WO2013042467A1 - プローブ装置 - Google Patents

プローブ装置 Download PDF

Info

Publication number
WO2013042467A1
WO2013042467A1 PCT/JP2012/069923 JP2012069923W WO2013042467A1 WO 2013042467 A1 WO2013042467 A1 WO 2013042467A1 JP 2012069923 W JP2012069923 W JP 2012069923W WO 2013042467 A1 WO2013042467 A1 WO 2013042467A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
film electrode
measurement line
power device
switch mechanism
Prior art date
Application number
PCT/JP2012/069923
Other languages
English (en)
French (fr)
Inventor
榮一 篠原
健 田岡
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to EP12833723.5A priority Critical patent/EP2746794B1/en
Priority to KR1020147007514A priority patent/KR101685440B1/ko
Priority to US14/346,381 priority patent/US9347970B2/en
Publication of WO2013042467A1 publication Critical patent/WO2013042467A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06705Apparatus for holding or moving single probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Definitions

  • the present invention relates to a probe apparatus for measuring electrical characteristics (static characteristics, dynamic characteristics) of a power device.
  • Power devices are becoming more versatile as they are used as various power supplies, automotive electrical parts, or industrial equipment electrical parts. Power devices have higher breakdown voltages and higher currents than ordinary semiconductor elements, and have higher speeds and higher frequencies depending on the application. Examples of the power device include an IGBT, a diode, a power transistor, a power MOS-FET, and a thyristor. These power devices are put on the market according to their use after the non-defective products are selected by measuring their electrical characteristics (static characteristics, dynamic characteristics).
  • the probe apparatus is widely used as an inspection apparatus that measures the electrical characteristics of a semiconductor element such as a memory device in a state where the power device is not cut out from the wafer.
  • a probe device generally includes a loader chamber and a prober chamber adjacent to the loader chamber. Pre-alignment is performed while a wafer is transferred in the loader chamber, and the electrical characteristics of the wafer loaded from the loader chamber are measured in the prober chamber. After that, the wafer after measurement is returned to the loader chamber.
  • various techniques for applying this type of probe device to the measurement of electrical characteristics of power devices have been developed, and probe devices used for measuring static characteristics such as resistance values of power devices have been developed and put into practical use. .
  • FIG. 4 is a conceptual diagram showing an example of a conventional probe device.
  • FIG. 4 shows a prober chamber of a probe apparatus that measures the static characteristics of a power device at the wafer level.
  • the prober chamber includes a movable mounting table 1 on which the wafer W is mounted, and a probe card 2 disposed above the mounting table 1.
  • a conductive film electrode (shown by a thick line in the figure) 3 made of a conductive metal such as gold is formed on the surface of the mounting table 1, and this conductive film electrode 3 is connected via a measurement line (for example, cable) 4.
  • the tester 5 is electrically connected.
  • the collector electrode of the power device on the lower surface of the wafer W is placed on the mounting table 1. It is in electrical contact with the conductor film electrode 3.
  • the probe card 2 is brought into contact with the wafer W, the gate electrode and the emitter electrode of the power device and the plurality of probes 2A are electrically connected.
  • the probe card 2 is fixed to the head plate 6 via a clamp mechanism (not shown).
  • the probe apparatus used for measuring the static characteristics of the power device has been put into practical use, but the probe apparatus for measuring the dynamic characteristics of the power device is still under development and has reached the level of practical use. Absent. Therefore, the measurement of the dynamic characteristics of the power device must be performed at the packaging stage, and if the package product is evaluated as defective, it is discarded as it is, so the production efficiency of the power device as much as that There is a problem that defective products are likely to occur.
  • the present applicant has developed a probe device that can measure the dynamic characteristics of a power device based on the probe device shown in FIG. 4 (see Patent Document 1). That is, in the probe apparatus of Patent Document 1, by providing a measurement line similar to the measurement line 4 shown in FIG. 4 on the mounting base of the probe apparatus, the static characteristics and dynamic characteristics of the power device can be achieved with a single probe apparatus. Both can be measured.
  • the measurement line 4 is provided with a measurement line similar to the measurement line 4. It has been found that the probe apparatus cannot measure the dynamic characteristics with high accuracy when measuring the dynamic characteristics such as the switching characteristics of the power device because the inductance component of the measurement line 4 becomes an obstacle.
  • An object of the present invention is to measure both the static characteristics and dynamic characteristics of a power device at the wafer level, and in particular, the dynamic characteristics of a power device can be measured without being affected by the measurement line used for measuring the static characteristics.
  • An object of the present invention is to provide a probe apparatus capable of reliably measuring at a wafer level.
  • a movable mounting table for mounting an object to be inspected on which a plurality of power devices are formed is disposed above the mounting table.
  • a probe card having a plurality of probes, at least a conductor film electrode formed on the mounting surface of the mounting table, and at least one measurement line for electrically connecting the conductor film electrode and the tester;
  • a probe apparatus for measuring electrical characteristics of the power device by electrically contacting a plurality of electrodes and the plurality of probes of each power device of the object to be inspected placed on a mounting table,
  • a probe device is provided in which the at least one measurement line is provided with a switch mechanism for opening and closing the measurement line between the conductive film electrode and the tester.
  • the switch mechanism is preferably a relay switch mechanism.
  • the switch mechanism includes a solenoid mechanism and a contact that is electrically connected to and separated from the conductive film electrode via the solenoid mechanism.
  • a movable mounting table for mounting an object to be inspected on which a plurality of power devices are formed is disposed above the mounting table.
