upper mold 102, and the protrusion 57a can keep the radial distance between the rotor facing surface 54a and the upper mold 102 constant.
  • the rotor facing surface 54a can be a perfect circle in the motor circumferential direction.
  • a mold resin 21 is filled in a gap formed inside the mold 100 and between the lower mold 101 and the upper mold 102. That is, the stator 50 is covered with the mold resin 21.
  • the tip of the protrusion 57a coincides with the annular inner surface (the inner peripheral surface of the rotor accommodating portion 51) of the mold resin 21 that covers the stator 50.
  • the mold motor 20 has a radial direction between the rotor facing surface 54a that is the facing portion facing the rotor 22 of the stator core 52 and the upper mold 102 that is a mold for forming the rotor accommodating portion 51 by the protrusion 57a. Specify the interval.
  • the stator 50 is prevented from being distorted into an elliptical shape, and the rotor facing surface 54a becomes substantially a perfect circle in the motor circumferential direction.
  • the thickness of the mold resin 21 at the location of the rotor facing surface 54a becomes substantially uniform. And sufficient thickness can be ensured in the mold resin 21 which exists in the radial direction inner side of the stator 50 over the perimeter of the location of the annular inner surface of the mold resin 21. Therefore, the thickness of the mold resin 21 is suppressed from being locally reduced, and the small pieces of the mold resin 21 formed by dropping the thin mold resin 21 can be prevented from scattering.
  • the protrusions 57a are provided at both ends of the rotor facing surface 54a in the circumferential direction of the motor and extend along the motor axial direction.
  • the protrusions 57a are formed on the upper mold 102.
  • the tip contacts. Accordingly, in the mold motor 20, the radial interval is defined while guiding the gap between the rotor facing surface 54a and the upper mold 102 along the motor axial direction by the protrusion 57a, and the rotor facing surface 54a is substantially in the motor circumferential direction. Become a perfect circle.
  • the stator core 52 includes the stator teeth 54 provided with the rotor facing surface 54 a and arranged in a ring shape in the circumferential direction of the motor, and the protrusions 57 a are individually provided corresponding to the respective stator teeth 54. It has been. Thereby, the mold motor 20 can keep the radial interval between the rotor facing surface 54 a and the upper mold 102 constant corresponding to the plurality of stator teeth 54. Therefore, it is possible to improve the effect of making the thickness of the mold resin 21 uniform on the rotor facing surface 54a.
  • the molded motor 20 includes the insulator 57 that is an electrically insulating member between the stator core 52 and the coil 58, and the protruding portion 57 a has a part of the insulator 57 radially inward toward the upper mold 102. It is configured in an extending shape. That is, since the protrusion 57a is configured integrally with the insulator 57, the thickness of the mold resin 21 on the rotor facing surface 54a can be made uniform without preparing and assembling a new member separately.
  • the mold motor 20 which can suppress drop-off
  • the configuration of the above embodiment it is possible to prevent the cogging torque from increasing.
  • the non-uniformity of the thickness of the mold resin 21 on the rotor facing surface 54a increases the torque pulsation caused by the magnetic attractive force acting between the rotor 22 and the stator core 52, so-called cogging torque.
  • the thickness of the mold resin 21 at the portion of the rotor facing surface 54a becomes uniform, so that these disadvantages can be suppressed.
  • FIG. 17 is a partially enlarged perspective view of the stator of the molded motor
  • FIG. 18 is a partially enlarged perspective view showing the periphery of the facing portion of the stator. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 16, the same reference numerals are assigned to the same constituent elements as those of the first embodiment. The description of the drawings and the description thereof will be omitted.
  • the insulator 57 includes protrusions 57b provided at both ends in the motor axial direction at locations corresponding to the rotor facing surface 54a at the tip of the stator teeth 54 as shown in FIGS. It has.
  • the protrusion 57b is configured such that a part of the insulator 57 extends radially inward toward the rotor accommodating portion 51, and protrudes radially inward from the rotor facing surface 54a. Further, the protrusion 57b is formed in a shape extending along the motor circumferential direction.
