WO2013042834A1 - 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물 - Google Patents

방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물 Download PDF

Info

Publication number
WO2013042834A1
WO2013042834A1 PCT/KR2011/010344 KR2011010344W WO2013042834A1 WO 2013042834 A1 WO2013042834 A1 WO 2013042834A1 KR 2011010344 W KR2011010344 W KR 2011010344W WO 2013042834 A1 WO2013042834 A1 WO 2013042834A1
Authority
WO
WIPO (PCT)
Prior art keywords
radionuclide
polymer
cancer
labeled
drug
Prior art date
Application number
PCT/KR2011/010344
Other languages
English (en)
French (fr)
Inventor
이창문
정환정
김동욱
임석태
손명희
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2013042834A1 publication Critical patent/WO2013042834A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/06Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules
    • A61K51/065Macromolecular compounds, carriers being organic macromolecular compounds, i.e. organic oligomeric, polymeric, dendrimeric molecules conjugates with carriers being macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1213Semi-solid forms, gels, hydrogels, ointments, fats and waxes that are solid at room temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a polymer hydrogel labeled with a radionuclide and a drug loaded thereon, and a method for preparing the same, and a pharmaceutical composition for treating cancer containing the same as an active ingredient.
  • radionuclides to treat intractable diseases, including cancer, is much simpler and more economical than surgery. Therefore, the treatment method using radionuclides is widely used. However, the treatment method using radionuclides has the disadvantage of destroying normal cells by affecting normal tissues as well as disease sites.
  • the radionuclides In order to solve the above problems, it is important to design the radionuclides so that they do not transfer to other normal sites by using a biocompatible polymer so as to selectively destroy tissue only at the diseased site where the radionuclide is administered.
  • the biocompatible polymer including the administered radionuclide is biodegraded, absorbed and discharged after sufficient time to emit radiation at the disease site.
  • radionuclides include liver cancer treatments using Shering's 90 Y SIR microspheres, which are useful for the treatment of liver cancer patients that are not easily removed surgically.
  • Dong Hwa Pharmaceutical Co., Ltd.'s 166 holmium and chitosan complex ( 166 Ho-chitosan), a liver cancer treatment drug (Millican), is known to be useful for treating small liver cancer because it can kill cancer cells in a short time with only one injection.
  • radionuclides include 186 Re-tin colloid, 186 Re-sulfur colloid, 188 Re-hydroxyapatite, 90 Y-colloid and the like.
  • 10-530276 describes a particulate radionuclide conjugated polymer, a method of manufacturing the same, and a kit for manufacturing the same, and Korean Patent Publication No. 10-530276 discloses a prostate containing a radioactive substance-chitosan complex.
  • a composition for treating cancer and a kit for preparing the composition are described, and
  • Korean Unexamined Patent Publication No. 10-2006-60970 describes a radioactive substance-chitosan complex solution composition having improved gelation stability upon injection in the body and a method of preparing the same.
  • side effects may occur when some of the tissue is released from the tissue and destroy the normal tissue. Only water is absorbed into the tissue and radionuclides settle and collect on one side, resulting in uneven irradiation, making the form of the radioactive particles unsuitable for treatment.
  • the 166 Ho-chitosan complex is injected into an aqueous solution and then turned into a gel in the body and remains intact at the site of the lesion, so that the radiation is accurately and uniformly compared to the radionuclides present in solution.
  • the radioactivity disappears as well as the chitosan administered in the complex state is also an advantage that is broken down.
  • 166 Ho is relatively inexpensive compared to other radionuclides.
  • the aqueous solution of the 166 Ho-chitosan complex has the disadvantage of being an acidic solution and the gelation is not well formed, there is a problem that the radionuclide is released to the normal tissue.
  • radionuclide therapies including 166 Ho or 90 Y have the disadvantage that they have to be prepared in situ when the therapeutic is made with a half-life of 26.9 hours and 641 hours, respectively.
  • the present inventors studied a therapeutic agent using a radionuclide capable of minimizing a radionuclide that is well gelled and liberated into normal tissue, and produced a polymer hydrogel that directly labeled a radionuclide on a biodegradable polymer and supported a drug.
  • the polymer hydrogel prepared in this way has excellent labeling efficiency and labeling stability of radionuclides, so that when the hydrogel is directly injected into the cancer tissue area, the hydrogel stays in the cancer tissue area and hardly leaks to the outside. It was confirmed that necrosis is performed at many sites inside the cancer tissue, and completed the present invention.
  • the present invention is to provide a polymer hydrogel labeled with a radionuclide and a drug loaded thereon and a method for preparing the same.
  • the present invention is to provide a pharmaceutical composition for treating cancer containing the polymer hydrogel labeled with the radionuclide and the drug loaded as an active ingredient.
  • the present invention provides a polymeric hydrogel labeled with a radionuclide and carrying a drug.
  • step 3 adding a drug and an anionic crosslinking material to the radionuclide-labeled polymer-chelator prepared in step 2) and stirring to prepare a polymer-chelator hydrogel labeled with the radionuclide and carrying the drug;
  • a method for producing a polymer hydrogel containing a radionuclide labeled and loaded with a drug is provided.
  • the drug is added to the radionuclide-labeled polymer-chelator prepared in step 2), the mixed solution is added to an oil containing an emulsifier to form an emulsion, and then anionic crosslinking material is added thereto. It provides a method for producing a polymer hydrogel labeled with a radionuclide and drug-containing, comprising the step of preparing a hydrogel by stirring.
  • a drug added to the radionuclide-labeled polymer-chelator prepared in step 2) and electrospinning the anionic crosslinking material under a voltage of 1-20 kV to the mixed solution to prepare a hydrogel.
  • a method for producing a polymer hydrogel containing a radionuclide labeled and loaded with a drug is provided.
  • the present invention also provides a pharmaceutical composition for treating cancer, wherein the radionuclide is labeled with a drug-containing polymer hydrogel as an active ingredient.
  • the polymer hydrogel according to the present invention is characterized by directly labeling a radionuclide on a biodegradable polymer and carrying a drug when forming a hydrogel.
  • step 1) a polymer-chelator is prepared. After dissolving the biodegradable polymer in an aqueous HCl solution, a chelator dissolved in an organic solvent is added, a borate buffer is added thereto, followed by stirring to obtain a polymer-chelator. The obtained polymer-chelator is purified by dialysis with borate buffer and freeze-dried.
  • the biodegradable polymer is preferably chitosan and its derivatives, polyglutamic acid, heparin, hyaluronic acid, alginic acid, pectin, carboxymethyl cellulose, protein, and the like, but is not limited thereto.
  • the chelator is a compound having a functional group capable of labeling a radionuclide, SHPP ( N- succinimidyl-3- [4-hydroxyphenyl] propionate), DTPA (diethylenetriamine pentaacetic acid), histidine, tyrosine, proteins including tyrosine, etc. Is preferred, but is not limited thereto.
  • the chelator may vary depending on the radionuclide. For example, SHPP is preferred as a chelator when the radionuclide is 131 I, 125 I, 124 I, and DTPA is preferred as the chelator when the radionuclide is 188 Re.
  • Organic solvents that dissolve the chelator include, but are not limited to, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetone, acetonitrile, and the like. .
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • acetone acetonitrile
  • the biodegradable polymer and the chelator may be mixed in a weight ratio of 50: 1 to 30, preferably in a weight ratio of 50: 1 to 15. If the chelator is excessively bound to the biodegradable polymer, it is difficult to form the mixture into an aqueous solution, which causes a problem in that it is difficult to form a hydrogel.
  • Step 2) is a step of preparing a polymer-chelator labeled with radionuclides.
  • the polymer-chelator is dissolved in an aqueous HCl solution, and then reacted with a radionuclide and an activator for labeling the radionuclides.
  • the labeling efficiency of the radionuclide in the polymer-chelator labeled with the radionuclide is 99%.
  • the radionuclides include, but are not limited to, 131 I, 125 I, 124 I, 186 Re, 188 Re, 90 Y, 166 Ho, and the like.
  • chloramine T is preferable as an activator for labeling the radionuclide.
  • Step 3) is a step of preparing a polymer-chelator hydrogel labeled with a radionuclide and carrying a drug, and preparing a hydrogel by reacting the polymer-chelator labeled with a radionuclide with a drug and an anionic crosslinking material. .
  • the hydrogel In the preparation of the hydrogel, it may be prepared by simply mixing and stirring, an emulsion method or an electrospinning method.
  • a drug In the emulsion method, a drug is added to a polymer-chelator labeled with radionuclides, and the mixed solution is added to an oil containing an emulsifier to form an emulsion.
  • the emulsifiers include: span-based emulsifiers such as sorbitan monostearate, sorbitan monopalmitate, sorbitan seskistearate, sorbitan tristearate, and sorbitan sesquioleate; Or a twin series emulsifier such as polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80 and the like.
  • the oil is preferably cottonseed oil, coconut oil, olive oil, grape seed oil, paraffin, but is not limited thereto.
  • the drug is added to the polymer-chelator labeled with radionuclides, and the electrogel is electrospun under the voltage of 1 to 20 kV through an syringe pump to the mixed solution.
  • the drug may include doxorubicin, paclitaxel, docetaxel, mexitabine, navelbine, capecitabine, cyclophosphamide, 5-fluorouracil, methotrexate, epirubicin, cisplatin, herceptin and the like. But not limited to anticancer agents or anti-inflammatory agents.
  • the anionic crosslinking material is used to form a hydrogel, which can be used to increase the labeling stability of the radionuclide when preparing the hydrogel, thereby preventing the outflow of the radionuclide to normal tissue outside the lesion site.
  • Anionic crosslinking materials include, but are not limited to, tripolyphosphate (TPP), alginic acid, pectin, carboxymethyl cellulose, polyglutamic acid, protein, DNA, RNA, and the like.
  • the ratio of the polymer-chelator and the drug is in a weight ratio of 1: 0.1 to 2, preferably in a weight ratio of 1: 0.5 to 1. If the content of the drug is too high, the loading efficiency of the drug is lowered, which is not preferable.
  • the polymer-chelator hydrogel labeled with the radionuclide prepared by the above method and containing the drug has a labeling efficiency of 99% or more, a label stability of 140 hours or more, and a drug content of 30 to 40. %, Drug loading efficiency is 80-90%.
  • the content and loading efficiency of the drug in the hydrogel can be controlled according to the amount of the polymer-chelator and the amount of the drug.
  • the radionuclide-labeled and drug-supported polymer-chelator hydrogel is directly injected directly into the cancer tissue site, the hydrogel remains intact in the cancer tissue site and hardly leaks to the outside. Necrosis was observed in many parts of the interior.
  • the polymer hydrogel according to the present invention can directly label the radionuclide on the biodegradable polymer and support the drug when forming the hydrogel, thereby minimizing the free radionuclide by excellent labeling efficiency and labeling stability of the radionuclide.
  • it is locally injected directly to the site of the lesion and remains stable at the site of the lesion to emit radiation, which can be useful for the treatment of intractable diseases such as cancer. Therefore, the polymer hydrogel according to the present invention can be expected at the same time as the therapeutic effect by the radionuclide as well as the therapeutic effect by the drug can increase the therapeutic effect of the lesion.
  • the cancer includes various cancers of the human body, gynecological tumors, endocrine cancers, central nervous system tumors, ureter cancers, and the like, specifically, lung cancer, bone cancer, pancreatic cancer, skin cancer, head and neck cancer, skin melanoma, uterine cancer, ovarian cancer, and rectal cancer.
  • Colon cancer colon cancer, breast cancer, uterine sarcoma, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, esophageal cancer, small intestine cancer, thyroid cancer, parathyroid cancer, soft tissue sarcoma, urethral cancer, penis cancer, prostate cancer
  • composition of the present invention may contain at least one known active ingredient having an anticancer effect together with a polymer hydrogel labeled with a radionuclide and having a drug loaded thereon.
  • compositions of the invention for parenteral administration include sterile aqueous or non-aqueous liquids, dispersants, suspensions, or emulsions, as well as sterile powders which are reconstituted immediately before use as sterile liquids or suspensions.
  • suitable sterile aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, physiological saline, ethanol, polyols (e.g. glycerol, propylene glycol, polyethylene glycol, etc.) and mixtures thereof, vegetable oils (e.g. Olive oil), injectable organic esters (eg ethyloleate).
  • coatings such as lecithin can be used to maintain a suitable specific size, and surfactants can be used to maintain proper fluidity.
  • Parenteral compositions may also contain adjuvants such as preservatives, wetting agents, emulsifiers and dispersants. Sterilization of injectable formulations may be pre-sterilized with components of the mixture, for example, by filtration through sterile filters or prior to mixing, prior to preparation or just prior to administration (as in the case of double container syringe packages).
  • the polymer hydrogel of the present invention may be administered 0.5 to 150 mCi / mass 1 cm 3, preferably 0.5 to 50 mCi / mass 1 cm 3, depending on the type of disease and the size of the lesion.
  • composition of the present invention can be used alone or in combination with methods using surgery, hormone therapy, drug therapy and biological response modifiers for the treatment of cancer.
  • the polymer hydrogel according to the present invention can directly label the radionuclide on the biodegradable polymer and support the drug during the formation of the hydrogel, thereby minimizing the free radionuclide by excellent labeling efficiency and labeling stability of the radionuclide, and As well as the therapeutic effect by the drug can be expected at the same time can increase the therapeutic effect of the lesion.
  • 1 is a diagram showing the cytotoxicity of chitosan-SHPP.
  • FIG. 2 is a radioiodine (131 I) is a diagram showing the labeling efficiency of radioiodine (131 I) in the labeled chitosan -SHPP.
  • FIG. 3 is a diagram showing labeling efficiency and labeling stability of radioactive oxo ( 131 I) in chitosan-SHPP hydrogel labeled with radioactive oxo ( 131 I) and doxorubicin.
  • Figure 4 shows the drug release pattern from chitosan-SHPP hydrogel labeled with radioactive oxo ( 131 I) and doxorubicin in phosphate buffer (pH 7.4, pH 5.4).
  • FIG. 5 is a gamma image of 125 I-labeled chitosan-SHPP hydrogel injected into the normal leg muscles of mice for 600 hours and leakage of radionuclides into other tissues.
  • FIG. 6 shows localized direct injection of 131 I-labeled chitosan-SHPP hydrogels into cancer tissue sites of a human neuronal tumor cell line (U87MG) xenograft cancer animal model, followed by radionuclides to other tissues on days 1 and 5. It is a diagram confirming whether or not to leak a gamma image.
  • U87MG human neuronal tumor cell line
  • FIG. 7 shows localized direct injection of 131 I-labeled chitosan-SHPP hydrogel into the cancer tissue site of a human neuronal tumor cell line (U87MG) xenograft cancer animal model, followed by extraction of cancer tissue, and Cancer tissue was observed by necrosis inside the cancer tissue through H & E immunostaining.
  • U87MG human neuronal tumor cell line
  • n is an integer of 300 to 400.
  • chitosan was dissolved in 2 ml of 0.1N HCl aqueous solution, 20 mg of SHPP ( N- succinimidyl-3- [4-hydroxyphenyl] propionate) dissolved in DMF or DMSO was added. Then, 20 ml of 0.2 M borate buffer (pH 7.4) was added and purged with nitrogen and stirred at 4 ° C. for 15 hours. Chitosan-SHPP prepared above was purified by dialysis with 0.2M borate buffer and lyophilized.
  • SHPP N- succinimidyl-3- [4-hydroxyphenyl] propionate
  • chitosan-SHPP prepared in 1 was dissolved in 0.1N HCl aqueous solution, radioactive oxo ( 131 I) and chloramine-T (3.0 mg / ml PBS (pH 7.4) in 40 ⁇ l) were added and stirred for 10 minutes. After the reaction was completed, chitosan-SHPP labeled with radioactive oxo ( 131 I) was obtained.
  • the ratio of the drug to chitosan-SHPP is a weight ratio of 1: 0.1-2, preferably a weight ratio of 1: 0.5-1.
  • the size and strength of the hydrogel may vary depending on the concentration of TPP.
  • Chitosan-SHPP was prepared in the same manner as in Example 1, above.
  • chitosan-SHPP labeled with radioactive oxo 131 I
  • 3 mg of doxorubicin, an anticancer agent was added and stirred.
  • the mixed solution was placed in 20 ml of coconut oil containing 20 ⁇ l of sorbitan monostearate as an emulsifier to form an emulsion.
  • 2 mg / ml of TPP (tripolyphosphate) was added thereto, followed by stirring to prepare a hydrogel.
  • Chitosan-SHPP was prepared in the same manner as in Example 1, above.
  • chitosan-SHPP prepared in Example 1 was treated with 0.25 mg / ml, 0.5 mg / ml, and 1 mg / ml in five cell lines (RAW, CHO, MDA-MB231, HepG, KB). Cell viability was then assessed.
  • chromatography of chitosan-SHPP labeled with radioactive oxo ( 131 I) prepared in 2 of Example 1 was carried out using ITLC-SG of Gelman as a stationary phase and saline as a mobile phase. The labeling efficiency of radioactive oxo ( 131 I) was confirmed.
  • Fig was as shown in Figure 2, radioiodine (131 I)
  • the labeling efficiency was 99% of the radioiodine (131 I) in the labeled chitosan -SHPP.
  • the labeling efficiency of the radioactive oxo ( 131 I) in the hydrogel labeled with radioactive oxo ( 131 I) and doxorubicin was more than 99%, and the label was stable for more than 140 hours.
  • the drug release pattern from the radioactive oxo ( 131 I) -labeled chitosan-SHPP hydrogel prepared in Example 1 was evaluated in phosphate buffer (pH 7.4, pH 5.4) for up to 192 hours.
  • the drug content in the chitosan-SHPP hydrogel labeled with radioactive oxo ( 131 I) and doxorubicin was 34.7%, and the drug loading efficiency was 86.7%.
  • the content and loading efficiency of the drug in the hydrogel can be controlled according to the amount of chitosan-SHPP and the amount of the drug.
  • the 125 I-labeled chitosan-SHPP hydrogel was present in the injected muscle region for 600 hours and little leakage to the outside was observed.
  • the 131 I-labeled chitosan-SHPP hydrogel remained at the cancer tissue site until day 5, and little leakage to the outside was observed.
  • the 131 I-labeled chitosan-SHPP hydrogel prepared in Example 1 was locally injected directly into the cancer tissue site of a human neuronal tumor cell line (U87MG) xenograft cancer animal model, and cancer tissue was extracted on day 5. It was. The extracted cancer tissues were examined for necrosis inside the cancer tissues by H & E immunostaining.
  • U87MG human neuronal tumor cell line
  • the present invention relates to a polymer hydrogel labeled with a radionuclide and to a drug, and a method for preparing the same, and a pharmaceutical composition for treating cancer containing the same as an active ingredient, which can be used in the field of cancer diagnosis and cancer treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물에 관한 것이다. 본 발명에 따른 고분자 하이드로겔은 생분해성 고분자에 방사성 핵종을 직접 표지하고 하이드로겔 형성시 약물을 담지함으로써 방사성 핵종의 표지 효율 및 표지 안정성이 우수하여 유리 방사성 핵종을 최소화할 수 있고, 국소적으로 병소 부위에 직접 주사되어 병소 부위에서 안정되게 머물면서 방사선을 방출하여 암 등의 난치성 질병의 치료에 유용하게 사용될 수 있다. 따라서, 본 발명에 따른 고분자 하이드로겔은 방사성 핵종에 의한 치료효과뿐만 아니라 약물에 의한 치료효과를 동시에 기대할 수 있어서 병소의 치료효과를 높일 수 있다.

Description

방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물
본 발명은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물에 관한 것이다.
현대사회는 암 사망과 함께 암 발생도 꾸준히 증가하고 있어, 암의 조기 발견과 새로운 치료법 제시가 절실히 요구되고 있으며, 한계적 상황에 있는 암 뿐만 아니라 난치성 질병 치료를 위한 새로운 대안도 절실히 요구되고 있다.
방사성 핵종을 이용하여 암을 포함한 난치성 질병을 치료하는 방법은 수술에 비하여 매우 간편하고 경제적이며, 무엇보다도 환자에게 고통을 적게 줄 뿐만 아니라 치료효과도 높다. 따라서, 방사성 핵종을 이용한 치료방법이 널리 이용되고 있다. 그러나, 방사성 핵종을 이용한 치료방법은 질병 부위뿐만 아니라 정상조직에도 영향을 주어 정상세포를 파괴시키는 단점이 있다.
상기와 같은 문제점을 해결하기 위해서는, 방사성 핵종이 투여된 질병 부위에서만 선택적으로 조직을 파괴하도록 생체적합성 고분자를 이용하여, 방사성 핵종이 다른 정상 부위로 옮겨가지 않도록 설계하는 것이 중요하다. 또한, 투여된 방사성 핵종이 포함된 생체적합성 고분자는 질병 부위에서 방사선을 방출하고 충분한 시간이 지나면 생분해되어 흡수되어 배출되는 것이 바람직하다.
현재 사용되고 있는 방사성 핵종을 이용한 국소 치료제로는, 쉐링사의 90Y SIR 마이크로스피어를 이용한 간암 치료제가 있으며, 이는 수술적 제거가 용이하지 않은 간암 환자의 치료에 유용하게 사용되고 있다. 또한, 동화약품공업주식회사의 166홀뮴과 키토산의 착화합물(166Ho-키토산)을 이용한 간암 치료제(밀리칸주)는 단 1회의 주사로 암세포를 짧은 시간 내에 괴사시킬 수 있어 소형 간암 치료에 유용하다고 알려져 있다. 이 외에도, 방사성 핵종으로는 186Re-주석콜로이드, 186Re-황 콜로이드, 188Re-하이드록시아파타이트, 90Y-콜로이드 등이 있다. 또한, 대한민국 등록특허공보 제 10-530276호에는 입자성 방사성 핵종 포합 중합체, 그 제조방법 및 그 제조용 키트가 기재되어 있으며, 대한민국 등록특허공보 제 10-530276호에는 방사성 물질-키토산 복합체를 함유하는 전립선암 치료용 조성물 및 조성물 제조용 키트가 기재되어 있고, 대한민국 공개특허공보 제 10-2006-60970호에는 체내 주사시 겔화 안정성이 개선된 방사성 물질-키토산 복합체 용액 조성물 및 그 제조방법에 대하여 기재되어 있다. 그러나, 상기와 같은 방사성 핵종을 포함하는 치료제는 수용액 상태로 병소에 투여할 시 조직 밖으로 일부가 빠져나와 정상 조직을 파괴하는 부작용이 일어날 수 있고, 투여된 부위에 머무르지 않고 다른 쪽으로 흘러가거나 투여 후 물만 조직으로 흡수되고 방사성 핵종은 침전되어 한쪽으로 모여 조사가 불균일하게 되는 등 방사성 입자의 형태가 치료에 적합하지 않게 될 수도 있다.
상기 방사성 핵종 중 166Ho-키토산 착물은, 수용액 상태로 주사된 후 체내에서 겔로 변하여 병소 부위에서 형태를 유지하면서 그대로 머물기 때문에, 용액 상태로 존재하는 방사성 핵종에 비하여 정확하고 균일하게 방사선이 조사된다는 장점을 가지고 있다. 또한, 충분한 시간이 지나면 방사능이 사라질 뿐만 아니라 착물 상태로 같이 투여된 키토산도 분해되어 없어지는 장점이 있다. 또한, 166Ho은 다른 방사성 핵종에 비하여 가격도 비교적 저렴하다. 그러나, 166Ho-키토산 착물의 수용액은, 산성용액이라는 단점이 있고 겔화가 잘 형성되지 않아 정상 조직으로 방사성 핵종이 유리되는 문제점이 있다. 또한, 166Ho 또는 90Y를 포함한 방사성 핵종 치료제는 반감기가 각각 26.9 시간과 641 시간으로 치료제를 제조할 때 현장에서 제조해야 하는 단점이 있다.
따라서, 겔화가 잘 형성되어 정상 조직으로 유리되는 방사성 핵종을 최소화할 수 있는 방사성 핵종을 이용한 치료제에 대한 개발의 필요성이 절실히 요구되고 있다.
본 발명자들은 겔화가 잘 형성되고 정상 조직으로 유리되는 방사성 핵종을 최소화할 수 있는 방사성 핵종을 이용한 치료제에 대하여 연구하던 중, 생분해성 고분자에 방사성 핵종을 직접 표지하고 약물을 담지한 고분자 하이드로겔을 제조하였으며, 이렇게 제조된 고분자 하이드로겔은 방사성 핵종의 표지 효율 및 표지 안정성이 우수하여 하이드로겔을 암 조직 부위에 국소적으로 직접 주사한 경우 하이드로겔이 암 조직 부위에 그대로 머물면서 외부로 거의 유출되지 않으며, 암 조직 내부의 많은 부위에서 괴사가 이루어짐을 확인하고, 본 발명을 완성하였다.
따라서, 본 발명은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법을 제공하고자 한다.
또한, 본 발명은 상기 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔을 유효성분으로 함유하는 암 치료용 약학 조성물을 제공하고자 한다.
본 발명은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔을 제공한다.
또한, 본 발명은
1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물과 음이온성 가교물질을 첨가하고 교반시켜 방사성 핵종이 표지되고 약물이 담지된 고분자-킬레이터 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법을 제공한다.
또한, 본 발명은
1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액을 유화제가 포함된 오일에 넣어 에멀젼을 형성한 다음, 여기에 음이온성 가교물질을 첨가하고 교반하여 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법을 제공한다.
또한, 본 발명은
1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액에 음이온성 가교물질을 1~20 kV의 전압 하에 전기방사하여 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법을 제공한다.
또한, 본 발명은 상기 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔을 유효성분으로 함유하는 암 치료용 약학 조성물을 제공한다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명에 따른 고분자 하이드로겔은, 생분해성 고분자에 방사성 핵종을 직접 표지하고 하이드로겔 형성시 약물을 담지시킨 것을 특징으로 한다.
본 발명에 따른 고분자 하이드로겔의 제조방법에 대해 단계별로 상세히 설명하면 다음과 같다.
상기 1)단계는 고분자-킬레이터를 제조하는 단계로, 생분해성 고분자를 HCl 수용액에 용해한 후, 유기용매에 용해된 킬레이터를 가하고, 붕산염 완충액을 가하여 교반한 후 고분자-킬레이터를 얻는다. 상기 얻어진 고분자-킬레이터를 붕산염 완충액으로 투석하여 정제하고 동결 건조한다.
상기 제조된 고분자-킬레이터는 세포주(RAW, CHO, MDA-MB231, HepG, KB)에서 세포 생존률의 변화가 관찰되지 않았다.
상기 생분해성 고분자는 키토산 및 그 유도체, 폴리글루탐산, 헤파린, 히알루론산, 알긴산, 펙틴, 카복시메틸 셀룰로오스, 단백질 등이 바람직하나, 이에 한정되지 않는다.
상기 킬레이터는 방사성 핵종을 표지할 수 있는 작용기를 가진 화합물로, SHPP(N-succinimidyl-3-[4-hydroxyphenyl]propionate), DTPA(diethylenetriamine pentaacetic acid), 히스티딘, 티로신, 티로신을 포함하는 단백질 등이 바람직하나, 이에 한정되지 않는다. 상기 킬레이터는 방사성 핵종에 따라 달라질 수 있다. 예를 들어, 방사성 핵종이 옥소(131I, 125I, 124I)인 경우에는 킬레이터로 SHPP가 바람직하고, 방사성 핵종이 188Re인 경우에는 킬레이터로 DTPA가 바람직하다.
상기 킬레이터를 용해시키는 유기용매는 디메틸포름아미드(DMF), 디메틸설폭시드(DMSO), 1,4-디옥산, 테트라히드로퓨란(THF), 아세톤, 아세토니트릴 등을 포함하나, 이에 한정되지 않는다.
상기 생분해성 고분자와 킬레이터는 50 : 1~30의 중량비, 바람직하게는 50 : 1~15의 중량비로 혼합되는 것이 좋다. 만일 킬레이터를 너무 과량으로 생분해성 고분자에 결합시키면 상기 혼합물이 수용액으로 제조되기가 어려워 하이드로겔을 형성시키기 어려운 문제점이 발생한다.
상기 2)단계는 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계로, 고분자-킬레이터를 HCl 수용액에 용해한 후, 이를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 얻는다. 상기 방사성 핵종이 표지된 고분자-킬레이터에서 방사성 핵종의 표지 효율은 99% 이다.
상기 방사성 핵종은 131I, 125I, 124I, 186Re, 188Re, 90Y, 166Ho 등을 포함하나, 이에 한정되지 않는다. 방사성 핵종이 옥소(131I, 125I, 124I)인 경우 방사성 핵종을 표지하기 위한 활성제로는 클로라민 티(chloramine T)가 바람직하다.
상기 3)단계는 방사성 핵종이 표지되고 약물이 담지된 고분자-킬레이터 하이드로겔을 제조하는 단계로, 방사성 핵종이 표지된 고분자-킬레이터를 약물 및 음이온성 가교물질과 반응시켜 하이드로겔을 제조한다.
상기 하이드로겔의 제조시, 단순히 혼합하여 교반하는 방법, 에멀젼 방법 또는 전기방사법을 이용하여 제조할 수 있다. 에멀젼 방법을 이용할 경우, 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액을 유화제가 포함된 오일에 넣어 에멀젼을 형성한 다음, 여기에 음이온성 가교물질을 첨가하고 교반하여 하이드로겔을 제조한다. 이때, 유화제로는 소르비탄 모노스테아레이트, 소르비탄 모노팔미테이트, 소르비탄 세스키스테아레이트, 소르비탄 트리스테아레이트, 소르비탄 세스키올레이트 등의 스판 계열 유화제; 또는 폴리소르베이트 20, 폴리소르베이트 40, 폴리소르베이트 60, 폴리소르베이트 80 등의 트윈 계열 유화제가 바람직하다. 또한, 상기 오일로는 면실유, 코코넛 오일, 올리브 오일, 포도씨 오일, 파라핀 등이 바람직하나 이에 한정되지 않는다.
또한, 전기방사법을 이용할 경우, 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액에 실린지 펌프를 통해 음이온성 가교물질을 1~20 kV의 전압 하에 전기방사하여 하이드로겔을 제조한다.
상기 약물로는 독소루비신, 파클리탁셀, 도세탁셀, 젭시타빈, 나벨빈 (navelbine), 카페시타빈(capecitabine), 시클로포스파미드, 5-플루오로우라실, 메토트렉세이트, 에피루비신, 시스플라틴, 허셉틴(herceptin) 등의 항암제 또는 항염증제 등을 포함하나, 이에 한정되지 않는다.
상기 음이온성 가교물질은 하이드로겔을 형성하기 위해 사용되며, 이를 사용하여 하이드로겔을 제조할 시 방사성 핵종의 표지 안정성을 증가시켜 병소 부위 외의 정상 조직으로의 방사성 핵종의 유출을 막을 수 있다. 또한, 상기 가교물질의 음이온의 농도에 따라 하이드로겔 입자의 크기를 조절할 수 있어서 병소 적용 범위를 넓힐 수 있다. 음이온성 가교물질로는 TPP(tripolyphosphate), 알긴산, 펙틴, 카복시메틸 셀룰로오스, 폴리글루탐산, 단백질, DNA, RNA 등이 바람직하나, 이에 한정되지 않는다.
상기 고분자-킬레이터와 약물의 비율은 1:0.1~2의 중량비, 바람직하게는 1:0.5~1의 중량비가 적당하다. 만일 약물의 함량이 너무 많으면 약물의 적재 효율이 낮아지므로 바람직하지 않다.
상기 방법으로 제조된 방사성 핵종이 표지되고 약물이 담지된 고분자-킬레이터 하이드로겔은, 방사성 핵종의 표지 효율이 99% 이상이고, 표지 안정성이 140시간 이상으로 우수하며, 약물의 함량이 30~40% 이고, 약물 담지 효율이 80~90% 이다. 하이드로겔에서 약물의 함량과 담지 효율은 고분자-킬레이터의 양과 약물의 양에 따라 조절이 가능하다. 또한, 상기 방사성 핵종이 표지되고 약물이 담지된 고분자-킬레이터 하이드로겔을 암 조직 부위에 국소적으로 직접 주사한 경우, 하이드로겔이 암 조직 부위에 그대로 머물면서 외부로 거의 유출되지 않으며, 암 조직 내부의 많은 부위에서 괴사가 이루어짐이 관찰되었다.
상기한 바와 같이, 본 발명에 따른 고분자 하이드로겔은 생분해성 고분자에 방사성 핵종을 직접 표지하고 하이드로겔 형성시 약물을 담지함으로써 방사성 핵종의 표지 효율 및 표지 안정성이 우수하여 유리 방사성 핵종을 최소화할 수 있고, 국소적으로 병소 부위에 직접 주사되어 병소 부위에서 안정되게 머물면서 방사선을 방출하여 암 등의 난치성 질병의 치료에 유용하게 사용될 수 있다. 따라서, 본 발명에 따른 고분자 하이드로겔은 방사성 핵종에 의한 치료효과뿐만 아니라 약물에 의한 치료효과를 동시에 기대할 수 있어서 병소의 치료효과를 높일 수 있다.
상기 암으로는 인체의 각종 암, 부인과 종양, 내분비계 암, 중추신경계 종양, 수뇨관 암 등이 있으며, 구체적으로는 폐암, 골암, 췌장암, 피부암, 두경부암, 피부 흑색종, 자궁암, 난소암, 직장암, 대장암, 결장암, 유방암, 자궁 육종, 나팔관 암종, 자궁내막 암종, 자궁경부 암종, 질 암종, 외음부 암종, 식도암, 소장암, 갑상선암, 부갑상선암, 연조직의 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 유년기의 고상 종양, 분화 림프종, 방광암, 신장암, 신장 세포 암종, 신장 골반 암종, 제 1 중추신경계 림프종, 척수축 종양, 뇌간 신경교종 또는 뇌하수체 아데노마를 포함하나 이에 한정되지 않는다.
본 발명의 조성물은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔과 함께 항암효과를 갖는 공지의 유효성분을 1종 이상 함유할 수 있다.
본 발명에 따른 고분자 하이드로겔은 암 치료를 위하여 주사제 제형으로 투여될 수 있다. 비경구 투여를 위한 본 발명의 조성물로는 멸균 수성 또는 비수성 액제, 분산제, 현탁제, 또는 유제 뿐만 아니라 멸균 액제 또는 현탁제로 사용하기 직전에 재조제하는 멸균 산제가 있다. 적합한 멸균 수성 및 비수성 담체, 희석제, 용매 또는 비히클의 예로는 물, 생리식염수, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌 글리콜, 폴리에틸렌 글리콜 등) 및 이들의 혼합물, 식물성 오일(예를 들어, 올리브 오일), 주사가능한 유기 에스터(예를 들어, 에틸올레이트)가 있다. 예를 들어, 분산제 및 현탁제의 경우에는 레시틴과 같은 피복재를 사용하여 적절한 특정 크기를 유지하며, 계면활성제를 사용하여 적절한 유동성을 유지할 수 있다. 또한, 비경구 조성물은 방부제, 습화제, 유화제 및 분산제와 같은 보조제를 함유할 수 있다. 주사용 제형의 멸균은 예를 들어, 멸균 필터를 통하여 여과시키거나, 혼합하기 전, 제조시 또는 투여 직전 (이중 용기 주사기 패키지의 경우에서와 같이)에 혼합물의 성분을 미리 멸균하여 사용할 수 있다.
본 발명의 고분자 하이드로겔은 질병의 종류 및 병소의 크기에 따라 1회 0.5~150 mCi/종괴 1㎤, 바람직하게는 0.5∼50mCi/종괴 1㎤를 투여할 수 있다.
본 발명의 조성물은 암의 치료를 위하여 단독으로, 또는 수술, 호르몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
본 발명에 따른 고분자 하이드로겔은 생분해성 고분자에 방사성 핵종을 직접 표지하고 하이드로겔 형성시 약물을 담지함으로써, 방사성 핵종의 표지 효율 및 표지 안정성이 우수하여 유리 방사성 핵종을 최소화할 수 있고, 방사성 핵종에 의한 치료효과뿐만 아니라 약물에 의한 치료효과를 동시에 기대할 수 있어서 병소의 치료효과를 높일 수 있다.
도 1은 키토산-SHPP의 세포독성을 나타낸 도이다.
도 2는 방사성 옥소(131I)가 표지된 키토산-SHPP에서 방사성 옥소(131I)의 표지효율을 나타낸 도이다.
도 3은 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔에서 방사성 옥소(131I)의 표지 효율과 표지 안정성을 나타낸 도이다.
도 4는 인산염 완충액(pH 7.4, pH 5.4)에서 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔로부터 약물 방출 패턴을 나타낸 도이다.
도 5는 125I가 표지된 키토산-SHPP 하이드로겔을 마우스의 정상 다리 근육에 600시간 동안 주사하고 다른 조직으로 방사성 핵종의 유출 여부를 감마 영상으로 확인한 도이다.
도 6은 131I가 표지된 키토산-SHPP 하이드로겔을 인간신경종양 세포주(U87MG) 이종이식 암 동물 모델의 암 조직 부위에 국소적으로 직접 주사한 후, 1일과 5일째에 다른 조직으로 방사성 핵종의 유출 여부를 감마 영상으로 확인한 도이다.
도 7은 131I가 표지된 키토산-SHPP 하이드로겔을 인간신경종양 세포주(U87MG) 이종이식 암 동물 모델의 암 조직 부위에 국소적으로 직접 주사한 후, 5일째에 암 조직을 적출하고, 적출된 암 조직을 H&E 면역 염색을 통해 암 조직 내부에 괴사가 이루어졌는지 관찰한 도이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1 : 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔의 제조
*1. 키토산-SHPP의 제조
[규칙 제91조에 의한 정정 05.03.2012] 
Figure WO-DOC-FIGURE-63
상기 반응식에서, n은 300~400의 정수이다.
키토산 100㎎을 2㎖의 0.1N HCl 수용액에 용해한 후, DMF 또는 DMSO에 용해된 SHPP(N-succinimidyl-3-[4-hydroxyphenyl]propionate) 20㎎을 첨가하였다. 그 다음, 20㎖의 0.2M 붕산염 완충액(borate buffer, pH 7.4)을 첨가한 후 질소로 퍼지하고 15시간 동안 4℃에서 교반하였다. 상기 제조된 키토산-SHPP를 0.2M 붕산염 완충액으로 투석하여 정제하고, 동결 건조하였다.
2. 키토산-SHPP에 방사성 옥소(131I)의 표지
[규칙 제91조에 의한 정정 05.03.2012] 
Figure WO-DOC-FIGURE-67
상기 1에서 제조한 키토산-SHPP를 0.1N HCl 수용액에 용해한 후, 방사성 옥소(131I)와 클로라민-티(40㎕ 중 3.0㎎/㎖ PBS(pH 7.4))를 첨가하고 10분 동안 교반하였다. 반응이 완료된 후, 방사성 옥소(131I)가 표지된 키토산-SHPP를 얻었다.
3. 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 제조
[규칙 제91조에 의한 정정 05.03.2012] 
Figure WO-DOC-FIGURE-70
상기 2에서 제조된 방사성 옥소(131I)가 표지된 키토산-SHPP 5㎎에, 항암제인 독소루비신 3㎎을 첨가하고 교반하면서 TPP(tripolyphosphate) 2㎎을 첨가하고 교반하여 하이드로겔을 제조하였다. 이때, 키토산-SHPP에 대한 약물의 비율은 1:0.1~2의 중량비, 바람직하게는 1:0.5~1의 중량비가 적당하다. TPP의 첨가 농도에 따라 하이드로겔의 크기와 강도가 달라질 수 있다.
실시예 2 : 방사성 옥소(125I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔의 제조
*상기 실시예 1에서 방사성 옥소(131I) 대신 방사성 옥소(125I)를 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 방사성 옥소(125I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔을 제조하였다.
실시예 3 : 에멀젼 방법을 이용한 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔의 제조
1. 키토산-SHPP의 제조
상기 실시예 1의 1과 동일하게 하여 키토산-SHPP를 제조하였다.
2. 키토산-SHPP에 방사성 옥소(131I)의 표지
상기 실시예 1의 2와 동일하게 하여 방사성 옥소(131I)가 표지된 키토산-SHPP를 제조하였다.
3. 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 제조
상기 2에서 제조된 방사성 옥소(131I)가 표지된 키토산-SHPP 5㎎에, 항암제인 독소루비신 3㎎을 첨가하고 교반하였다. 상기 혼합 용액을 유화제인 소르비탄 모노스테아레이트 20㎕가 포함된 코코넛 오일 20㎖에 넣고 에멀젼을 형성하였다. 여기에 TPP(tripolyphosphate) 2㎎/㎖을 첨가하고 교반하여 하이드로겔을 제조하였다.
실시예 4 : 전기방사법을 이용한 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔의 제조
1. 키토산-SHPP의 제조
상기 실시예 1의 1과 동일하게 하여 키토산-SHPP를 제조하였다.
2. 키토산-SHPP에 방사성 옥소(131I)의 표지
상기 실시예 1의 2와 동일하게 하여 방사성 옥소(131I)가 표지된 키토산-SHPP를 제조하였다.
3. 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 제조
상기 2에서 제조된 방사성 옥소(131I)가 표지된 키토산-SHPP 5㎎에, 항암제인 독소루비신 3㎎을 첨가하고 교반하였다. 상기 혼합 용액에 실린지 펌프를 통해 TPP (tripolyphosphate) 2㎎을 용해한 용액으로 1~20 kV의 전압 하에 전기방사하여 하이드로겔을 제조하였다.
실험예 1 : 키토산-SHPP의 세포독성 실험
상기 실시예 1의 1에서 제조한 키토산-SHPP의 세포독성을 확인하기 위하여, 하기와 같은 실험을 수행하였다. 구체적으로는, 5가지 세포주(RAW, CHO, MDA-MB231, HepG, KB)에 상기 실시예 1의 1에서 제조한 키토산-SHPP를 0.25㎎/㎖, 0.5㎎/㎖, 1㎎/㎖ 씩 처리한 후 세포 생존률을 평가하였다.
결과는 도 1에 나타내었다.
도 1에 나타난 바와 같이, 키토산-SHPP를 처리한 세포주에서 세포 생존률의 변화가 관찰되지 않았다.
실험예 2 : 방사성 옥소(131I)가 표지된 키토산-SHPP에서 방사성 옥소(131I)의 표지 효율 측정
상기 실시예 1의 2에서 제조한 방사성 옥소(131I)가 표지된 키토산-SHPP에서 방사성 옥소(131I)의 표지효율을 확인하기 위하여, 하기와 같은 실험을 수행하였다.
구체적으로는, 고정상으로 Gelman 사의 ITLC-SG를 이용하고, 이동상으로 식염수(saline)를 사용하여 상기 실시예 1의 2에서 제조한 방사성 옥소(131I)가 표지된 키토산-SHPP의 크로마토그래피를 수행하여, 방사성 옥소(131I)의 표지효율을 확인하였다.
결과는 도 2에 나타내었다.
도 2에 나타난 바와 같이, 방사성 옥소(131I)가 표지된 키토산-SHPP에서 방사성 옥소(131I)의 표지 효율은 99% 이었다.
실험예 3 : 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔에서 방사성 옥소(131I)의 표지 효율과 표지 안정성 측정
상기 실시예 1의 3에서 제조한 하이드로겔에서 방사성 옥소(131I)의 표지 효율과 표지 안정성을 확인하기 위하여, 상기 실험예 2와 동일하게 실험하였다.
결과는 도 3에 나타내었다.
도 3에 나타난 바와 같이, 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 하이드로겔에서 방사성 옥소(131I)의 표지 효율은 99% 이상이었고, 140시간 이상으로 표지가 안정하였다.
실험예 4 : 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔에서 약물 방출 실험
상기 실시예 1에서 제조한 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔로부터 약물 방출 패턴을 인산염 완충액(pH 7.4, pH 5.4)에서 192시간까지 평가하였다.
결과는 도 4에 나타내었다.
도 4에 나타난 바와 같이, 방사성 옥소(131I)가 표지되고 독소루비신이 담지된 키토산-SHPP 하이드로겔에서 약물의 함량은 34.7% 이었고, 약물 담지 효율은 86.7% 이었다. 하이드로겔에서 약물의 함량과 담지 효율은 키토산-SHPP의 양과 약물의 양에 따라 조절이 가능하다.
실험예 5 : 동물 조직에서 방사성 옥소(125I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 축적
감마 영상을 통해 방사성 옥소가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔이 주사한 부위에서 머물면서 다른 조직으로 방사성 핵종을 유출시키는지 평가하였다. 구체적으로는, 상기 실시예 2에서 제조한 125I가 표지된 키토산-SHPP 하이드로겔을 마우스의 정상 다리 근육에 600시간 동안 주사하고 다른 조직으로 방사성 핵종의 유출 여부를 감마 영상으로 확인하였다.
결과는 도 5에 나타내었다.
도 5에서 나타난 바와 같이, 125I가 표지된 키토산-SHPP 하이드로겔은 600시간 동안 주사한 근육 부위에 존재하고 외부로 유출되는 정도가 거의 관찰되지 않았다.
실험예 6 : 암 조직에서 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 치료 효과
1. 암 조직에서 방사성 옥소(131I)가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔의 축적
감마 영상을 통해 방사성 옥소가 표지되고 약물이 담지된 키토산-SHPP 하이드로겔이 주사한 부위에서 머물면서 다른 조직으로 방사성 핵종을 유출시키는지 평가하였다. 구체적으로는, 상기 실시예 1에서 제조한 131I가 표지된 키토산-SHPP 하이드로겔을 인간신경종양 세포주(U87MG) 이종이식 암 동물 모델의 암 조직 부위에 국소적으로 직접 주사한 후, 1일과 5일째에 다른 조직으로 방사성 핵종의 유출 여부를 감마 영상으로 확인하였다.
결과는 도 6에 나타내었다.
도 6에서 보는 바와 같이, 131I가 표지된 키토산-SHPP 하이드로겔은 5일째까지 암 조직 부위에 그대로 머물렀고 외부로 유출되는 정도가 거의 관찰되지 않았다.
2. H&E 면역 염색
상기 실시예 1에서 제조한 131I가 표지된 키토산-SHPP 하이드로겔을 인간신경종양 세포주(U87MG) 이종이식 암 동물 모델의 암 조직 부위에 국소적으로 직접 주사한 후, 5일째에 암 조직을 적출하였다. 적출된 암 조직을 H&E 면역 염색을 통해 암 조직 내부에 괴사가 이루어졌는지 관찰하였다.
결과는 도 7에 나타내었다.
도 7에 나타난 바와 같이, 131I가 표지된 키토산-SHPP 하이드로겔을 처리한 암 조직 내부의 많은 부위에서 괴사가 이루어지고 있음을 관찰하였다.
본 발명은 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물에 관한 것으로 암 진단 및 암 치료 산업 분야에서 이용가능하다.

Claims (18)

1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물과 음이온성 가교물질을 첨가하고 교반시켜 방사성 핵종이 표지되고 약물이 담지된 고분자-킬레이터 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액을 유화제가 포함된 오일에 넣어 에멀젼을 형성한 다음, 여기에 음이온성 가교물질을 첨가하고 교반하여 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
1) 생분해성 고분자와 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터를 반응시켜 고분자-킬레이터를 제조하는 단계,
2) 상기 1)단계에서 제조된 고분자-킬레이터를 방사성 핵종 및 방사성 핵종을 표지하기 위한 활성제와 반응시켜 방사성 핵종이 표지된 고분자-킬레이터를 제조하는 단계, 및
3) 상기 2)단계에서 제조된 방사성 핵종이 표지된 고분자-킬레이터에 약물을 첨가하고, 이 혼합 용액에 음이온성 가교물질을 1~20 kV의 전압 하에 전기방사하여 하이드로겔을 제조하는 단계를 포함하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 생분해성 고분자는 키토산 및 그 유도체, 폴리글루탐산, 헤파린, 히알루론산, 알긴산, 펙틴, 카복시메틸 셀룰로오스 및 단백질로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 방사성 핵종을 표지할 수 있는 작용기를 가진 킬레이터는 SHPP(N-succinimidyl-3-[4-hydroxyphenyl]propionate), DTPA (diethylenetriamine pentaacetic acid), 히스티딘, 티로신 및 티로신을 포함하는 단백질로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 1)단계에서 생분해성 고분자와 킬레이터는 50 : 1~30의 중량비로 혼합하는 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 방사성 핵종은 131I, 125I, 124I, 186Re, 188Re, 90Y 및 166Ho로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 방사성 핵종이 옥소(131I, 125I, 124I)인 경우 방사성 핵종을 표지하기 위한 활성제는 클로라민 티인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 약물은 항암제 또는 항염증제인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 9항에 있어서, 상기 항암제는 독소루비신, 파클리탁셀, 도세탁셀, 젭시타빈, 나벨빈(navelbine), 카페시타빈(capecitabine), 시클로포스파미드, 5-플루오로우라실, 메토트렉세이트, 에피루비신, 시스플라틴 및 허셉틴(herceptin)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 3)단계에서 음이온성 가교물질은 TPP (tripolyphosphate), 알긴산, 펙틴, 카복시메틸 셀룰로오스, 폴리글루탐산, 단백질, DNA 및 RNA로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 3)단계에서 고분자-킬레이터와 약물의 비율은 1:0.1~2의 중량비인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 2항에 있어서, 상기 3)단계에서 유화제는 소르비탄 모노스테아레이트, 소르비탄 모노팔미테이트, 소르비탄 세스키스테아레이트, 소르비탄 트리스테아레이트, 소르비탄 세스키올레이트, 폴리소르베이트 20, 폴리소르베이트 40, 폴리소르베이트 60, 및 폴리소르베이트 80으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 2항에 있어서, 상기 3)단계에서 오일은 면실유, 코코넛 오일, 올리브 오일, 포도씨 오일, 및 파라핀으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔의 제조방법.
제 1항 내지 제 3항 중 어느 한 항의 방법에 의해 제조된, 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔.
제 15항의 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔을 유효성분으로 함유하는 암 치료용 약학 조성물.
제 16항에 있어서, 상기 암은 폐암, 골암, 췌장암, 피부암, 두경부암, 피부 흑색종, 자궁암, 난소암, 직장암, 대장암, 결장암, 유방암, 자궁 육종, 나팔관 암종, 자궁내막 암종, 자궁경부 암종, 질 암종, 외음부 암종, 식도암, 소장암, 갑상선암, 부갑상선암, 연조직의 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 유년기의 고상 종양, 분화 림프종, 방광암, 신장암, 신장 세포 암종, 신장 골반 암종, 제 1 중추신경계 림프종, 척수축 종양, 뇌간 신경교종 및 뇌하수체 아데노마로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 암 치료용 약학 조성물.
제 16항에 있어서, 상기 조성물은 주사제 제형인 것을 특징으로 하는 암 치료용 약학 조성물.
PCT/KR2011/010344 2011-09-23 2011-12-29 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물 WO2013042834A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110096205A KR101351515B1 (ko) 2011-09-23 2011-09-23 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물
KR10-2011-0096205 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013042834A1 true WO2013042834A1 (ko) 2013-03-28

Family

ID=47914575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010344 WO2013042834A1 (ko) 2011-09-23 2011-12-29 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물

Country Status (2)

Country Link
KR (1) KR101351515B1 (ko)
WO (1) WO2013042834A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038467A (zh) * 2020-01-30 2022-09-09 凯生物技术株式会社 用于治疗癌症的壳聚糖水凝胶-螯合剂的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156426A1 (ko) * 2014-04-07 2015-10-15 전북대학교 산학협력단 방사성 핵종이 표지되고 혈관신생-촉진 단백질 또는 펩티드가, 담지된 고분 자 하이드로겔, 이의 제조 방법 및 이를 유효성분으로 포함하는 허혈성 질환의 예방 또는 치료용 약학 조성물
KR20170017522A (ko) * 2015-08-07 2017-02-15 전북대학교산학협력단 암 치료를 위한 키토산-킬레이터 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 약학적 조성물 및 색전 치료용 조성물
KR101670249B1 (ko) * 2016-02-16 2016-10-31 (주) 메디프레소 항암제 약물전달체 및 이의 제조방법
EP3828899B1 (en) * 2019-11-29 2022-01-05 Ion Beam Applications A method for producing ac-225 from ra-226
KR20240050074A (ko) 2022-10-11 2024-04-18 충북대학교 산학협력단 젬시타빈 및 라파마이신이 봉입된 온도민감성 plga-peg-plga 하이드로겔 및 이의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145404A1 (en) * 2003-10-22 2008-06-19 Encelle, Inc. Methods and compositions for regenerating connective tissue
KR20080076099A (ko) * 2007-02-14 2008-08-20 성균관대학교산학협력단 온도 및 피에치 민감성 블록공중합체 고분자 하이드로겔을이용한 주사가능한 약물전달체 및 약물전달방법
KR20090002946A (ko) * 2007-07-05 2009-01-09 한국산업기술평가원(관리부서:요업기술원) 상호침투성 가교구조를 갖는 온도감응성 고분자하이드로겔, 이의 제조방법 및 이를 포함하는 주사제형약물전달체

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU712953B2 (en) 1996-03-11 1999-11-18 Focal, Inc. Polymeric delivery of radionuclides and radiopharmaceuticals
KR100547931B1 (ko) * 1996-03-12 2006-02-02 피지-티엑스엘 컴파니,엘.피. 수용성 파클리탁셀 전구약물을 포함하는 조성물 및 이러한조성물을 포함하는 이식가능한 의료장치
KR100530276B1 (ko) 1998-10-12 2006-02-28 서울대학교병원 입자성 방사성핵종 포합 중합체, 그 제조방법 및 그 제조용킷트
KR101080056B1 (ko) * 2004-12-01 2011-11-04 한국원자력연구원 체내 주사시 겔화 안정성이 개선된 방사성물질-키토산복합체용액 조성물 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145404A1 (en) * 2003-10-22 2008-06-19 Encelle, Inc. Methods and compositions for regenerating connective tissue
KR20080076099A (ko) * 2007-02-14 2008-08-20 성균관대학교산학협력단 온도 및 피에치 민감성 블록공중합체 고분자 하이드로겔을이용한 주사가능한 약물전달체 및 약물전달방법
KR20090002946A (ko) * 2007-07-05 2009-01-09 한국산업기술평가원(관리부서:요업기술원) 상호침투성 가교구조를 갖는 온도감응성 고분자하이드로겔, 이의 제조방법 및 이를 포함하는 주사제형약물전달체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAE YUN, NAM ET AL.: "Polymers for Bioimaging", POLYMER SCIENCE AND TECHNOLOGY, vol. 19, no. 2, April 2008 (2008-04-01), pages 130 - 137 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038467A (zh) * 2020-01-30 2022-09-09 凯生物技术株式会社 用于治疗癌症的壳聚糖水凝胶-螯合剂的制备方法

Also Published As

Publication number Publication date
KR101351515B1 (ko) 2014-01-15
KR20130032547A (ko) 2013-04-02

Similar Documents

Publication Publication Date Title
WO2013042834A1 (ko) 방사성 핵종이 표지되고 약물이 담지된 고분자 하이드로겔 및 이의 제조방법, 및 이를 유효성분으로 함유하는 암 치료용 약학 조성물
RU2214412C2 (ru) ПРОИЗВОДНЫЕ 8-ПИРИДОНО [5,6g] ХИНОЛИНА, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБЫ С ИХ ИСПОЛЬЗОВАНИЕМ
RU2263507C2 (ru) Композиция фульвестранта
ES2966631T3 (es) Estructuras químicas para el suministro localizado de agentes terapéuticos
TW201016237A (en) Treatment of neuroblastoma with multi-arm polymeric conjugates of 7-ethyl-10-hydroxycamptothecin
CN101420963B (zh) 用于治疗乳腺癌、结肠直肠癌、胰腺癌、卵巢癌和肺癌的7-乙基-10-羟基喜树碱的多臂聚合轭合物
JP2020502130A5 (ko)
WO2017196148A1 (en) Composite formulation of dutasteride and tadalafil comprising glycerol fatty acid ester derivative or propylene glycol fatty acid ester derivative and oral capsule formulation comprising the same
CN110478495A (zh) 靶向缀合物及其颗粒和制剂
JP2010533202A (ja) 多置換芳香族部分を含むポリマー性薬剤送達システム
KR20090059117A (ko) 7-에틸-10-히드록시캄토테신의 다분지형 고분자 접합체를 사용한 비호치킨성 림프종의 치료방법
CN101028274A (zh) 治疗肝胆疾病的熊去氧胆酸制剂及其制备方法
WO2017026578A1 (ko) 암 치료를 위한 키토산-킬레이터 하이드로겔 및 이의 제조방법, 및 이를 유효 성분으로 함유하는 약학적 조성물 및 색전 치료용 조성물
CN108350009A (zh) 具有口服生物利用率的五氮杂大环状环络合物
WO2022216084A1 (ko) 마크로파지 타겟팅용 나노플랫폼 및 전이성 암의 예방 또는 치료용 조성물
Foster et al. Delineation of a transplanted malignant melanoma with indium-111-labeled porphyrin
KR100190957B1 (ko) 방사성 키토산 착물, 방사성 키토산 응집입자 및 방사성키토산 착물 제조용 키트, 그리고 그들의 제조방법 및 용도
WO2022133537A1 (en) Ligands and their use
CN114452256A (zh) 脊髓损伤靶向药物、聚合物-疏水化合物胶束及其制备方法
WO2021141319A2 (ko) 뇌암세포 표적용 펩타이드로 표면 개질된 약물 전달용 나노입자, 이의 제조방법 및 이의 용도
WO2021153823A1 (ko) 암 치료를 위한 키토산 하이드로겔-킬레이터의 제조방법
Ribeiro et al. Docetaxel-loaded block copolymer micelles labeled with 188Re for combined radiochemotherapy
KR101481447B1 (ko) 방사성 핵종이 표지되고 혈관신생-촉진 단백질 또는 펩티드가, 담지된 고분자 하이드로겔, 이의 제조 방법 및 이를 유효성분으로 포함하는 허혈성 질환의 예방 또는 치료용 약학 조성물
CN112870389A (zh) 一种与放射性金属复合的DZ-1-Lys-DOTA偶联物及应用
WO2010120021A1 (ko) 고분자 캡슐을 포함하는 광역학 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872540

Country of ref document: EP

Kind code of ref document: A1