  • a probe card having a plurality of probes, a conductor film electrode formed on at least a mounting surface of the mounting table, and the probe card for use in measuring dynamic characteristics of the power device.
  • a first measurement line that is electrically connected via a second measurement line, and a second measurement line that electrically connects the conductive film electrode and the tester for use in measurement of the static characteristics of the power device.
  • a probe device is provided, wherein the second measurement line is provided with a switch mechanism for opening and closing the second measurement line between the conductor film electrode and the tester.
  • the switch mechanism preferably comprises a relay switch mechanism.
  • the switch mechanism includes a solenoid mechanism and a contactor that is electrically connected to and separated from the conductive film electrode via the solenoid mechanism.
  • the first measurement line has a conductor interposed between the conductor film electrode and the probe card.
  • both static characteristics and dynamic characteristics of the power device can be measured at the wafer level, and the dynamic characteristics of the power device can be measured without being affected by the measurement line used for measuring the static characteristics. It is possible to provide a probe apparatus capable of reliably measuring at the wafer level.
  • FIG. 1 It is a conceptual diagram which shows the probe apparatus which concerns on embodiment of this invention. It is a block diagram which shows the principal part of the probe apparatus shown in FIG. It is a block diagram which shows the principal part of the probe apparatus which concerns on other embodiment of this invention. It is a conceptual diagram which shows an example of the conventional probe apparatus.
  • FIG. 1 is a conceptual diagram showing a probe device according to an embodiment of the present invention.
  • the probe apparatus 10 receives a wafer W in a prober chamber 11 from a loader chamber (not shown) for transferring the wafer W, and transfers the wafer W to the wafer W in the prober chamber 11.
  • the electrical characteristics (static characteristics, dynamic characteristics) of the formed plurality of power devices are measured.
  • a mounting table 12 on which a wafer W is mounted is provided in the prober chamber 11 so as to be movable in the X direction, the Y direction, the Z direction, and the ⁇ direction, and the chuck top 12 ⁇ / b> A of the mounting table 12 is mounted.
  • a conductor film electrode (shown by a thick line in FIG. 1) 13 made of a conductive metal such as gold is formed as a collector electrode on the entire surface and the entire peripheral surface.
  • a vacuum suction means is formed on the chuck top 12A, and the wafer W is configured to be vacuum suctioned to the mounting surface of the chuck top 12A.
  • the mounting table 12 has a built-in temperature adjustment mechanism, and heats or cools the wafer W to a predetermined temperature to measure the electrical characteristics (static characteristics and dynamic characteristics) of the power device.
  • the conductor film electrode 13 includes a first conductor film electrode portion 13A formed on the entire mounting surface of the chuck top 12A, and a second conductor film electrode portion 13B formed on the entire outer peripheral surface of the chuck top 12A. It has become.
  • a probe card 14 with a card holder is fixed to a head plate 11A that forms the upper surface of the prober chamber 11 via a clamping mechanism (not shown).
  • a plurality of probes 14A are attached to the central portion of the lower surface of the probe card 14, and these probes 14A are electrically connected to the gate electrode and the emitter electrode of the power device formed on the wafer W so as to improve the electrical characteristics of the power device. Configured to measure.
  • the probe apparatus 10 of the present embodiment is a first measurement line 15 used when measuring the dynamic characteristics of the power device and a first measurement line 15 used when measuring the static characteristics of the power device. 2 measurement lines 16.
  • the first measurement line 15 includes, for example, a plurality of conductive pins 15A provided at predetermined intervals in the circumferential direction on the outer peripheral edge of the lower surface of the probe card 14, and the plurality of conductive pins 15A. And a cable 15B electrically connected to each other via a conductor portion (not shown), and the other end of the cable 15B is electrically connected to the tester 17. A conductor portion that mediates the connection between the conductive pin 15A and the cable 15B is attached to the lower surface of the probe card 14.
  • the plurality of conductive pins 15A are configured to be electrically connected to and separated from the first conductive film electrode portion 13A by moving the chuck top 12A up and down via a lifting drive mechanism (not shown) built in the mounting table 12. Has been. These conduction pins 15A have elasticity such as pogo pins, for example, and are configured to elastically contact the first conductor film electrode portion 13A. These conductive pins 15A are preferably provided at a plurality of locations at predetermined intervals on the outer peripheral edge of the probe card 14, but may be provided only at one location.
  • the chuck top 12A of the mounting table 12 When measuring the dynamic characteristics of the power device, the chuck top 12A of the mounting table 12 is raised by a predetermined dimension. As a result, the first conductor film electrode portion 13A (collector electrode) of the chuck top 12A is in electrical contact with the conduction pin 15A, and the conductor film electrode of the tester 17 and the chuck top 12A (via the first measurement line 15). Collector electrode) 13 is electrically connected. The plurality of probes 14A are in electrical contact with the gate electrode and the emitter electrode of the power device formed on the wafer W on the chuck top 12A.
  • the second measurement line (cable) 16 is configured to be electrically connected between the tester 17 and the second conductor film electrode portion 13B and used when measuring the static characteristics of the power device. ing.
  • the measurement line 16 is preferably shortened in order to suppress the influence of electromagnetic noise from the surroundings as much as possible, and is set to about 2000 mm in the present embodiment.
  • the measurement line 16 is provided with a switch mechanism 18, and the switch mechanism 18 opens and closes an electric circuit between the second conductor film electrode portion 13 ⁇ / b> B and the tester 17.
  • the switch mechanism 18 opens the switch, disconnects the second measurement line 16 from the chuck top 12A, and affects the influence of the inductance component of the second measurement line 16. I try to prevent it.
  • Examples of the switch mechanism 18 include a relay switch mechanism, a solenoid switch mechanism, and a cylinder switch mechanism. As shown in FIGS. 2 and 3, the connection mode between the second measurement line 16 and the second conductor film electrode portion 13B is different depending on the type of the switch mechanism 18.