  • the protrusions 57b are individually provided corresponding to each of the stator teeth 54 arranged in a ring shape in the circumferential direction of the motor. That is, the tips of all the protrusions 57b arranged in the circumferential direction of the motor draw a circle in the circumferential direction of the motor.
  • the protrusions 57b are formed in shapes that are provided at both ends of the rotor facing surface 54a in the motor axial direction and extend along the circumferential direction of the motor. Abut. Therefore, the mold motor 20 regulates the radial interval while guiding the gap between the rotor facing surface 54a and the upper mold 102 along the circumferential direction of the motor by the projection 57b, and suppresses the stator 50 from being distorted into an ellipse. As a result, the rotor facing surface 54a becomes substantially a circle in the motor circumferential direction.
  • the moving body on which the molded motor 20 is mounted is described by taking the motorcycle as the electric vehicle 1 shown in FIG. 1 as an example, but the moving body to be mounted is limited to the motorcycle. However, it may be an auto tricycle or an auto four-wheel vehicle.
  • the mobile body of the present invention may be a vehicle such as a motor boat or a vehicle such as a water play equipment, or a mobile body that uses a motor as a drive source and moves unattended without a person on board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 モールドモータ(20)は、環状のステータ(50)とロータとを備えるとともにステータ(50)をモール度樹脂(21)によって被覆したモータであって、ステータコア(52)のロータと対向するロータ対向面(54a)を被覆するモールド樹脂(21)の厚みを規定するためにロータ対向面(54a)より径方向内側に向かって突出する突起部(57a)を備える。

Description

モールドモータ及びこれを搭載した移動体
 本発明は、ステータコアとコイルとを有する環状のステータをモールド樹脂によって被覆したモールドモータに関する。また、このモールドモータを搭載した電動車両を含む移動体に関する。
 近年、ステータコアとコイル(巻き線)とを有する環状のステータ(固定子)をモールド樹脂によって被覆したモールドモータが開発されている。このモールド樹脂によって成型されたステータの径方向内側に永久磁石を有するロータ(回転子)が配置され、ステータに対して回転自在に支持されている。このようなモールドモータに係る従来技術が特許文献1に開示されている。
 特許文献1に記載されたモールド電動機はモールドする際、すなわちモールド樹脂で固定子を被覆する際、固定子の径方向内側にロータを収容する部分(ロータ収容部)を形成するためのモールド固定金型の周囲に環状に形成された固定子が嵌合される。さらに、固定子の周囲がモールド可動金型で覆われて双方の金型が型締めされ、固定子を被覆すべくモールド樹脂が金型の内部に充填される。
