WO2013046697A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013046697A1
WO2013046697A1 PCT/JP2012/006197 JP2012006197W WO2013046697A1 WO 2013046697 A1 WO2013046697 A1 WO 2013046697A1 JP 2012006197 W JP2012006197 W JP 2012006197W WO 2013046697 A1 WO2013046697 A1 WO 2013046697A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel sheet
less
rolled steel
pearlite
Prior art date
Application number
PCT/JP2012/006197
Other languages
English (en)
French (fr)
Inventor
克利 高島
勇樹 田路
長谷川 浩平
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280047194.XA priority Critical patent/CN103842539B/zh
Priority to KR1020147010739A priority patent/KR101497427B1/ko
Priority to US14/347,277 priority patent/US9057123B2/en
Priority to EP12835555.9A priority patent/EP2762581B1/en
Publication of WO2013046697A1 publication Critical patent/WO2013046697A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a hot-rolled steel sheet suitable for a member used, for example, in the field of the automobile industry, particularly for cold-rolled steel sheet or hot-dip galvanized steel sheet having excellent material uniformity and high yield ratio, and a method for producing the same.
  • the shape freezing property is significantly reduced by increasing the strength and thinning of the steel sheet. Therefore, predict the shape change of the pressed parts after mold release in advance of press forming, and design the press die considering the amount of shape change. It is widely done.
  • the tensile strength of the steel plate changes significantly, the deviation from the expected amount with these constants will increase, shape defects will occur, and it will be indispensable to rework the shape of each piece after press forming, for mass production. Reduces efficiency significantly. For this reason, it is requested
  • Patent Document 1 discloses that a high-strength cold-rolled steel sheet that is precipitation strengthened by addition of Nb and Ti and has excellent stretch flange formability and impact absorption energy characteristics is disclosed.
  • Patent Document 2 discloses a high-strength cold-rolled steel sheet in which the steel sheet structure includes recrystallized ferrite, non-recrystallized ferrite and pearlite, which is precipitation strengthened by addition of Nb and Ti.
  • a high-strength cold-rolled steel sheet is greatly affected by the steel sheet structure and precipitation amount of the hot-rolled steel sheet, and is advantageous in increasing the strength of the hot-rolled steel sheet.
  • a method for producing a hot-rolled steel sheet having high ductility and excellent material uniformity by adjusting the Ti content is disclosed, and Patent Document 4 further adjusts the Ti content. Discloses a hot-rolled steel sheet with improved material uniformity and hole expandability.
  • Patent Documents 3 and 4 provide a method for producing a hot-rolled steel sheet that is excellent in high ductility or hole expandability, in order to produce a hot-rolled material and hot-dip galvanized material for producing a cold-rolled steel sheet. It is not considered as a hot rolled material. Therefore, the development of hot-rolled steel sheets for cold-rolled steel sheets and hot-rolled steel sheets for hot-dip galvanized steel sheets, which are excellent in material uniformity after annealing, becomes an issue.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, provide excellent material uniformity, and suitable for use in cold-rolled steel sheets or hot-dip galvanized steel sheets having a tensile strength of 590 MPa or more. It aims at providing about a steel plate and its manufacturing method.
  • the present inventors have intensively studied to obtain a hot-rolled steel sheet for cold-rolled steel sheet or hot-dip galvanized steel sheet having excellent material uniformity and a high yield ratio, and found the following. That is, by cooling the steel slab after continuous casting to 600 ° C within 6 hours, the segregation in the slab is minimized and the crystal grains before hot rolling are refined, and then finished in the hot rolling process.
  • the material variation of the hot-rolled steel sheet can be reduced and the subsequent annealing is performed. It was found that the strength of the later cold-rolled steel sheet and hot-dip galvanized steel sheet can be ensured and the material variation can be reduced.
  • the structure is as follows.
  • the chemical composition is mass%, C: 0.060 to 0.150%, Si: 0.15 to 0.70%, Mn: 1.00 to 1.90%, P: 0.10% or less, S: 0.010% or less, Al: 0.01 to 0.10% N: not more than 0.010% and Nb: 0.010-0.100%, the balance being Fe and inevitable impurities,
  • the microstructure contains ferrite with an average crystal grain size of 18 ⁇ m or less in volume fraction of 75% or more, average crystal grain size: pearlite with a volume fraction of 2 ⁇ m or more in volume fraction of 5% or more, and the balance is a low-temperature composite phase
  • a hot rolled steel sheet characterized in that the mean free path of pearlite is 5.0 ⁇ m or more.
  • the mean free path of pearlite is a dispersed state of pearlite.
  • the hot-rolled steel sheet is for a cold-rolled steel sheet or a hot-dip galvanized steel sheet.
  • the hot dip galvanized steel sheet is a generic term for a steel sheet obtained by plating zinc on a steel sheet by a hot dip galvanizing method, whether or not an alloying treatment is performed. That is, the hot dip galvanized steel sheet in the present invention includes both a hot dip galvanized steel sheet that has not been subjected to an alloying treatment and an alloyed hot dip galvanized steel sheet that has been subjected to an alloying treatment.
  • the molten steel having the composition described in any one of (1) to (4) above is continuously cast into a slab.
  • the slab is cooled to 600 ° C. within 6 hours, and then reheated to Hot rolling start temperature: 1150 to 1270 ° C, finish rolling end temperature: 830 to 950 ° C, hot rolling, cooling the temperature range up to 650 ° C at an average cooling rate of 20 to 90 ° C / s, then A method for producing a hot-rolled steel sheet, wherein the winding is performed by cooling at an average cooling rate of 5 to 30 ° C / s to the winding temperature when winding in a temperature range of 470 to 640 ° C.
  • a hot-rolled steel sheet that is a material for a cold-rolled steel sheet or a hot-dip galvanized steel sheet that has high workability and has a high yield ratio because of excellent material uniformity.
  • cold-rolled steel sheet and hot-dip galvanized steel sheet are applied to automobile structural members, for example, to ensure collision safety in automobiles
  • fuel consumption can be improved by reducing the weight of the vehicle body.
  • Carbon (C) is an element effective for increasing the strength of the steel sheet, and particularly contributes to strengthening of the steel sheet by forming a carbide-forming element such as Nb and a fine alloy carbide or alloy carbonitride. Moreover, it is an element necessary for formation of pearlite in the steel sheet structure of the hot-rolled steel sheet in the present invention, and contributes to high strength. In order to obtain this effect, 0.060% or more must be added. On the other hand, if the C content is more than 0.150%, spot weldability deteriorates, so the upper limit of the C content is 0.150%. From the viewpoint of securing better weldability, the C content is preferably 0.120% or less.
  • Si 0.15-0.70%
  • Silicon (Si) is an element that contributes to the improvement of the strength-ductility balance after annealing because of its high work-hardening ability and relatively low decrease in ductility with increasing strength. Further, it is an element necessary for improving the material uniformity, which contributes to securing the desired crystal grain size and volume fraction of ferrite by promoting the ferrite transformation in the hot rolling stage. In order to obtain this effect, the Si content needs to be 0.15% or more. In order to further improve the material uniformity, the Si content is preferably 0.35% or more. On the other hand, if the Si content is more than 0.70%, the hot dip galvanizing deterioration after annealing becomes remarkable, so the Si content is 0.70% or less, more preferably 0.60% or less.
  • Mn 1.00 to 1.90%
  • Manganese (Mn) is an element that contributes to strengthening after annealing by forming solid solution strengthening and second phase.
  • the Mn content needs to be 1.00% or more, preferably 1.20% or more.
  • the Mn content is more than 1.90%, the ferrite transformation and pearlite transformation in the hot rolling stage are delayed, and it is difficult to secure the desired crystal grain size and area ratio of ferrite, and the material uniformity decreases. Due to concerns, its content is 1.90% or less, preferably 1.70% or less.
  • Phosphorus (P) is an element contributing to high strength by solid solution strengthening.
  • the content of P is preferably set to 0.005% or more.
  • the P content is more than 0.10%, segregation to the grain boundary becomes remarkable, the grain boundary becomes brittle, weldability is lowered, and material uniformity is deteriorated.
  • the value is 0.10%. Preferably, it is 0.05% or less.
  • Al 0.01-0.10%
  • Aluminum (Al) is an element necessary for deoxidation, and in order to obtain this effect, it is necessary to contain 0.01% or more, but even if contained over 0.10%, the effect is saturated, so 0.10 % Or less. Preferably, it is 0.05% or less.
  • N 0.010% or less Nitrogen (N) forms a compound with Nb in the same manner as C, and becomes an alloy nitride or an alloy carbonitride, contributing to high strength.
  • N Nitrogen
  • the N content is set to 0.010% or less, preferably 0.005% or less.
  • Niobium (Nb) forms compounds with C and N to form carbides and carbonitrides, and is also effective in refining crystal grains, in order to ensure the desired crystal grain size and volume fraction of ferrite and pearlite. It is an important element. Further, it is an element necessary for obtaining a high yield ratio by precipitation strengthening of carbonitride. In order to obtain this effect, the Nb content needs to be 0.010% or more. However, if the Nb content is more than 0.100%, the moldability deteriorates remarkably, so the upper limit of the Nb content is set to 0.100%. Preferably, it is 0.060% or less.
  • Ti Less than 0.05% Titanium (Ti), like Nb, forms fine carbonitrides, has an effect on crystal grain refinement, and can contribute to increase in strength. However, if the Ti content is added to 0.05% or more, the formability is remarkably lowered. Therefore, the Ti content is less than 0.05%, preferably 0.035% or less. In addition, when exhibiting the strength increase effect after annealing, when containing Ti, it is preferable to contain 0.005% or more.
  • V 0.10% or less Vanadium (V), like Nb, also forms fine carbonitrides, has an effect on crystal grain refinement, and can contribute to an increase in strength. Although it is an element that can be contained, even if the V content is more than 0.10%, the effect of increasing the strength exceeding 0.10% is small, and the alloy cost is also increased. For this reason, the V content is set to 0.10% or less. In addition, when exhibiting the strength increasing effect, when V is contained, it is preferable to contain 0.005% or more.
  • Chromium (Cr) is an element that improves the hardenability during annealing and contributes to high strength by generating a second phase, and can be added as necessary.
  • the Cr content is preferably set to 0.10% or more.
  • the Cr content is 0.50% or less.
  • Mo Molybdenum
  • Mo is an element that improves the hardenability during annealing and contributes to increasing the strength by generating the second phase, and can be added as necessary.
  • the Mo content is preferably 0.05% or more.
  • the Mo content is 0.50% or less.
  • Cu 0.50% or less Copper (Cu) is an element that contributes to strengthening by solid solution strengthening, improves hardenability during annealing, and also contributes to strengthening by generating a second phase. An element that can be added as needed. In order to exert this effect, the Cu content is preferably 0.05% or more. On the other hand, even if the Cu content is more than 0.50%, the improvement in the effect is not recognized, and surface defects caused by Cu are more likely to occur. Therefore, the Cu content is set to 0.50% or less.
  • Ni 0.50% or less Nickel (Ni), like Cu, contributes to high strength by solid solution strengthening, and also improves the hardenability during annealing and increases the strength by generating a second phase.
  • Ni nickel
  • the Ni content is preferably 0.05% or more.
  • the Ni content is 0.50% or less.
  • B 0.0030% or less Boron (B) is an element that contributes to high strength by improving the hardenability during annealing and generating the second phase, and can be added as necessary. In order to exhibit this effect, it is preferable to make it contain 0.0005% or more. On the other hand, even if it contains more than 0.0030%, the effect is saturated, so the content is made 0.0030% or less.
  • One or more types selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% Calcium (Ca) and rare earth elements (REM) spheroidize the shape of the sulfide and improve the negative effect of the sulfide on hole expansibility It is an element that contributes to this, and can be added as necessary. In order to exhibit these effects, it is preferable to contain 0.001% or more of each. On the other hand, even if the content exceeds 0.005%, the effect is saturated, so the content is made 0.005% or less respectively.
  • the other balance of the chemical component is Fe and inevitable impurities.
  • the inevitable impurities include, for example, Sb, Sn, Zn, Co, etc.
  • the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less , Co: 0.1% or less.
  • Ta, Mg and Zr are contained within the range of the normal steel composition, the effect is not lost.
  • ferrite has an average crystal grain size of 18 ⁇ m or less and a volume fraction of 75% or more
  • pearlite has an average crystal grain size of 2 ⁇ m or more and a volume fraction of 5% or more
  • the balance consists of a low-temperature generation phase. It is a composite structure in which the mean free path of the pearlite is 5.0 ⁇ m or more.
  • the volume fraction described here is the volume fraction with respect to the entire structure of the steel sheet, and so on.
  • the volume fraction of ferrite in the hot-rolled sheet structure is less than 75%, there are many hard second phases, and the material uniformity deteriorates. Therefore, the volume fraction of ferrite is 75% or more.
  • the upper limit of the volume fraction of ferrite is preferably 95% or less in order to ensure high strength after annealing (cold-rolled steel sheet or hot-dip galvanized steel sheet).
  • the average grain size of ferrite exceeds 18 ⁇ m, it is difficult to ensure the desired strength after annealing (cold-rolled steel sheet or hot-dip galvanized steel sheet), so the average crystal grain size of ferrite is 18 ⁇ m or less.
  • the lower limit of the average crystal grain size of ferrite is not particularly limited, but is preferably 5 ⁇ m or more in order to ensure good material uniformity after annealing.
  • the pearlite volume fraction of the hot-rolled sheet structure is less than 5%, it is difficult to secure the desired strength after annealing (cold-rolled steel sheet or hot-dip galvanized steel sheet), so the pearlite volume fraction is 5% or more.
  • the upper limit of the pearlite volume fraction is not particularly limited, but is preferably 15% or less from the viewpoint of obtaining good workability.
  • the average crystal grain size of pearlite is less than 2 ⁇ m, it is difficult to ensure the desired strength after annealing (cold-rolled steel sheet or hot-dip galvanized steel sheet), so the average crystal grain size of pearlite is 2 ⁇ m or more.
  • the upper limit of the average crystal grain size of pearlite is not particularly limited, but is preferably 15 ⁇ m or less in order to ensure good material uniformity after annealing (cold rolled steel sheet or hot dip galvanized steel sheet).
  • the average free path of pearlite of the hot-rolled sheet structure is 5.0 ⁇ m or more. If the mean free path of pearlite is less than 5.0 ⁇ m, the ferrite-austenite during the two-phase annealing is not evenly distributed, so that the material uniformity after annealing (cold-rolled steel sheet or hot-dip galvanized steel sheet) decreases.
  • the upper limit of the mean free process of pearlite is not specifically limited, 20 micrometers or less are preferable. The pearlite mean free path will be described later.
  • the remaining structure other than ferrite and pearlite may be a mixed structure combining one or two or more low-temperature generation phases selected from martensite, bainite, retained austenite, spherical cementite, and the like. From the viewpoint of formability and material uniformity of the hot-dip galvanized steel sheet, the total volume fraction of the remaining structure other than ferrite and pearlite is preferably less than 10% in total.
  • the hot-rolled steel sheet contains an Nb-based precipitate having an average particle size of 0.10 ⁇ m or less.
  • the strain around the Nb-based precipitates can effectively act as a resistance to dislocation movement, contributing to strengthening of steel, and further annealing. This can contribute to a higher yield ratio later (cold-rolled steel sheet or hot-dip galvanized steel sheet).
  • a cold-rolled steel sheet having excellent material uniformity and a high yield ratio according to the present invention, and a hot-rolled steel sheet used as a material for a hot-dip galvanized steel sheet are continuously cast from a molten steel having a component composition suitable for the above component composition range.
  • a slab is prepared, and the slab is cooled to 600 ° C. within 6 hours, and then reheated, and hot-rolled at a hot rolling start temperature of 1150 to 1270 ° C. and finish rolling finish temperature of 830 to 950 ° C.
  • the slab is first cast by a continuous casting method.
  • the continuous casting machine is preferably a vertical bending die. This is because the vertical bending die is excellent in the balance between equipment cost and surface quality, and exhibits a remarkable effect of suppressing surface cracks.
  • the slab is cooled to 600 ° C. within 6 hours. When cooling to 600 ° C for more than 6h (hours) after continuous casting, segregation such as Mn becomes noticeable and the crystal grains become coarse, so the average free path of pearlite after hot rolling decreases. , Material uniformity deteriorates.
  • the steel slab after continuous casting is cooled to 600 ° C. within 6 hours, preferably cooled to 600 ° C. within 5 hours, more preferably 600 ° C. within 4 hours. Moreover, if it cools to 600 degreeC, after cooling to room temperature, it may be reheated and may be hot-rolled, or may be reheated as it is and may be hot-rolled.
  • Finish rolling finish temperature 830-950 °C Hot rolling must be finished in the austenite single phase region in order to improve material uniformity by homogenizing the structure in the steel sheet and reducing material anisotropy, so the finish rolling finish temperature should be 830 ° C or higher. To do. On the other hand, when the finish rolling finish temperature exceeds 950 ° C., there is a concern that the hot-rolled structure becomes coarse and the material uniformity decreases. Therefore, the finish rolling finish temperature is set to 830 to 950 ° C.
  • Cooling in the temperature range up to 650 ° C at an average cooling rate of 20 to 90 ° C / s When cooling at an average cooling rate of less than 20 ° C / s, the ferrite transformation proceeds excessively and the desired pearlite volume fraction is obtained. Therefore, the material uniformity of the annealed plate (cold-rolled steel plate or hot-dip galvanized steel plate) decreases. Further, when the average cooling rate exceeds 90 ° C./s, the ferrite transformation does not proceed sufficiently in the hot-rolled sheet structure, the desired ferrite crystal grain size and pearlite mean free path cannot be obtained, and the annealed sheet Material uniformity of (cold-rolled steel sheet or hot-dip galvanized steel sheet) decreases. Preferably, the average cooling rate is 30 to 70 ° C./s.
  • the ferrite transformation proceeds excessively and the desired pearlite volume fraction is obtained.
  • the material uniformity of the annealed plate (cold-rolled steel plate or hot-dip galvanized steel plate) decreases.
  • the average cooling rate exceeds 30 ° C./s, the bainite transformation proceeds after winding, and the desired pearlite volume fraction and crystal grain size cannot be obtained.
  • the material uniformity of the (steel plate) decreases.
  • the average cooling rate is 10 to 25 ° C./s.
  • the hot rolled sheet structure includes a martensite and bainite low-temperature formation phase (hard phase), resulting in an uneven hardness distribution in the hot rolled sheet, and an annealed sheet (cold rolled).
  • the material uniformity of the steel sheet or hot-dip galvanized steel sheet is reduced.
  • the coiling temperature exceeds 640 ° C.
  • the crystal grain size of ferrite in the hot-rolled sheet structure becomes large, and it is difficult to ensure the desired strength of the annealed sheet (cold-rolled steel sheet or hot-dip galvanized steel sheet).
  • the Nb carbonitride becomes coarse, and the material uniformity and yield ratio decrease. Therefore, the winding temperature is 470 to 640 ° C.
  • the temperature is preferably 480 to 620 ° C.
  • the hot-rolled steel sheet obtained through the above steps is pickled by a generally known method, and after performing pretreatment such as degreasing as necessary, it is subjected to a cold rolling step as necessary, and further annealed. It is used for the process or the hot dip galvanizing process.
  • a cold rolling step as necessary, and further annealed. It is used for the process or the hot dip galvanizing process.
  • the rolling reduction in cold rolling is preferably 30% or more.
  • the annealing treatment is preferably held for 15 to 600 seconds in a temperature range of 750 to 900 ° C.
  • the annealing temperature is less than 750 ° C or the holding time in the temperature range of 750 to 900 ° C is less than 15 s, an unrecrystallized structure may remain and the ductility may deteriorate, and the annealing temperature exceeds 900 ° C, or 750 This is because if the holding time in the temperature range of ⁇ 900 ° C. exceeds 600 s, the austenite grains grow remarkably, eventually forming a non-uniform structure, and the material stability may be lowered.
  • the steel sheet may be heat-treated in any equipment as long as the heat history condition is satisfied.
  • the alloying treatment is performed after the hot dip galvanization, the steel sheet of the present invention can be subjected to temper rolling after the alloying treatment to correct the shape.
  • hot-rolled sheet is pickled and cold-rolled, and then annealed at 800 ° C., and if necessary, hot-dip galvanized or further galvanized alloyed, CR), hot dip galvanized steel sheet (GI), and galvannealed steel sheet (GA) were obtained.
  • Some hot-rolled sheets are subjected to annealing, hot-dip galvanizing treatment, or further galvanizing alloying treatment after hot pickling and not cold rolling, hot-dip galvanized steel sheet (GI), alloyed hot-dip zinc A plated steel sheet (GA) was obtained.
  • the hot dip galvanizing bath uses a zinc bath containing Al: 0.19% by mass for hot dip galvanized steel plate (GI), and uses a zinc bath containing Al: 0.14% by mass for alloyed hot dip galvanized steel plate (GA).
  • the temperature was 460 ° C.
  • the alloyed hot-dip galvanized steel sheet (GA) was alloyed at 550 ° C.
  • the plating adhesion amount was 45 g / m 2 per side (double-sided plating), and the alloyed hot-dip galvanized steel sheet (GA) had an Fe concentration of 9 to 12% by mass in the plating layer.
  • the volume fraction of ferrite and pearlite is 1/4 position of the plate thickness in the depth direction from the steel plate surface after corroding the plate thickness cross section (vertical cross section) parallel to the rolling direction of the steel plate and corroding with 3% nital.
  • the average crystal grain size of ferrite and pearlite is obtained by calculating the area of each ferrite crystal grain or pearlite crystal grain using the above-mentioned Image-Pro, calculating the equivalent circle diameter, and averaging those values. It was.
  • the mean free path of pearlite was calculated by the following formula on the assumption that the centroid of pearlite was obtained using the above-mentioned Image-Pro and was uniformly distributed without extreme bias.
  • L M Mean free path
  • d M Average crystal grain diameter
  • Circumferential ratio
  • the remaining low-temperature generation phase can be discriminated by observation with a scanning electron microscope and a transmission electron microscope. That is, ferrite has a slightly black contrast, while martensite has a white contrast.
  • Pearlite is a layered structure in which plate-like ferrite and cementite are alternately arranged, while bainite is a plate-like bainitic ferrite that has a higher dislocation density than polygonal ferrite. And a structure containing cementite.
  • Spherical cementite is cementite having a spheroidized shape.
  • an X-ray diffraction method (device: Integration of X-ray diffraction lines of ⁇ 200 ⁇ , ⁇ 211 ⁇ and ⁇ 220 ⁇ surfaces of iron ferrite and ⁇ 200 ⁇ , ⁇ 220 ⁇ and ⁇ 311 ⁇ surfaces of austenite by Rigaku RINT2200) The intensity was measured, and using these measured values, “X-ray diffraction handbook” (2000) Rigaku Corporation, p.
  • the volume fraction of retained austenite is calculated from the formulas described in 26 and 62-64. If the volume fraction is 1% or more, it is determined that there is retained austenite. It was judged that there was nothing.
  • the tensile test is performed in accordance with JIS Z2241 (2010) using JIS No. 5 test specimens sampled so that the tensile direction is parallel to the rolling direction.
  • YS yield strength
  • TS tensile
  • YR was evaluated by the value of (YS / TS) ⁇ 100 (%). In the present invention, the case of YR ⁇ 70% of the annealed plate was determined as a high yield ratio.
  • the material uniformity was evaluated as follows. Take the JIS No. 5 test piece from the center of the width of the hot-rolled sheet and the position 1/8 width from each width end (1/8 position of the full width) so that the tensile direction is parallel to the rolling direction. Tensile tests are performed in accordance with JIS Z2241 (2010), YS and TS are measured, and the value at the center of the width and the value at the width 1/8 position (Average value thereof) (the characteristic value at the center of the width ⁇ the absolute value of the characteristic value at the width 1/8 position) was calculated as ⁇ YS and ⁇ TS, respectively. In the present invention, the case of ⁇ YS ⁇ 40 MPa and ⁇ TS ⁇ 30 MPa was determined to be good from the viewpoint of material uniformity.
  • the material variation is evaluated at two points, ie, the width center portion and the width 1/8 position, for example, from the center portion in the width direction of the hot-rolled plate and the hot-rolled plate width end (edge) to 1/4 of the plate width. Since the material near the edge is not evaluated for the difference in tensile strength from the position corresponding to (width 1/4 position), it is difficult to evaluate the material stability in the width direction. This is because the material stability of the annealed sheet can be appropriately evaluated by evaluating the difference in tensile strength between the / 8 position and the center of the width.
  • the tensile direction is parallel to the rolling direction from the position of 1/8 width (1/8 position of full width) from the width center and both ends of the annealed sheet.
  • JIS No. 5 test piece was collected, tensile test was conducted in accordance with JIS Z2241 (2010), YS and TS were measured, and the width center value and width 1/8 position (width 1/8 position) (The average value of the two at both ends) (the average value of the width-the absolute value of the characteristic value at the 1/8 width position) was calculated as ⁇ YS and ⁇ TS, respectively.
  • YS and TS of the annealed plate were the average values at three locations, the center of the width and the 1/8 width position (1/8 position of the full width from each end).
  • ⁇ YS ⁇ 40 MPa and ⁇ TS ⁇ 30 MPa was determined to be good from the viewpoint of material uniformity.
  • Table 3 shows the results of the above investigations.
  • the hot-rolled steel sheet according to the present invention has a TS of 590 MPa or more after subsequent annealing, a high yield ratio, and excellent material uniformity.
  • a TS of 590 MPa or more after subsequent annealing has a high yield ratio, and excellent material uniformity.
  • any one or more of strength, yield ratio, and material uniformity is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 材質均一性に優れ、かつ590MPa以上の引張強度を有する冷延鋼板用または溶融亜鉛めっき鋼板用に供して好適の、熱延鋼板について提供する。 化学成分は、質量%で、C:0.060~0.150%、Si:0.15~0.70%、Mn:1.00 ~1.90%、P:0.10%以下、S:0.010%以下、Al:0.01~0.10%、N:0.010%以下およびNb:0.010~0.100%を含有し、残部がFeおよび不可避的不純物からなり、 ミクロ組織は、平均結晶粒径:18μm以下のフェライトを体積分率で75%以上、平均結晶粒径:2μm以上のパーライトを体積分率で5%以上含み、残部は低温生成相からなる複合組織とし、さらに、パーライトの平均自由行程を5.0μm以上とする。

Description

熱延鋼板およびその製造方法
 本発明は、例えば自動車産業の分野で使用される部材として好適な、特に材質均一性に優れかつ降伏比の高い冷延鋼板用または溶融亜鉛めっき鋼板用の熱延鋼板およびその製造方法に関する。なお、降伏比(YR)とは、引張強度(TS)に対する降伏強度(YS)の比を示す値であり、YR=YS/TSで表される。
 近年、地球環境の保護意識の高まりから、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、車体材料の高強度化での薄肉化を図り、車体を軽量化しようとする動きが活発となっており、プレス加工して製造される部品に用いられる冷延鋼板および溶融亜鉛めっき鋼板には、TSが590MPa以上の高強度鋼板が多く用いられるようになってきている。さらに、自動車に要求される衝突安全性を確保するために、衝突吸収エネルギー特性が大きいという特性が求められている。この衝突吸収エネルギー特性を向上させるためには、降伏比を高めることが有効であり、降伏比が高くなれば、低い変形量であっても効率よく衝突エネルギーを吸収させることが可能である。
 一方、鋼板の高強度化、薄肉化により形状凍結性は著しく低下するため、プレス成形時に、離型後のプレス部品の形状変化を予め予測し、形状変化量を見込んでプレス金型を設計することが広く行われている。ここで、鋼板の引張強度が著しく変化すると、これらを一定とした見込み量からのズレが大きくなり、形状不良が発生し、プレス成形後に一個一個形状を板金加工する等の手直しが不可欠となり、量産効率を著しく低下させる。このため、冷延鋼板および溶融亜鉛めっき鋼板の強度のバラツキを可能な限り小さくすること、すなわち材質均一性に優れることが要求されている。
 ここに、590MPa以上の引張強度を得るための鋼板の強化機構としては、母相であるフェライトの硬化、もしくはマルテンサイトのような硬質相を利用する方法がある。上記の中で、Nbなど炭化物生成元素を添加した析出強化型の高強度鋼板は、高降伏比を得やすく、かつ、所定の強度を確保するために必要な合金元素が少量で済むため、廉価に製造可能である。
 例えば、590MPa以上の高強度薄鋼板について、特許文献1には、NbおよびTi添加により析出強化し、伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板を提供することが開示されている。特許文献2には、NbおよびTi添加により析出強化した、鋼板組織が再結晶フェライト、未再結晶フェライト及びパーライトを含む高強度冷延鋼板が開示されている。
 また、高強度の冷延鋼板は、熱延鋼板の鋼板組織や析出量の影響が大きく、熱延鋼板における高強度化が有利であり、この熱延鋼板について、特許文献3には、NbおよびTiの含有量を調整することにより、高延性を有し、かつ材質均一性に優れた熱延鋼板を製造する方法が開示されており、さらに特許文献4には、Ti含有量を調整することにより、材質均一性および穴広げ性が改善された熱延鋼板が開示されている。
特開2008-174776号公報 特開2008-156680号公報 特許第3767132号公報 特開2000-212687号公報
 しかしながら、特許文献1に開示の技術では、鋼板中のAl含有量が0.010%未満であるため、鋼の脱酸とNの析出固定とを十分に行うことができず、健全な鋼を量産することは困難であり、加えてOを含有し酸化物を分散させているため、材質ばらつきが大きくなる、という問題がある。また、特許文献2に開示の技術は、未再結晶フェライトを均一に分散させて延性の低下を抑えているが、材質均一性については考慮されていない。さらに、上述の特許文献1および2に開示の技術では、熱間圧延段階での組織制御は考慮されておらず、ともに冷間圧延後の組織制御により、延性の向上および幅方向の延性ばらつきの縮小化を図っている。
 また、特許文献3および4には、高延性もしくは穴広げ性に優れた熱延鋼板の製造方法が提示されており、冷延鋼板を製造するための熱延素材および溶融亜鉛めっきを製造するための熱延素材としては考慮されていない。そのため、焼鈍後に材質均一性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板の開発が課題となる。
 したがって、本発明の課題は、上記従来技術の問題点を解消し、材質均一性に優れ、かつ590MPa以上の引張強度を有する冷延鋼板用または溶融亜鉛めっき鋼板用に供して好適の、熱延鋼板およびその製造方法について提供することを目的とする。
 本発明者らは、材質均一性に優れ、かつ高降伏比を有する冷延鋼板用または溶融亜鉛めっき鋼板用の熱延鋼板を得るべく鋭意検討を重ねたところ、以下のことを見出した。すなわち、連続鋳造後の鋼スラブを600℃まで6h以内に冷却することによって、スラブ内の偏析を最小限に抑えるとともに熱間圧延前の結晶粒を微細化させ、その後、熱間圧延工程で仕上げ圧延終了温度から巻取り温度までの熱履歴、とくに冷却速度を制御し、鋼板の組織をフェライトおよびパーライトを主体とする組織にするとともに、Nbの添加に伴う再結晶遅延効果を利用することによって、熱延鋼板のフェライトおよびパーライトの結晶粒を微細化し、さらに、鋼板組織の体積分率およびパーライトの分散状態を制御することにより、熱延鋼板の材質バラツキを低減することができるとともに、その後の焼鈍後の冷延鋼板および溶融亜鉛めっき鋼板の強度確保と材質バラツキの狭小化を図ることができることが分かった。
 また、その後の焼鈍後の冷延鋼板および溶融亜鉛めっき鋼板では、Nb炭窒化物の析出強化の活用による強度確保、降伏比の向上、さらに、構成相の面積率を適正に制御することにより、材質均一性の向上を図ることができた。以上のことより、材質均一性に優れた高降伏比を有する冷延鋼板用熱延鋼板および溶融亜鉛めっき鋼板用熱延鋼板の創製が可能となった。
 本発明は、以上の知見に基づいてなされたものであり、その構成は次のとおりである。
(1)化学成分が、質量%で、C:0.060~0.150%、Si:0.15~0.70%、Mn:1.00~1.90%、P:0.10%以下、S:0.010%以下、Al:0.01~0.10%、N:0.010%以下およびNb:0.010~0.100%を含有し、残部がFeおよび不可避的不純物からなり、
 ミクロ組織が、平均結晶粒径:18μm以下のフェライトを体積分率で75%以上、平均結晶粒径:2μm以上のパーライトを体積分率で5%以上含み、残部は低温生成相からなる複合組織であり、さらに、パーライトの平均自由行程が5.0μm以上であることを特徴とする熱延鋼板。
 ここで、パーライトの平均自由行程とは、パーライトの分散状態である。
(2)Fe成分の一部に代えて、さらに質量%で、Ti:0.05%未満を含有することを特徴とする前記(1)に記載の熱延鋼板。
(3)Fe成分の一部に代えて、さらに質量%で、V:0.10%以下、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.0030%以下から選択される一種以上を含有することを特徴とする前記(1)または(2)に記載の熱延鋼板。
(4)Fe成分の一部に代えて、さらに質量%で、Ca:0.001~0.005%およびREM:0.001~0.005%から選択される一種以上を含有することを特徴とする前記(1)から(3)のいずれかに記載の熱延鋼板。
(5)前記熱延鋼板が、冷延鋼板用または溶融亜鉛めっき鋼板用である前記(1)から(4)のいずれかに記載の熱延鋼板。
 ここで、前記溶融亜鉛めっき鋼板は、合金化処理を施すか施さないかにかかわらず、溶融亜鉛めっき方法によって鋼板上に亜鉛をめっきした鋼板を総称する。すなわち、本発明における溶融亜鉛めっき鋼板とは、合金化処理を施していない溶融亜鉛めっき鋼板、合金化処理を施した合金化溶融亜鉛めっき鋼板の両方を含むものである。
(6)前記(1)から(4)のいずれかに記載の成分組成を有する溶鋼を連続鋳造してスラブとし、このスラブを600℃まで6h以内に冷却し、その後、再加熱して、熱間圧延開始温度:1150~1270℃、仕上げ圧延の終了温度:830~950℃の条件で熱間圧延し、650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、470~640℃の温度域にて巻取る際の該巻取り温度まで平均冷却速度5~30℃/sで冷却し、前記巻取りを行うことを特徴とする熱延鋼板の製造方法。
 本発明によれば、材質均一性に優れることから高い加工性を有し、しかも高い降伏比を有する冷延鋼板や溶融亜鉛めっき鋼板用の素材である熱延鋼板を提供することができる。そして、この熱延鋼板を冷延鋼板および溶融亜鉛めっき鋼板に供することによって得られる、冷延鋼板および溶融亜鉛めっき鋼板を、例えば、自動車構造部材に適用することにより、自動車における衝突安全性を確保しつつ車体軽量化による燃費改善を図ることができる。
 以下、本発明について具体的に説明する。
 本発明の熱延鋼板の各成分の含有量の限定理由を説明する。なお、以下において、鋼の化学成分に関する「%」表示は、特に断らない限り「質量%」を意味する。
C:0.060~0.150%
 炭素(C)は、鋼板の高強度化に有効な元素であり、特に、Nbのような炭化物形成元素と微細な合金炭化物、あるいは、合金炭窒化物を形成して鋼板の強化に寄与する。また、本発明における、熱延鋼板の鋼板組織におけるパーライトの形成に必要な元素であり、高強度化に寄与する。この効果を得るためには、0.060%以上の添加が必要である。一方、C含有量を0.150%よりも多く含有させると、スポット溶接性が低下することから、C含有量の上限は0.150%とする。なお、より良好な溶接性を確保する観点からは、C含有量を0.120%以下とすることが好ましい。
Si:0.15~0.70%
 珪素(Si)は、高い加工硬化能をもつことから強度上昇に対して延性の低下が比較的少なく、焼鈍後の強度-延性バランスの向上にも寄与する元素である。また、熱延段階でのフェライト変態の促進により、所望のフェライトの結晶粒径および体積分率を確保するのに寄与する、材質均一性を向上させるために必要な元素である。この効果を得るためには、Si含有量を0.15%以上とすることが必要である。さらに材質均一性を高めるためには、Si含有量を0.35%以上とすることが好ましい。一方、Si含有量が0.70%よりも多いと、焼鈍後の溶融亜鉛めっき性の劣化が著しくなるため、Si含有量を0.70%以下とし、より好ましくは0.60%以下である。
Mn:1.00~1.90%
 マンガン(Mn)は、固溶強化および第2相を生成することで焼鈍後の高強度化に寄与する元素である。その効果を得るためにはMn含有量は1.00%以上とすることが必要であり、好ましくは1.20%以上である。一方、Mn含有量が1.90%よりも多いと、熱延段階でのフェライト変態とパーライト変態を遅延し、所望のフェライトの結晶粒径および面積率を確保することが難しく、材質均一性が低下する懸念があるため、その含有量は1.90%以下、好ましくは1.70%以下とする。
P:0.10%以下
 リン(P)は、固溶強化により高強度化に寄与する元素であり、この効果を得るためにはPの含有量は0.005%以上とすることが好ましい。また、P含有量が0.10%よりも多いと、粒界への偏析が著しくなって粒界を脆化させ、また溶接性が低下し、材質均一性が劣化するため、Pの含有量の上限値は0.10%とする。好ましくは、0.05%以下である。
S:0.010%以下
 硫黄(S)の含有量が多い場合には、MnSなどの硫化物が多く生成し、焼鈍後の伸びフランジ性に代表される局部伸びが低下するため、含有量の上限を0.010%とする。好ましくは、0.005%以下である。なお、S含有量の下限値については特に限定する必要は無いが、極低S化は製鋼コストの上昇をまねくため、0.0005%以上の範囲において低減すればよい。
Al:0.01~0.10%
 アルミニウム(Al)は、脱酸に必要な元素であり、この効果を得るためには0.01%以上含有することが必要であるが、0.10%を超えて含有しても効果が飽和するため、0.10%以下とする。好ましくは、0.05%以下である。
N:0.010%以下
 窒素(N)は、Cと同様にNbと化合物を形成して、合金窒化物や合金炭窒化物となり、高強度化に寄与する。しかし、窒化物は比較的高温で生成しやすいため粗大になりやすく、炭化物に比べ強度への寄与が相対的に小さい。このため、焼鈍後の高強度化にはN含有量を低減して合金炭化物をより生成した方が有利である。このような観点から、Nの含有量は0.010%以下、好ましくは0.005%以下とする。
Nb:0.010~0.100%
 ニオブ(Nb)は、CやNと化合物を形成して炭化物や炭窒化物となり、さらには結晶粒微細化に効果があり、所望のフェライトおよびパーライトの結晶粒径および体積分率を確保するために重要な元素である。さらに、炭窒化物の析出強化により高降伏比を得るためにも必要な元素である。この効果を得るためには、Nb含有量を0.010%以上とすることが必要である。しかし、Nb含有量が0.100%よりも多いと、成形性の低下が著しくなるため、Nb含有量の上限値を0.100%とする。好ましくは、0.060%以下である。
 本発明では、上記の基本成分に加え、以下に示す任意成分を、必要に応じて所定の範囲で一種以上含有しても良い。
Ti:0.05%未満
 チタン(Ti)は、Nbと同様に、微細な炭窒化物を形成し、結晶粒微細化にも効果があり、強度上昇に寄与することができるため、必要に応じて含有することが出来る元素であるが、Ti含有量を0.05%以上添加すると、成形性が著しく低下するため、Ti含有量は0.05%未満とし、好ましくは0.035%以下である。なお、焼鈍後の強度上昇効果を発揮する上で、Tiを含有させる場合には、0.005%以上含有させることが好ましい。
V:0.10%以下
 バナジウム(V)もまた、Nbと同様に、微細な炭窒化物を形成し、結晶粒微細化にも効果があり、強度上昇に寄与することができるため、必要に応じて含有することが出来る元素であるが、V含有量を0.10%よりも多くしても、0.10%を超えた分の強度上昇効果は小さく、そのうえ、合金コストの増加も招いてしまう。このため、V含有量は0.10%以下とする。なお、強度上昇効果を発揮する上で、Vを含有させる場合には、0.005%以上含有させることが好ましい。
Cr:0.50%以下
 クロム(Cr)は、焼鈍時の焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる元素であるが、この効果を発揮させるためには、Cr含有量を0.10%以上とすることが好ましい。一方、Cr含有量を0.50%より多くしても、効果の向上は認められなくなるため、Cr含有量は0.50%以下とする。
Mo:0.50%以下
 モリブデン(Mo)は、焼鈍時の焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる元素であるが、この効果を発揮させるためには、Mo含有量を0.05%以上とすることが好ましい。一方、Mo含有量を0.50%より多くしても、効果の向上は認められなくなるため、Mo含有量は0.50%以下とする。
Cu:0.50%以下
 銅(Cu)は、固溶強化により高強度化に寄与し、また、焼鈍時の焼入れ性を向上させ、第2相を生成することでも高強度化に寄与する元素であり、必要に応じて添加することができる元素である。この効果を発揮させるためには、Cu含有量は0.05%以上とすることが好ましい。一方、Cu含有量が0.50%より多くしても、効果の向上は認められなくなり、さらに、Cuに起因する表面欠陥が発生しやすくなるため、Cu含有量は0.50%以下とする。
Ni:0.50%以下
 ニッケル(Ni)もまた、Cuと同様に、固溶強化により高強度化に寄与し、また、焼鈍時の焼入れ性を向上させ、第2相を生成することでも高強度化に寄与し、さらに、Cuとともに添加すると、Cu起因の表面欠陥を抑制する効果があるため、必要に応じて添加することができる元素である。この効果を発揮させるためには、Ni含有量を0.05%以上とすることが好ましい。一方、Ni含有量を0.50%より多くしても、効果の向上は認められなくなるため、Ni含有量は0.50%以下とする。
B:0.0030%以下
 ボロン(B)は、焼鈍時の焼入れ性を向上させて第2相を生成することによって、高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を発揮するためには、0.0005%以上含有させることが好ましい。一方、0.0030%超を含有させても効果が飽和するため、その含有量を0.0030%以下とする。
Ca:0.001~0.005%およびREM:0.001~0.005%から選択される一種以上
 カルシウム(Ca)および希土類元素(REM)は、硫化物の形状を球状化し、穴広げ性への硫化物の悪影響を改善するのに寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮するためには、それぞれ0.001%以上含有させることが好ましい。一方、0.005%超含有させても効果が飽和するため、その含有量をそれぞれ0.005%以下とする。
 上記化学成分の他の残部は、Fe及び不可避的不純物である。
 ここで、不可避的不純物としては、例えば、Sb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。また、本発明では、Ta、Mg、Zrを通常の鋼組成の範囲内で含有しても、その効果は失われない。
 次に、本発明の熱延鋼板のミクロ組織について詳細に説明する。
 熱延板組織は、フェライトが平均結晶粒径18μm以下かつ体積分率75%以上であり、パーライトが平均結晶粒径2μm以上かつ体積分率5%以上であり、残部が低温生成相からなり、前記パーライトの平均自由行程が5.0μm以上である、複合組織である。ここで述べる体積分率は、鋼板の組織全体に対する体積分率であり、以下同様である。
 熱延板組織のフェライトの体積分率が75%未満では、硬質な第2相が多く存在することになるため、材質均一性が劣化する。そのためフェライトの体積分率は75%以上とする。一方、フェライトの体積分率の上限としては、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)に高強度を確保するため、95%以下とすることが好ましい。また、フェライトの平均粒径が18μm超では、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の所望の強度確保が難しいため、フェライトの平均結晶粒径は18μm以下とする。フェライトの平均結晶粒径の下限は特に限定されないが、焼鈍後の良好な材質均一性を確保するためには、5μm以上が好ましい。
 熱延板組織のパーライトの体積分率が5%未満では、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の所望の強度確保が難しいため、パーライトの体積分率は5%以上とする。また、パーライトの体積分率の上限は特に限定されないが、良好な加工性を得る観点から、15%以下とすることが好ましい。また、パーライトの平均結晶粒径が2μm未満では、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の所望の強度確保が難しいため、パーライトの平均結晶粒径は2μm以上とする。パーライトの平均結晶粒径の上限は特に限定はされないが、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の良好な材質均一性を確保するためには、15μm以下が好ましい。
 また、熱延鋼板、冷延鋼板、溶融亜鉛めっき鋼板の良好な材質均一性を確保するために、熱延板組織のパーライトの平均自由行程は5.0μm以上とする。パーライトの平均自由行程が5.0μm未満では、2相域焼鈍時のフェライト-オーステナイトが均一に分布しないため、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。パーライトの平均自由工程の上限は特に限定されないが、20μm以下が好ましい。
 なお、パーライトの平均自由行程については、後述する。
 フェライトおよびパーライト以外の残部組織は、マルテンサイト、ベイナイト、残留オーステナイトおよび球状セメンタイト等から選択される1種あるいは2種以上の低温生成相を組み合わせた混合組織としてもよいが、焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の成形性および材質均一性の観点からフェライトおよびパーライト以外の残部組織の体積分率は合計で10%未満とすることが好ましい。
 また、熱延鋼板中には、平均粒径が0.10μm以下のNb系析出物を含有することが好ましい。Nb系析出物の平均粒径を0.10μm以下とすることによって、Nb系析出物周囲の歪が転位の移動の抵抗として効果的に作用し、鋼の強化に寄与することができ、さらには焼鈍後(冷延鋼板や溶融亜鉛めっき鋼板)の高降伏比化に寄与することができる。
 次に、熱延鋼板の製造方法について説明する。
 本発明の材質均一性に優れ、かつ高降伏比を有する冷延鋼板、溶融亜鉛めっき鋼板の素材となる熱延鋼板は、上記の成分組成範囲に適合した成分組成を有する溶鋼から連続鋳造にてスラブを作製し、該スラブを600℃まで6h以内に冷却し、その後、再加熱して、熱間圧延開始温度:1150~1270℃、仕上げ圧延の終了温度:830~950℃の条件で熱間圧延し、650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、470~640℃の温度域にて巻取る際の該巻取り温度まで平均冷却速度5~30℃/sで冷却し巻取りを行うことによって製造できる。
 以下、上記の製造工程について詳細に説明する。
 本発明において、まずスラブは連続鋳造法により鋳造される。連続鋳造法は、本発明の課題からして前提となるものであり、しかも鋳型鋳造法と比較して生産能率が高いためである。連続鋳造機は垂直曲げ型が望ましい。これは、垂直曲げ型は設備コストと表面品質のバランスに優れ、かつ、表面亀裂の抑制効果が顕著に発揮されるためである。
 この連続鋳造を経てスラブとした後は、600℃まで6h以内に冷却する。連続鋳造後、600℃まで6h(時間)を超えて冷却を行うと、Mn等の偏析が顕著となり、かつ結晶粒が粗大化するため、特に熱間圧延後のパーライトの平均自由行程が低下し、材質均一性が劣化する。このため、連続鋳造後の鋼スラブの冷却は600℃まで6h以内とし、好ましくは600℃まで5h以内まで冷却、さらに好ましくは600℃まで4h以内に冷却する。また、600℃まで冷却したならば、その後に、室温まで冷却した後に再加熱して熱間圧延を施しても良いし、そのまま温片のまま再加熱して熱間圧延を施しても良い。
[熱間圧延工程]
・熱間圧延開始温度:1150~1270℃
 熱間圧延開始温度は、1150℃よりも低くなると圧延負荷が増大し、生産性が低下するため好ましくなく、また、1270℃より高くしても加熱コストが増大するだけであるため、1150~1270℃とすることが好ましい。
・仕上げ圧延終了温度:830~950℃
 熱間圧延は、鋼板内の組織均一化、材質の異方性低減により、材質均一性を向上させるため、オーステナイト単相域にて終了する必要があるので、仕上げ圧延終了温度は830℃以上にする。一方、仕上げ圧延終了温度が950℃超えでは、熱延組織が粗大になり、材質均一性が低下する懸念がある。このため、仕上げ圧延終了温度を830~950℃とする。
・650℃までの温度域を平均冷却速度20~90℃/sで冷却
 平均冷却速度が20℃/s未満での冷却では、フェライト変態が過剰に進行し、所望のパーライト体積分率が得られず、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。また、平均冷却速度が90℃/s超えでの冷却では、熱延板組織において、フェライト変態が十分に進行せず、所望のフェライト結晶粒径およびパーライトの平均自由行程を得られず、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。好ましくは平均冷却速度は30~70℃/sである。
・巻取り温度までの温度域を平均冷却速度5~30℃/sで冷却
 平均冷却速度が5℃/s未満での冷却では、フェライト変態が過剰に進行し、所望のパーライト体積分率が得られず、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。また、平均冷却速度が30℃/s超での冷却では、巻取り後にベイナイト変態が進行し、所望のパーライト体積分率と結晶粒径が得られず、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。好ましくは平均冷却速度は10~25℃/sとする。
・巻取り温度:470~640℃
 巻取り温度が470℃未満の場合、熱延板組織において、マルテンサイトやベイナイトの低温生成相(硬質相)を含む組織となり、熱延板で不均一な硬度分布が生じ、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の材質均一性が低下する。また、巻取り温度が640℃を超えた場合、熱延板組織のフェライトの結晶粒径が大きくなり、焼鈍板(冷延鋼板や溶融亜鉛めっき鋼板)の所望の強度確保が難しい。さらにNbの炭窒化物が粗大となり、材質均一性および降伏比が低下する。そのため、巻取り温度は470~640℃とする。好ましくは480~620℃である。
 以上の工程を経て得られた熱延鋼板は、通常公知の方法で酸洗し、必要に応じて、脱脂などの予備処理を実施したのち、必要に応じて冷間圧延工程を施し、さらに焼鈍工程あるいはさらに溶融亜鉛めっき工程へ供される。冷間圧延を行う場合、冷間圧延の圧下率が30%未満になると、焼鈍時にフェライトの再結晶が促進されず、未再結晶フェライトが残存し、焼鈍板の延性が低下する場合があるため、冷間圧延の圧下率は30%以上が好ましい。焼鈍処理は、750~900℃の温度域で15~600s保持することが好ましい。焼鈍温度が750℃未満または750~900℃の温度域での保持時間が15s未満になると、未再結晶組織が残存し、延性が低下する場合があり、焼鈍温度が900℃を超え、または750~900℃の温度域での保持時間が600sを超えると、オーステナイト粒の成長が著しく、最終的に不均一な組織が形成され、材質安定性が低下する場合があるためである。
 なお、一連の熱処理においては、熱履歴条件さえ満足されれば、鋼板はいかなる設備で熱処理を施されてもかまわない。加えて、溶融亜鉛めっき後に、合金化処理を施す場合は、合金化処理後に本発明の鋼板に調質圧延を施して形状矯正を行うことも可能である。
 以下、本発明の実施例を説明する。ただし、本発明は、もとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとし、表2に示す冷却時間にて600℃までの冷却を行った後、室温まで冷却した。その後、得られたスラブを再加熱後、表2に示す熱間圧延条件で2.3~4.5mmの各板厚まで熱間圧延を行い、表2に示す巻取り温度で巻き取った。
 次いで、得られた熱延板を酸洗し、冷間圧延した後、800℃で焼鈍し、必要に応じて、溶融亜鉛めっき処理、またはさらに亜鉛めっきの合金化処理を施し、冷延鋼板(CR)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)を得た。一部熱延板については、酸洗後、冷間圧延を施さないで、焼鈍、溶融亜鉛めっき処理、またはさらに亜鉛めっきの合金化処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)を得た。溶融亜鉛めっき浴は溶融亜鉛めっき鋼板(GI)では、Al:0.19質量%含有亜鉛浴を使用し、合金化溶融亜鉛めっき鋼板(GA)では、Al:0.14質量%含有亜鉛浴を使用し、浴温は460℃とし、合金化溶融亜鉛めっき鋼板(GA)については、550℃で合金化処理を施した。めっき付着量は片面あたり45g/m(両面めっき)とし、合金化溶融亜鉛めっき鋼板(GA)は、めっき層中のFe濃度を9~12質量%とした。
 得られた熱延鋼板に対して、ミクロ組織並びに機械的特性を、次のとおり調査した。
 すなわち、フェライトとパーライトの体積分率は、鋼板の圧延方向に平行な板厚断面(垂直断面)を研磨後、3%ナイタールで腐食し、鋼板表面から深さ方向に板厚の1/4位置について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、Media Cyberneticks社のImage-Proを用いて各相の面積率を10視野分算出し、それらの値を平均して求め、この面積率を体積分率とした。
 また、フェライトとパーライトの平均結晶粒径は、上述のImage-Proを用いて、各々のフェライト結晶粒もしくはパーライト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して求めた。
 パーライトの平均自由行程は、上述のImage-Proを用いて、パーライトの重心を求め、極端な偏りがなく均一に分散していることを前提に下記式により算出した。
     記
Figure JPOXMLDOC01-appb-I000001
 L:平均自由行程
 d:平均結晶粒径
 π:円周率
 f:面積率(=体積分率)
 また、残部の低温生成相については、走査型および透過型電子顕微鏡の観察において判別可能である。すなわち、フェライトがやや黒いコントラストであるのに対し、マルテンサイトは白いコントラストが付いているものである。また、パーライトは、層状の組織で、板状のフェライトとセメンタイトが交互に並んでいる組織であるのに対し、ベイナイトは、ポリゴナルフェライトと比較して転位密度の高い板状のベイニティックフェライトとセメンタイトを含む組織である。また、球状セメンタイトは、球状化した形状を有するセメンタイトである。残留オーステナイトの有無については、表層より深さ方向に板厚1/4の厚さ分だけ研磨した面で、MoのKα線を線源として、加速電圧50keVにて、X線回折法(装置:Rigaku社製 RINT2200)によって、鉄のフェライトの{200}面、{211}面、{220}面と、オーステナイトの{200}面、{220}面、{311}面のX線回折線の積分強度を測定し、これらの測定値を用いて、「X線回折ハンドブック」(2000年)理学電機株式会社、p.26、62-64に記載の計算式から残留オーステナイトの体積分率を求め、体積分率が1%以上の場合、残留オーステナイトがありと判断し、体積分率が1%未満の場合、残留オーステナイトがなしと判断した。
 引張試験は、引張方向が圧延方向と平行となるようにサンプル採取したJIS5号試験片を用いて、JIS Z2241(2010年)に準拠して行い、焼鈍板のYS(降伏強度)、TS(引張強度)を測定した。YRは、(YS/TS)×100(%)の値で評価した。なお、本発明では、焼鈍板のYR≧70%の場合を高降伏比と判定した。
 材質均一性については、次のように評価した。
 熱延板の幅中心部と、両幅端からそれぞれ1/8幅の位置(全幅の1/8位置)から、引張方向が圧延方向と平行となるように、JIS5号試験片を採取し、JIS Z2241(2010年)に準拠して引張試験を行ない、YSおよびTSを測定し、幅中心部の値と幅1/8位置の値(幅1/8位置は両端部あわせて2箇所あるが、その平均値)との差(幅中心部の特性値-幅1/8位置の特性値の絶対値)をそれぞれΔYSおよびΔTSとして算出した。なお、本発明では、ΔYS≦40MPa、ΔTS≦30MPaの場合を材質均一性の観点で良好と判定した。材質バラツキを、幅中心部と幅1/8位置の2点で評価するのは、例えば、熱延板の幅方向の中心部と熱延板幅端部(エッジ)から板幅の1/4に相当する位置(幅1/4位置)との引張強度の差では、エッジ付近の材質が評価されないため、十分な幅方向の材質安定性の評価が困難であるが、さらにエッジ寄りの幅1/8位置と幅中心部の引張強度の差で評価することで、焼鈍板の材質安定性の適切な評価が可能になるためである。
 冷延板および溶融亜鉛めっき鋼板については、焼鈍板の幅中心部と両幅端からそれぞれ1/8幅の位置(全幅の1/8位置)から、引張方向が圧延方向と平行となるように、JIS5号試験片を採取し、JIS Z2241(2010年)に準拠して引張試験を行ない、YSおよびTSを測定し、幅中心部の値と幅1/8位置の値(幅1/8位置は両端部あわせて2箇所あるが、その平均値)との差(幅中心部の特性値-幅1/8位置の特性値の絶対値)をそれぞれΔYSおよびΔTSとして算出した。なお、表3中、焼鈍板のYSおよびTSは、幅中心部と1/8幅の位置(両端部からそれぞれ全幅の1/8位置)の3箇所の平均値とした。なお、本発明では、ΔYS≦40MPa、ΔTS≦30MPaの場合を材質均一性の観点で良好と判定した。
 以上の各調査の結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に従う熱延鋼板は、その後の焼鈍後のTSが590MPa以上であり、高降伏比を有し、材質均一性にも優れている。一方、比較例では、強度、降伏比、材質均一性のいずれか一つ以上が劣っている。
 

Claims (6)

  1.  化学成分が、質量%で、C:0.060~0.150%、Si:0.15~0.70%、Mn:1.00~1.90%、P:0.10%以下、S:0.010%以下、Al:0.01~0.10%、N:0.010%以下およびNb:0.010~0.100%を含有し、残部がFeおよび不可避的不純物からなり、
     ミクロ組織が、平均結晶粒径:18μm以下のフェライトを体積分率で75%以上、平均結晶粒径:2μm以上のパーライトを体積分率で5%以上含み、残部は低温生成相からなる複合組織であり、さらに、パーライトの平均自由行程が5.0μm以上であることを特徴とする熱延鋼板。
  2.  Fe成分の一部に代えて、さらに質量%で、Ti:0.05%未満を含有することを特徴とする請求項1に記載の熱延鋼板。
  3.  Fe成分の一部に代えて、さらに質量%で、V:0.10%以下、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下、B:0.0030%以下から選択される一種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
  4.  Fe成分の一部に代えて、さらに質量%で、Ca:0.001~0.005%およびREM:0.001~0.005%から選択される一種以上を含有することを特徴とする請求項1から3のいずれか1項に記載の熱延鋼板。
  5.  前記熱延鋼板が、冷延鋼板用または溶融亜鉛めっき鋼板用である請求項1から4のいずれか1項に記載の熱延鋼板。
  6.  請求項1から4のいずれか1項に記載の成分組成を有する溶鋼を連続鋳造してスラブとし、このスラブを600℃まで6h以内に冷却し、その後、再加熱して、熱間圧延開始温度:1150~1270℃、仕上げ圧延の終了温度:830~950℃の条件で熱間圧延し、650℃までの温度域を平均冷却速度20~90℃/sで冷却し、その後、470~640℃の温度域にて巻取る際の該巻取り温度まで平均冷却速度5~30℃/sで冷却し、前記巻取りを行うことを特徴とする熱延鋼板の製造方法。
PCT/JP2012/006197 2011-09-29 2012-09-27 熱延鋼板およびその製造方法 WO2013046697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280047194.XA CN103842539B (zh) 2011-09-29 2012-09-27 热轧钢板及其制造方法
KR1020147010739A KR101497427B1 (ko) 2011-09-29 2012-09-27 열연 강판 및 그의 제조 방법
US14/347,277 US9057123B2 (en) 2011-09-29 2012-09-27 Hot-rolled steel sheet and method for producing same
EP12835555.9A EP2762581B1 (en) 2011-09-29 2012-09-27 Hot-rolled steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-215624 2011-09-29
JP2011215624A JP5365673B2 (ja) 2011-09-29 2011-09-29 材質均一性に優れた熱延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013046697A1 true WO2013046697A1 (ja) 2013-04-04

Family

ID=47994773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006197 WO2013046697A1 (ja) 2011-09-29 2012-09-27 熱延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US9057123B2 (ja)
EP (1) EP2762581B1 (ja)
JP (1) JP5365673B2 (ja)
KR (1) KR101497427B1 (ja)
CN (1) CN103842539B (ja)
TW (1) TWI460286B (ja)
WO (1) WO2013046697A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021196A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2016021195A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP2998415A1 (en) * 2013-08-02 2016-03-23 JFE Steel Corporation High-strength, high-young's modulus steel plate, and manufacturing method thereof
JP2016089235A (ja) * 2014-11-07 2016-05-23 Jfeスチール株式会社 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
EP3128026A1 (en) * 2014-03-31 2017-02-08 JFE Steel Corporation High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
US10093999B2 (en) * 2013-06-19 2018-10-09 Baoshan Iron & Steel Co., Ltd. Steel plate resistant to zinc-induced crack and manufacturing method therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842515B2 (ja) * 2011-09-29 2016-01-13 Jfeスチール株式会社 熱延鋼板およびその製造方法
WO2013115205A1 (ja) * 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
WO2014143702A2 (en) * 2013-03-15 2014-09-18 Am/Ns Calvert Llc Line pipe steels and process of manufacturing
ES2826878T3 (es) 2015-04-22 2021-05-19 Nippon Steel Corp Chapa de acero laminada en caliente, material de acero y procedimiento para producir chapa de acero laminada en caliente
WO2018220412A1 (fr) 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN108441761B (zh) * 2018-03-07 2020-05-22 首钢集团有限公司 一种耐磨托辊用热轧带钢及制造方法
CN109203604A (zh) * 2018-11-09 2019-01-15 瓯锟科技温州有限公司 一种宽幅不锈钢复合板及其加工方法
EP3981891B1 (en) * 2019-07-31 2024-02-21 JFE Steel Corporation High strength steel sheet, high strength member, and methods for manufacturing the same
EP3981892A4 (en) * 2019-07-31 2022-05-11 JFE Steel Corporation HIGH STRENGTH STEEL PLATE, HIGH STRENGTH COMPONENT AND PROCESS OF MAKING THESE PRODUCTS
CN112191683B (zh) * 2020-08-28 2023-02-17 首钢京唐钢铁联合有限责任公司 一种热轧钢卷的轧后冷却方法
WO2023218229A1 (en) * 2022-05-13 2023-11-16 Arcelormittal Hot rolled and steel sheet and a method of manufacturing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212687A (ja) 1999-01-20 2000-08-02 Nisshin Steel Co Ltd 材質均一性及び穴拡げ性に優れた高張力熱延鋼板及びその製造方法
JP2003328071A (ja) * 2002-05-09 2003-11-19 Jfe Steel Kk 連続焼鈍炉用通板材およびその製造方法
JP3767132B2 (ja) 1997-11-11 2006-04-19 Jfeスチール株式会社 高延性を有し、かつ材質均一性に優れた高強度熱延鋼板の製造方法
JP2007070662A (ja) * 2005-09-05 2007-03-22 Nippon Steel Corp 耐食性と成形性に優れた溶融亜鉛めっき高強度鋼板および合金化溶融亜鉛めっき高強度鋼板、およびそれらの製造方法
JP2008156680A (ja) 2006-12-21 2008-07-10 Nippon Steel Corp 高降伏比を有する高強度冷延鋼板及びその製造方法
JP2008174776A (ja) 2007-01-17 2008-07-31 Nippon Steel Corp 伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板及びその製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838468B2 (ja) * 1993-04-21 1998-12-16 新日本製鐵株式会社 熱間圧延での割れを防止するCr−Ni系ステンレス合金の製造方法
US6221179B1 (en) * 1997-09-11 2001-04-24 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
WO2001053554A1 (fr) * 2000-01-24 2001-07-26 Nkk Corporation Tole d'acier zingue par immersion a chaud et procede de production correspondant
EP1571229B1 (en) * 2000-02-29 2007-04-11 JFE Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
DE10062919A1 (de) 2000-12-16 2002-06-27 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Warmband oder -blech aus einem mikrolegierten Stahl
KR100949694B1 (ko) 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 초미세입자 조직을 갖는 냉연강판 및 그 제조방법
JP4470701B2 (ja) 2004-01-29 2010-06-02 Jfeスチール株式会社 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
KR100868423B1 (ko) * 2006-12-26 2008-11-11 주식회사 포스코 조관후 강도변화가 작은 스파이럴 강관용 후물 열연 고강도api-x80 급 강재 및 제조방법
CN102333899B (zh) 2009-05-11 2014-03-05 新日铁住金株式会社 冲裁加工性和疲劳特性优良的热轧钢板、热浸镀锌钢板及它们的制造方法
CN101935801A (zh) * 2010-09-30 2011-01-05 攀钢集团钢铁钒钛股份有限公司 一种490MPa级热轧钢板及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767132B2 (ja) 1997-11-11 2006-04-19 Jfeスチール株式会社 高延性を有し、かつ材質均一性に優れた高強度熱延鋼板の製造方法
JP2000212687A (ja) 1999-01-20 2000-08-02 Nisshin Steel Co Ltd 材質均一性及び穴拡げ性に優れた高張力熱延鋼板及びその製造方法
JP2003328071A (ja) * 2002-05-09 2003-11-19 Jfe Steel Kk 連続焼鈍炉用通板材およびその製造方法
JP2007070662A (ja) * 2005-09-05 2007-03-22 Nippon Steel Corp 耐食性と成形性に優れた溶融亜鉛めっき高強度鋼板および合金化溶融亜鉛めっき高強度鋼板、およびそれらの製造方法
JP2008156680A (ja) 2006-12-21 2008-07-10 Nippon Steel Corp 高降伏比を有する高強度冷延鋼板及びその製造方法
JP2008174776A (ja) 2007-01-17 2008-07-31 Nippon Steel Corp 伸びフランジ成形性と衝突吸収エネルギー特性に優れた高強度冷延鋼板及びその製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"X-ray Diffraction Handbook", 2000, RIGAKU CORPORATION, pages: 26,62 - 64
See also references of EP2762581A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093999B2 (en) * 2013-06-19 2018-10-09 Baoshan Iron & Steel Co., Ltd. Steel plate resistant to zinc-induced crack and manufacturing method therefor
US10385431B2 (en) 2013-08-02 2019-08-20 Jfe Steel Corporation High strength steel sheet having high young's modulus and method for manufacturing the same
EP2998415A1 (en) * 2013-08-02 2016-03-23 JFE Steel Corporation High-strength, high-young's modulus steel plate, and manufacturing method thereof
EP2998415A4 (en) * 2013-08-02 2016-07-13 Jfe Steel Corp HIGH YOUNG HIGH YOUNG MODULE STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
EP3128026A1 (en) * 2014-03-31 2017-02-08 JFE Steel Corporation High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
US10329636B2 (en) 2014-03-31 2019-06-25 Jfe Steel Corporation High-strength cold-rolled steel sheet with excellent material homogeneity and production method therefor
EP3128026A4 (en) * 2014-03-31 2017-04-05 JFE Steel Corporation High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
JPWO2016021196A1 (ja) * 2014-08-07 2017-04-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5967320B2 (ja) * 2014-08-07 2016-08-10 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2016021196A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JPWO2016021195A1 (ja) * 2014-08-07 2017-04-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5967319B2 (ja) * 2014-08-07 2016-08-10 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2016021195A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2016089235A (ja) * 2014-11-07 2016-05-23 Jfeスチール株式会社 冷延鋼板用または溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法

Also Published As

Publication number Publication date
JP5365673B2 (ja) 2013-12-11
CN103842539A (zh) 2014-06-04
JP2013076117A (ja) 2013-04-25
KR101497427B1 (ko) 2015-03-02
KR20140059303A (ko) 2014-05-15
EP2762581B1 (en) 2017-05-24
US20140246128A1 (en) 2014-09-04
TWI460286B (zh) 2014-11-11
US9057123B2 (en) 2015-06-16
EP2762581A4 (en) 2015-05-20
EP2762581A1 (en) 2014-08-06
TW201326418A (zh) 2013-07-01
CN103842539B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5365673B2 (ja) 材質均一性に優れた熱延鋼板およびその製造方法
JP5834717B2 (ja) 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法
JP6237900B2 (ja) 高強度冷延薄鋼板およびその製造方法
JP5842515B2 (ja) 熱延鋼板およびその製造方法
JP5825119B2 (ja) 加工性と材質安定性に優れた高強度鋼板およびその製造方法
JP5578289B2 (ja) 冷延鋼板、及びその製造方法、並びにホットスタンプ成形体
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
US10920293B2 (en) Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing plated steel sheet
WO2016067626A1 (ja) 高強度鋼板およびその製造方法
WO2016113788A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
EP2527482B1 (en) Process for producing a high-strength hot-dip galvanized steel sheet with excellent material stability and processability
WO2012105126A1 (ja) 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
WO2011090184A1 (ja) 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP4710558B2 (ja) 加工性に優れた高張力鋼板およびその製造方法
CN104350170B (zh) 伸长率和延伸凸缘性优良的低屈服比高强度冷轧钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835555

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012835555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012835555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347277

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010739

Country of ref document: KR

Kind code of ref document: A