WO2013042483A1 - 油圧制御装置及び油圧制御方法 - Google Patents

油圧制御装置及び油圧制御方法 Download PDF

Info

Publication number
WO2013042483A1
WO2013042483A1 PCT/JP2012/070356 JP2012070356W WO2013042483A1 WO 2013042483 A1 WO2013042483 A1 WO 2013042483A1 JP 2012070356 W JP2012070356 W JP 2012070356W WO 2013042483 A1 WO2013042483 A1 WO 2013042483A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic pump
switching valve
negative control
pressure
Prior art date
Application number
PCT/JP2012/070356
Other languages
English (en)
French (fr)
Inventor
英祐 松嵜
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020147005343A priority Critical patent/KR101592483B1/ko
Priority to CN201280040917.3A priority patent/CN103748364B/zh
Priority to EP12833906.6A priority patent/EP2759712B1/en
Publication of WO2013042483A1 publication Critical patent/WO2013042483A1/ja
Priority to US14/217,721 priority patent/US9651061B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86027Electric

Definitions

  • the present invention relates to a hydraulic pump in a construction machine in which a hydraulic actuator is connected to a hydraulic pump via a closed center type directional switching valve, and an unloading valve connected to a tank is provided between the directional switching valve and the hydraulic pump.
  • the present invention relates to a hydraulic control device and a hydraulic control method for controlling the pressure.
  • a closed center type control valve instead of the general bleed control that controls the hydraulic actuator speed by changing the bleed flow rate according to the operation amount of the control valve, a closed center type control valve has been used, while a virtual bleed is used for the control valve.
  • a control method for a variable displacement pump is known in which an opening is set and the area of the virtual bleed opening (virtual bleed opening area) is changed according to the operation amount (see, for example, Patent Document 1).
  • the necessary pump discharge pressure is calculated using the virtual bleed opening area and the virtual bleed amount based on the virtual bleed opening area, and the pump control is executed so that the pump discharge pressure is realized.
  • the negative control system is compatible with human inertia in that the speed of the hydraulic actuator is low when the load is high and the speed of the hydraulic actuator is high when the load is low. .
  • the present invention can maintain the discharge flow rate of the hydraulic pump at an appropriate flow rate when the unload valve is open in a configuration that virtually reproduces the negative control system using a closed center type directional control valve.
  • An object of the present invention is to provide a hydraulic control device and a hydraulic control method that can be used.
  • a hydraulic actuator is connected to a hydraulic pump via a closed center type directional switching valve, and a tank is provided between the directional switching valve and the hydraulic pump.
  • a construction machine provided with an unloading valve connected to a hydraulic control device for controlling the hydraulic pump
  • Unloading valve control means for controlling the unloading valve so that communication between the hydraulic pump and the tank is established in a closed state
  • FIG. 1 is a circuit diagram showing a hydraulic control system 60 according to one embodiment of the present invention.
  • FIG. It is the schematic of the direction switching valve used with an open center type (negative control) system.
  • It is a block diagram of the negative control system reproduced in the virtual bleed system realized by the controller 10 of the present embodiment.
  • FIG. 1 is a diagram showing a configuration example of a construction machine 1 according to the present invention.
  • the construction machine 1 is a machine equipped with a hydraulic system that is operated by a person, such as a hydraulic excavator, a forklift, and a crane.
  • a construction machine 1 has an upper swing body 3 mounted on a crawler type lower traveling body 2 via a swing mechanism so as to be rotatable around the X axis.
  • the upper swing body 3 includes a boom 4, an arm 5 and a bucket 6, and a boom cylinder 7, an arm cylinder 8 and a bucket cylinder 9 as hydraulic actuators for driving the boom 4, the arm 5 and the bucket 6, respectively.
  • the drilling attachment may be another attachment such as a breaker or a crusher.
  • FIG. 2 is a circuit diagram showing a hydraulic control system 60 according to one embodiment of the present invention.
  • the hydraulic control system 60 includes a variable displacement hydraulic pump 11 in which the discharge amount per rotation (cc / rev) is variable.
  • the hydraulic pump 11 is connected to a prime mover (for example, an engine) 17 and is rotationally driven by the prime mover 17.
  • the hydraulic pump 11 is connected in parallel to the boom cylinder 7, arm cylinder 8, and bucket cylinder 9 (an example of a hydraulic actuator) via a supply line 13 and closed center type directional control valves (control valves) 20, 22, 24.
  • the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 are connected in parallel to the return line 14 connected to the tank T via the direction switching valves 20, 22, and 24.
  • the hydraulic pump 11 is controlled by a regulator device 12.
  • the direction switching valves 20, 22, 24 may be of a type whose position is controlled by hydraulic pressure, or of a type whose position is controlled by an electric signal (drive signal) from the controller 10 as shown in the figure. Good.
  • the hydraulic control system 60 may include other hydraulic actuators such as a traveling hydraulic motor and a turning hydraulic motor.
  • the number of hydraulic actuators included in the hydraulic control system 60 is three in the example illustrated in FIG. 2, but may be any number including one.
  • a hydraulic sensor 30 for detecting the discharge pressure (pump discharge pressure) of the hydraulic pump 11 is provided in the supply line 13 from the hydraulic pump 11.
  • the hydraulic sensor 30 may input an electrical signal corresponding to the pump discharge pressure to the controller 10.
  • an unload valve 18 is provided in the supply line 13.
  • the unload valve 18 is connected to a return line 14 connected to the tank T. In this way, the supply line 13 communicates with the tank T via the unload valve 18.
  • the unload valve 18 switches between a state where the supply line 13 communicates with the tank T and a state where the supply line 13 is disconnected from the tank T according to the position.
  • the unload valve 18 is controlled according to the open / close state of the flow path (actuator line) to each hydraulic actuator (boom cylinder 7, arm cylinder 8 and bucket cylinder 9) in each direction switching valve 20, 22, and 24. Also good.
  • the unload valve 18 is closed when any one of the actuator lines in the direction switching valves 20, 22, 24 is opened, and the oil discharged from the hydraulic pump 11 is stored in the tank T. To prevent it from being discharged.
  • the unload valve 18 is opened when all of the actuator lines in the direction switching valves 20, 22, 24 are closed, and the oil discharged from the hydraulic pump 11 is discharged to the tank T. Form a state.
  • the unload valve 18 may be of a type whose position is controlled by hydraulic pressure, or of a type whose position is controlled by an electric signal as shown.
  • a relief valve 19 is provided in the supply line 13.
  • the return line 14 is connected to each head side and rod side of the boom cylinder 7, arm cylinder 8, and bucket cylinder 9 via the corresponding relief valves 21 a, 21 b, 23 a, 23 b, 25 a, 25 b, respectively.
  • the relief valves 21a, 21b, 23a, 23b, 25a, and 25b include supply check valves.
  • the relief valves 19, 21a, 21b, 23a, 23b, 25a, 25b may be of a type whose position is controlled by hydraulic pressure, or of a type whose position is controlled by an electric signal as shown.
  • the controller 10 is mainly composed of a microcomputer, and includes, for example, a CPU, a ROM for storing control programs, a readable / writable RAM for storing calculation results, a timer, a counter, an input interface, an output interface, and the like. Have.
  • the operation members 40, 42, and 43 are members for variably operating the positions of the direction switching valves 20, 22, and 24 so that the user operates the construction machine 1.
  • the operation members 40, 42, and 43 may be in the form of a lever or a pedal, for example.
  • the operation members 40, 42, and 43 are an arm operation lever for operating the arm 5, a boom operation lever for operating the boom 4, and a bucket operation lever for operating the bucket 6, respectively.
  • the operation amount (stroke) of the operation members 40, 42, and 43 by the user is input to the controller 10 as an electrical signal.
  • the detection method of the operation amount of the operation members 40, 42, and 43 by the user may be a method of detecting the pilot pressure with a pressure sensor, or a method of detecting the lever angle.
  • the controller 10 controls the direction switching valves 20, 22, 24 and the unload valve 18 based on the operation amounts of the operation members 40, 42, 43 and the like.
  • the direction switching valves 20, 22, and 24 are of a type that is controlled by hydraulic pressure
  • the direction switching valves 20, 22, and 24 are pilot pressures that change according to the operation of the operation members 40, 42, and 43. Control directly.
  • controller 10 controls the hydraulic pump 11 via the regulator device 12 based on the operation amount of the operation members 40, 42, and 43.
  • the method for controlling the hydraulic pump 11 will be described in detail later.
  • the controller 10 of this embodiment reproduces the control characteristics of the open center type (negative control system) by pump control in the hydraulic circuit including the closed center type directional control valves 20, 22, and 24 shown in FIG.
  • a virtual bleed system Such a system is referred to as a “virtual bleed system”.
  • FIG. 3 is a schematic diagram of a directional switching valve used in an open center type (negative control) system.
  • the negative control system when the direction switching valve is in the neutral state, as shown in FIG. 3A, the discharge flow rate of the hydraulic pump is all unloaded to the tank through the center bypass line.
  • the flow path to the hydraulic actuator is opened and the center bypass line is narrowed simultaneously.
  • the center bypass line is completely closed, and all the discharge flow rate of the hydraulic pump is supplied to the hydraulic actuator.
  • is the density
  • Q d and p d are the discharge flow rate and discharge pressure of the hydraulic pump
  • c b and A b are the flow coefficient and the opening area (bleed opening for the center bypass line in the direction switching valve).
  • C a and A a are a flow coefficient and an opening area related to the actuator line in the direction switching valve
  • p act is an actuator line pressure.
  • the center bypass line is provided with a negative control throttle after the direction switching valve, and communicates with the tank through the negative control throttle (see FIG. 7).
  • FIG. 4 is a block diagram of the negative control system reproduced in the virtual bleed system realized by the controller 10 of the present embodiment.
  • Q b is unloading valve passing flow
  • K is the bulk modulus
  • V p is the pump - the control valve capacity
  • V a is the control valve - cylinder capacity
  • A is the cylinder pressure receiving area
  • M is the cylinder volume
  • F represents a disturbance.
  • an open center type directional control valve (see FIG. 3) is virtualized as shown in block 70 of FIG. by operation of a portion to calculate the virtual bleed amount Q b, as a command value the amount obtained by subtracting the virtual bleed amount Q b from the target value Q dt of the discharge rate of the hydraulic pump based on the control law negative control system, the hydraulic pump 11 Control.
  • Virtual bleed amount Q b in consideration of the fact that the back pressure is generated by the negative control aperture in the center bypass line of the actual negative control system, may be calculated as follows. That is, in the virtual bleed system, in order to model an actual negative control system, it is virtually assumed that a negative control throttle communicating with the tank is provided in the center bypass line from the virtual directional switching valve, and the back pressure by this virtual negative control throttle is provided. May be considered.
  • pn is the back pressure by the virtual negative control (hereinafter referred to as “virtual negative control pressure”).
  • pt is a tank pressure, and is zero here.
  • p n a predetermined upper limit value p nmax is set.
  • Upper limit p nmax may correspond to the setting pressure of the relief valve in the negative control system virtual.
  • Virtual negative control pressure p n from the numerical formula 2 and number 3, can be expressed as follows.
  • the flow coefficient c b and the opening area A b relates center bypass line in a virtual directional control valves, and, based on the flow coefficient c n and the opening area A n in the virtual negative control aperture, the discharge pressure of the hydraulic pump 11 it can be seen that the p d can be calculated virtual negative control pressure p n.
  • the flow coefficient c b and the opening area A b, and, for the flow coefficient c n and opening area A n can be set initially as a virtual value (hence, they are known).
  • the flow coefficient c n and the opening area A n based on the characteristics of the virtual negative control aperture is envisaged. An example of the characteristics of the opening area Ab will be described later.
  • the characteristics of the virtual negative control system (flow coefficient c b and opening area A b , and flow rate) based on the coefficients c n and the opening area a n), it is possible to calculate the virtual negative control pressure p n from the discharge pressure of the hydraulic pump 11 p d (e.g. detected value or a dummy value of oil pressure sensor 30), the virtual negative control pressure p Based on n , the discharge flow rate of the hydraulic pump 11 can be controlled. That is, the negative control system can be reproduced by controlling the discharge flow rate of the hydraulic pump 11 by treating the virtual negative control pressure pn in the same manner as the negative control pressure obtained by the negative control system.
  • FIG. 5 is a diagram illustrating an example of characteristics of the virtual direction switching valve and the direction switching valve.
  • characteristic C1 is a curve showing the relationship between the operation amount in the virtual directional control valve (the stroke) and an opening area (virtual bleed opening area) A b.
  • a characteristic C2 indicates an opening characteristic on the meter-in side of the direction switching valve, and a characteristic C3 indicates an opening characteristic on the meter-in side of the direction switching valve.
  • a table representing the characteristic C1 is prepared for each of the direction switching valves 20, 22, and 24 as a bleed opening data table.
  • FIG. 6 is a base part of a control block diagram of the virtual bleed system realized by the controller 10 of this embodiment.
  • the negative control system corresponds to block 90 in FIG. 5
  • the positive control system corresponds to block 92 in FIG. Since the control block of the positive control system is the same as that of a normal positive control system, the control block of the negative control system will be particularly described here.
  • the block 90 shown in FIG. 6 corresponds to the block 70 shown in FIG.
  • a negative control system as shown in FIG. 7 is reproduced.
  • open center type directional control valves V1, V2, and V3 corresponding to virtual directional control valves in a virtual bleed system
  • a negative control aperture 104 is disposed downstream of the center bypass line 100.
  • the hydraulic actuators boost cylinder 7, arm cylinder 8 and bucket cylinder 9 provided for the direction switching valves V1, V2 and V3 are not shown.
  • signals representing the operation amounts of the operation members 40, 42, and 43 that is, the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3.
  • a signal representing the discharge pressure p d of the hydraulic pump 11 (hereinafter simply referred to as “pump discharge pressure p d ”) is input to the blocks 90 and 92 of the negative control system and the positive control system.
  • the pump discharge pressure p d are as described below, may be detected value or a dummy value of hydraulic pressure sensor 30 (see FIG. 9).
  • the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3 are respectively converted into the opening area Ab in the corresponding bleed opening data table (see FIG. 5) 90-1, and are handled in the block 90-2.
  • to flow coefficient c b are multiplied, is input to the block 90-5.
  • the block 90-5 calculates the parameter c e A e as a whole of each virtual directional control valve based on the fact that the equivalent opening area A e of the throttles connected in series can be expressed by the following equation.
  • a i is a virtual bleed opening area of each virtual direction switching valve (each virtual direction switching valve corresponding to each of the direction switching valves 20, 22, 24).
  • c i is the flow rate coefficient of each virtual directional control valve (the virtual directional control valves corresponding to each of the directional control valve 20, 22, 24).
  • i corresponds to the number of direction switching valves (and hence the number of hydraulic actuators), and for example, in a configuration in which only the direction switching valve 20 exists, a calculation formula that does not take sigma (that is, simply relates to the direction switching valve 20). The product of the flow coefficient c and the opening area A is calculated).
  • the c e A e obtained in this way is input to block 90-6.
  • a n c n and pump discharge pressure p d are input to the block 90-6.
  • a n c n are those multiplied by the flow coefficient c n in the virtual negative control diaphragm opening area A n in the virtual negative control throttle, is input from the block 90-3, and 90-4.
  • the virtual negative control pressure pn is calculated based on the above equation (4).
  • Such virtual negative control pressure p n, which is calculated in is input to the block 90-7, and 90-8.
  • the virtual negative control pressure-flow rate table shows the relationship between the virtual negative control pressure pn and the target value Q dt of the discharge flow rate of the hydraulic pump 11, and this relationship is based on the control law of the hypothetical negative control system. It may be determined.
  • the target value Q dt of the discharge flow rate becomes small, and when the virtual negative control pressure pn decreases, the target value of the discharge flow rate Q dt has a relationship of increasing.
  • the hydraulic pump 11 discharge flow rate command value (virtual negative control target value) is calculated.
  • the maximum flow rate (horsepower control target value) at the time of horsepower control is calculated from the engine speed and the set torque, and the smaller one of the virtual negative control control value and the horsepower control target value is the final target value. Selected as.
  • the mode selector 94 switches between a positive control mode for realizing a positive control system and a negative control mode for realizing a negative control system.
  • the mode selector 94 may switch between these modes according to a user operation, or may automatically switch modes according to a predetermined condition.
  • the opening area of the actuator line is calculated in block 92-1 based on the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3.
  • the opening area and the actuator request Based on the opening area-flow rate table (see FIG. 8B) representing the relationship with the flow rate, the command value (positive control control target value) of the actuator required flow rate of each hydraulic actuator is calculated.
  • the actuator required flow rate of each hydraulic actuator may be directly calculated from the operation amount-flow rate table based on the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3.
  • the maximum flow rate (horsepower control target value) at the time of horsepower control is calculated from the engine speed and the set torque, and the smaller one of the positive control target value and the horsepower control target value is smaller. Selected as the final target value.
  • the closed center type directional control valves 20, 22, and 24 are used, the bleed required in the negative control system becomes unnecessary, and the energy saving can be improved.
  • the characteristics of the virtual direction switching valve are based on electronic data and can be easily changed. As a result, the characteristics of the virtual direction switching valve (particularly the characteristics of the virtual bleed opening area, see characteristic C1 in FIG. 5). ) Can be easily realized. The same applies to the characteristics of the virtual negative control aperture. Further, since the closed center type directional control valves 20, 22, and 24 are used, the bleed line of the directional switching valve becomes unnecessary, and the cost of the directional switching valve can be reduced.
  • FIG. 9 is an additional part of the control block diagram of the virtual bleed system realized by the controller 10 of the present embodiment.
  • the block diagram shown in FIG. 9 may be additionally combined with the block diagram (base portion) shown in FIG.
  • the pump discharge pressure p d which is output from the block diagram shown in FIG. 9 may correspond to the pump discharge pressure p d at the input stage of the block diagram shown in FIG. That is, the block diagram shown in FIG. 9 is a section for calculating the pump discharge pressure p d at the input stage of the block diagram shown in FIG.
  • the control block 80-3 of the unload valve 18 is also shown.
  • signals representing the operation amounts of the operation members 40, 42, and 43 that is, the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3 are input to the block 80-1.
  • block 80-1 it is determined whether or not each of the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3 is equal to or less than a predetermined threshold LS th1 , LS th2 , LS th3 .
  • the predetermined threshold values LS th1 , LS th2 , and LS th3 correspond to the operation amount when the opening of the actuator line of each direction switching valve 20, 22, 24 starts to open.
  • the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3 are each equal to or less than the threshold values LS th1 , LS th2 , LS th3 , the opening of the actuator line of each direction switching valve 20, 22, 24 is closed. It becomes a state.
  • Each determination result in block 80-1 is input to the AND gate in block 80-2, and High is output only when all the determination results are positive determinations. Accordingly, when each of the arm operation amount LS1, the boom operation amount LS2, and the bucket operation amount LS3 is equal to or less than the corresponding threshold value LS th1 , LS th2 , LS th3 , High is output, and the arm operation amount LS1, the boom operation amount LS1. When either the amount LS2 or the bucket operation amount LS3 exceeds the corresponding threshold values LS th1 , LS th2 , LS th3 , Low is output.
  • the output of block 80-2 is input to blocks 80-3 and 80-5.
  • the block 80-4 the signal is input representing the pump discharge pressure p d.
  • the pump discharge pressure p d may be the detected value of hydraulic pressure sensor 30.
  • the pump discharge pressure p d is equal to or less than a predetermined threshold value P dth is determined.
  • Predetermined threshold value P dth corresponds to the threshold of the pump discharge pressure p d which becomes uncontrollable, may be zero, for example.
  • the determination result of block 80-4 is input to the OR gate at block 80-5 together with the output of block 80-2.
  • the block 80-7 the signal is input representing the pump discharge pressure p d.
  • the pump discharge pressure p d may be the detected value of hydraulic pressure sensor 30.
  • the dummy pump discharge pressure (dummy value) is input to the block 80-7 from the block 80-6.
  • the dummy pump discharge pressure is a value such that the discharge flow rate command value of the hydraulic pump 11 calculated based on this (the output of the block diagram shown in FIG. 6) becomes a predetermined flow rate. That is, the dummy pump discharge pressure may be derived by calculating back from this predetermined flow rate.
  • the predetermined flow rate may be an appropriate flow rate in the standby state.
  • the predetermined flow rate may be the minimum discharge flow rate of the hydraulic pump 11 (for example, the minimum discharge flow rate that can be realized when the power is turned on).
  • the block 80-7 is a switch for selecting the pump discharge pressure p d (detected value of the hydraulic sensor 30) or the dummy pump discharge pressure (dummy value) from the block 80-6 according to the input from the block 80-5. Function. Specifically, when the input from the block 80-5 is High, the dummy pump discharge pressure (dummy value) from the block 80-6 is selected and output to the subsequent stage. On the other hand, when the input from the block 80-5 is Low, the pump discharge pressure p d (detected value of the hydraulic pressure sensor 30) is selected and output to the subsequent stage.
  • the pump discharge pressure p d when the pump discharge pressure p d is less than or equal to the predetermined threshold value P dth, or even opening of any actuator line of each directional control valve 20, 22, 24 When closed, the dummy pump discharge pressure (dummy value) is output.
  • the pump discharge pressure p d is greater than a predetermined threshold value P dt, and, if the opening of one of the actuators line of each directional control valve 20, 22, 24 is open, The pump discharge pressure p d (detected value of the hydraulic sensor 30) is output.
  • Such dummy pump discharge pressure or output in the pump discharge pressure p d is used as the input of the block diagram shown in FIG. 6 (base). When the number of direction switching valves is one, the dummy pump discharge pressure (dummy value) is output when the opening of the actuator line of the direction switching valve is closed.
  • command value for example, maximum flow rate
  • P dth a predetermined threshold value
  • the command value of the discharge flow rate of the hydraulic pump 11 (the output of the block diagram shown in FIG. 6) is determined based on the dummy pump discharge pressure.
  • the command value of the discharge flow rate of the hydraulic pump 11 calculated based on the discharge pressure of the dummy pump is a predetermined flow rate (for example, as described above, an appropriate flow rate in the standby state). It can be prevented from becoming unnecessarily large. In this way, stabilization of control can be realized even under a situation where the pump discharge pressure p d (detected value of the hydraulic pressure sensor 30) is low.
  • the pump discharge pressure p d but were those replaced with dummy values, the other parameters, it is possible to obtain the same effect by replacing the same dummy value. That is, by correcting the command value of the discharge flow rate of the hydraulic pump 11 (the output of the block diagram shown in FIG. 6) itself, or correcting any parameter used to calculate the command value of the discharge flow rate of the hydraulic pump 11.
  • the virtual negative control pressure pn may be replaced with an appropriate dummy value
  • the discharge flow rate command value itself of the hydraulic pump 11 may be replaced with an appropriate dummy value (the above-described predetermined flow rate).
  • the characteristics (see FIG. 8A) of the virtual negative control pressure-flow rate table used in the block 90-8 of FIG. 6 may be changed.
  • the block 80-3 in FIG. 9 implements the “unload valve control means” in the claims, and each block for calculating the command value of the discharge flow rate of the hydraulic pump 11 (FIG. 6 block 90) realizes “command value calculation means” in the scope of claims, and blocks 80-6 and 80-7 in FIG. 9 realize “correction means” in the scope of claims.
  • FIG. 10 is a flowchart showing an example of main control realized by the hydraulic control system 60 of the present embodiment.
  • the process shown in FIG. 10 may be executed based on the configuration shown in FIGS. 6 and 8 described above.
  • the processing routine shown in FIG. 10 may be repeatedly executed at predetermined intervals.
  • step 1000 the pump discharge pressure is detected by the hydraulic sensor 30.
  • step 1002 it is determined whether or not the pump discharge pressure detected by the hydraulic sensor 30 is greater than a predetermined threshold value Pdth . If the pump discharge pressure is greater than the predetermined threshold value P dth , the process proceeds to step 1006, and if the pump discharge pressure is less than or equal to the predetermined threshold value P dth , the process proceeds to step 1004.
  • a dummy value (dummy pump discharge pressure) is inserted into the pump discharge pressure detected by the hydraulic sensor 30.
  • the dummy pump discharge pressure is a value such that the command value of the discharge flow rate of the hydraulic pump 11 calculated based on this becomes a predetermined flow rate (for example, the minimum discharge flow rate of the hydraulic pump 11).
  • step 1006 the operation amount (spool displacement amount) of the operation members 40, 42, and 43, that is, the arm operation amount, the boom operation amount, and the bucket operation amount are detected.
  • step 1008 it is determined whether any of the operation amounts of the operation members 40, 42, 43 is larger than the corresponding threshold values LS th1 , LS th2 , LS th3 , respectively. If any one of the operation amounts of the operation members 40, 42, and 43 is larger than the corresponding threshold values LS th1 , LS th2 , and LS th3 , the process proceeds to step 1014, and the operation amounts of the operation members 40, 42, and 43 are determined. If all of them are equal to or less than the corresponding threshold values LS th1 , LS th2 , and LS th3 , the process proceeds to step 1010.
  • step 1010 the unload valve 18 is opened.
  • a state is formed in which the oil discharged from the hydraulic pump 11 is discharged to the tank T when the opening of any actuator line of each of the direction switching valves 20, 22, 24 is closed.
  • step 1012 a dummy value (dummy pump discharge pressure) is inserted with respect to the pump discharge pressure detected by the hydraulic sensor 30, as in step 1004. If a dummy value has already been inserted in step 1004, step 1012 may be omitted.
  • step 1014 the unload valve 18 is closed.
  • the opening of the actuator line of any one of the directional control valves 20, 22, 24 is open, all the oil discharged from the hydraulic pump 11 flows through the opening of the open actuator line. Is formed.
  • step 1016 the virtual negative control pressure pn is calculated based on the pump discharge pressure or the dummy pump discharge pressure detected by the hydraulic sensor 30. That is, when going through step 1004 or step 1014, the virtual negative control pressure pn is calculated based on the dummy pump discharge pressure, and otherwise, based on the pump discharge pressure detected by the hydraulic sensor 30, the virtual negative pressure pn is calculated. The negative control pressure pn is calculated.
  • a command value for the discharge flow rate of the hydraulic pump 11 is calculated.
  • the calculated command value for the discharge flow rate of the hydraulic pump 11 corresponds to a predetermined flow rate (for example, the minimum discharge flow rate of the hydraulic pump 11). become.
  • steps 1016 and 1018 in FIG. 10 realize “command value calculation means” in the claims, and steps 1004 and 1012 in FIG. Is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 本発明は、油圧アクチュエータがクローズドセンター型の方向切換弁を介して油圧ポンプに接続されると共に、方向切換弁と油圧ポンプの間に、タンクに繋がるアンロード弁が設けられる建設機械において、アンロード弁制御手段と、油圧ポンプを制御する油圧制御装置であって、方向切換弁における油圧アクチュエータへの流路が開かれた状況下で、方向切換弁の位置を可変するための操作部材の操作量と、油圧ポンプの吐出圧とに基づいて、ネガコンシステムを仮想した場合の仮想ネガコン圧を算出し、仮想ネガコン圧に基づいて、油圧ポンプに対する制御指令値を算出する指令値算出手段と、方向切換弁における油圧アクチュエータへの流路が閉じられた状況下で、油圧ポンプの吐出流量が所定流量となるように、指令値又は該制御指令値の算出に使用される任意のパラメータを補正する補正手段とを備える。

Description

油圧制御装置及び油圧制御方法
 本発明は、油圧アクチュエータがクローズドセンター型の方向切換弁を介して油圧ポンプに接続されると共に、方向切換弁と油圧ポンプの間に、タンクに繋がるアンロード弁が設けられる建設機械において、油圧ポンプを制御する油圧制御装置及び油圧制御方法に関する。
 従来から、コントロールバルブの操作量に応じてブリード流量を変化させることによって、油圧アクチュエータ速度を制御する一般的なブリード制御に代えて、クローズドセンター型のコントロールバルブを用いる一方、コントロールバルブに仮想のブリード開口を設定し、この仮想ブリード開口の面積(仮想ブリード開口面積)を操作量に応じて変化させる可変容量ポンプの制御方法が知られている(例えば、特許文献1参照)。この制御方法では、仮想ブリード開口面積と、これに基づく仮想ブリード量とを用いて必要なポンプ吐出圧力が計算され、当該ポンプ吐出圧力が実現されるようにポンプ制御が実行される。
特開平10-47306号公報
 しかしながら、上述の特許文献1に記載の技術では、仮想のブリード開口を設定するだけであり、ネガコン絞りを仮想していないので、仮想的にネガコンシステムを再現するものではない。一般的に知られるように、ネガコンシステムは、負荷が高い場合に油圧アクチュエータの速度が低速となり、負荷が低い場合に油圧アクチュエータの速度が高速となる点で人間の慣性に相性が良いものである。
 他方、クローズドセンター型の方向切換弁を使用して仮想的にネガコンシステムを再現する場合、方向切換弁における油圧アクチュエータへの流路が閉ざされている場合に、油圧ポンプからの余分な流量をタンクへと排出するために、方向切換弁の前段にアンロード弁を設けることが必要となる。しかしながら、かかるアンロード弁で余剰流量を排出している間は、絞りがほとんどなく油圧ポンプの吐出圧がゼロに近くなる。この場合、かかる油圧ポンプの吐出圧に基づいて仮想的にネガコンシステムを再現しようとすると、油圧ポンプの吐出流量が増大するような指令値(例えば、最大流量を指示する指令値)が生成され、エネルギを無駄に損失してしまうという不都合が生じる。
 そこで、本発明は、クローズドセンター型の方向切換弁を使用して仮想的にネガコンシステムを再現する構成において、アンロード弁が開いているときの油圧ポンプの吐出流量を適正流量に維持することができる油圧制御装置及び油圧制御方法の提供を目的とする。
 上記目的を達成するため、本発明の一局面によれば、油圧アクチュエータがクローズドセンター型の方向切換弁を介して油圧ポンプに接続されると共に、前記方向切換弁と前記油圧ポンプの間に、タンクに繋がるアンロード弁が設けられる建設機械において、前記油圧ポンプを制御する油圧制御装置であって、
 前記方向切換弁における前記油圧アクチュエータへの流路が開かれた状況下で、前記油圧ポンプと前記タンクとの間の連通が遮断され、且つ、前記方向切換弁における前記油圧アクチュエータへの流路が閉じられた状況下で、前記油圧ポンプと前記タンクとの間の連通が確立されるように、前記アンロード弁を制御するアンロード弁制御手段と、
 前記方向切換弁における前記油圧アクチュエータへの流路が開かれた状況下で、前記方向切換弁の位置を可変するための操作部材の操作量と、前記油圧ポンプの吐出圧とに基づいて、ネガコンシステムを仮想した場合の仮想ネガコン圧を算出し、前記仮想ネガコン圧に基づいて、前記油圧ポンプに対する制御指令値を算出する指令値算出手段と、
 前記方向切換弁における前記油圧アクチュエータへの流路が閉じられた状況下で、前記油圧ポンプの吐出流量が所定流量となるように、前記制御指令値又は該制御指令値の算出に使用される任意のパラメータを補正する補正手段とを備える、油圧制御装置が提供される。
 本発明によれば、クローズドセンター型の方向切換弁を使用して仮想的にネガコンシステムを再現する構成において、アンロード弁が開いているときの油圧ポンプの吐出流量を適正流量に維持することができる。
本発明に係る建設機械1の構成例を示す図である。 本発明の一実施例による油圧制御システム60を示す回路図である。 オープンセンター型(ネガコン)システムで用いられる方向切換弁の概略図である。 本実施例のコントローラ10により実現される仮想ブリードシステムにおいて再現されるネガコンシステムのブロック図である。 仮想方向切換弁及び方向切換弁の特性の一例を示す図である。 本実施例のコントローラ10により実現される仮想ブリードシステムの制御ブロック図のベース部分である。 仮想ブリードシステムで再現されるネガコンシステムの一例の概要を示す図である。 仮想ネガコン圧-流量テーブル及び開口面積-流量テーブルの各一例を示す図である。 本実施例のコントローラ10により実現される仮想ブリードシステムの制御ブロック図の追加部分である。 本実施例の油圧制御システム60により実現される主要制御の一例を示すフローチャートである。
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
 図1は、本発明に係る建設機械1の構成例を示す図である。建設機械1は、油圧ショベル、フォークリフト、クレーン等のような、人が操作を行う油圧システムを搭載した機械である。図1において、建設機械1は、クローラ式の下部走行体2の上に、旋回機構を介して、上部旋回体3をX軸周りに旋回自在に搭載している。また、上部旋回体3は、前方中央部に、ブーム4、アーム5及びバケット6、並びに、これらをそれぞれ駆動する油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8及びバケットシリンダ9から構成される掘削アタッチメントを備える。掘削アタッチメントは、ブレーカや破砕機等のような他のアタッチメントであってもよい。
 図2は、本発明の一実施例による油圧制御システム60を示す回路図である。油圧制御システム60は、一回転当たりの吐出量(cc/rev)が可変である可変容量型の油圧ポンプ11を含む。油圧ポンプ11は、原動機(例えばエンジン)17に接続され、原動機17により回転駆動される。油圧ポンプ11は、供給ライン13及びクローズドセンター型の方向切換弁(コントロールバルブ)20,22,24を介してブームシリンダ7、アームシリンダ8及びバケットシリンダ9(油圧アクチュエータの一例)にパラレルに接続される。また、タンクTに繋がる戻りライン14には、方向切換弁20,22,24を介してブームシリンダ7、アームシリンダ8及びバケットシリンダ9がパラレルに接続される。油圧ポンプ11は、レギュレータ装置12により制御される。尚、方向切換弁20,22,24は、油圧により位置制御されるタイプであってもよいし、図示のようなコントローラ10からの電気信号(駆動信号)により位置制御されるタイプであってもよい。
 尚、油圧制御システム60は、走行用油圧モータや旋回用油圧モータのような他の油圧アクチュエータを含んでもよい。また、油圧制御システム60に含まれる油圧アクチュエータの数は、図2の示す例では、3つであるが、1つを含む任意の数であってよい。
 油圧ポンプ11からの供給ライン13には、油圧ポンプ11の吐出圧(ポンプ吐出圧)を検出する油圧センサ30が設けられる。油圧センサ30は、ポンプ吐出圧に応じた電気信号をコントローラ10に入力してよい。
 供給ライン13には、アンロード弁18が設けられる。アンロード弁18は、タンクTに繋がる戻りライン14が接続される。このようにして、供給ライン13は、アンロード弁18を介してタンクTに連通する。アンロード弁18は、その位置に応じて、供給ライン13がタンクTに連通する状態と、供給ライン13がタンクTから遮断された状態とを切り替える。アンロード弁18は、各方向切換弁20,22,24における各油圧アクチュエータ(ブームシリンダ7、アームシリンダ8及びバケットシリンダ9)への流路(アクチュエータライン)の開閉状態に応じて、制御されてもよい。例えば、アンロード弁18は、各方向切換弁20,22,24における各アクチュエータラインのいずれか1つでも開かれている場合には、閉成され、油圧ポンプ11から吐出された油がタンクTへと排出されないようにする。他方、アンロード弁18は、各方向切換弁20,22,24における各アクチュエータラインの全てが閉じられている場合には、開成され、油圧ポンプ11から吐出された油がタンクTへと排出される状態を形成する。尚、アンロード弁18は、油圧により位置制御されるタイプであってもよいし、図示のような電気信号により位置制御されるタイプであってもよい。
 また、供給ライン13には、リリーフ弁19が設けられる。また、戻りライン14は、各対応するリリーフ弁21a,21b,23a,23b,25a,25bを介して、ブームシリンダ7、アームシリンダ8及びバケットシリンダ9の各ヘッド側及びロッド側にそれぞれ接続される。尚、図示の例では、リリーフ弁21a,21b,23a,23b,25a,25bは、補給逆止弁を含む。リリーフ弁19,21a,21b,23a,23b,25a,25bは、油圧により位置制御されるタイプであってもよいし、図示のような電気信号により位置制御されるタイプであってもよい。
 コントローラ10は、マイクロコンピュータを中心に構成されており、例えば、CPU、制御プログラム等を格納するROM、演算結果等を格納する読書き可能なRAM、タイマ、カウンタ、入力インターフェイス、及び出力インターフェイス等を有する。
 コントローラ10には、各種操作部材40,42,43が電気的に接続される。操作部材40,42は、ユーザが建設機械1を操作すべく各方向切換弁20,22,24の位置を可変操作するための部材である。操作部材40,42,43は、例えばレバーやペダルの形態であってよい。本例では、操作部材40,42,43は、それぞれ、アーム5を操作するためのアーム操作レバー、ブーム4を操作するためのブーム操作レバー、バケット6を操作するためのバケット操作レバーである。ユーザによる操作部材40,42,43の操作量(ストローク)は、電気信号としてコントローラ10に入力される。ユーザによる操作部材40,42,43の操作量の検知方法は、パイロット圧を圧力センサで検知する方法であってもよいし、レバー角度を検知する方法であってもよい。
 コントローラ10は、操作部材40,42,43の操作量等に基づいて、方向切換弁20,22,24、アンロード弁18を制御する。尚、方向切換弁20,22,24が油圧により位置制御されるタイプである場合は、方向切換弁20,22,24は、操作部材40,42,43の操作に応じて変化されるパイロット圧によりダイレクトに制御される。
 また、コントローラ10は、操作部材40,42,43の操作量等に基づいて、レギュレータ装置12を介して油圧ポンプ11を制御する。尚、この油圧ポンプ11の制御方法については、後に詳説する。
 次に、本実施例のコントローラ10による特徴的な制御方法について説明する。
 本実施例のコントローラ10は、図2に示したクローズドセンター型の方向切換弁20,22,24を備える油圧回路において、オープンセンター型(ネガコンシステム)の制御特性をポンプ制御によって再現する。以下、このようなシステムを、「仮想ブリードシステム」という。
 図3は、オープンセンター型(ネガコン)システムで用いられる方向切換弁の概略図である。ネガコンシステムでは、方向切換弁が中立状態にあるとき、図3(A)に示すように、油圧ポンプの吐出流量は、センターバイパスラインを通って全てタンクへとアンロードされる。例えば操作部材の操作によって、方向切換弁が右側へ動いたとき、図3(B)に示すように、油圧アクチュエータへの流路が開かれると同時にセンターバイパスラインが絞られる。フル操作状態になると、図3(C)に示すように、センターバイパスラインは完全に閉じられ、油圧ポンプの吐出流量は、全て油圧アクチュエータへ供給される。これらの関係は、次のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
ここで、ρは密度であり、Q,pは、油圧ポンプの吐出流量及び吐出圧であり、c、Aは、方向切換弁におけるセンターバイパスラインに関する流量係数及び開口面積(ブリード開口面積)であり、c、Aは、方向切換弁におけるアクチュエータラインに関する流量係数及び開口面積であり、pactは、アクチュエータライン圧である。ネガコンシステムでは、センターバイパスラインは、方向切換弁の後段にネガコン絞りが設けられ、ネガコン絞りを介してタンクへと連通される(図7参照)。
 数1の式から分かるように、負荷によりアクチュエータライン圧が上昇すると差圧(p-pact)が減少し、油圧アクチュエータへ流入する流量が減少する。油圧ポンプからの吐出流量Qが同じであれば、この減少分がセンターバイパスラインを通って流れることになる。これは、油圧アクチュエータの負荷により、同じ操作量であっても油圧アクチュエータの速度が異なることを意味している。
 図4は、本実施例のコントローラ10により実現される仮想ブリードシステムにおいて再現されるネガコンシステムのブロック図である。尚、図4において、Qはアンロード弁通過流量、Kは体積弾性率、Vはポンプ-コントロールバルブ容量、Vはコントロールバルブ-シリンダ容量、Aはシリンダ受圧面積、Mはシリンダ容量、Fは外乱を表す。
 本実施例では、仮想ブリードシステムにおいてネガコンシステムを再現するために、図4のブロック70に示すように、オープンセンター型の方向切換弁(図3参照)を仮想し、この仮想方向切換弁におけるブリード部分を演算して仮想ブリード量Qを算出し、ネガコンシステムの制御則に基づく油圧ポンプの吐出流量の目標値Qdtから仮想ブリード量Qを減算した量を指令値として、油圧ポンプ11を制御する。
 仮想ブリード量Qは、実際のネガコンシステムではセンターバイパスラインにおいてネガコン絞りにより背圧が生じていることを考慮して、以下のように算出されてもよい。即ち、仮想ブリードシステムにおいては、実際のネガコンシステムをモデル化すべく、仮想方向切換弁からのセンターバイパスラインに、タンクに連通するネガコン絞りが設けられることを仮想して、この仮想ネガコン絞りによる背圧が考慮されてもよい。
Figure JPOXMLDOC01-appb-M000002
ここで、pは、仮想ネガコン絞りによる背圧(以下、「仮想ネガコン圧」という)である。
 一方、仮想ネガコン絞りでは、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000003
ここで、pは、タンク圧であり、ここではゼロとする。仮想ネガコン圧pに対しては、所定の上限値pnmaxが設定される。上限値pnmaxは、仮想したネガコンシステムにおけるリリーフ弁の設定圧に対応してよい。
 数2と数3の式から仮想ネガコン圧pは、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
数4の式から、仮想方向切換弁におけるセンターバイパスラインに関する流量係数c及び開口面積A、及び、仮想ネガコン絞りにおける流量係数c及び開口面積Aに基づいて、油圧ポンプ11の吐出圧pから仮想ネガコン圧pを算出することができることが分かる。ここで、流量係数c及び開口面積A、及び、流量係数c及び開口面積Aについては、仮想の値として初期的に設定することができる(従って、これらは既知)。流量係数c及び開口面積Aについては、想定される仮想ネガコン絞りの特性に基づく。開口面積Aの特性の一例については、後述する。
 このようにして、実際のブリード開口が無くても(即ち、センターバイパスラインやネガコン絞りが存在しなくても)、仮想したネガコンシステムの特性(流量係数c及び開口面積A、及び、流量係数c及び開口面積A)に基づいて、油圧ポンプ11の吐出圧p(例えば油圧センサ30の検出値又はダミー値)から仮想ネガコン圧pを算出することができ、仮想ネガコン圧pに基づいて、油圧ポンプ11の吐出流量を制御することができる。即ち、仮想ネガコン圧pを、ネガコンシステムで得られるネガコン圧と同様に扱って油圧ポンプ11の吐出流量を制御することで、ネガコンシステムを再現することができる。
 図5は、仮想方向切換弁及び方向切換弁の特性の一例を示す図である。具体的には、特性C1は、仮想方向切換弁における操作量(ストローク)と開口面積(仮想ブリード開口面積)Aとの関係を表す曲線である。特性C2は、方向切換弁におけるメータイン側の開口特性を示し、特性C3は、方向切換弁におけるメータイン側の開口特性を示す。特性C1を表すテーブルは、ブリード開口データテーブルとして、方向切換弁20,22,24のそれぞれに対して用意される。
 図6は、本実施例のコントローラ10により実現される仮想ブリードシステムの制御ブロック図のベース部分である。尚、以下の説明では、ネガコンシステムとポジコンシステムとが選択的に実現される構成について説明するが、ネガコンシステムのみが仮想ブリードシステムにおいて再現されてもよい。尚、ネガコンシステムは、図5のブロック90に対応し、ポジコンシステムは、図5のブロック92に対応する。ポジコンシステムの制御ブロックは、通常のポジコンシステムと同様であるので、ここでは、特にネガコンシステムの制御ブロックについて説明する。尚、図6に示すブロック90は、図4に示したブロック70の部分に対応する。
 この仮想ブリードシステムでは、一例として、図7に示すようなネガコンシステムが再現される。このネガコンシステムでは、クローズドセンター型の方向切換弁20,22,24のそれぞれに対応するオープンセンター型の方向切換弁V1,V2,V3(仮想ブリードシステムでの仮想方向切換弁に対応)が直列に接続され、センターバイパスライン100の後段にはネガコン絞り104(仮想ブリードシステムでの仮想ネガコン絞りに対応)が配置されている。尚、図7では、各方向切換弁V1,V2,V3に対して設けられる各油圧アクチュエータ(ブームシリンダ7、アームシリンダ8及びバケットシリンダ9)については図示が省略されている。
 図6に示すように、ネガコンシステム及びポジコンシステムのブロック90,92には、操作部材40,42,43の操作量、即ちアーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3を表す信号が入力される。また、ネガコンシステム及びポジコンシステムのブロック90,92には、油圧ポンプ11の吐出圧p(以下、単に「ポンプ吐出圧p」という)を表す信号が入力される。尚、ポンプ吐出圧pは、後述の如く、油圧センサ30の検出値又はダミー値(図9参照)であってよい。
 アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3は、それぞれ、対応するブリード開口データテーブル(図5参照)90-1にて、開口面積Abに変換され、ブロック90-2にて、対応する流量係数cが乗算され、ブロック90-5に入力される。ブロック90-5は、直列に接続された絞りの等価開口面積Aを以下の式で表すことができることに基づいて、各仮想方向切換弁の全体としてのパラメータcを算出する。
Figure JPOXMLDOC01-appb-M000005
ここで、Aは、各仮想方向切換弁(方向切換弁20,22,24のそれぞれに対応する各仮想方向切換弁)の仮想ブリード開口面積である。この考えに流量係数を加えると、以下の通りとなる。
Figure JPOXMLDOC01-appb-M000006
ここで、cは、各仮想方向切換弁(方向切換弁20,22,24のそれぞれに対応する各仮想方向切換弁)の流量係数である。尚、iは、方向切換弁の数(ひいては油圧アクチュエータの数)に対応し、例えば方向切換弁20しか存在しない構成では、シグマを取らない計算式となる(即ち、単に方向切換弁20に係る流量係数c及び開口面積Aの積が算出されることになる)。
 このようにして得られたcは、ブロック90-6に入力される。ブロック90-6には、その他、A及びポンプ吐出圧pが入力される。Aは、仮想ネガコン絞りにおける開口面積Aに仮想ネガコン絞りにおける流量係数cを乗じたものであり、ブロック90-3及び90-4から入力される。ブロック90-6では、上述の数4の式に基づいて、仮想ネガコン圧pが算出される。このようにして算出された仮想ネガコン圧pは、ブロック90-7及び90-8に入力される。
 ブロック90-7では、ポンプ吐出圧pと仮想ネガコン圧pから、上述の数2の式に基づいて、油圧ポンプ11の仮想ブリード量Qが算出される。ブロック90-8では、所与の仮想ネガコン圧-流量テーブル(図8(A)参照)に基づいて、仮想ネガコン圧pから油圧ポンプ11の吐出流量の目標値Qdtが算出される。油圧ポンプ11の吐出流量の目標値Qdtは、ネガコンシステムの制御則に基づいて決定される。即ち、仮想ネガコン圧-流量テーブルは、仮想ネガコン圧pと油圧ポンプ11の吐出流量の目標値Qdtとの関係を表視し、この関係は、仮想されるネガコンシステムの制御則に基づいて決定されてもよい。図8(A)に示す仮想ネガコン圧-流量テーブルは、仮想ネガコン圧pが高いときは、吐出流量の目標値Qdtが小さくなり、仮想ネガコン圧pが低下すると、吐出流量の目標値Qdtが大きくなる関係を有する。ここで、仮想ブリードシステムでは、実際のネガコンシステムと異なり、仮想ブリード量Qが余分であるので、油圧ポンプ11の吐出流量の目標値Qdtから、仮想ブリード量Qが減算され、油圧ポンプ11の吐出流量の指令値(仮想ネガコン制御目標値)が算出される。尚、図示していないが、エンジン回転数と設定トルクから馬力制御時の最大流量(馬力制御目標値)が算出され、仮想ネガコン制御目標値と馬力制御目標値のいずれか小さい方が最終目標値として選択される。
 尚、モードセレクタ94は、ポジコンシステムを実現するポジコンモードとネガコンシステムを実現するネガコンモードとを切り替える。モードセレクタ94は、ユーザの操作に応じてこれらのモードを切り替えてもよいし、所定の条件に従って自動的にモードを切り替えてもよい。尚、ポジコンモードでは、ブロック92-1で、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3に基づいて、アクチュエータラインの開口面積が算出され、ブロック92-2で、開口面積とアクチュエータ要求流量との関係を表す開口面積-流量テーブル(図8(B)参照)に基づいて、各油圧アクチュエータのアクチュエータ要求流量の指令値(ポジコン制御目標値)が算出される。尚、各油圧アクチュエータのアクチュエータ要求流量は、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3に基づいて、操作量-流量テーブルによりダイレクトに算出されてもよい。また、仮想ネガコン制御目標値の場合と同様、エンジン回転数と設定トルクから馬力制御時の最大流量(馬力制御目標値)が算出され、ポジコン制御目標値と馬力制御目標値のいずれか小さい方が最終目標値として選択される。
 このようにモードセレクタ94を設定することで、精密な操作を可能にできるポジコンシステムと、人間の感性と相性が良いとされるネガコンシステムとを適宜切り替えて使用することができる。
 このように、本実施例では、クローズドセンター型の方向切換弁20,22,24を使用するので、ネガコンシステムで必要となるブリードが不要となり、省エネ性を高めることができる。また、仮想方向切換弁の特性は、電子データに基づくものであり、容易に変更することができ、結果として、仮想方向切換弁の特性(特に仮想ブリード開口面積の特性、図5の特性C1参照)の調整を容易に実現することができる。これについては、仮想ネガコン絞りの特性についても同様である。また、クローズドセンター型の方向切換弁20,22,24を使用するので、方向切換弁のブリードラインが不要となり、方向切換弁のコストダウンを図ることができる。
 図9は、本実施例のコントローラ10により実現される仮想ブリードシステムの制御ブロック図の追加部分である。この図9に示すブロック図は、図6に示したブロック図(ベース部)に追加的に結合されてよい。具体的には、図9に示すブロック図から出力されるポンプ吐出圧pが、図6に示したブロック図の入力段のポンプ吐出圧pに対応してよい。即ち、図9に示すブロック図は、図6に示したブロック図の入力段のポンプ吐出圧pを算出する部分である。尚、図9に示すブロック図には、アンロード弁18の制御ブロック80-3が併せて示されている。
 図9に示すように、ブロック80-1には、操作部材40,42,43の操作量、即ちアーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3を表す信号が入力される。ブロック80-1では、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3のそれぞれについて、所定の閾値LSth1,LSth2,LSth3以下であるか否かが判定される。所定の閾値LSth1,LSth2,LSth3は、各方向切換弁20,22,24のアクチュエータラインの開口が開き始める際の操作量に対応する。従って、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3のそれぞれが閾値LSth1,LSth2,LSth3以下であるときは、各方向切換弁20,22,24のアクチュエータラインの開口が閉じた状態となる。
 ブロック80-1における各判定結果は、ブロック80-2にてアンドゲートに入力され、全ての判定結果が肯定判定である場合に限り、Highが出力される。従って、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3のそれぞれが、それぞれ対応する閾値LSth1,LSth2,LSth3以下であるときは、Highが出力され、アーム操作量LS1,ブーム操作量LS2及びバケット操作量LS3のいずれかが、それぞれ対応する閾値LSth1,LSth2,LSth3を越えると、Lowが出力される。ブロック80-2の出力は、ブロック80-3及び80-5に入力される。
 ブロック80-3では、ブロック80-2の出力がHighであるときは、アンロード弁18を開く指令が生成される。これにより、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じているときには、油圧ポンプ11から吐出された油がタンクTへと排出される状態が形成される。他方、ブロック80-2の出力がLowであるときは、アンロード弁18を閉じる指令が生成される。これにより、各方向切換弁20,22,24のいずれかのアクチュエータラインの開口が開いているときには、油圧ポンプ11から吐出された油が全て、当該開いているアクチュエータラインの開口を通って流れる状態が形成される。
 ブロック80-4には、ポンプ吐出圧pを表す信号が入力される。尚、ポンプ吐出圧pは、油圧センサ30の検出値であってよい。ブロック80-4では、ポンプ吐出圧pが所定の閾値Pdth以下であるか否かが判定される。所定の閾値Pdthは、制御不能となるポンプ吐出圧pの閾値に対応し、例えば0であってもよい。ブロック80-4の判定結果は、ブロック80-2の出力と共にブロック80-5にてORゲートに入力される。このようにして、ポンプ吐出圧pが所定の閾値Pdth以下である場合、又は、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じている場合には、ブロック80-5からHighが出力される。他方、ポンプ吐出圧pが所定の閾値Pdtより大きく、且つ、各方向切換弁20,22,24のいずれかのアクチュエータラインの開口が開いている場合には、Lowが出力される。尚、このブロック80-4及び80-5は省略されてもよい。
 ブロック80-7には、ポンプ吐出圧pを表す信号が入力される。尚、ポンプ吐出圧pは、油圧センサ30の検出値であってよい。また、ブロック80-7には、ブロック80-6からダミーポンプ吐出圧(ダミー値)が入力される。ダミーポンプ吐出圧は、これに基づき算出される油圧ポンプ11の吐出流量の指令値(図6に示したブロック図の出力)が所定流量となるような値である。即ち、ダミーポンプ吐出圧は、この所定流量から逆算されて導出されてもよい。所定流量は、スタンバイ状態として適正な流量であればよい。例えば、所定流量は、油圧ポンプ11の最小吐出流量(例えば電源オン時に実現できる最小吐出流量)であってもよい。
 ブロック80-7は、ブロック80-5からの入力に応じて、ポンプ吐出圧p(油圧センサ30の検出値)又はブロック80-6からのダミーポンプ吐出圧(ダミー値)を選択するスイッチとして機能する。具体的には、ブロック80-5からの入力がHighであるとき、ブロック80-6からのダミーポンプ吐出圧(ダミー値)を選択して、後段へと出力する。他方、ブロック80-5からの入力がLowであるとき、ポンプ吐出圧p(油圧センサ30の検出値)を選択して、後段へと出力する。
 このようにして、図9に示すブロック図によれば、ポンプ吐出圧pが所定の閾値Pdth以下である場合、又は、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じている場合には、ダミーポンプ吐出圧(ダミー値)が出力される。他方、それ以外の場合、即ち、ポンプ吐出圧pが所定の閾値Pdtより大きく、且つ、各方向切換弁20,22,24のいずれかのアクチュエータラインの開口が開いている場合には、ポンプ吐出圧p(油圧センサ30の検出値)が出力される。このようにして出力されるダミーポンプ吐出圧又はポンプ吐出圧pは、図6に示したブロック図(ベース部)の入力として使用される。尚、方向切換弁の数が1つである場合は、その方向切換弁のアクチュエータラインの開口が閉じている場合は、ダミーポンプ吐出圧(ダミー値)が出力されることになる。
 ここで、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じている場合には、上述の如く、アンロード弁18が開かれるので、油圧ポンプ11から吐出される油は、タンクTへと排出される。このようにしてアンロード弁18で余剰流量を排出している間は、絞りがほとんどなくポンプ吐出圧p(油圧センサ30の検出値)がゼロに近くなる。この場合、このポンプ吐出圧p(油圧センサ30の検出値)を用いて仮想的にネガコンシステムを再現しようとすると、略ゼロの仮想ネガコン圧pnが算出されることになり(図6のブロック90-6参照)、仮想ネガコン圧-流量テーブル(図6のブロック90-8、図8(A)参照)から油圧ポンプ11の吐出流量が増大するような指令値(例えば、最大流量を指示する指令値)が生成され、エネルギを無駄に損失してしまうという不都合が生じる。このような不都合は、アンロード弁18が開かれていないときでも、ポンプ吐出圧p(油圧センサ30の検出値)が所定の閾値Pdth以下である場合に生じうる。
 これに対して、本実施例によれば、上述の如く、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じている場合(ポンプ吐出圧p(油圧センサ30の検出値)が所定の閾値Pdth以下である場合も同様)には、ダミーポンプ吐出圧に基づいて油圧ポンプ11の吐出流量の指令値(図6に示したブロック図の出力)が決定されるので、かかる不都合を適切に防止することができる。即ち、ダミーポンプ吐出圧に基づいて算出される油圧ポンプ11の吐出流量の指令値は、所定流量(例えば、上述の如く、スタンバイ状態として適正な流量)であるので、油圧ポンプ11の吐出流量が無駄に大きくなることを防止することができる。このようにして、ポンプ吐出圧p(油圧センサ30の検出値)が低くなる状況下においても制御の安定化を実現することができる。
 尚、上述した実施例では、ポンプ吐出圧pをダミー値で置き換えるものであったが、他のパラメータを、同様のダミー値で置き換えても同様の効果を得ることができる。即ち、油圧ポンプ11の吐出流量の指令値(図6に示したブロック図の出力)自体を補正することで又は油圧ポンプ11の吐出流量の指令値を算出するのに用いる任意のパラメータを補正することで、同様の効果を得ることができる。例えば、仮想ネガコン圧pnを適切なダミー値で置き換えてもよいし、油圧ポンプ11の吐出流量の指令値自体を適切なダミー値(上述の所定流量)で置き換えてもよい。或いは、図6のブロック90-8で用いる仮想ネガコン圧-流量テーブルの特性(図8(A)参照)を変更してもよい。
 尚、上述した実施例においては、図9のブロック80-3が、特許請求の範囲における「アンロード弁制御手段」を実現し、油圧ポンプ11の吐出流量の指令値を算出する各ブロック(図6のブロック90)が、特許請求の範囲における「指令値算出手段」を実現し、図9のブロック80-6,80-7が、特許請求の範囲における「補正手段」を実現している。
 図10は、本実施例の油圧制御システム60により実現される主要制御の一例を示すフローチャートである。図10に示す処理は、上述した図6及び図8に示す構成に基づいて実行されてもよい。図10に示す処理ルーチンは、所定周期毎に繰り返し実行されてよい。
 ステップ1000では、油圧センサ30によりポンプ吐出圧が検出される。
 ステップ1002では、油圧センサ30により検出されたポンプ吐出圧が所定の閾値Pdthより大きいか否かが判定される。ポンプ吐出圧が所定の閾値Pdthより大きい場合は、ステップ1006に進み、ポンプ吐出圧が所定の閾値Pdth以下である場合は、ステップ1004に進む。
 ステップ1004では、油圧センサ30により検出されたポンプ吐出圧に対して、ダミー値(ダミーポンプ吐出圧)が挿入される。ダミーポンプ吐出圧は、上述の如く、これに基づき算出される油圧ポンプ11の吐出流量の指令値が所定流量(例えば油圧ポンプ11の最小吐出流量)となるような値である。
 ステップ1006では、操作部材40,42,43の操作量(スプール変位量)、即ちアーム操作量,ブーム操作量及びバケット操作量が検出される。
 ステップ1008では、操作部材40,42,43の各操作量のいずれかが、それぞれ対応する閾値LSth1,LSth2,LSth3より大きいか否かが判定される。操作部材40,42,43の各操作量のいずれかが、それぞれ対応する閾値LSth1,LSth2,LSth3より大きい場合は、ステップ1014に進み、操作部材40,42,43の各操作量のいずれも、それぞれ対応する閾値LSth1,LSth2,LSth3以下である場合は、ステップ1010に進む。
 ステップ1010では、アンロード弁18が開かれる。これにより、各方向切換弁20,22,24のいずれのアクチュエータラインの開口も閉じているときには、油圧ポンプ11から吐出された油がタンクTへと排出される状態が形成される。
 ステップ1012では、上記ステップ1004と同様、油圧センサ30により検出されたポンプ吐出圧に対して、ダミー値(ダミーポンプ吐出圧)が挿入される。尚、上記ステップ1004で既にダミー値が挿入されている場合は、本ステップ1012は省略されてもよい。
 ステップ1014では、アンロード弁18が閉じられる。これにより、各方向切換弁20,22,24のいずれかのアクチュエータラインの開口が開いているときには、油圧ポンプ11から吐出された油が全て、当該開いているアクチュエータラインの開口を通って流れる状態が形成される。
 ステップ1016では、油圧センサ30により検出されたポンプ吐出圧又はダミーポンプ吐出圧に基づいて、仮想ネガコン圧pnが算出される。即ち、ステップ1004又はステップ1014を経由した場合は、ダミーポンプ吐出圧に基づいて、仮想ネガコン圧pnが算出され、それ以外の場合は、油圧センサ30により検出されたポンプ吐出圧に基づいて、仮想ネガコン圧pnが算出される。
 ステップ1018では、油圧ポンプ11の吐出流量の指令値が算出される。尚、ダミーポンプ吐出圧に基づいて、仮想ネガコン圧pnが算出された場合、算出される油圧ポンプ11の吐出流量の指令値は、所定流量(例えば油圧ポンプ11の最小吐出流量)に対応することになる。
 尚、上述した実施例においては、図10のステップ1016,1018が、特許請求の範囲における「指令値算出手段」を実現し、図10のステップ1004,1012が、特許請求の範囲における「補正手段」を実現している。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
 尚、本国際出願は、2011年9月21日に出願した日本国特許出願2011-206443号に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
 1  建設機械
 2  下部走行体
 3  上部旋回体
 4  ブーム
 5  アーム
 6  バケット
 7  ブームシリンダ
 8  アームシリンダ
 9  バケットシリンダ
 10  コントローラ
 11  油圧ポンプ
 12  レギュレータ装置
 13  供給ライン
 14  戻りライン
 17  原動機
 18  アンロード弁
 19  リリーフ弁
 20  方向切換弁
 21a、21b  リリーフ弁
 22  方向切換弁
 23a、23b  リリーフ弁
 24  方向切換弁
 25a、25b  リリーフ弁
 30  油圧センサ
 40、42、43  操作部材
 60  油圧制御システム
 100  センターバイパスライン
 104  ネガコン絞り

Claims (3)

  1.  油圧アクチュエータがクローズドセンター型の方向切換弁を介して油圧ポンプに接続されると共に、前記方向切換弁と前記油圧ポンプの間に、タンクに繋がるアンロード弁が設けられる建設機械において、前記油圧ポンプを制御する油圧制御装置であって、
     前記方向切換弁における前記油圧アクチュエータへの流路が開かれた状況下で、前記油圧ポンプと前記タンクとの間の連通が遮断され、且つ、前記方向切換弁における前記油圧アクチュエータへの流路が閉じられた状況下で、前記油圧ポンプと前記タンクとの間の連通が確立されるように、前記アンロード弁を制御するアンロード弁制御手段と、
     前記方向切換弁における前記油圧アクチュエータへの流路が開かれた状況下で、前記方向切換弁の位置を可変するための操作部材の操作量と、前記油圧ポンプの吐出圧とに基づいて、ネガコンシステムを仮想した場合の仮想ネガコン圧を算出し、前記仮想ネガコン圧に基づいて、前記油圧ポンプに対する制御指令値を算出する指令値算出手段と、
     前記方向切換弁における前記油圧アクチュエータへの流路が閉じられた状況下で、前記油圧ポンプの吐出流量が所定流量となるように、前記制御指令値又は該制御指令値の算出に使用される任意のパラメータを補正する補正手段とを備える、油圧制御装置。
  2.  前記所定流量は、前記油圧ポンプの最小吐出流量に対応する、請求項1に記載の油圧制御装置。
  3.  油圧アクチュエータがクローズドセンター型の方向切換弁を介して油圧ポンプに接続されると共に、前記方向切換弁と前記油圧ポンプの間に、タンクに繋がるアンロード弁が設けられる建設機械において、前記油圧ポンプを制御する油圧制御方法であって、
     前記方向切換弁における前記油圧アクチュエータへの流路が開かれた状況下で、前記油圧ポンプと前記タンクとの間の連通が遮断されるように、前記アンロード弁を制御すると共に、前記方向切換弁の位置を可変するための操作部材の操作量と、前記油圧ポンプの吐出圧とに基づいて、ネガコンシステムを仮想した場合の仮想ネガコン圧を算出し、前記仮想ネガコン圧に基づいて、前記油圧ポンプに対する制御指令値を算出するステップと、
     前記方向切換弁における前記油圧アクチュエータへの流路が閉じられた状況下で、前記油圧ポンプと前記タンクとの間の連通が確立されるように前記アンロード弁を制御すると共に、前記油圧ポンプの吐出流量が所定流量となるように、前記油圧ポンプに対する制御指令値を算出するステップとを含むことを特徴とする、油圧制御方法。
PCT/JP2012/070356 2011-09-21 2012-08-09 油圧制御装置及び油圧制御方法 WO2013042483A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147005343A KR101592483B1 (ko) 2011-09-21 2012-08-09 유압제어장치 및 유압제어방법
CN201280040917.3A CN103748364B (zh) 2011-09-21 2012-08-09 液压控制装置及液压控制方法
EP12833906.6A EP2759712B1 (en) 2011-09-21 2012-08-09 Hydraulic control device and hydraulic control method
US14/217,721 US9651061B2 (en) 2011-09-21 2014-03-18 Hydraulic control apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011206443A JP5631830B2 (ja) 2011-09-21 2011-09-21 油圧制御装置及び油圧制御方法
JP2011-206443 2011-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/217,721 Continuation US9651061B2 (en) 2011-09-21 2014-03-18 Hydraulic control apparatus and method

Publications (1)

Publication Number Publication Date
WO2013042483A1 true WO2013042483A1 (ja) 2013-03-28

Family

ID=47914263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070356 WO2013042483A1 (ja) 2011-09-21 2012-08-09 油圧制御装置及び油圧制御方法

Country Status (5)

Country Link
US (1) US9651061B2 (ja)
EP (1) EP2759712B1 (ja)
JP (1) JP5631830B2 (ja)
KR (1) KR101592483B1 (ja)
WO (1) WO2013042483A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117803A (ja) * 2013-12-19 2015-06-25 ナブテスコ株式会社 建設機械用方向切換弁、並びに、その開度決定装置、及びその開度決定方法
CN110359511A (zh) * 2018-03-26 2019-10-22 株式会社日立建机Tierra 工程机械

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493916B2 (ja) * 2015-04-21 2019-04-03 キャタピラー エス エー アール エル 流体圧回路および作業機械
US9976285B2 (en) * 2016-07-27 2018-05-22 Caterpillar Trimble Control Technologies Llc Excavating implement heading control
JP6845736B2 (ja) * 2017-04-28 2021-03-24 川崎重工業株式会社 液圧駆動システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245804A (ja) * 1984-05-19 1985-12-05 Kayaba Ind Co Ltd 可変容量ポンプの制御回路
JPH04258504A (ja) * 1991-02-07 1992-09-14 Sumitomo Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH0742709A (ja) * 1993-08-02 1995-02-10 Yutani Heavy Ind Ltd 油圧機械のアクチュエータ制御装置
JPH09236101A (ja) * 1996-02-29 1997-09-09 Komatsu Ltd 油圧駆動機械の制御装置
JPH1047306A (ja) 1996-07-30 1998-02-17 Uchida Yuatsu Kiki Kogyo Kk 可変容量ポンプを使用したブリードオフ制御方法
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920010875B1 (ko) * 1988-06-29 1992-12-19 히다찌 겐끼 가부시기가이샤 유압구동장치
US5129229A (en) * 1990-06-19 1992-07-14 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for civil-engineering and construction machine
EP0597109B1 (en) * 1992-03-09 1996-12-18 Hitachi Construction Machinery Co., Ltd. Hydraulically driving system
US5873245A (en) * 1995-07-10 1999-02-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system
DE69740086D1 (de) 1996-02-28 2011-02-03 Komatsu Mfg Co Ltd Steuervorrichtung für eine Hydraulikantriebsmaschine
US6199378B1 (en) * 1999-09-21 2001-03-13 Caterpillar Inc. Off-setting rate of pressure rise in a fluid system
GB0303789D0 (en) * 2003-02-19 2003-03-26 Cnh Belgium Nv Apparatus and method for providing hydraulic power to an agricultural implement
JP2006183413A (ja) * 2004-12-28 2006-07-13 Shin Caterpillar Mitsubishi Ltd 建設機械の制御回路
CN103502655B (zh) * 2010-12-17 2016-01-20 派克汉尼芬公司 具有回压控制的液压系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245804A (ja) * 1984-05-19 1985-12-05 Kayaba Ind Co Ltd 可変容量ポンプの制御回路
JPH04258504A (ja) * 1991-02-07 1992-09-14 Sumitomo Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH0742709A (ja) * 1993-08-02 1995-02-10 Yutani Heavy Ind Ltd 油圧機械のアクチュエータ制御装置
JPH09236101A (ja) * 1996-02-29 1997-09-09 Komatsu Ltd 油圧駆動機械の制御装置
JPH1047306A (ja) 1996-07-30 1998-02-17 Uchida Yuatsu Kiki Kogyo Kk 可変容量ポンプを使用したブリードオフ制御方法
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759712A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117803A (ja) * 2013-12-19 2015-06-25 ナブテスコ株式会社 建設機械用方向切換弁、並びに、その開度決定装置、及びその開度決定方法
CN110359511A (zh) * 2018-03-26 2019-10-22 株式会社日立建机Tierra 工程机械
CN110359511B (zh) * 2018-03-26 2021-06-18 株式会社日立建机Tierra 工程机械

Also Published As

Publication number Publication date
KR101592483B1 (ko) 2016-02-05
CN103748364A (zh) 2014-04-23
EP2759712A4 (en) 2015-11-11
JP2013068257A (ja) 2013-04-18
EP2759712A1 (en) 2014-07-30
US9651061B2 (en) 2017-05-16
JP5631830B2 (ja) 2014-11-26
US20140196793A1 (en) 2014-07-17
KR20140050087A (ko) 2014-04-28
EP2759712B1 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
JP5631829B2 (ja) 油圧制御装置及び油圧制御方法
JP5511425B2 (ja) ハイブリッド建設機械の制御装置
EP2910795B1 (en) Work machine
EP3396176B1 (en) Work machine
JP6005176B2 (ja) 電動式油圧作業機械の油圧駆動装置
WO2013042483A1 (ja) 油圧制御装置及び油圧制御方法
US10301793B2 (en) Hydraulic drive system for work machine
KR101747519B1 (ko) 하이브리드식 건설 기계
JP7071339B2 (ja) 建設機械の制御システム及び建設機械の制御方法
JP6676824B2 (ja) 作業機械の油圧駆動装置
JP2006009888A (ja) 建設機械の油圧制御回路
JP5622243B2 (ja) 流体圧制御回路および作業機械
JP5701189B2 (ja) 作業機械の動力回生装置
JP6629154B2 (ja) 建設機械の油圧システム
US20200011022A1 (en) Hydraulic driving apparatus of work machine
JP5454439B2 (ja) 油圧ショベルの油圧制御装置
JP6581061B2 (ja) ホイール式作業機械の油圧制御装置
JP2009256904A (ja) 作業機械の油圧制御回路
WO2024071389A1 (ja) 作業機械
WO2021059571A1 (ja) 作業機械
JP2006194273A (ja) 流体圧制御装置
JP2010077750A (ja) 作業機械の油圧制御回路
JP2004156696A (ja) 油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005343

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012833906

Country of ref document: EP