特開2003-259614号公報
 しかしながら、上記従来のモールドモータはステータのロータと対向する箇所がモータ周方向に関して真円になるようにステータをモールドすることについて考慮されていない。これにより、ステータのロータと対向する箇所においてモールド樹脂の厚みが不均一になる可能性がある。
 したがって、ステータのロータと対向する箇所のモールド樹脂に十分な機械的強度が得られない虞があり、この箇所のモールド樹脂の小片が脱落して飛散する可能性がある。その結果、飛散、散乱したモールド樹脂の小片が回転するロータとステータとの間や軸受部などに噛み込み、モータの回転が不調になったり、モータ自体が破損したりする問題を起こすことが懸念される。
 本発明は上記の点に鑑みなされたものであり、モータ内部におけるモールド樹脂小片の脱落を抑制することが可能なモールドモータを提供することを目的とする。また、このようなモールドモータを備えた電動車両を含む移動体を提供することを目的とする。
 上記の課題を解決するため、本発明は、ステータコアを有する環状のステータと、前記ステータに対して回転自在に支持されたロータと、を備えるとともに前記ステータをモールド樹脂によって被覆したモールドモータであって、前記ロータと対向する前記ステータコアの対向部に、前記対向部より径方向内側に向かって突出する突起部を備え、前記突起部の先端が前記ステータを覆う前記モールド樹脂の環状内面と一致することとした。
 また本発明は、ステータコアとコイルとを有する環状のステータと、前記ステータに対して回転自在に支持されたロータと、を備えるとともに前記ステータをモールド樹脂によって被覆したモールドモータであって、前記ステータコアの前記ロータと対向する対向部を被覆する前記モールド樹脂の厚みを規定するために前記対向部より径方向内側に向かって突出する突起部を備えることとした。
 本発明の構成によれば、モータ内部におけるモールド樹脂小片の脱落を抑制することが可能なモールドモータを提供することができる。また、このようなモールドモータを備えた電動車両を含む移動体を提供することが可能である。
本発明の第1の実施形態に係るモールドモータを搭載した移動体である電動車両の一例を示す右側面図である。 図1に示す電動車両の後輪部の垂直断面正面図である。 図2に示すモールドモータ周辺の斜視図である。 図3のモールドモータ周辺の構成要素の一部を分解した状態を示す斜視図である。 図2に示すモールドモータ部の右側面図である。 図5に示すモールドモータのステータの垂直断面正面図である。 図6のステータの斜視図にして、モールド樹脂による被覆前の状態を示すものである。 図7に示すステータの部分拡大斜視図である。 図7に示すステータのステータコアの平面図である。 図7のステータティースの構造を示す説明図である。 図6に示すステータのステータコア周辺の部分拡大垂直断面正面図にして、ステータティースが見える箇所を示すものである。 図7のステータの対向部周辺を示す部分拡大斜視図である。 図6に示すステータのステータコア周辺の部分拡大垂直断面正面図にして、突起部が見える箇所を示すものである。 図6に示すステータのモールド樹脂の成型方法を説明するための図にして、型締め前の状態を示すものである。 図6に示すステータのモールド樹脂の成型方法を説明するための図にして、型締め後であって樹脂充填前の状態を示すものである。 図6に示すステータのモールド樹脂の成型方法を説明するための図にして、樹脂充填後の状態を示すものである。 本発明の第2の実施形態に係るモールドモータのステータの部分拡大斜視図である。 図17のステータの対向部周辺を示す部分拡大斜視図である。
 以下、本発明の実施形態を図1~図18に基づき説明する。
 最初に、本発明の第1の実施形態に係るモールドモータを搭載した移動体である電動車両について、図1を用いてその構造を説明する。図1はモールドモータを搭載した電動車両の一例を示す右側面図である。
 移動体である電動車両1は、図1に示すように前輪2及び後輪3を備えた自動二輪車である。電動車両1はメインフレーム4及びスイングアーム5が主たる骨組みとして構成されている。
 メインフレーム4は前端部が上方に向かって屈曲しており、その前端部で前輪2及びハンドル6を操舵可能に支持している。メインフレーム4の後端側であって、電動車両1の前後方向の略中央部には運転者が腰を掛けるシート7と、バッテリ収容部8とが備えられている。バッテリ収容部8はシート7の下方に設けられ、内部にバッテリ(図示せず)を収容することができる。シート7はバッテリ収容部8の蓋の役目も果たし、バッテリ収容部8に対して開閉可能にして取り付けられている。メインフレーム4のシート7の後方であって、後輪3の上方の箇所には荷物台9が備えられている。
 スイングアーム5はメインフレーム4後部の、シート7及びバッテリ収容部8の箇所の下方から後方に向かって延びている。後輪3はスイングアーム5の後端に支持されている。なお、スイングアーム5は後輪3の右側(図1における紙面手前側)のみに設けられ、片持ち状態で後輪3を支持している。また、後輪3は駆動輪であり、スイングアーム5との間に後輪3を駆動させるモールドモータ20が備えられている。スイングアーム5はその後端がモールドモータ20の前端部に結合され、モールドモータ20を介して後輪3を支持する支持部材である。モールドモータ20の外側にはサスペンションケース10が備えられている。サスペンションケース10から上方の荷物台9に向かって、後輪3のサスペンションユニット11が延びている。
 続いて、電動車両1の後輪3の箇所について、図1に加えて、図2~図4を用いてその構造を説明する。図2は電動車両の後輪部の垂直断面正面図、図3は図2に示すモールドモータ周辺の斜視図、図4はモールドモータ周辺の構成要素の一部を分解した状態を示す斜視図である。なお、図4ではモールドモータ内部のロータや減速機構の描画を省略している。
 電動車両1の後輪3の箇所には後輪3の右側、すなわち図2における右側の軸線方向外側から順にサスペンションケース10、モールドモータ20、減速機構30、制動機構40及び後輪3が備えられている。なお、モールドモータ20、制動機構40及び後輪3は互いに同軸上となるように配置されている。
 モールドモータ20は、図1、図3及び図4に示すように後述する環状をなす固定子であるステータ50(図6及び図7参照)を絶縁性のモールド樹脂21によって被覆した電動車両用のモータである。モールドモータ20はステータ50の軸線が後輪3の車軸3aに一致し、後輪3に近接して配置されている。
 図2に示すように、モールド樹脂21の内側にはモータの回転子であって、永久磁石(図示せず)を有するロータ22が備えられている。ロータ22はその軸線をステータ50の軸線に合わせて配置され、回転可能に設けられたモータシャフト23に固定されている。したがって、モールドモータ20の駆動によりロータ22が回転し、その動力がモータシャフト23に伝達される。
 減速機構30はモータシャフト23と車軸3aとの間の箇所に配置されている。減速機構30は、例えば遊星歯車機構などで構成されている。
 制動機構40は後輪3のホイール3b近傍に配置された、所謂ドラム型ブレーキである。制動機構40は、図3及び図4に示すようにブレーキシュー41、バネ42、ブレーキアーム43及びブレーキカバー44を備えている。ブレーキシュー41はホイール3bの内側に配置されている。制動機構40を使用していないとき、ブレーキシュー41はバネ42の作用によりホイール3bに対して径方向内側に離間している。ブレーキシュー41はブレーキアーム43の回転により、バネ42の弾性力に抗して車軸3aに対して径方向外側に押し広げられる。そして、ブレーキシュー41はホイール3bと一体的に回転する図示しないドラムとの間に摩擦抵抗を発生させ、ホイール3b、すなわち後輪3の回転を制動する。
 なお、ブレーキシュー41が配置されたホイール3bの箇所は蓋としてブレーキカバー44が取り付けられ、塵埃などが内部に入らないようカバーされている(図2参照)。ブレーキカバー44は制動機構40内に対する防塵機能のほか、ブレーキシュー41、バネ42及びブレーキアーム43といったブレーキ部材を保持する機能も有する。
 続いて、モールドモータ20の詳細な構成について、図2~図4に加えて、図5~図16を用いて説明する。図5はモールドモータ部の右側面図、図6はモールドモータのステータの垂直断面正面図、図7はステータの斜視図にして、モールド樹脂による被覆前の状態を示すもの、図8はステータの部分拡大斜視図、図9はステータコアの平面図、図10はステータティースの構造を示す説明図、図11はステータコア周辺の部分拡大垂直断面正面図にして、ステータティースが見える箇所を示すもの、図12はステータの対向部周辺を示す部分拡大斜視図、図13はステータコア周辺の部分拡大垂直断面正面図にして、突起部が見える箇所を示すものである。図14はステータのモールド樹脂の成型方法を説明するための図にして、型締め前の状態を示すもの、図15は型締め後であって樹脂充填前の状態を示すもの、図16は樹脂充填後の状態を示すものである。なお、図10~図12ではステータティースを構成する鋼板の枚数を実際に対して略して描画している。
 モールドモータ20は先に説明したモールド樹脂21、ロータ22及びモータシャフト23に加えて、図5及び図6に示すようにステータ50及びモータケース60を備えている。
 ステータ50は、図6及び図7に示すように環状をなし、その周囲が絶縁性のモールド樹脂21によって被覆されている。なお、モールド樹脂21は、例えばガラス繊維などを含有する熱硬化性樹脂で構成されている。ステータ50の内部にはモールド樹脂21に後輪3側から窪んだ凹部として形成されたロータ収容部51が設けられている。ロータ収容部51は円柱形状をなし、このロータ収容部51内に永久磁石を有するロータ22が配置されている(図2参照)。