  • FIG. 2 shows a probe device to which a relay switch mechanism is applied
  • FIG. 3 shows a probe device to which a solenoid switch mechanism is applied. Therefore, hereinafter, a relay switch mechanism and a solenoid switch mechanism will be described as examples.
  • FIG. 2 is a block diagram showing a main part of the probe device shown in FIG.
  • the relay switch mechanism 181 as the switch mechanism 18 includes a switch 181A provided on the second measurement line 16, a contact 181B of the switch 181A, a coil 181C for exciting the contact 181B, and a coil 181C. And a controller 181E that controls the coil 181C.
  • the switch 181A is electrically connected to the contact 181B as indicated by a one-dot chain line.
  • the collector electrode of the power device on the chuck top 12A and the tester 17 are electrically connected via the second measurement line 16.
  • the switch 181A, the contact 181B, and the coil 181C are all housed in the highly insulating block 181F.
  • the second measurement line 16 provided with the relay switch mechanism 181 is electrically connected at one end to the second conductor film electrode portion 13B formed on the entire peripheral surface of the chuck top 12A. The other end is electrically connected to the tester 17.
  • the connection part between the second measurement line 16 and the second conductor film electrode part 13B The conductor plate 12B is affixed within a predetermined range, and the second measurement line 16 is firmly fixed to the conductor plate 12B by a fixing means such as a screw.
  • the relay switch mechanism 181 is provided in the second measurement line 16 so as to be positioned in the vicinity of the mounting table 12 as shown in FIG.
  • the relay switch mechanism 181 is opened when measuring the dynamic characteristics of the power device, and is closed when measuring the static characteristics of the power device.
  • the solenoid switch mechanism 182 as the switch mechanism 18 includes a contact 182A electrically connected to the end of the second measurement line 16, a solenoid 182B that linearly moves the contact 182A, and a solenoid A drive control unit 182C that excites 182B, and a coil spring 182D that returns the contact 182A to the original position when the solenoid 182B is demagnetized.
  • the contact 182A is moved back and forth in the linear direction to move the tip of the contact 182A away from the second conductor film electrode portion 13B of the chuck top 12A.
  • the contact 182A comes into contact with the second conductor film electrode portion 13B, and the tester 17 and the second conductor film electrode portion 13B are brought into conduction.
  • the contact 182A is separated from the second conductor film electrode part 13B, and the second measurement line 16 is separated from the conductor film electrode 13, and the second conductor film electrode part. 13B is disconnected from the tester 17.
  • the solenoid 182B includes a plunger, a receiving portion for receiving the plunger, and a coil for reciprocating the plunger.
  • the contact 182A is mounted along the axis of the plunger and reciprocates through the plunger.
  • the switch mechanism 18 is driven in advance to close the electric circuit of the second measurement line 16, and the second conductor film electrode portion 13B of the chuck top 12A and the tester 17 are electrically connected.
  • the wafer W on which a plurality of power devices are formed is placed on the chuck top 12A of the mounting table 12 in the prober chamber 11 from the loader chamber, and the wafer W is placed on the chuck top 12A via the vacuum suction mechanism. Fix it.
  • the gate electrode and the emitter electrode of the wafer W on the mounting table 12 are aligned with the plurality of probes 14 ⁇ / b> A of the probe card 14 through the alignment mechanism.
  • the mounting table 12 is moved to raise the mounting table 12 from directly below the power device to be measured first, and the gate electrode and emitter electrode of the power device and the plurality of probes 14A are brought into electrical contact.
  • the second conductor film electrode portion 13B of the chuck top 12A that is, the conductor film, is passed from the tester 17 via the second measurement line 16.
  • a large current flows through the electrode 13.
  • This current flows from the collector electrode of the power device to the emitter electrode.
  • the static characteristics such as the resistance value of the power device are measured via the other probe 14A, and the tester 17 obtains the static characteristics such as the resistance value based on the measurement result.
  • the mounting table 12 moves and the static characteristics of the subsequent power devices are sequentially measured.
  • the switch mechanism 18 is driven to open the electric circuit of the second measurement line 16, and the tester 17 is disconnected from the chuck top 12A.
  • the gate electrode and the emitter electrode of the power device are electrically connected to the plurality of probes 14A of the probe card 14.
  • the first conductive film electrode portion 13A of the chuck top 12A is in electrical contact with a plurality of conduction pins 15A protruding downward from the probe card 14.
  • the gate electrode and the emitter electrode of the power device are connected to the tester 17 through the probe 14A, and the collector electrode of the power device is connected to the first conductive film electrode portion 13A of the chuck top 12A and the plurality of conduction pins 15A ( It is electrically connected to the tester 17 via the first measurement line 15).
  • the conductor of the chuck top 12A from the tester 17 via the first measurement line 15 (cable 15B and conduction pin 15A).
  • a large current flows into the membrane electrode 13.
  • This large current flows into the collector electrode of the power device, flows into the tester 17 from the emitter electrode, and the dynamic characteristics of the power device can be measured in the tester 17.
  • the second measurement line 16 is separated from the chuck top 12 ⁇ / b> A, the adverse effect of the inductance based on the second measurement line 16 can be prevented.
  • both the static characteristics and the dynamic characteristics of the power device can be performed, and the static characteristics are measured when measuring the dynamic characteristics.
  • the dynamic characteristics of the power device can be reliably measured at the wafer level without being affected by the second measurement line 16 used for the measurement of
  • the present invention is not limited to the embodiment described above, and each component can be designed and changed as necessary.
  • the switch mechanism provided in the second measurement line 16 is not limited to the one described in this embodiment, and a switch mechanism having a switching mechanism can be appropriately applied to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

パワーデバイスの静特性及び動特性の双方をウエハレベルで測定することができ、特に静特性に使用される測定ラインに影響されることなく、パワーデバイスの動特性をウエハレベルで確実に測定することができるプローブ装置を提供する。本発明のプローブ装置10は、複数のパワーデバイスが形成されたウエハWを載置する移動可能な载置台12と、載置台12の上方に配置された複数のプローブ14Aを有するプローブカード14と、載置台12の載置面とその外周面に形成された導体膜電極13と、導体膜電極13とテスタ17とを電気的に接続する測定ライン16と、を備え、載置台12上のパワーデバイスの電気的特性をウエハレベルで測定するプローブ装置であって、第2の測定ライン16には、導体膜電極13とテスタ17の間で測定ライン16の電路を開閉するスイッチ機構18を設けたものである。

Description

プローブ装置
 本発明は、パワーデバイスの電気的特性(静特性、動特性)の測定を行うプローブ装置に関する。
 パワーデバイスは、種々の電源や自動車の電装関連部品として、あるいは産業機器の電装関連部品として用いられるなど汎用性が高まっている。パワーデバイスは、通常の半導体素子と比べて高耐圧化、大電流化され、また、用途に応じて高速、高周波数化されている。パワーデバイスとしては、IGBT、ダイオード、パワートランジスタ、パワーMOS−FET、サイリスタなどがある。これらのパワーデバイスは、それぞれの電気的特性(静特性、動特性)の測定により良品が選別された後、それぞれ用途に応じて市場に出される。
 プローブ装置は、メモリデバイス等の半導体素子の電気的特性をパワーデバイスがウエハから切り出されていない状態で測定する検査装置として汎用されている。プローブ装置は、一般的に、ローダ室とこれに隣接するプローバ室を備え、ローダ室でウエハを搬送する間にプリアライメントを行い、プローバ室でローダ室から搬入されたウエハの電気的特性を測定した後、測定後のウエハをローダ室へ戻すようにしている。現在、この種のプローブ装置をパワーデバイスの電気的特性の測定に適用する技術が種々開発され、パワーデバイスの抵抗値等の静特性の測定に用いられるプローブ装置が開発され、実用化されている。
 図4は、従来のプローブ装置の一例を示す概念図である。図4において、ウエハレベルでパワーデバイスの静特性を測定するプロープ装置のプローバ室が示されている。
 プローバ室は、図4に示すように、ウエハWを載置する移動可能な載置台1と、載置台1の上方に配置されたプローブカード2と、を備えている。載置台1の表面には金等の導電性金属からなる導体膜電極(同図では太線で示してある)3が形成され、この導体膜電極3が測定ライン(例えば、ケーブル)4を介してテスタ5に電気的に接続されている。
 図4に示すプローブ装置を用いてパワーデバイスの静特性をウエハレベルで測定する場合には、載置台1上にウエハWを載置すると、ウエハWの下面のパワーデバイスのコレクタ電極が載置台1の導体膜電極3と電気的に接触する。このウエハWにプローブカード2を接触させると、パワーデバイスのゲート電極及びエミッタ電極と複数のプローブ2Aとが電気的に接続される。この状態で、プローブ2Aからパワーデバイスのゲート電極に電圧を印加すると、テスタ5から測定ライン4、導体膜電極3、コレクタ電極及びエミッタ電極へ大電流が流れる。この時、他のプローブ2Aを介してパワーデバイスの抵抗値等の静特性が測定される。尚、図4において、プローブカード2はクランプ機構(図示せず)を介してヘッドプレート6に固定されている。
 上述のように、パワーデバイスの静特性の測定に用いられるプローブ装置は、実用化されているが、パワーデバイスの動特性を測定するプローブ装置は依然として開発途上にあって実用化のレベルに達していない。そのため、パワーデバイスの動特性の測定は、パッケージング段階で行わざるを得ず、パッケージ品が不良品として評価されると、そのまま廃棄されるために、その分だけパワーデバイスの製品としての生産効率が悪くなり、不良品が発生しやすいという問題がある。
 また、本出願人は、図4に示すプローブ装置を基本にしてパワーデバイスの動特性の測定を行うことができるプローブ装置を開発した(特許文献1参照)。すなわち、特許文献1のプローブ装置では該プローブ装置の載置台に、図4に示した測定ライン4と同様の測定ラインを設けることによって、一台のプローブ装置でパワーデバイスの静特性と動特性の双方を測定することができるようになる。
特開2012−58225号公報
 ところが、図4に示すプローブ装置では、測定ライン4によって載置台1の導体膜電極3とテスタ5とが常時接続されているため、該測定ライン4と同様の測定ラインを設けた特許文献1のプローブ装置では、パワーデバイスのスイッチング特性等の動特性を測定する時に、測定ライン4のインダクタンス成分が障害となって動特性を精度良く測定することができないことが判った。
 本発明の課題は、パワーデバイスの静特性及び動特性の双方をウエハレベルで測定することができ、特に静特性の測定に使用される測定ラインに影響されることなく、パワーデバイスの動特性をウエハレベルで確実に測定することができるプローブ装置を提供することにある。
 上記課題を解決するために、本発明の第1の態様によれば、複数のパワーデバイスが形成された被検査体を載置する移動可能な載置台と、前記載置台の上方に配置された複数のプローブを有するプローブカードと、少なくとも前記載置台の載置面に形成された導体膜電極と、前記導体膜電極とテスタとを電気的に接続する少なくとも一つの測定ラインと、を備え、前記載置台上に載置された前記被検査体の各パワーデバイスそれぞれの複数の電極と前記複数のプローブとを電気的に接触させて前記パワーデバイスの電気的特性を測定するプローブ装置であって、前記少なくとも一つの測定ラインには、前記導体膜電極と前記テスタの間で前記測定ラインを開閉するスイッチ機構を設けたことを特徴とするプローブ装置が提供される。
 本発明の第1の態様において、前記スイッチ機構は、リレースイッチ機構からなることが好ましい。
 本発明の第1の態様において、前記スイッチ機構は、ソレノイド機構と、前記ソレノイド機構を介して前記導体膜電極と電気的に離接する接触子と、を有することが好ましい。
 上記課題を解決するために、本発明の第2の態様によれば、複数のパワーデバイスが形成された被検査体を載置する移動可能な載置台と、前記載置台の上方に配置された複数のプローブを有するプローブカードと、少なくとも前記載置台の載置面に形成された導体膜電極と、前記パワーデバイスの動特性の測定に使用するために前記導体膜電極とテスタとを前記プローブカードを経由して電気的に接続する第1の測定ラインと、前記パワーデバイスの静特性の測定に使用するために前記導体膜電極とテスタとを電気的に接続する第2の測定ラインと、を備え、前記載置台上に載置された前記被検査体の各パワーデバイスそれぞれの複数の電極と前記複数のプローブとを電気的に接触させて前記パワーデバイスの静特性または動特性を測定するプローブ装置であって、前記第2の測定ラインには、前記導体膜電極と前記テスタの間で前記第2の測定ラインを開閉するスイッチ機構を設けたことを特徴とするプローブ装置が提供される。
 本発明の第2の態様において、前記スイッチ機構は、リレースイッチ機構からなることが好ましい。
 本発明の第2の態様において、前記スイッチ機構は、ソレノイド機構と、前記ソレノイド機構を介して前記導体膜電極と電気的に離接する接触子と、を有することが好ましい。
 本発明の第2の態様において、前記第1の測定ラインは、前記導体膜電極と前記プローブカードの間に介在する導体を有することが好ましい。
 本発明によれば、パワーデバイスの静特性及び動特性の双方をウエハレベルで測定することができ、特に静特性の測定に使用される測定ラインに影響されることなく、パワーデバイスの動特性をウエハレベルで確実に測定することができるプローブ装置を提供することができる。
本発明の実施の形態に係るプローブ装置を示す概念図である。 図1に示すプローブ装置の要部を示す構成図である。 本発明の他の実施の形態に係るプローブ装置の要部を示す構成図である。 従来のプローブ装置の一例を示す概念図である。
 以下、本発明の実施の形態に係るプローブ装置について、図1~図3を参照しつつ説明する。
 図1は、本発明の実施の形態に係るプローブ装置を示す概念図である。
 本実施の形態に係るプローブ装置10は、例えば図1に示すように、ウエハWを搬送するローダ室(図示せず)からプローバ室11内でウエハWを受け取り、プローバ室11内でウエハWに形成された複数のパワーデバイスの電気的特性(静特性、動特性)を測定するように構成されている。
 図1に示すように、プローバ室11にはウエハWを載置する載置台12がX方向、Y方向、Z方向及びθ方向に移動可能に設けられ、載置台12のチャックトップ12Aの載置面全面及び周面全面には金等の導電性金属からなる導体膜電極(図1では太線で示してある)13がコレクタ電極として形成されている。チャックトップ12Aには真空吸着手段が形成され、ウエハWをチャックトップ12Aの載置面に真空吸着するように構成されている。また、載置台12は、温度調節機構を内蔵し、ウエハWを所定の温度に加熱し、あるいは冷却してパワーデバイスの電気的特性(静特性及び動特性)を測定するようにしてある。導体膜電極13は、チャックトップ12Aの載置面全面に形成された第1の導体膜電極部13Aと、チャックトップ12Aの外周面全面に形成された第2の導体膜電極部13Bと、からなっている。
 載置台12の上方には、図1に示すようにカードホルダ付きのプローブカード14がクランプ機構(図示せず)を介してプローバ室11の上面を形成するヘッドプレート11Aに固定されている。プローブカード14の下面中央部には複数のプローブ14Aが取り付けられ、これらのプローブ14AがウエハWに形成されたパワーデバイスのゲート電極及びエミッタ電極と電気的に接続してパワーデバイスの電気的特性を測定するように構成されている。
 而して、本実施の形態のプローブ装置10は、後述するように、パワーデバイスの動特性を測定する時に用いられる第1の測定ライン15と、パワーデバイスの静特性を測定する時に用いられる第2の測定ライン16と、を備えている。
 第1の測定ライン15は、図1に示すように、例えばプローブカード14の下面の外周縁部に周方向に所定間隔を空けて設けられた複数の導通ピン15Aと、該複数の導通ピン15Aに導体部(図示せず)を介して電気的に接続されたケーブル15Bと、を有し、ケーブル15Bの他端がテスタ17に対して電気的に接続されている。導通ピン15Aとケーブル15Bの接続を仲介する導体部はプローブカード14の下面に装着されている。複数の導通ピン15Aは、チャックトップ12Aが載置台12に内蔵された昇降駆動機構(図示せず)を介して昇降することにより第1の導体膜電極部13Aと電気的に離接するように構成されている。これらの導通ピン15Aは、例えばポゴピンのように弾力を有し、第1の導体膜電極部13Aと弾力的に接触するように構成されている。これらの導通ピン15Aは、プローブカード14の外周縁部に所定の間隔を空けて複数個所に設けられていることが好ましいが、一箇所にだけ設けられたものであっても良い。
 パワーデバイスの動特性を測定する場合には、載置台12のチャックトップ12Aが所定の寸法だけ上昇する。これにより、チャックトップ12Aの第1の導体膜電極部13A(コレクタ電極)が導通ピン15Aと電気的に接触し、第1の測定ライン15を介してテスタ17とチャックトップ12Aの導体膜電極(コレクタ電極)13とが電気的に接続される。また、複数のプローブ14Aがチャックトップ12A上のウエハWに形成されたパワーデバイスのゲート電極及びエミッタ電極と電気的に接触する。この状態で、テスタ17からパワーデバイスのゲート電極に所定の電圧を印加すると、テスタ17から第1の測定ライン15を介してチャックトップ12Aの第1の導体膜電極部13Aに大電流が流れ、この電流はパワーデバイスのコレクタ電極からエミッタ電極を経てテスタ17に達する。第1の測定ライン15は、極めて短いため、インダクタンス成分が極めて小さく、インダクタンス成分に影響されることなく、パワーデバイスの動特性を確実に測定することができる。
 また、第2の測定ライン(ケーブル)16は、テスタ17と第2の導体膜電極部13Bとの間を電気的に接続し、パワーデバイスの静特性を測定する時に使用されるように構成されている。この測定ライン16は、周囲からの電磁ノイズの影響を極力抑えるためにも短くする方が良く、本実施の形態では2000mm程度に設定されている。この測定ライン16にはスイッチ機構18が設けられ、スイッチ機構18が第2の導体膜電極部13Bとテスタ17間の電路を開閉する。このスイッチ機構18は、上述のようにパワーデバイスの動特性の測定をする時には、スイッチを開いて第2の測定ライン16をチャックトップ12Aから切り離して第2の測定ライン16のインダクタンス成分による影響を防止するようにしてある。
 スイッチ機構18としては、例えば、リレースイッチ機構、ソレノイドスイッチ機構及びシリンダスイッチ機構を挙げることができる。スイッチ機構18の種類によって図2、図3に示すように第2の測定ライン16と第2の導体膜電極部13Bとの接続態様が異なる。図2はリレースイッチ機構を適用したプローブ装置を示し、図3はソレノイドスイッチ機構を適用したプローブ装置を示している。そこで、以下では、リレースイッチ機構及びソレノイドスイッチ機構を例に挙げて説明する。
 図2は、図1に示すプローブ装置の要部を示す構成図である。
 スイッチ機構18としてのリレースイッチ機構181は、図2に示すように、第2の測定ライン16に設けられたスイッチ181Aと、スイッチ181Aの接点181Bと、接点181Bを励磁するコイル181Cと、コイル181Cと電源(図示せず)を繋ぐ配線181Dと、コイル181Cを制御するコントローラ181Eと、を備え、コイル181Cを介して接点181Bを励磁すると、スイッチ181Aが一点鎖線で示すように接点181Bと電気的に接触し、第2の測定ライン16を介してチャックトップ12A上のパワーデバイスのコレクタ電極とテスタ17とを電気的に接続するように構成されている。スイッチ181A、接点181B及びコイル181Cは、いずれも高絶縁性ブロック181F内に収納されている。
 リレースイッチ機構181が設けられた第2の測定ライン16は、図2に示すように、一端がチャックトップ12Aの周面全面に形成された第2の導体膜電極部13Bに電気的に接続され、他端がテスタ17に電気的に接続されている。第2の測定ライン16と第2の導体膜電極部13Bとの電気的な接続を十分に確保するために、第2の測定ライン16と第2の導体膜電極部13Bとの接続部には導体プレート12Bが所定の範囲で貼り付けられ、この導体プレート12Bに対して第2の測定ライン16がネジ等の固定手段によって強固に固定されている。リレースイッチ機構181は、同図に示すように載置台12の近傍に位置させて第2の測定ライン16に設けられている。リレースイッチ機構181は、パワーデバイスの動特性を測定する時に開状態になり、パワーデバイスの静特性を測定する時に閉状態になる。
 スイッチ機構18としてのソレノイドスイッチ機構182は、図3に示すように、第2の測定ライン16の端部に電気的に接続された接触子182Aと、接触子182Aを直進させるソレノイド182Bと、ソレノイド182Bを励磁する駆動制御部182Cと、ソレノイド182Bが消磁された時に接触子182Aを元の位置に戻すコイルスプリング182Dと、を備え、駆動制御部182Cの制御下でソレノイド182Bとコイルスプリング182Dが協働して接触子182Aを直線方向に往復移動させて接触子182Aの先端をチャックトップ12Aの第2の導体膜電極部13Bに対して離接させるように構成されている。パワーデバイスの静特性を測定する場合には、接触子182Aが第2の導体膜電極部13Bと接触し、テスタ17と第2の導体膜電極部13Bが導通状態になる。一方、パワーデバイスの動特性を測定する場合には、接触子182Aが第2の導体膜電極部13Bから離れて第2の測定ライン16を導体膜電極13から切り離し、第2の導体膜電極部13Bをテスタ17から遮断する。図示してないが、ソレノイド182Bは、プランジャと、プランジャを受ける受け部と、プランジャを往復移動させるコイルと、を備えている。接触子182Aは、プランジャの軸芯に沿って装着され、プランジャを介して往復移動する。
 次いで、本実施の形態のプローブ装置10の動作について説明する。パワーデバイスの電気的特性を測定する場合には、例えば静特性を測定した後、動特性を測定する。それにはまず、予めスイッチ機構18を駆動させて第2の測定ライン16の電路を閉じ、チャックトップ12Aの第2の導体膜電極部13Bとテスタ17とを電気的に接続しておく。この状態で、複数のパワーデバイスが形成されたウエハWをローダ室からプローバ室11内の載置台12のチャックトップ12A上に載置し、真空吸着機構を介してウエハWをチャックトップ12A上に固定する。次いで、アライメント機構を介して載置台12上のウエハWのゲート電極及びエミッタ電極とプローブカード14の複数のプローブ14Aとをアライメントする。
 引き続き、載置台12を移動させて最初に測定すべきパワーデバイスの真下から載置台12を上昇させてパワーデバイスのゲート電極及びエミッタ電極と複数のプローブ14Aとを電気的に接触させる。この状態でプローブ14Aを介してテスタ17からパワーデバイスのゲート電極に電圧を印加すると、テスタ17から第2の測定ライン16を介してチャックトップ12Aの第2の導体膜電極部13B、つまり導体膜電極13に大電流が流れる。この電流は、パワーデバイスのコレクタ電極からエミッタ電極に流れる。この時、他のプローブ14Aを介してパワーデバイスの抵抗値等の静特性を測定し、その測定結果に基づいてテスタ17が抵抗値等の静特性を求める。最初のパワーデバイスについて静特性を測定した後、載置台12が移動し、後続のパワーデバイスの静特性を順次測定する。
 パワーデバイスの静特性を測定した後、動特性を測定する。すなわち、スイッチ機構18を駆動させて第2の測定ライン16の電路を開き、テスタ17をチャックトップ12Aから遮断する。この状態で、最初に測定すべきパワーデバイスをプローブカード14の真下へ移動させた後、チャックトップ12Aを上昇させると、パワーデバイスのゲート電極及びエミッタ電極がプローブカード14の複数のプローブ14Aと電気的に接触すると共に、チャックトップ12Aの第1の導体膜電極部13Aがプローブカード14から下方へ突出する複数の導通ピン15Aと電気的に接触する。これにより、パワーデバイスのゲート電極及びエミッタ電極はプローブ14Aを介してテスタ17と接続されると共に、パワーデバイスのコレクタ電極がチャックトップ12Aの第1の導体膜電極部13A及び複数の導通ピン15A(第1の測定ライン15)を介してテスタ17と電気的に接続される。
 然る後、プローブ14Aを介してテスタ17からパワーデバイスのゲート電極へ電圧を印加することにより、第1の測定ライン15(ケーブル15B及び導通ピン15A)を介してテスタ17からチャックトップ12Aの導体膜電極13へ大電流が流入する。この大電流はパワーデバイスのコレクタ電極へ流入し、エミッタ電極からテスタ17へ流入し、テスタ17においてパワーデバイスの動特性を測定することができる。この際、第2の測定ライン16がチャックトップ12Aから切り離されているため、第2の測定ライン16に基づくインダクタンスの悪影響を防止することができる。
 以上説明したように本実施の形態によれば、一台のプローブ装置10を用いることにより、パワーデバイスの静特性及び動特性の双方を行うことができ、しかも、動特性を測定する時には静特性の測定に使用される第2の測定ライン16に影響されることなく、パワーデバイスの動特性をウエハレベルで確実に測定することができる
 本発明は、上記実施の形態に何ら制限されるものではなく、必要に応じて各構成要素を設計変更することができる。第2の測定ライン16に設けられるスイッチ機構は、本実施の形態で説明したものに制限されるものではなく、スイッチング機構を有するものは本発明に適宜適用することができる。
 10  プローブ装置
 12  載置台
 12A チャックトップ
 14  プローブカード
 14A プローブ
 15  第1の測定ライン
 15A 導通ピン(導体)
 16  第2の測定ライン
 17  テスタ
 18  スイッチ機構
181  リレースイッチ機構
182  ソレノイドスイッチ機構
  W  ウエハ

Claims (7)

  1.  複数のパワーデバイスが形成された被検査体を載置する移動可能な載置台と、前記載置台の上方に配置された複数のプローブを有するプローブカードと、少なくとも前記載置台の載置面に形成された導体膜電極と、前記導体膜電極とテスタとを電気的に接続する少なくとも一つの測定ラインと、を備え、前記載置台上に載置された前記被検査体の各パワーデバイスそれぞれの複数の電極と前記複数のプローブとを電気的に接触させて前記パワーデバイスの電気的特性を測定するプローブ装置であって、
     前記少なくとも一つの測定ラインには、前記導体膜電極と前記テスタの間で前記測定ラインを開閉するスイッチ機構を設けたことを特徴とするプローブ装置。
  2.  前記スイッチ機構は、リレースイッチ機構からなることを特徴とする請求項1記載のプローブ装置。
  3.  前記スイッチ機構は、ソレノイド機構と、前記ソレノイド機構を介して前記導体膜電極と電気的に離接する接触子と、を有することを特徴とする請求項1記載のプローブ装置。
  4.  複数のパワーデバイスが形成された被検査体を載置する移動可能な載置台と、前記載置台の上方に配置された複数のプローブを有するプローブカードと、少なくとも前記載置台の載置面に形成された導体膜電極と、前記パワーデバイスの動特性の測定に使用するために前記導体膜電極とテスタとを前記プローブカードを経由して電気的に接続する第1の測定ラインと、前記パワーデバイスの静特性の測定に使用するために前記導体膜電極とテスタとを電気的に接続する第2の測定ラインと、を備え、前記載置台上に載置された前記被検査体の各パワーデバイスそれぞれの複数の電極と前記複数のプローブとを電気的に接触させて前記パワーデバイスの静特性または動特性を測定するプローブ装置であって、
     前記第2の測定ラインには、前記導体膜電極と前記テスタの間で前記第2の測定ラインを開閉するスイッチ機構を設けたことを特徴とするプローブ装置。
  5.  前記スイッチ機構は、リレースイッチ機構からなることを特徴とする請求項4記載のプローブ装置。
  6.  前記スイッチ機構は、ソレノイド機構と、前記ソレノイド機構を介して前記導体膜電極と電気的に離接する接触子と、を有することを特徴とする請求項4記載のプローブ装置。
  7.  前記第1の測定ラインは、前記導体膜電極と前記プローブカードの間に介在する導体を有することを特徴とする請求項4に記載のプローブ装置。
PCT/JP2012/069923 2011-09-22 2012-07-30 プローブ装置 WO2013042467A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12833723.5A EP2746794B1 (en) 2011-09-22 2012-07-30 Probe apparatus
KR1020147007514A KR101685440B1 (ko) 2011-09-22 2012-07-30 프로브 장치
US14/346,381 US9347970B2 (en) 2011-09-22 2012-07-30 Probe apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011225335A JP5265746B2 (ja) 2011-09-22 2011-09-22 プローブ装置
JP2011-225335 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042467A1 true WO2013042467A1 (ja) 2013-03-28

Family

ID=47914247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069923 WO2013042467A1 (ja) 2011-09-22 2012-07-30 プローブ装置

Country Status (6)

Country Link
US (1) US9347970B2 (ja)
EP (1) EP2746794B1 (ja)
JP (1) JP5265746B2 (ja)
KR (1) KR101685440B1 (ja)
TW (1) TWI547701B (ja)
WO (1) WO2013042467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465486A (zh) * 2020-03-31 2021-10-01 矢崎总业株式会社 检查屏蔽电线端接部分的检查装置和诊断其性能的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2877821C (en) * 2012-06-29 2018-01-09 Hydrovision Asia Pte Ltd An improved suspended sediment meter
JP6042761B2 (ja) * 2013-03-28 2016-12-14 東京エレクトロン株式会社 プローブ装置
JP6601993B2 (ja) * 2013-05-29 2019-11-06 三菱電機株式会社 照明器具
JP6045993B2 (ja) * 2013-07-08 2016-12-14 東京エレクトロン株式会社 プローブ装置
JP6209376B2 (ja) * 2013-07-08 2017-10-04 株式会社日本マイクロニクス 電気的接続装置
JP6447497B2 (ja) * 2014-03-11 2019-01-09 新東工業株式会社 被試験デバイスの検査システム、及びその操作方法
CN104730443A (zh) * 2015-03-19 2015-06-24 山东钢铁股份有限公司 一种大功率可控硅测试台
JP6520479B2 (ja) * 2015-06-30 2019-05-29 株式会社Sumco Dlts測定装置の管理方法
JP6512052B2 (ja) * 2015-09-29 2019-05-15 新東工業株式会社 テストシステム
CN108051719B (zh) * 2017-12-04 2020-12-11 广东美的制冷设备有限公司 功率管测试电路及功率管测试装置
JP7138463B2 (ja) * 2018-03-30 2022-09-16 株式会社日本マイクロニクス プローバ
CN111352009B (zh) * 2020-04-20 2020-11-27 贵州电网有限责任公司 一种二极管击穿电压检测设备
KR102640026B1 (ko) * 2023-10-26 2024-02-23 타코(주) 프로브 카드

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007743A (ja) * 2009-06-29 2011-01-13 Micronics Japan Co Ltd プローブカード及び検査装置
WO2011111834A1 (ja) * 2010-03-12 2011-09-15 東京エレクトロン株式会社 プローブ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333098A (ja) * 1992-06-01 1993-12-17 Fuji Electric Co Ltd 半導体装置の特性評価装置
US5473254A (en) * 1994-08-12 1995-12-05 At&T Corp. Test probe assembly provides precise and repeatable contact forces
JPH08184639A (ja) * 1994-12-28 1996-07-16 Sony Tektronix Corp 接触子構体
JP2993430B2 (ja) * 1996-07-18 1999-12-20 日本電気株式会社 プローブ駆動装置
JP3642456B2 (ja) * 1998-02-24 2005-04-27 株式会社村田製作所 電子部品の検査方法および装置
US7250779B2 (en) * 2002-11-25 2007-07-31 Cascade Microtech, Inc. Probe station with low inductance path
JP4387125B2 (ja) * 2003-06-09 2009-12-16 東京エレクトロン株式会社 検査方法及び検査装置
JP4679244B2 (ja) * 2005-05-26 2011-04-27 株式会社アドバンテスト 測定用コンタクト端子、測定装置、プローブカードセット、およびウエハプローバ装置
JP5016892B2 (ja) 2006-10-17 2012-09-05 東京エレクトロン株式会社 検査装置及び検査方法
JP4999615B2 (ja) * 2007-08-31 2012-08-15 東京エレクトロン株式会社 検査装置及び検査方法
JP5222038B2 (ja) * 2008-06-20 2013-06-26 東京エレクトロン株式会社 プローブ装置
TWM368179U (en) * 2009-03-11 2009-11-01 Star Techn Inc Semiconductor element testing system having an assembly type switch matrixes
TWM410978U (en) * 2011-03-31 2011-09-01 Chipbond Technology Corp Wafer Tester mechanism and Probe Combining seat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007743A (ja) * 2009-06-29 2011-01-13 Micronics Japan Co Ltd プローブカード及び検査装置
WO2011111834A1 (ja) * 2010-03-12 2011-09-15 東京エレクトロン株式会社 プローブ装置
JP2012058225A (ja) 2010-03-12 2012-03-22 Tokyo Electron Ltd プローブ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746794A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465486A (zh) * 2020-03-31 2021-10-01 矢崎总业株式会社 检查屏蔽电线端接部分的检查装置和诊断其性能的方法
CN113465486B (zh) * 2020-03-31 2023-04-11 矢崎总业株式会社 检查屏蔽电线端接部分的检查装置和诊断其性能的方法

Also Published As

Publication number Publication date
US9347970B2 (en) 2016-05-24
TWI547701B (zh) 2016-09-01
US20140247037A1 (en) 2014-09-04
EP2746794A1 (en) 2014-06-25
JP2013068588A (ja) 2013-04-18
JP5265746B2 (ja) 2013-08-14
EP2746794A4 (en) 2015-05-20
TW201333495A (zh) 2013-08-16
KR20140068086A (ko) 2014-06-05
KR101685440B1 (ko) 2016-12-12
EP2746794B1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2013042467A1 (ja) プローブ装置
EP2546668B1 (en) Probe apparatus
US8159245B2 (en) Holding member for inspection, inspection device and inspecting method
US7183763B1 (en) Probe card
JP2011138865A (ja) 半導体デバイスの検査装置
EP2017634B1 (en) Inspection apparatus and inspection method
TWI638174B (zh) Inspection system of tested device and operation method thereof
WO2014157121A1 (ja) プローブ装置
US11307247B2 (en) Prober with busbar mechanism for testing a device under test
JP6365953B1 (ja) プローバ
JP2014053454A (ja) 測定装置および測定方法、ならびに該測定方法を備える素子製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833723

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147007514

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012833723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14346381

Country of ref document: US

Ref document number: 2012833723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE