WO2013042924A1 - 기체액체 순환형 하이드레이트 반응기 - Google Patents
기체액체 순환형 하이드레이트 반응기 Download PDFInfo
- Publication number
- WO2013042924A1 WO2013042924A1 PCT/KR2012/007469 KR2012007469W WO2013042924A1 WO 2013042924 A1 WO2013042924 A1 WO 2013042924A1 KR 2012007469 W KR2012007469 W KR 2012007469W WO 2013042924 A1 WO2013042924 A1 WO 2013042924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- reactor
- reactor body
- water
- gas hydrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/20—Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/004—Sparger-type elements
Definitions
- the present invention relates to a gaseous liquid circulating gas hydrate reactor, and more particularly, by bubbling a gas by using a bubble generator disposed below the reactor body to promote the reaction of water and gas contained in the reactor body.
- the present invention relates to a gas-liquid circulation type gas hydrate reactor that sprays at a high speed and forms a flow of water at the bottom of the reactor body to facilitate stirring of the water and gas.
- the clathrate hydrate is a crystalline compound that physically traps guest molecules in a three-dimensional lattice structure in which host molecules are formed through hydrogen bonds without chemically bonding them.
- the host molecule is a water molecule and the guest molecule is a low molecular gas molecules such as methane, ethane, propane or carbon dioxide, it is called a gas hydrate.
- phase change materials PCMs
- the main research contents include phase equilibrium, formation / dissociation conditions, crystal structure, polycrystal coexistence, and competition in the pupil. Composition changes and the like, and in addition, detailed studies in various microscopic or macroscopic aspects are being conducted.
- gas hydrate crystal structures are composed of polyhedral cavities formed by water molecules composed of hydrogen bonds, and body-centered cubic structure I, sI, depending on the type and formation conditions of gas molecules. ), And consists of the crystal structure of diamond cubic structure II (sII) and hexagonal structure H (hexagonal structure H, sH). sI and sII are determined by the size of the object molecule. In sH, the size and shape of the object molecule are important factors.
- the gas hydrate can be used as an energy source to replace the existing fossil fuels, can be used for the storage and transportation of natural gas solidification using the hydrate structure, can be used for the sequestration / storage of CO2 to prevent warming, Or it can be used as a seawater desalination apparatus, especially as a separation technology of the aqueous solution, its utilization is very high.
- Gas hydrates are found in areas adjacent to petroleum or natural gas reservoirs and coal beds, but in deep sea sediments, especially at continental slopes, at low temperatures and pressures.
- a conventional gas hydrate manufacturing apparatus known to date generally has the form as shown in FIG.
- FIG. 1a shows a general gas hydrate manufacturing apparatus 10 according to the prior art.
- the gas hydrate manufacturing apparatus 10 includes a water supply unit 1, a gas supply unit 2, water supplied from the water supply unit 1, and a gas supplied from the gas supply unit 2. It consists of a reactor (3) to react, a dehydration unit (4) for discharging the gas hydrate generated in the reactor (3) to the outside, and an agitator (5) to increase the reaction rate of water and gas.
- a separate cooling jacket 6 may be provided to surround the outside of the reactor 3 to make the environment in the reactor 3 a temperature condition suitable for the production of gas hydrates.
- the cooling jacket 6 may be connected to the refrigerant supply unit 7 to receive the refrigerant continuously.
- the reactivity is improved while the water and gas supplied to the reactor 3 are mixed by the stirrer 5, in which case only a simple mixing action is possible.
- the problem is that water molecules do not have mechanisms that can propagate at high speed in gas molecules.
- a dehydration section 4 is generally arranged at the bottom or side of the reactor 3, where water is separated from the gas hydrate slurry produced in the above state to obtain a high purity gas hydrate directly from the reactor 3. There is a problem that it is not easy.
- the present invention is to solve the above problems, by using a bubble generator disposed in the lower portion of the reactor body in order to facilitate the reaction of the water and gas contained in the reactor body to bubble the gas at high speed and at the same time the reactor body
- An object of the present invention is to provide a gas-liquid circulating gas hydrate reactor that forms a stream of water at a lower portion thereof to facilitate stirring of the water and gas.
- the gas hydrate reactor according to the present invention has an object of obtaining a high purity gas hydrate slurry by having a slurry outlet connected to the upper portion of the reactor body.
- the gas liquid circulating gas hydrate reactor according to the present invention provided to achieve the above object includes a reactor body in which gas and water are supplied to generate gas hydrate, and a bubble generator disposed around the lower portion of the reactor body. The gas supplied from the lower portion of the reactor body is injected into the reactor body through the bubble generator.
- the bubble generator may be preferably a hollow ring shape.
- the lower end of the reactor body has a shape that gradually decreases in diameter as it goes down.
- the gas hydrate reactor may further include a slurry outlet connected to the upper portion of the reactor body.
- Gas and water supplied through the lower part of the reactor body are reacted in a gas-suspended-in-liquid phase with the reactor body full and then hydrate, unreacted gas and unreacted through the slurry outlet. It may be desirable to discharge into water.
- the gas hydrate reactor further includes a scraper rotatably disposed in the reactor body and a scraper drive motor providing a driving force to the scraper, wherein the scraper is attached to an inner surface of the reactor body or the upper cover during the rotational driving process. It may be desirable to remove gas hydrate particles.
- the gas liquid circulating gas hydrate reactor uses a bubble generator disposed at the bottom of the reactor body to bubble the gas in a high speed to promote the reaction of water and gas contained in the reactor body.
- the water flow is formed at the bottom of the reactor body to facilitate the stirring of the water and the gas.
- the present invention maintains the inside of the reactor body as a reactant by maintaining a suspended phase in which the gas is injected into the water at a high speed through a bubble generator and an impeller that promotes mixing of water and gas, so that the gas and liquid can be hardly distinguished. Make it full.
- the above state naturally promotes the reaction of water and gas, thereby increasing the production rate of gas hydride.
- the present invention enables continuous production of uninterrupted gas hydrate by continuously supplying water and gas to the bottom of the reactor body and discharging gas hydrate, unreacted gas, and unreacted water above the reactor body.
- the unreacted gas and the unreacted water are recycled through the dehydration part and resupplied to the reactor body, thereby enabling effective utilization of the entire reactant.
- Figure 1a is a schematic diagram showing a typical gas hydrate manufacturing apparatus according to the prior art
- Figure 1b is an overall configuration showing a hydrate manufacturing process including a gas liquid circulating gas hydrate reactor according to the present invention
- FIG. 2 is a perspective view of a gas liquid circulating gas hydrate reactor according to the present invention.
- FIG. 3 is a plan view of the gas hydrate reactor according to the present invention from the top
- Figure 4 is a perspective view cut to show the inside of the gas hydrate reactor according to the present invention.
- FIG. 5 is a partially enlarged perspective view of FIG. 4 for a detailed depiction of the gas-liquid mixing module.
- 'gas' means a guest gas of gas hydrate
- 'water' means a host molecule.
- gases There are a number of molecules that may be guest gases in gas hydrate formation, such as CH 4 , C 2 H 6 , C 3 H 8 , CO 2 , H 2 , SF 6, etc., hereinafter, these guest gases are referred to as gases. It also refers to water (H 2 O) as the host molecule.
- the gas hydrate reactor 100 includes a water source 10 for supplying water, a gas source 20 for providing a gas, and a gas hydrate generated in the reactor 100. It is connected to the dehydration unit (30).
- the gas hydrate slurry introduced into the dehydration unit 30 may be discharged to the gas hydrate discharge port 36 as a pellet form of a standardized form through the dehydration process, and the separated gas and water may be recycled. That is, the gas from the gas outlet 32 of the dewatering unit 30 is resupplied to the reactor 100 through the blower 40, and the water from the water outlet 34 of the dewatering unit 30 is supplied to various valves and the like. It is supplied back to the reactor 100 via a tank or the like.
- a temperature sensor, a pressure sensor, a valve, and the like are located on the reactor 100, the supply sources 10 and 20, and the dehydration unit 30, and the sensor and the valve may be controlled by being connected to a controller. Since the sensor, the control unit and the like can be variously arranged, a description thereof will be omitted.
- control unit for the user to input the operating parameters and control the operation of the gas hydrate reactor 100 may be connected to the control unit, but will also be omitted in this figure for description.
- Gas hydrate reactor 100 is a cylinder-shaped reactor body 110, the upper cover 120 is fastened so as to be opened and closed on the upper portion of the reactor body 110, the scraper for rotationally driven based on the central axis of the reactor body (110) 130, a scraper drive motor 150 providing a driving force to the scraper 130, an impeller 170 disposed below the reactor body 110, a bubble generator 180 arranged to surround the impeller 170, It includes an impeller drive motor 160 for providing a driving force to the impeller 170.
- the support 101 is disposed at regular intervals on the lower end of the reactor body 110 to stably position the gas hydrate reactor 100 on the ground.
- the gas hydrate reactor 100 receives water and gas from external sources 10 and 20 into the reactor body 110 through the lower portion of the reactor body 110 and then rotates the impeller 170 and the scraper 130. Driving causes the gas hydrate slurry to be produced through the reaction of water and gas.
- the gas discharged through the bubble generator 180 is sprayed at high speed into the water to form bubbles to increase the contact area between the water and the gas.
- the present invention is a gas-suspended-in-liquid phase in which the gas injected through the bubble generator 180 is mixed in such a way that it is difficult to distinguish the gas and the liquid through a high speed flow into the water.
- the suspension phase may be possible in the case of spraying fine gas bubbles at high pressure through the bubble generator 180 at high speed, unlike the prior art.
- the amount of gas hydrate discharged by the flow rate is also proportional.
- the scraper 130 when the scraper 130 and the impeller 170 rotate simultaneously in the reactor body 110, the scraper 130 performs removal of gas hydrate particles that may be attached to the inner surface of the reactor 100.
- the impeller 170 may facilitate the agitation of the water and gas contained in the reactor body 110 to create an environment that can promote the gas hydrate generation reaction.
- the gas hydrate slurry generated in the reactor body 110 is discharged from the gas hydrate reactor 100 through the sludge outlet 122 connected to the upper cover 120, the discharged gas hydrate slurry is dewatered, washed, compressed, etc.
- the desalination process may be possible by adding a process such as pelletization or dissociation through the process of.
- the reactor body 110 may be used not only as a reactor in which water and gas react, but also as a dehydrator and a storage tank. That is, dehydration and storage may be performed separately after the gas high ray is generated, but may be manufactured integrally and various processes may be performed in a single space.
- the upper cover 120 is configured in a lid (lid) type opening and closing method, one side of the upper cover 120 is coupled to the upper end of the reactor body 110 in a clamping manner to facilitate the top opening and closing of the reactor body (110). Do.
- the scraper 130 functions to separate or remove the gas hydrate particles that can be attached to the inner surface of the reactor body 110 in the process of rotating around the central axis of the reactor body 110.
- the impeller 170 has a rotary shaft 172 directly connected to the impeller drive motor 160, a rib 171 coupled to the end of the rotary shaft 172, and blades 173 disposed at predetermined intervals on an outer circumferential surface of the rib 171. It includes.
- the blade 173 may extend in a spiral shape from the outer circumferential surface of the rib 171.
- the impeller 170 may be supplied in a state in which water and gas introduced into the reactor body 110 are properly mixed in a state disposed below the reactor body 110. That is, in order to enable the reactants supplied through the lower portion of the reactor body 110 to rapidly diffuse and spread, the impeller 170 is provided with a rotational force through a separate impeller drive motor 160.
- Bubble generator 180 is formed in a hollow ring shape at the lower end in the reactor body (110).
- the injection holes 182 are disposed at predetermined intervals on the upper surface of the bubble generator 180.
- the injection hole 182 may inject the bubble inclined at a predetermined angle with the top surface of the bubble generator 180, the bubble is inclined to be inclined in the inclined state through this arrangement structure to form a swirling water flow Do it.
- the present invention is to increase the rate of dissolution by increasing the reaction rate of water and gas to increase the production rate of gas hydrate, it may be desirable to increase the surface area to react.
- the bubble generator 180 is intended to form bubbles in water in order to increase the reaction surface area of materials such as water and gas.
- the formation of a large number of small bubbles rather than a small number of large bubbles can increase the surface area of the fluid.
- Such small bubbles that are desirable to increase the surface area of the reactants are referred to as micro bubbles, which generally mean bubbles having a particle size of about 50 microns, preferably about 10 microns.
- the bubble generator 180 may have a shape surrounding the impeller 170, and may be further located on the reactor body 110 in comparison with the blade 173 of the impeller 170. This may be a configuration for allowing gas bubbles injected from the injection hole 182 of the bubble generator 180 to rise effectively by the blade 173.
- the bubble generator 180 and the impeller 170 are both disposed at the bottom of the reactor body 110, resulting in accelerated mixing of the supplied water and gas, which is associated with the structure of the bottom of the reactor body 110. Become more effective.
- the lower end 116 of the reactor body 110 may have a cyclone shape in which the diameter decreases gradually toward the bottom, and bubble particles sprayed radially from the bubble generator 180 may be formed in the impeller 170. It creates an optimal environment that can be freely spread by the rotational drive. In other words, the bubble particles discharged through the bubble generator 180 is rotated by the water flow generated by the impeller 170 and at the same time rapidly diffused in the water, and the lower end 116 of the reactor body 110 ) Takes the shape of increasing diameter from the bottom to enable rapid deployment upward of the activated bubble particles.
- the operation of the gas liquid circulating gas hydrate reactor 100 is as follows.
- water and gas are supplied through the lower portion of the reactor body 110 through the sources 10 and 20.
- the introduced gas flows into the lower end of the bubble generator 180 (see reference numeral 192) and is discharged through the injection hole 182 (see reference numeral 194).
- the gas injected from the bubble generator 180 is bubbled in water, and moves upward from the reactor body 110 by the water flow formed by the rotation of the impeller 170 operated by the impeller drive motor 160. Dispersion and diffusion process.
- the lower end 116 of the reactor body 110 having a cyclone shape facilitates the dispersion of water and gas being injected.
- the gas injected through the bubble generator 180 is maintained in a suspended phase in which the gas and the liquid are hardly distinguished through the process of flowing into the water at high speed.
- Particles attached to the inner surface of the reactor body 110 of the gas hydrate slurry generated by the reaction of water and gas in the reactor body 110 is rotated by the scraper 130 operated by the scraper drive motor 150. Removed.
- the control unit measures the temperature in real time through the thermometer 114 disposed in the reactor body 110 and through this it is checked whether it is in the proper temperature state for gas hydrate generation.
- the see-through window 112 formed in the reactor body 110 has an elliptical structure and can visually check whether the reaction becomes appropriate during the gas hydrate generation reaction.
- the gas hydrate slurry, the unreacted gas, and the unreacted water generated in the reactor body 110 are discharged from the reactor 100 through the slurry outlet 122 coupled to the upper cover 120 and the dewatering unit 30 Flows into.
- the gas hydrate slurry may be pelletized or desalted through a process such as dehydration, compression, and washing in the dehydration unit 30.
- Unreacted gas is resupplied to the reactor 100 through the blower 40, and the unreacted water is resupplied to the reactor 100 through various valves and tanks.
- the slurry outlet 122 is disposed at the upper end of the reactor 100 to allow the water and gas introduced into the lower part of the reactor body 110 to react with the gas at a high speed and then be discharged from the reactor body 110. This allows a structure in which fluid as much as the flow rate introduced therein can be discharged because the reaction proceeds while the water and gas introduced into the lower portion of the reactor body 110 fill the inside of the reactor body 110.
- the gas liquid circulating gas hydrate reactor forms a bubble in the water by injecting the gas supplied to the lower part of the reactor body at a high speed through the bubble generator, and at the same time, the impeller It creates a stream of water that allows it to rise with a mixture of water and gas.
- the water flow formed by the bubble and the impeller generated by the bubble generator increases the gas hydrate generation efficiency through a process of promoting the reaction by smoothly stirring the water and the gas flowing into the reactor body.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기는 가스와 물이 공급되어 가스하이드레이트가 생성되는 반응기 본체 및 상기 반응기 본체 내의 하부 둘레에 배치되는 기포 발생기를 포함하며, 상기 반응기 본체의 하부에서 공급되는 가스는 상기 기포 발생기를 통해 상기 반응기 본체 내부로 분사되는 것을 특징으로 한다. 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기는 반응기 본체 내에 수용되는 물과 가스의 반응을 촉진하기 위하여 상기 반응기 본체의 하부에 배치되는 기포 발생기를 이용하여 상기 가스를 고속으로 분사하는 동시에 반응기 본체의 하부에 수류를 형성하게 하여 상기 물과 가스의 교반을 원활하게 한다.
Description
본 발명은 기체액체 순환형 가스하이드레이트 반응기에 관한 것으로서, 보다 상세하게는 반응기 본체 내에 수용되는 물과 가스의 반응을 촉진하기 위하여 상기 반응기 본체의 하부에 배치되는 기포 발생기를 이용하여 가스를 버블화하여 고속으로 분사하는 동시에 반응기 본체의 하부에 수류를 형성하게 하여 상기 물과 가스의 교반을 원활하게 하는 기체액체 순환형 가스하이드레이트 반응기에 관한 것이다.
크러스레이트 하이드레이트(clathrate hydrate)란 호스트(host) 분자들이 수소 결합을 통해 형성하는 3차원 격자 구조에 게스트(guest) 분자들을 화학적인 결합을 하지 않고 물리적으로 포획하여 가둔 결정성 화합물을 말한다. 호스트 분자가 물 분자이고, 게스트 분자가 메탄이나 에탄, 프로판, 또는 이산화탄소와 같이 저분자 가스 분자들인 경우 가스하이드레이트(gas hydrate)라고 한다.
가스하이드레이트는 1810년 영국의 Humphry Davy경에 의해 처음 발견되었다. 그는 영국의 왕립협회를 대상으로 하는 Bakerian Lecture에서 chlorine과 물을 반응시킬 때 얼음과 유사한 형태의 화합물이 생기지만 그 온도가 0℃보다 높다는 것을 발표하였다. 1823년 Michael Faraday가 10개의 물 분자에 대하여 1개의 chlorine 분자가 반응하여 가스하이드레이트가 생성되는 것을 최초로 밝혀냈다.
이후 현재에 이르기까지 가스하이드레이트는 상변화물질(phase change material, PCM) 중의 하나로 학문적인 연구가 계속되고 있으며 주요 연구내용으로 상평형과 생성/해리 조건, 결정 구조, 다결정의 공존현상, 동공 내의 경쟁적 조성 변화 등을 들 수 있으며, 이외에도 다양한 미시 또는 거시적 측면에서의 세밀한 연구가 진행되고 있다.
가스하이드레이트에 포획될 수 있는 게스트 분자는 현재까지 약 130여 종이 알려지고 있으며, 그 예시로서 CH4, C2H6, C3H8, CO2, H2, SF6 등이 있다. 또한 가스하이드레이트 결정구조(crystal structure)들은 수소결합으로 이루어진 물분자에 의해 형성된 다면체의 공동(cavity)으로 구성되어 있으며 가스분자의 종류와 생성조건에 따라 체심 입방 구조 Ⅰ(body-centered cubic structureⅠ, sI), 다이아몬드형 입방 구조Ⅱ(diamond cubic structure Ⅱ, sⅡ)와 육방 구조 H(hexagonal structure H, sH) 의 결정구조로 이루어져 있다. sI과 sII는 객체분자의 크기에 의해 결정되며, sH에서는 객체분자의 크기와 형태가 중요한 요소가 된다.
심해와 영구동토지역에 자연적으로 부존하는 가스하이드레이트의 게스트 분자는 대부분 메탄이며 이러한 메탄은 연소시 이산화탄소(CO2) 발생이 적어 친환경적 청정 에너지원으로 각광받고 있다. 구체적으로 가스하이드레이트는 기존 화석 연료를 대체할 수 있는 에너지원으로 사용될 수 있으며, 하이드레이트 구조를 이용한 천연 가스 고체화 저장 및 수송에 사용될 수 있으며, 온난화 방지를 위한 CO2의 격리/저장에 사용될 수 있으며, 가스 또는 수용액의 분리기술로서 특히 해수 담수화 장치로도 사용될 수 있어서 그 활용도는 매우 높다.
가스하이드레이트는 석유 또는 천연가스 저류층 및 석탄층과 인접된 지역이나, 저온 고압의 심해 퇴적층 특히 대륙사면에서 많이 발견된다. 또한, 인위적으로 가스하이드레이트를 제조할 수도 있는데, 현재까지 알려진 종래의 가스하이드레이트 제조 장치는 일반적으로 도 1에 도시된 바와 같은 형태를 갖는다.
가스하이드레이트의 제조 장치를 이용한 상용화 기술에서 가장 중요한 과정은 하이드레이트 형성이라고 볼 수 있으며, 근본적으로 가스하이드레이트의 형성 속도를 높이기 위해서는 기체 상태인 가스와 물의 접촉 면적을 늘려 주어 하이드레이트의 형성 속도를 극대화시켜야 한다. 또한 형성된 가스하이드레이트 슬러리와 미반응된 물을 1차적으로 분리시키는 공정도 매우 중요하다.
도 1a는 종래 기술에 따른 일반적인 가스하이드레이트 제조 장치(10)를 도시한다.
종래 기술에 따른 가스하이드레이트의 제조 장치(10)는, 급수부(1)와, 가스 공급부(2)와, 상기 급수부(1)로부터 공급된 물과 상기 가스 공급부(2)로부터 공급된 가스가 반응하는 반응기(3)와, 반응기(3)에서 생성된 가스하이드레이트를 외부로 토출하는 탈수부(4), 및 물과 가스의 반응 속도를 올리기 위해 교반기(5)로 이루어진다. 상기 반응기(3) 내의 환경을 가스하이드레이트의 제조에 적합한 온도 조건으로 만들기 위해 반응기(3)의 외측을 둘러싸도록 별도의 냉각자켓(6)을 구비할 수 있다. 냉각자켓(6)은 냉매 공급부(7)에 연결되어 냉매를 연속적으로 공급받을 수 있다.
상기 종래의 제조 장치(10)를 보면, 반응기(3)로 공급된 물과 가스가 교반기(5)에 의해 혼합되는 과정을 거치면서 반응성이 향상되도록 하는데, 이런 경우에는 단순한 혼합 작용만을 가능하게 할 뿐 물 분자가 가스 분자 속에 빠른 속도로 전파될 수 있는 메카니즘을 보유하고 있지 않다는 문제점이 있다.
더불어, 일반적으로 탈수부(4)가 반응기(3)의 하부 또는 측면에 배치되어지는데, 상기의 상태에서 생성된 가스하이드레이트 슬러리로부터 물을 분리하여 고순도의 가스하이드레이트를 반응기(3)로부터 직접적으로 얻는 것은 용이하지 않다는 문제점이 있다.
본 발명은 상기의 문제점을 해결하기 위해서, 반응기 본체 내에 수용되는 물과 가스의 반응을 촉진하기 위하여 상기 반응기 본체의 하부에 배치되는 기포 발생기를 이용하여 가스를 버블화하여 고속으로 분사하는 동시에 반응기 본체의 하부에 수류를 형성하게 하여 상기 물과 가스의 교반을 원활하게 하는 기체액체 순환형 가스하이드레이트 반응기를 제공하는 것을 목적으로 한다.
더불어, 본 발명에 따른 가스하이드레이트 반응기는 상기 반응기 본체의 상부에 연결되는 슬러리 배출구를 구비함으로써 순도가 높은 가스하이드레이트 슬러리를 얻는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위해 제공되는 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기는 가스와 물이 공급되어 가스하이드레이트가 생성되는 반응기 본체 및 상기 반응기 본체 내의 하부 둘레에 배치되는 기포 발생기를 포함하며, 상기 반응기 본체의 하부에서 공급되는 가스는 상기 기포 발생기를 통해 상기 반응기 본체 내부로 분사되는 것을 특징으로 한다.
상기 기포 발생기는 중공의 링 형상인 것이 바람직할 수 있다.
상기 반응기 본체의 하부단은 아래로 갈수록 직경이 점점 작아지는 형상인 것이 바람직할 수 있다.
상기 가스하이드레이트 반응기는, 상기 반응기 본체의 상부에 연결배치되는 슬러리 배출구를 더 포함하는 것이 바람직할 수 있다.
상기 반응기 본체의 하부를 통해 공급되는 가스와 물은 현탁상(gas-suspended-in-liquid phase)으로 상기 반응기 본체를 가득 채운 상태에서 반응한 후 상기 슬러리 배출구를 통해 하이드레이트, 미반응 가스 및 미반응 물로 배출되는 것이 바람직할 수 있다.
상기 가스하이드레이트 반응기는, 상기 반응기 본체 내에 회전 가능하게 배치되는 스크레퍼 및 상기 스크레퍼에 구동력을 제공하는 스크레퍼 구동 모터를 더 포함하며, 상기 스크레퍼는 회전 구동 과정 중에 상기 반응기 본체 또는 상기 상부 덮개의 내면에 부착되는 가스하이드레이트 입자를 제거하는 것이 바람직할 수 있다.
이상에서 설명한 바와 같이 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기는 반응기 본체 내에 수용되는 물과 가스의 반응을 촉진하기 위하여 상기 반응기 본체의 하부에 배치되는 기포 발생기를 이용하여 가스를 버블화하여 고속으로 분사하는 동시에 반응기 본체의 하부에 수류를 형성하게 하여 상기 물과 가스의 교반을 원활하게 한다.
본 발명은 분사되는 가스가 물 속에 고속으로 유입되게 하는 기포 발생기 및 물과 가스의 혼합을 촉진하는 임펠러를 통해 기체와 액체의 구별이 힘들 정도로 혼합되는 현탁상으로 유지함으로써 반응기 본체 내부를 반응물질로 가득찬 상태로 만들게 한다. 상기의 상태는 물과 가스의 반응을 자연스럽게 촉진함으로써 가스하이드레이드의 생성율을 증가하게 한다.
더불어, 본 발명은 반응기 본체 하부로 물과 가스를 연속적으로 공급하고 상기 반응기 본체 상부로 가스하이드레이트, 미반응 가스, 및 미반응 물을 토출하게 함으로써 중단 없는 가스하이드레이트의 연속 생산을 가능하게 한다. 여기에서, 미반응 가스 및 미반응 물은 탈수부를 통해 재순환되어 반응기 본체로 재공급됨으로써 전체적인 반응물질의 효과적인 활용을 가능하게 한다.
도 1a는 종래 기술에 따른 일반적인 가스하이드레이트 제조 장치를 보이는 개략적인 구성도,
도 1b는 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기를 포함한 하이드레이트 제조 공정을 보이는 전체 구성도,
도 2는 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기의 사시도,
도 3은 본 발명에 따른 가스하이드레이트 반응기를 상부에서 바라본 평면도,
도 4는 본 발명에 따른 가스하이드레이트 반응기의 내부가 보이도록 절개된 사시도, 및
도 5는 기액 혼합 모듈에 대한 구체적인 묘사를 위한, 도 4의 일부 확대 사시도이다.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 기술되는 실시예는 발명의 설명을 위해 예시적으로 제공되는 것이며, 본 발명의 기술적 범위를 한정하는 것은 아니다.
이하에서 '가스'는 가스하이드레이트의 게스트 가스를 의미하며, '물'은 호스트 분자를 의미한다. 가스하이드레이트 생성에 있어서 게스트 가스가 될 수 있는 분자는 CH4, C2H6, C3H8, CO2, H2, SF6 등 다수 존재하는데, 이하에서는 이러한 게스트 가스를 가스로 지칭한다. 또한, 호스트 분자로서 물(H2O)을 지칭한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 기체액체 순환형 가스하이드레이트 반응기를 상세히 설명하기로 한다.
기체액체 순환형 가스하이드레이트 반응기(100)의 구성 설명
먼저, 도 1b 내지 도 5를 참조하여 본 발명에 사용되는 기체액체 순환형 가스하이드레이트 반응기(100)의 구성을 살핀다.
도 1b를 참조하면, 본 발명에 따른 가스하이드레이트 반응기(100)는 물을 공급하는 물 공급원(10)과 가스를 제공하는 가스 공급원(20), 및 반응기(100)에서 생성된 가스하이드레이트가 배출되는 탈수부(30)에 연결된다. 상기 탈수부(30)로 유입된 가스하이드레이트 슬러리는 탈수 과정을 통해 규격화된 형태의 펠릿 형상으로서 가스하이드레이트 토출구(36)로 배출될 수 있고, 분리된 가스 및 물은 재순환되는 과정을 거친다. 즉, 탈수부(30)의 가스배출구(32)로부터의 가스는 송풍기(40)를 통해 반응기(100)에 재공급되고, 탈수부(30)의 물 배출구(34)로부터의 물은 각종 밸브 및 탱크 등을 거쳐 반응기(100)에 재공급된다.
상기 반응기(100), 공급원(10,20), 탈수부(30) 상에는 온도 센서, 압력 센서, 밸브 등이 위치하고, 상기 센서 및 밸브는 제어부와 연결되어 제어될 수 있으나. 이러한 센서, 제어부 등은 다양하게 배치가능하므로 본 도면에서는 설명을 생략한다.
또한, 사용자가 작동 파라미터를 입력하고 가스하이드레이트 반응기(100)의 작동을 제어하기 위한 컨트롤 유닛이 상기 제어부에 연결될 수 있으나, 역시 설명을 위해 본 도면에서 생략한다.
또한, 본 도면은 본 발명에 따른 가스하이드레이트 반응기(100)의 일 실시예를 설명하기 위한 간략한 개념도일 뿐이며, 본 발명의 범위는 도면에 도시된 각각의 구성요소의 위치, 배치, 연결 방식 등에 제한되지 않음은 물론이다.
가스하이드레이트 반응기(100)는 실린더 형상의 반응기 본체(110), 반응기 본체(110)의 상부에 개폐 가능하게 체결되는 상부 덮개(120), 반응기 본체(110)의 중심축을 기준으로 회전 구동하는 스크레퍼(130), 상기 스크레퍼(130)에 구동력을 제공하는 스크레퍼 구동 모터(150), 반응기 본체(110) 내의 하부에 배치되는 임펠러(170), 임펠러(170)를 둘러싸도록 배치되는 기포 발생기(180), 임펠러(170)에 구동력을 제공하는 임펠러 구동 모터(160)를 포함한다. 여기에서, 반응기 본체(110)의 하단부에 일정 간격으로 배치되는 지지대(101)는 가스하이드레이트 반응기(100)를 안정적으로 지면 상에 위치하게 한다.
가스하이드레이트 반응기(100)는 외부의 공급원(10,20)으로부터 물과 가스를 반응기 본체(110)의 하부를 통해 상기 반응기 본체(110) 내로 공급받은 후 임펠러(170) 및 스크레퍼(130)의 회전 구동에 따라 상기 물과 가스의 반응을 통해 가스하이드레이트 슬러리를 생성하게 한다. 상기 과정에서 기포 발생기(180)를 통해 배출되는 가스가 물 속에 고속으로 분사되는 과정을 통해 버블을 형성하여 물과 가스와의 접촉 면적을 늘려주는 작용을 하게 된다.
상기와 같이, 본 발명은 기포 발생기(180)를 통해 분사되는 가스가 물 속에 고속으로 유입되는 과정을 통해 기체와 액체의 구별이 힘들 정도로 혼합되는 현탁상(gas-suspended-in-liquid phase)으로 유지될 수 있는데, 상기 현탁상은 종래의 기술과는 다르게 기포 발생기(180)를 통해 고압으로 미세한 가스 버블을 고속으로 분사하는 경우에 가능할 수 있다.
본 발명은 반응기 본체(110) 내에 물과 가스가 가득 채워진 상태에서 연속적으로 가스를 버블화하여 공급하는 동시에 물을 공급하는 구조이므로 유입되는 유량만큼 토출되는 가스하이드레이트의 양도 비례하게 된다.
여기에서, 스크레퍼(130)와 임펠러(170)가 반응기 본체(110) 내에서 동시에 회전하는 경우에, 스크레퍼(130)가 반응기(100) 내부면에 부착될 수 있는 가스하이드레이트 입자의 제거를 수행하는 한편, 임펠러(170)가 반응기 본체(110) 내부에 수용되는 물과 가스의 교반을 원활하게 하여 가스하이드레이트 생성 반응을 촉진할 수 있는 환경을 조성할 수 있다.
반응기 본체(110)에서 생성된 가스하이드레이트 슬러리는 상부 덮개(120)에 연결된 슬러지 배출구(122)를 통해 가스하이드레이트 반응기(100)로부터 배출되고, 상기의 배출된 가스하이드레이트 슬러리는 탈수, 세정, 압축 등의 과정을 거쳐 펠릿화되거나 해리 등의 과정이 추가됨으로써 담수화 공정이 가능할 수 있다.
반응기 본체(110)는 비단 물과 가스가 반응하는 반응기로서의 용도 뿐만 아니라 탈수기 및 저장탱크의 용도로서도 사용이 가능할 수 있다. 즉, 가스하이트레이가 생성된 후 별도로 탈수 및 저장이 이루어질 수도 있지만 일체형으로 제작되어져 단일 공간에서 다양한 공정이 행해질 수 있다.
상부 덮개(120)는 리드(lid) 타입의 개폐방식으로 구성되는데, 상부 덮개(120)의 일측이 클램프 방식으로 반응기 본체(110)의 상단과 결합되어짐으로써 반응기 본체(110)의 상부 개폐가 용이하다.
스크레퍼(130)는 반응기 본체(110)의 중심축을 기준으로 회전구동하는 과정에서 상기 반응기 본체(110)의 내면에 부착 가능한 가스하이드레이트 입자들을 분리 내지 제거하는 기능을 한다.
임펠러(170)는 임펠러 구동 모터(160)에 직접 연결되는 회전축(172), 회전축(172)의 끝단에 결합되는 리브(171), 리브(171)의 외주면에 소정 간격으로 배치되는 블레이드(173)를 포함한다. 상기 블레이드(173)는 리브(171)의 외주면으로부터 나선모양으로 연장형성되어질 수 있다. 임펠러(170)는 반응기 본체(110) 내의 하부에 배치된 상태에서 상기 반응기 본체(110) 내로 유입되는 물과 가스가 적절히 혼합된 상태로 공급될 수 있게 한다. 즉, 반응기 본체(110)의 하부를 통해 공급되는 반응물질들이 빠른 속도로 상승확산할 수 있게 하기 위해서 별도의 임펠러 구동 모터(160)를 통해 임펠러(170)에 회전력을 제공한다.
기포 발생기(180)는 반응기 본체(110) 내의 하부단에 중공의 링 형상으로 이루어진다. 기포 발생기(180)의 상면에는 분사구(182)가 소정 간격으로 배치된다. 한편, 상기 분사구(182)는 기포 발생기(180)의 상면과 소정의 각도로 경사지게 버블을 분사할 수 있는데, 이러한 배치 구조를 통해서 상기의 경사진 상태로 비스듬히 분사되는 버블은 소용돌이 형상의 수류를 형성하도록 한다.
본 발명은 물과 가스의 반응 속도를 높여 용해율을 증가함으로써 가스하이드레이트의 생성율을 높이는 것인데, 이를 위해서는 반응하는 표면적을 넓히는 것이 바람직할 수 있다. 기포 발생기(180)는 물과 가스와 같은 물질들의 반응 표면적을 넓히기 위하여 물 속에 기포를 형성하고자 하는 것이다. 특히, 생성된 기포의 총 부피가 동일한 경우 크기가 큰 기포가 소수 형성되는 것보다 크기가 작은 기포가 다수 형성되는 것이 유체의 표면적을 보다 넓힐 수 있다. 이렇게 반응물질들의 표면적을 증가시키는데 바람직한 크기가 작은 기포는 마이크로 버블(micro bubble)로 지칭되는데, 이는 일반적으로 입자 크기가 50micron 내외, 바람직하게는 약 10micron인 기포를 의미한다.
상기 기포 발생기(180)는 임펠러(170)를 둘러싸는 형태일 수 있는데, 임펠러(170)의 블레이드(173)와 비교해서 반응기 본체(110) 상에서 더 하부에 위치할 수 있다. 이는 기포 발생기(180)의 분사구(182)로부터 분사되는 가스 버블이 블레이드(173)에 의해서 효과적으로 상승하도록 하기 위한 구성일 수 있다.
기포 발생기(180)와 임펠러(170)는 모두 반응기 본체(110) 내의 하부에 배치되어 공급되는 물과 가스의 혼합을 가속하는 결과를 가져오게 되는데, 이는 반응기 본체(110)의 하부의 구조와 연계되어 더욱 효과를 발휘한다.
구체적으로 설명하면, 상기 반응기 본체(110)의 하부단(116)은 아래로 갈수록 직경이 점점 작아지는 사이클론 형상일 수 있는데, 기포 발생기(180)로부터 방사상으로 분사되는 버블 입자가 임펠러(170)의 회전 구동에 의해서 자유롭게 확산될 수 있는 최적의 환경을 조성한다. 즉, 기포 발생기(180)를 통해 배출되는 버블 입자는 임펠러(170)에 의해 발생하는 수류에 의해 회전함과 동시에 물 속에서 빠르게 확산되는 과정을 거치고, 더불어 반응기 본체(110)의 하부단(116)이 하부로부터 점점 그 직경이 커지는 형상을 취함으로써 활성화된 기포 입자의 상방으로의 빠른 전개를 가능하게 한다.
기체액체 순환형 가스하이드레이트 반응기(100)의 작동 설명
이하, 도 1 내지 도 5를 참조하여, 기체액체 순환형 가스하이드레이트 반응기(100)의 작동 과정을 살피면 다음과 같다.
먼저, 공급원(10,20)을 통해 물과 가스가 반응기 본체(110)의 하부를 통해 공급된다. 유입된 가스는 기포 발생기(180)의 하부단으로 유입되어(도면부호 192 참조) 분사구(182)를 통해 토출된다(도면부호 194 참조). 기포 발생기(180)로부터 분사되는 가스는 수중에서 버블화되고, 임펠러 구동 모터(160)에 의해 작동되는 임펠러(170)의 회전에 의해 형성되는 수류에 의해 반응기 본체(110)에서 상부 방향으로 이동하며 분산 및 확산 과정을 거친다. 상기의 과정에서 사이클론 형상으로 이루어진 반응기 본체(110)의 하부단(116)은 분사되는 물과 가스의 분산을 원활하게 한다.
여기에서, 기포 발생기(180)를 통해 분사되는 가스가 물 속에 고속으로 유입되는 과정을 통해 기체와 액체의 구별이 힘들 정도로 혼합되는 현탁상으로 유지된다.
반응기 본체(110) 내에서 물과 가스의 반응에 따라 생성된 가스하이드레이트 슬러리 중 반응기 본체(110)의 내면에 부착되는 입자는 스크레퍼 구동 모터(150)에 의해 작동되는 스크레퍼(130)의 회전에 의해 제거된다. 한편, 제어부는 반응기 본체(110) 내에 배치되는 온도계(114)를 통해 실시간으로 온도를 측정하고 이를 통해 가스하이드레이트 생성을 위한 적정 온도 상태에 있는지 점검하게 된다.
반응기 본체(110)에 형성되는 투시창(112)은 타원형 구조로 이루어져 가스하이드레이트 생성 반응이 이루어지는 중에 반응이 적절하게 되는지 여부를 육안으로 확인할 수 있다.
반응기 본체(110)에서 생성된 가스하이드레이트 슬러리, 미반응된 가스, 및 미반응된 물은 상부 덮개(120)에 결합된 슬러리 배출구(122)를 통해 반응기(100)로부터 토출되고 탈수부(30)로 유입된다. 가스하이드레이트 슬러리는 탈수부(30)에서 탈수, 압착, 및 세정 등의 공정을 거쳐 펠릿화되거나 담수화될 수 있다. 미반응된 가스는 송풍기(40)를 통해 반응기(100)에 재공급되고, 미반응된 물은 각종 밸브 및 탱크 등을 거쳐 반응기(100)에 재공급된다.
상기 슬러리 배출구(122)는 반응기(100)의 상부단에 배치됨으로써 반응기 본체(110)의 하부로 유입된 물과 가스가 빠른 속도로 반응한 후에 반응기 본체(110)로부터 배출되도록 한다. 이는 반응기 본체(110)의 하부로 유입된 물과 가스가 상기 반응기 본체(110)의 내부를 가득 채운 상태에서 반응이 진행되는 것이므로 유입되는 유량만큼의 유체가 토출될 수 있는 구조를 가능하게 한다.
이상에서 설명한 바와 같이 본 발명에 따른 기체액체 순환형 가스하이드레이트 반응기는 반응기 본체의 하부로 공급되는 가스를 기포 발생기를 통해 고속으로 분사함으로써 수중에 버블을 형성하게 하고, 동시에 임펠러를 통해 반응기 본체 하부에 수류를 형성하게 하여 물과 가스가 혼합된 상태로 상승할 수 있게 한다. 상기와 같이 기포 발생기에 의한 생성되는 버블 및 임펠러에 의해 형성되는 수류는 반응기 본체에 유입되는 물과 가스의 교반을 원활하게 하여 반응을 촉진하는 과정을 통해 가스하이드레이트 생성 효율을 높이게 한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시 예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정의 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.
Claims (6)
- 가스와 물이 공급되어 가스하이드레이트가 생성되는 반응기 본체; 및상기 반응기 본체 내의 하부 둘레에 배치되는 기포 발생기;를 포함하며,상기 반응기 본체의 하부에서 공급되는 가스는 상기 기포 발생기를 통해 상기 반응기 본체 내부로 분사되는 것을 특징으로 하는,가스하이드레이트 반응기.
- 제 1 항에 있어서,상기 기포 발생기는 중공의 링 형상인 것을 특징으로 하는,가스하이드레이트 반응기.
- 제 2 항에 있어서,상기 반응기 본체의 하부단은 아래로 갈수록 직경이 점점 작아지는 형상인 것을 특징으로 하는,가스하이드레이트 반응기.
- 제 2 항에 있어서,상기 가스하이드레이트 반응기의 상부에 연결배치되는 슬러리 배출구;를 더 포함하는 것을 특징으로 하는,가스하이드레이트 반응기.
- 제 4 항에 있어서,상기 반응기 본체의 하부를 통해 공급되는 가스와 물은 현탁상(gas-suspended-in-liquid phase)으로 상기 반응기 본체를 가득 채운 상태에서 반응한 후 상기 슬러리 배출구를 통해 하이드레이트, 미반응 가스 및 미반응 물로 배출되는 것을 특징으로 하는,가스하이드레이트 반응기.
- 제 1 항에 있어서,상기 가스하이드레이트 반응기는,상기 반응기 본체 내에 회전 가능하게 배치되는 스크레퍼; 및상기 스크레퍼에 구동력을 제공하는 스크레퍼 구동 모터;를 더 포함하며,상기 스크레퍼는 회전 구동 과정 중에 상기 반응기 본체 또는 상기 상부 덮개의 내면에 부착되는 가스하이드레이트 입자를 제거하는 것을 특징으로 하는,스크레퍼를 포함하는 가스하이드레이트 반응기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/345,490 US9302239B2 (en) | 2011-09-19 | 2012-09-18 | Gas-liquid circulating type of hydrate reactor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0094311 | 2011-09-19 | ||
KR1020110094311A KR101299718B1 (ko) | 2011-09-19 | 2011-09-19 | 기체액체 순환형 하이드레이트 반응기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042924A1 true WO2013042924A1 (ko) | 2013-03-28 |
Family
ID=47914615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/007469 WO2013042924A1 (ko) | 2011-09-19 | 2012-09-18 | 기체액체 순환형 하이드레이트 반응기 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9302239B2 (ko) |
KR (1) | KR101299718B1 (ko) |
WO (1) | WO2013042924A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528865A (zh) * | 2013-10-17 | 2014-01-22 | 中国科学院广州能源研究所 | 一种沉积物中均匀高饱和度天然气水合物制备方法和装置 |
CN103712904A (zh) * | 2013-12-25 | 2014-04-09 | 中国石油大学(华东) | 用于超高压实验过程中气体补充的装置 |
US20160376515A1 (en) * | 2013-12-12 | 2016-12-29 | Indian Institute Of Technology Madras | Systems and methods for gas hydrate slurry formation |
RU2780795C1 (ru) * | 2021-10-27 | 2022-09-30 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук | Устройство для получения газового гидрата |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097120B (zh) * | 2018-08-27 | 2020-09-22 | 华南理工大学 | 一种天然气水合物静态强化快速连续生成装置及方法 |
CN109731530A (zh) * | 2018-12-17 | 2019-05-10 | 中国科学院广州能源研究所 | 静电雾化作用下水合物连续生成装置 |
CN110701013A (zh) * | 2019-11-08 | 2020-01-17 | 中国石油大学(北京) | 温差发电系统及温差发电方法 |
CN112426990A (zh) * | 2020-10-23 | 2021-03-02 | 大连理工大学 | 一种纳米气泡促进水合物生成的装置及方法 |
CN112473571B (zh) * | 2020-10-28 | 2022-06-14 | 中石化宁波工程有限公司 | 一种能加速鼓泡床内气体水合物生成的方法 |
CN114432974A (zh) * | 2022-01-11 | 2022-05-06 | 北京思达流体科技有限公司 | 一种微纳气泡搅拌釜反应器及其应用 |
CN114772903B (zh) * | 2022-05-13 | 2023-10-20 | 大连理工大学 | 一种基于水合物法污泥调理及深度脱水装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006111760A (ja) * | 2004-10-15 | 2006-04-27 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置 |
JP2006124431A (ja) * | 2004-10-26 | 2006-05-18 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置 |
JP2006160833A (ja) * | 2004-12-03 | 2006-06-22 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置および生成方法 |
JP2007262185A (ja) * | 2006-03-28 | 2007-10-11 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート製造装置 |
WO2008120770A1 (ja) * | 2007-03-29 | 2008-10-09 | Mitsui Engineering & Shipbuilding Co., Ltd. | 天然ガスハイドレートの製造方法及びその装置 |
KR20100137285A (ko) * | 2009-06-22 | 2010-12-30 | 한국가스공사연구개발원 | 저온 가스를 사용하는 가스하이드레이트의 제조방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4961882A (en) * | 1988-06-23 | 1990-10-09 | Exxon Research And Engineering Company | Fine bubble generator and method |
WO2007113912A1 (ja) * | 2006-04-05 | 2007-10-11 | Mitsui Engineering & Shipbuilding Co., Ltd. | ガスハイドレート製造装置及び脱水装置 |
JP2008248190A (ja) * | 2007-03-30 | 2008-10-16 | Mitsui Eng & Shipbuild Co Ltd | 混合ガスハイドレート製造方法 |
-
2011
- 2011-09-19 KR KR1020110094311A patent/KR101299718B1/ko active IP Right Grant
-
2012
- 2012-09-18 US US14/345,490 patent/US9302239B2/en active Active
- 2012-09-18 WO PCT/KR2012/007469 patent/WO2013042924A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006111760A (ja) * | 2004-10-15 | 2006-04-27 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置 |
JP2006124431A (ja) * | 2004-10-26 | 2006-05-18 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置 |
JP2006160833A (ja) * | 2004-12-03 | 2006-06-22 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート生成装置および生成方法 |
JP2007262185A (ja) * | 2006-03-28 | 2007-10-11 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート製造装置 |
WO2008120770A1 (ja) * | 2007-03-29 | 2008-10-09 | Mitsui Engineering & Shipbuilding Co., Ltd. | 天然ガスハイドレートの製造方法及びその装置 |
KR20100137285A (ko) * | 2009-06-22 | 2010-12-30 | 한국가스공사연구개발원 | 저온 가스를 사용하는 가스하이드레이트의 제조방법 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528865A (zh) * | 2013-10-17 | 2014-01-22 | 中国科学院广州能源研究所 | 一种沉积物中均匀高饱和度天然气水合物制备方法和装置 |
CN103528865B (zh) * | 2013-10-17 | 2016-03-30 | 中国科学院广州能源研究所 | 一种沉积物中均匀高饱和度天然气水合物制备方法和装置 |
US20160376515A1 (en) * | 2013-12-12 | 2016-12-29 | Indian Institute Of Technology Madras | Systems and methods for gas hydrate slurry formation |
US10047311B2 (en) * | 2013-12-12 | 2018-08-14 | Indian Institute Of Technology Madras | Systems and methods for gas hydrate slurry formation |
CN103712904A (zh) * | 2013-12-25 | 2014-04-09 | 中国石油大学(华东) | 用于超高压实验过程中气体补充的装置 |
RU2780795C1 (ru) * | 2021-10-27 | 2022-09-30 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук | Устройство для получения газового гидрата |
RU2816893C1 (ru) * | 2023-11-20 | 2024-04-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" | Способ диспергирования пузырьков газа в жидкости |
Also Published As
Publication number | Publication date |
---|---|
KR20130030680A (ko) | 2013-03-27 |
US9302239B2 (en) | 2016-04-05 |
US20140348720A1 (en) | 2014-11-27 |
KR101299718B1 (ko) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013042924A1 (ko) | 기체액체 순환형 하이드레이트 반응기 | |
KR101328183B1 (ko) | 스크레퍼를 이용한 가스하이드레이트 반응기의 열전달 및 반응효율 향상 방법 및 장치 | |
US8367880B2 (en) | Device and method for continuous hydrate production and dehydration by centrifugal force | |
CN1060839C (zh) | 处理海上油田的井内物流的方法和装置 | |
ES2923073T3 (es) | Sistema de generación de producto gaseoso integrada en energía de tres fases | |
CA2306461A1 (en) | Method and apparatus for producing gas hydrates | |
CN103030206A (zh) | 一种超临界水处理装置及方法 | |
WO2014027862A1 (ko) | 가스하이드레이트의 염탈착 공정을 이용한 수처리 방법 | |
CN107721817A (zh) | 一种固定二氧化碳及光催化还原二氧化碳的方法及装置 | |
CN107973328A (zh) | 一种自吸式纳米碳酸钙碳化反应器 | |
US8936759B2 (en) | Double helix type gas hydrate reactor | |
CN101809122A (zh) | 合成反应系统 | |
KR0152244B1 (ko) | 기액접촉을 행하기 위한 방법 및 장치 | |
JP4261813B2 (ja) | ガスハイドレートの海中生成方法、ガスハイドレート生成装置、および二酸化炭素の海中貯蔵システム | |
CN102039997B (zh) | 无动力独立的深水作业浮筒充气装置及方法 | |
CN106861582A (zh) | 高温液态硝酸盐的净化及性能强化熔盐罐 | |
CN205676423U (zh) | 液电混动多级超重力加强自循环脱硫器 | |
CN105804704A (zh) | 悬置浮箱内壁加热的海底天然气收集装置及方法 | |
JP4620439B2 (ja) | ガスハイドレート生成装置および生成方法 | |
CN116212610A (zh) | 一种氢燃料电池的二氧化碳捕集系统 | |
KR101733447B1 (ko) | 합성가스로부터 황을 회수하는 장치 | |
CN201386095Y (zh) | 玻璃钢密封搅拌沼气池 | |
CN211725351U (zh) | 一种天然气生产废气处理装置 | |
KR102293312B1 (ko) | 메탄 열분해 태양열 회전형 반응기 및 이를 이용한 수소 및 카본블랙 제조 방법 | |
WO2014027787A2 (ko) | 복수의 게스트 가스 및 물을 반응시켜 가스하이드레이트를 제조하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833201 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14345490 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833201 Country of ref document: EP Kind code of ref document: A1 |