 モータケース60はアルミ合金などの金属で構成され、ステータ50を被覆したモールド樹脂21を内側に挟んで保持するように設けられている。モータケース60はモールド樹脂21を内側に挟むように配置された2個の板状のケース部材、すなわち図3~図5に示す内側ケース61と外側ケース62とで構成されている。図2に示すように、内側ケース61は後輪3側に、外側ケース62は後輪3側と反対側のサスペンションケース10側に各々配置されている。内側ケース61と外側ケース62とは、図3及び図4に示すように3箇所のボルト63によって結合されている。
 一方、ステータ50は、図9に示すステータコア52を備えている。ステータコア52は環状をなすステータヨーク53と、そのステータヨーク53の内周部分から径方向内側に突出するように延びるステータティース54とを備えている。
 ステータティース54は、図9に示すようにモールドモータ20の周方向に、例えば18個が並べて一周させて配置されている。ステータティース54は隣り合う複数個、例えば2個または4個が一体として構成されている。また、ステータヨーク53を周方向に複数(本実施形態では5個)に区分したステータヨーク53は互いに連結された状態で環状をなしている。そして、各ステータヨーク53には一体となった2個または4個のステータティース54が取り付けられている。これらステータティース54は、図10~図12に示すように複数枚の鋼板55をモータ軸線方向に積層して形成されている。
 鋼板55は連結鋼板55aと単体鋼板55bとを備えている。連結鋼板55aは、図10に示すように隣り合うステータティース54間で一体として構成されている。単体鋼板55bは単一のステータティース54に対応した形状となっている。そして、図10~図12に示すように、連結鋼板55aはステータティース54のモータ軸線方向両端部及び中央部の3箇所に例えば1枚或いは2枚程度積層して配置され、それら連結鋼板55aの間に単体鋼板55bが例えば20枚程度積層して配置されている。
 一方、図7、図8及び図12に示すように、ステータティース54先端のロータ22と対向する対向部であるロータ対向面54aには溝部56が設けられている。溝部56はモータ軸線方向に延びてモータ周方向に2本並べて設けられ、モールドモータ20の磁極数とコイル数とのバランスを好適にしてコギングトルクが低減するよう作用している。
 なお、ロータ対向面54aの溝部56は、図10及び図12に示すように単体鋼板55bにのみ設けられている。すなわち、単体鋼板55bに溝部56に対応する断面形状の凹部を設け、ステータティース54を形成すべく単体鋼板55bをモータ軸線方向に積層することによりモータ軸線方向に延びる溝部56が形成される。
 ステータティース54の外周には電気絶縁部材からなるボビンを構成するインシュレータ57が装着されている。さらに、インシュレータ57の外側には電線が巻きつけられてコイル58が形成されている。
 このような構成のステータ50は5個のステータヨーク53が連結されているので、その結合部での結合マージンにより真円にならず、楕円形に歪んでしまう虞がある。
 また、インシュレータ57は、図6~図8、図12及び図13に示すようにステータティース54先端のロータ対向面54aに突起部57aを備えている。突起部57aはインシュレータ57の一部が径方向内側にロータ収容部51に向かって延びる形状で構成され、ロータ対向面54aより径方向内側に向かって突出している。そして、図13に示すように、突起部57aはその先端がステータ50を覆うモールド樹脂21の環状内面と一致している。さらに、図6に示すように、突起部57aはその先端の面がモールド樹脂21の環状内面(ロータ収容部51の内周面)においてモールド樹脂21から露出している。さらに、図13に示すように、ステータコア52のロータ対向面54aを覆うモールド樹脂21の厚さLは突起部57aの高さHとほぼ等しくなる(L=H)ように突起部57aによって規定されている。
 また、突起部57aはモータ周方向に隣り合うステータティース54を構成する単体鋼板55bの隙間の箇所において、単体鋼板55bの積層方向、すなわちモータ軸線方向に沿って延びる形状で構成されている。突起部57aはモータ周方向に環状に複数個並べられたステータティース54各々に対応して個別に設けられている。
 そして、突起部57aは、ステータ50をモールド樹脂21によって被覆するとき、図13に示すようにロータ収容部51を形成するための型である上側金型102(二点鎖線で描画)にその先端が当接するようになっている。
 これに関して、モールド樹脂21の成型方法について、図14~図16を用いてその概略を説明する。
 モールド樹脂21の成型には下側金型101及び上側金型102によって構成される金型100が使用される。初めに、図14に示すようにモータケース60の外側ケース62が下側金型101内に収容され、さらにインシュレータ57とコイル58とが取り付けられた図7に示す状態のステータ50が下側金型101内に収容される。なお、図示していないが、この時点でステータ50のモールド樹脂21で被覆される箇所に対する動力線や信号線等の結線は完了している。
 続いて、図15に示すように下側金型101或いは上側金型102を移動して外側ケース62及びステータ50の周囲を金型100で覆い、型締めされる。このとき、ステータ50のロータ対向面54aの箇所で径方向内側に突出するインシュレータ57の突起部57aの先端が上側金型102に当接する。突起部57aの先端が当接する上側金型102はロータ収容部51に該当する箇所でロータ収容部51を形成するための型であって、断面がほぼ真円の円柱形状をなしている。これにより、ステータ50のロータ対向面54aが上側金型102に当接することはなく、突起部57aはロータ対向面54aと上側金型102との間の径方向の間隔を一定に保つことができる。加えて、ロータ対向面54aがモータ周方向に関して真円をなすようにできる。
 そして、図16に示すように金型100の内部であって下側金型101と上側金型102との間に形成された空隙にモールド樹脂21が充填される。すなわち、ステータ50がモールド樹脂21によって被覆される。
 このようにして、モールドモータ20は突起部57aの先端がステータ50を覆うモールド樹脂21の環状内面(ロータ収容部51の内周面)と一致する。言い換えれば、モールドモータ20は突起部57aによってステータコア52のロータ22と対向する対向部であるロータ対向面54aとロータ収容部51を形成するための型である上側金型102との間の径方向の間隔を規定する。これにより、ステータ50が楕円形に歪むのを抑制し、ロータ対向面54aがモータ周方向に関してほぼ真円になる。したがって、ロータ対向面54aの箇所におけるモールド樹脂21の厚みがほぼ均一になる。そして、モールド樹脂21の環状内面の箇所の全周にわたって、ステータ50の径方向内側に存在するモールド樹脂21に十分な厚みを確保することができる。したがって、モールド樹脂21の厚みが局部的に薄くなることが抑制され、薄いモールド樹脂21が脱落して形成されるモールド樹脂21の小片が飛散することを防止できる。
 また上記のように、突起部57aはロータ対向面54aのモータ周方向両端部に備えられてモータ軸線方向に沿って延びる形状で構成され、モールド樹脂21の成型のとき、上側金型102にその先端が当接する。したがって、モールドモータ20は突起部57aによってロータ対向面54aと上側金型102との間をモータ軸線方向に沿ってガイドしながら径方向の間隔が規定され、ロータ対向面54aがモータ周方向に関してほぼ真円になる。
 また上記のように、ステータコア52はロータ対向面54aが設けられモータ周方向に環状に複数個並べられたステータティース54を備え、突起部57aが複数のステータティース54各々に対応して個別に設けられている。これにより、モールドモータ20は複数個のステータティース54に対応して個別にロータ対向面54aと上側金型102との間の径方向の間隔を一定に保つことができる。したがって、ロータ対向面54aにおけるモールド樹脂21の厚みを均一にする作用を向上させることが可能である。
 また上記のように、モールドモータ20がステータコア52とコイル58との間に電気絶縁部材であるインシュレータ57を備え、突起部57aはインシュレータ57の一部が径方向内側に上側金型102に向かって延びる形状で構成されている。すなわち、突起部57aがインシュレータ57に一体として構成されるので、別途新たな部材を用意して組み立てることなくロータ対向面54aにおけるモールド樹脂21の厚みを均一にすることができる。
 そして、上記実施形態の構成によれば、モータ内部におけるモールド樹脂21の小片の脱落を抑制することが可能なモールドモータ20を提供することができる。また、このようなモールドモータ20を備えた電動車両1を含む移動体を提供することが可能である。
 また、上記実施形態の構成によれば、コギングトルクが増加するのを防止することもできる。従来、ロータ対向面54aにおけるモールド樹脂21の厚みの不均一さはロータ22とステータコア52との間で働く磁気吸引力によって生じるトルク脈動、所謂コギングトルクを増加させる。これにより、無負荷時に振動や騒音などの不都合が生じる問題があった。そこで、上記実施形態の構成によれば、ロータ対向面54aの箇所におけるモールド樹脂21の厚みが均一になるので、これらの不都合が生じるのを抑制することができる。
 次に、本発明の第2の実施形態に係るモールドモータの詳細な構成について、図17及び図18を用いて説明する。図17はモールドモータのステータの部分拡大斜視図、図18はステータの対向部周辺を示す部分拡大斜視図である。なお、この実施形態の基本的な構成は図1~図16を用いて説明した前記第1の実施形態と同じであるので、第1の実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその説明を省略するものとする。
 第2の実施形態に係るモールドモータ20においてインシュレータ57は、図17及び図18に示すようにステータティース54先端のロータ対向面54aに対応する箇所のモータ軸線方向両端部に設けられた突起部57bを備えている。突起部57bはインシュレータ57の一部が径方向内側にロータ収容部51に向かって延びる形状で構成され、ロータ対向面54aより径方向内側に向かって突出している。さらに、突起部57bはモータ周方向に沿って延びる形状で構成されている。
 また、突起部57bはモータ周方向に環状に複数個並べられたステータティース54各々に対応して個別に設けられている。すなわち、モータ周方向に並んだすべての突起部57bの先端部がモータ周方向に円を描くことになる。
 このようにして、突起部57bはロータ対向面54aのモータ軸線方向両端部に備えられてモータ周方向に沿って延びる形状で構成され、モールド樹脂21の成型のとき、上側金型102にその先端が当接する。したがって、モールドモータ20は突起部57bによってロータ対向面54aと上側金型102との間をモータ周方向に沿ってガイドしながら径方向の間隔を規定し、ステータ50が楕円形に歪むのを抑制してロータ対向面54aがモータ周方向に関してほぼ真円になる。
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
 例えば、本発明の実施形態では、モールドモータ20を搭載した移動体に、図1に示す電動車両1である自動二輪車を一例として掲げて説明したが、搭載対象となる移動体は自動二輪車に限定されるわけではなく、自動三輪車や自動四輪車であっても構わない。
 そして、本発明の移動体は上述のほか、モータボート等の船舶や水上遊具といった乗り物、さらにモータを駆動源とし、人が搭乗せず無人で移動する移動体であっても構わない。
   1  電動車両(移動体)
   20 モールドモータ
   21 モールド樹脂
   22 ロータ
   50 ステータ
   51 ロータ収容部
   52 ステータコア
   54 ステータティース
   54a ロータ対向面(対向部)
   55 鋼板
   55a 連結鋼板
   55b 単体鋼板
   57 インシュレータ(電気絶縁部材)
   57a、57b 突起部
   58 コイル
   100 金型
   101 下側金型
   102 上側金型(型)

Claims (6)

  1.  ステータコアを有する環状のステータと、前記ステータに対して回転自在に支持されたロータと、を備えるとともに前記ステータをモールド樹脂によって被覆したモールドモータであって、
     前記ロータと対向する前記ステータコアの対向部に、前記対向部より径方向内側に向かって突出する突起部を備え、前記突起部の先端が前記ステータを覆う前記モールド樹脂の環状内面と一致することを特徴とするモールドモータ。
  2.  ステータコアとコイルとを有する環状のステータと、前記ステータに対して回転自在に支持されたロータと、を備えるとともに前記ステータをモールド樹脂によって被覆したモールドモータであって、
     前記ステータコアの前記ロータと対向する対向部を被覆する前記モールド樹脂の厚みを規定する前記対向部より径方向内側に向かって突出する突起部を備えることを特徴とするモールドモータ。
  3.  前記突起部は前記対向部に備えられ、前記モールド樹脂の成型のとき、前記型にその先端が当接することを特徴とする請求項1または請求項2に記載のモールドモータ。
  4.  前記ステータコアは前記対向部が設けられモータ周方向に環状に複数個並べられたステータティースを備え、
     前記突起部は前記複数のステータティース各々に対応して個別に設けられていることを特徴とする請求項1~請求項3のいずれか1項に記載のモールドモータ。
  5.  前記ステータコアと前記コイルとの間に電気絶縁部材を備え、
     前記突起部は前記電気絶縁部材の一部が径方向内側に前記型に向かって延びる形状で構成されていることを特徴とする請求項1~請求項4のいずれか1項に記載のモールドモータ。
  6.  請求項1~請求項5のいずれか1項に記載のモールドモータを搭載した移動体。
PCT/JP2012/061598 2011-09-30 2012-05-02 モールドモータ及びこれを搭載した移動体 WO2013046786A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-216161 2011-09-30
JP2011216161 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046786A1 true WO2013046786A1 (ja) 2013-04-04

Family

ID=47994853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061598 WO2013046786A1 (ja) 2011-09-30 2012-05-02 モールドモータ及びこれを搭載した移動体

Country Status (1)

Country Link
WO (1) WO2013046786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220403A (ja) * 2015-05-20 2016-12-22 株式会社不二工機 ステータユニット及びそれを用いた電動弁

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614504A (ja) * 1992-06-25 1994-01-21 Matsushita Electric Ind Co Ltd モールドモータ
JP2010104221A (ja) * 2008-09-26 2010-05-06 Sanyo Electric Co Ltd 電動モータ及び電動車輌
WO2012014969A1 (ja) * 2010-07-30 2012-02-02 三洋電機株式会社 モールドモータ及びこれを搭載した移動体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614504A (ja) * 1992-06-25 1994-01-21 Matsushita Electric Ind Co Ltd モールドモータ
JP2010104221A (ja) * 2008-09-26 2010-05-06 Sanyo Electric Co Ltd 電動モータ及び電動車輌
WO2012014969A1 (ja) * 2010-07-30 2012-02-02 三洋電機株式会社 モールドモータ及びこれを搭載した移動体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220403A (ja) * 2015-05-20 2016-12-22 株式会社不二工機 ステータユニット及びそれを用いた電動弁

Similar Documents

Publication Publication Date Title
JP4842670B2 (ja) ロータおよび電動車両
JP4360305B2 (ja) インホイールモータのハウジング構造
US8674573B2 (en) Direct-current motor and hub unit
US10046824B2 (en) Electric vehicle
JP2007116844A (ja) ブラシレスモータ
JP2021041860A (ja) ドライブユニット
JPWO2019066003A1 (ja) ロータ、スポーク型モータ、車両用モータ、無人飛行体、電動アシスト装置およびロボット装置
JP2023018031A (ja) 電動車両用モータ
JP4027059B2 (ja) 自転車用ハブダイナモ
WO2012014969A1 (ja) モールドモータ及びこれを搭載した移動体
WO2013046786A1 (ja) モールドモータ及びこれを搭載した移動体
JP5039308B2 (ja) 回転電機
CN209913655U (zh) 驱动装置和电动轮
KR20110101517A (ko) 트랙션 모터 모듈
WO2018062349A1 (ja) ロータユニット、モータ、及びロータユニットの製造方法
JP7338198B2 (ja) 電動車両用モータ
JP4969873B2 (ja) 回転電機を搭載する鞍乗型車両、及び回転電機の取り付け方法
JP2011172463A (ja) 自転車用ハブダイナモ
WO2012090679A1 (ja) モータ及びこれを搭載した電動車両、モータの組み立て方法
JP4050747B2 (ja) 回転電機
JP4288470B2 (ja) アキシャルギャップ型電動機
KR101055010B1 (ko) 트랙션 모터 모듈
KR20110101510A (ko) 트랙션 모터 모듈
EP2390988A2 (en) Molded motor and mobile body therewith
CN218416026U (zh) 马达以及具备该马达的电动摩托车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP