WO2013042224A1 - Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system - Google Patents

Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system Download PDF

Info

Publication number
WO2013042224A1
WO2013042224A1 PCT/JP2011/071475 JP2011071475W WO2013042224A1 WO 2013042224 A1 WO2013042224 A1 WO 2013042224A1 JP 2011071475 W JP2011071475 W JP 2011071475W WO 2013042224 A1 WO2013042224 A1 WO 2013042224A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
coil
coupling coefficient
contact
Prior art date
Application number
PCT/JP2011/071475
Other languages
French (fr)
Japanese (ja)
Inventor
雅美 鈴木
栄一 漆畑
圭介 岩脇
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012513109A priority Critical patent/JP5010061B1/en
Priority to US14/346,153 priority patent/US20150326028A1/en
Priority to PCT/JP2011/071475 priority patent/WO2013042224A1/en
Priority to JP2012051760A priority patent/JP2013070590A/en
Publication of WO2013042224A1 publication Critical patent/WO2013042224A1/en
Priority to US14/568,207 priority patent/US20150130294A1/en
Priority to US14/568,470 priority patent/US20150130272A1/en
Priority to US14/568,350 priority patent/US20150130271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a technical field of a non-contact power transmission apparatus, a non-contact power reception apparatus, and a non-contact power supply system that perform power transfer in a contactless manner.
  • a non-contact power feeding device including: This method is called a primary series / secondary parallel resonant capacitor method.
  • the capacitance value Cp of the parallel capacitor on the secondary side is set to a value resonating with the sum of the leakage reactance x 2 excitation reactance x 0 and the secondary side in the power supply of the driving frequency (the omega 0) (Equation 1)
  • the capacitance value Cs of the primary side series capacitor is set so that the primary side power factor becomes 1 at the drive frequency (Equation 2) (see Patent Document 1).
  • Patent Documents 1 and 2 When the techniques described in Patent Documents 1 and 2 are applied to, for example, charging a battery mounted on an electric vehicle, typically, a power supply side circuit (primary coil) is embedded in the ground, and a power reception side circuit ( The secondary coil) is mounted on the lower part of the electric vehicle. For this reason, the distance between the power feeding side circuit and the power receiving side circuit varies depending on the height of the electric vehicle. Further, depending on the position where the driver stops the electric vehicle, there is a possibility that a horizontal displacement occurs between the power supply side circuit and the power reception side circuit.
  • a power supply side circuit primary coil
  • the secondary coil The secondary coil
  • the present invention has been made in view of, for example, the above-described problems, and does not depend on the distance between the power feeding side circuit and the power receiving side circuit and between the power feeding side circuit and the power receiving side circuit. It is an object of the present invention to propose a non-contact power transmission device, a non-contact power reception device, and a non-contact power feeding system that can efficiently transmit power even if a positional shift occurs.
  • a contactless power transmission device provides a power reception device including a power reception coil and a fixed capacitor electrically connected in parallel to the power reception coil by electromagnetic induction.
  • a contactless power transmission device that transmits power in a contactless manner, an AC power source that generates AC power, a power transmission coil that is electrically connected to the AC power source, and a power transmission coil that is electrically connected in series
  • a capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced. That is, the contactless power transmission device is a contactless power transmission device that constitutes a so-called primary series / secondary parallel resonance capacitor type contactless power feeding system.
  • the capacitance value of the fixed capacitor in the power receiving device is determined so as to resonate with the self-inductance associated with the power receiving coil at the driving frequency.
  • the capacitance value of the series capacitor electrically connected in series with the power transmission coil in the power transmission device is determined so that the power factor on the power transmission device side (that is, the primary side) becomes 1 at the above driving frequency (formula 1).
  • the optimum value of the capacitance value of this series capacitor varies depending on the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil (see Equation 4). Then, even if the distance between the power transmission coil and the power reception coil is set to one value and the capacitance value of the series capacitor is determined so that the power factor on the power transmission device side becomes 1 at the driving frequency, the actual power transmission If the distance between the coil and the power receiving coil deviates from the above one value, or if a horizontal displacement occurs between the power transmitting coil and the power receiving coil, the power factor becomes smaller than 1 (that is, the use of the power source). Efficiency decreases).
  • variable capacitor is electrically connected to the power transmission coil in series, and the level between the voltage phase and the current phase of the AC power is controlled by a capacity control means including a memory, a processor, The capacitance value of the variable capacitor is controlled so that the phase difference becomes small (that is, the power factor approaches 1).
  • the contactless power transmission device of the present invention even if the distance between the power transmission coil and the power reception coil changes or a horizontal displacement occurs, that is, the coupling between the power transmission coil and the power reception coil. Even if the degree (coupling coefficient) changes, power transmission can be performed efficiently.
  • the wireless communication device further includes coupling estimation means for estimating a degree of magnetic coupling between the power transmission coil and the power reception coil, and the capacity control means includes the estimated magnetic The capacitance value of the variable capacitor is controlled based on the degree of proper coupling.
  • the coupling estimation means including, for example, a memory, a processor, and the like estimates the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil. Since the optimum capacitance value of the series capacitor depends on the coupling coefficient as shown in (Equation 4), According to this aspect, the capacitance value of the variable capacitor can be controlled so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
  • the coupling estimation unit includes a distance measurement unit that measures a distance between the power transmission coil and the power reception coil, the distance, and a coupling coefficient that indicates a degree of the magnetic coupling. Conversion means for converting the measured distance into the coupling coefficient based on the stored correspondence relation.
  • the coupling estimation unit includes an acquisition unit that acquires at least one of a power reception side voltage value and a power reception side current value in the power receiving device, and a power transmission side voltage that is a voltage value of the AC power.
  • Detecting means for detecting at least one of a value and a power transmission side current value which is a current value of the AC power, at least one of the acquired power receiving side voltage value and power receiving side current value, and the detected power transmission side voltage
  • a correspondence between the calculation means for calculating the power transmission efficiency based on at least one of the value and the current value on the power transmission side, the power transmission efficiency, and the coupling coefficient indicating the degree of magnetic coupling is stored in advance.
  • converting means for converting the calculated power transmission efficiency into the coupling coefficient based on the stored correspondence.
  • the power receiving device is mounted on a mobile body
  • the coupling estimation unit includes a type acquisition unit that acquires a type of the mobile unit, the type, and the magnetic coupling.
  • a conversion means for previously storing the correspondence relationship with the coupling coefficient indicating the degree of the above and converting the acquired type into the coupling coefficient based on the stored correspondence relationship.
  • the coupling estimation unit includes a distance measurement unit that measures a distance between the power transmission coil and the power reception coil, and a direction along a surface of the power transmission coil that faces the power reception coil.
  • the positional deviation amount detecting means for detecting the positional deviation amount of the power transmission coil with respect to the power receiving coil, and the correspondence relationship between the distance and the positional deviation amount, and the coupling coefficient indicating the degree of magnetic coupling are stored in advance.
  • conversion means for converting the measured distance and the detected displacement amount into the coupling coefficient based on the stored correspondence relationship may be included.
  • the non-contact power transmission device further includes: a voltage phase detection unit that detects a voltage phase of the AC power; and a current phase detection unit that detects a current phase of the AC power, and the capacitance
  • the control means controls the capacitance value of the variable capacitor so that a phase difference between the detected voltage phase and the detected current phase becomes small.
  • the capacitance value of the variable capacitor can be controlled relatively easily so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
  • the wireless communication device further includes a coupling coefficient calculating unit that calculates a coupling coefficient between the power transmission coil and the power receiving coil, and the capacity control unit is based on the calculated coupling coefficient. Then, the capacitance value of the variable capacitor is controlled.
  • the capacitance value of the variable capacitor can be controlled relatively easily so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
  • a contactless power receiving device of the present invention includes an AC power source that generates an AC current, a power transmission coil that is electrically connected to the AC power source, and a power transmission coil that is electrically parallel to the power transmission coil.
  • a non-contact power receiving device for receiving electric power in a non-contact manner by electromagnetic induction from a power transmission device comprising a connected fixed capacitor, wherein the variable coil is electrically connected in series to the receiving coil and the receiving coil A capacitance capacitor; and capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced. That is, the non-contact power receiving device is a non-contact power receiving device that constitutes a so-called primary parallel / secondary series resonance capacitor type non-contact power feeding system.
  • the capacity control means reduces the phase difference between the voltage phase and the current phase of the AC power in the power transmission device (that is, the power factor on the power transmission device side is 1).
  • the capacitance value of the variable capacitor is controlled.
  • a contactless power supply system of the present invention is an AC power source that generates an AC current, a power transmission coil that is electrically connected to the AC power source, and non-contact by electromagnetic induction from the power transmission coil.
  • a non-contact power feeding system comprising a power receiving coil for receiving power, wherein the fixed capacitor is electrically connected in parallel to one of the power transmitting coil and the power receiving coil, and the other of the power transmitting coil and the power receiving coil
  • a capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced.
  • the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil is the same as that of the contactless power transmission device and the contactless power reception device of the present invention described above. Even if it changes, electric power transmission can be performed efficiently.
  • FIG. 1 is a block diagram showing the configuration of the non-contact power feeding system according to the first embodiment.
  • the non-contact power feeding system 1 includes a power transmission device 10 and a power reception device 20.
  • the power transmission device 10 includes: (i) a power transmission circuit 110 including an AC power source (not shown) that generates AC power; (ii) a power transmission coil 120 electrically connected to the power transmission circuit 110; A variable capacitor 130 electrically connected in series to the power transmission coil 120; (iv) a capacity control unit 140 that controls a capacitance value of the variable capacitor 130; (v) a power transmission coil 120; 220, and a coupling coefficient estimating unit 150 that estimates a coupling coefficient indicating the degree of coupling with 220.
  • the coupling coefficient estimation unit 150 includes a distance sensor 151 that measures the distance between the power transmission coil 120 and the power reception coil 220, and a distance-coupling coefficient conversion unit 152 that converts the distance measured by the distance sensor 151 into a coupling coefficient. It is prepared for.
  • the distance-coupling coefficient conversion unit 152 stores information indicating the correspondence between the distance and the coupling coefficient in advance. Then, the distance-coupling coefficient conversion unit 152 converts the distance measured by the distance sensor 151 into a coupling coefficient based on the information indicating the correspondence relationship between the distance and the coupling coefficient. Note that the information indicating the correspondence between the distance and the coupling coefficient is obtained by experiment or simulation, for example, by determining the relationship between the distance between the power transmission coil 120 and the power reception coil 220 and the self-inductance and leakage inductance of the power transmission coil 120. What is necessary is just to build based on this calculated
  • variable capacitor 130 is configured such that a plurality of fixed capacitors can be added in parallel by switching elements. If constituted in this way, it can be varied in increments of 0.01 ⁇ F, for example, from 0.01 ⁇ F (microfarad) to 0.15 ⁇ F.
  • FIG. 2 is a conceptual diagram illustrating an example of the variable capacitor according to the first embodiment.
  • variable capacitor 130 is not limited to the configuration shown in FIG. 2, for example, a capacitor (so-called variable capacitor) whose capacitance can be changed by rotating the rotating shaft, and a stepping that rotates the rotating shaft of the capacitor. And a motor.
  • the power receiving device 20 includes a load 210 such as a battery, a power receiving coil 220 electrically connected to the load 210, and a fixed capacitance capacitor electrically connected to the power receiving coil 220 in parallel. 230.
  • FIG. 3 is a circuit diagram showing a configuration of a non-contact power feeding system according to a comparative example.
  • the primary side (that is, the power transmission device) is connected in series to the AC power source AC, the primary coil L 1 electrically connected to the AC power source AC, and the primary coil L 1 . And a series capacitor Cs. Incidentally, the loss resistance of the primary side is R 1.
  • the secondary side (that is, the power receiving device) includes a load resistance R L , a secondary coil L 2 electrically connected to the load resistance R L, and an electrical parallel to the secondary coil L 2. And a connected parallel coil Cp.
  • the loss resistance of the secondary side is assumed to be R 2.
  • the capacitance value of the parallel capacitor Cp is formed based on the self-inductance L 2 and the power of the driving frequency of the secondary coil according to the above (Equation 3) It is determined. Subsequently, the capacitance value of the series capacitor Cs is determined according to the above (Equation 4) by measuring the mutual inductance or the coupling coefficient after setting the distance between the primary coil and the secondary coil to a predetermined value. .
  • the power value on the primary side can be set to 1 by determining the capacitance value of the parallel capacitor Cp and the capacitance value of the series capacitor Cs according to (Equation 3) and (Equation 4).
  • a soft switching method may be employed for the purpose of reducing switching loss.
  • the present invention includes mounting by allowing such a deviation.
  • the primary voltages V 1 when the distance between the primary coil L 1 and the secondary coil L 2 is 10 cm (i.e., the coupling coefficient is 0.46), the primary voltages V 1
  • the time variation of each of the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 is, for example, as shown in FIG. 4 upper part, an example of a primary voltage V 1 and the secondary-side voltage V 2 each time variation, 4 lower stage, an example of a primary-side current I 1 and the secondary-side current I 2 each time variation is there.
  • the primary side voltage V 1 , the primary side current I 1 , time variations of the secondary side voltage V 2 and the secondary side current I 2 are, for example, as shown in FIG.
  • the upper part of FIG. 5 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIG. 5 is the primary part having the same purpose as the lower part of FIG. it is another example of a side current I 1 and the secondary-side current I 2 each time fluctuation.
  • phase of the primary current I 1 is delayed by about 65 degrees from the phase of the primary voltage V 1 . For this reason, the power factor on the primary side is reduced to 0.41, and the effective power use efficiency is also reduced to 34.7%.
  • the primary voltage V 1 and the primary current are, for example, as shown in FIG.
  • the upper part of FIG. 6 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIG. 6 is the primary part having the same purpose as the lower part of FIG. it is another example of a side current I 1 and the secondary-side current I 2 each time fluctuation.
  • FIG. 7 shows the relationship between the coupling coefficient and the effective power utilization efficiency.
  • FIG. 7 is a characteristic diagram showing an example of the relationship between the coupling coefficient and the power supply effective utilization efficiency.
  • the solid line shows an example of the relationship between the coupling coefficient of the contactless power feeding system according to this embodiment and the power supply effective utilization efficiency
  • the broken line shows the coupling coefficient and the power source of the contactless power feeding system according to the comparative example. An example of the relationship with the effective utilization efficiency is shown.
  • the primary side is typically embedded in the ground and the secondary side is mounted on the lower portion of the electric vehicle.
  • the primary coil L 1 and the secondary coil set by the designer in advance according to some standard (for example, vehicle height information of an electric vehicle scheduled to be equipped with the non-contact power feeding system). using coupling coefficients in the distance between L 2, the capacitance value of the series capacitor Cs is determined.
  • the distance between the primary coil L 1 and the secondary coil L 2 is, when it becomes larger than the design value, i.e., if the coupling coefficient is smaller than the design value, as shown by the broken line in FIG. 7, the power efficient use Efficiency can be significantly reduced.
  • the voltage phase and current phase of the AC power source that is, the primary side
  • the capacitance value of the variable capacitor 130 is controlled so that the phase difference becomes small, in other words, the power factor on the primary side approaches 1. Therefore, as shown by the solid line in FIG. 7, the transmitting coil 120 and the distance between the power receiving coil 220 (i.e., corresponding to the distance between the primary coil L 1 and the secondary coil L 2) even if, deviates from the design value Thus, it is possible to suppress a decrease in the effective power use efficiency.
  • the time variations of the primary side voltage V 1 , the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 at this time are, for example, as shown in FIG. It should be noted in FIG. 8 that the phase of the primary side voltage V 1 and the phase of the primary side current I 1 coincide with each other, and the primary side power factor is 1. At this time, the effective power use efficiency was improved to 85.1%.
  • the time variations of the primary side voltage V 1 , the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 at this time are, for example, as shown in FIG. It should be noted in FIG. 9 that the phase of the primary side voltage V 1 and the phase of the primary side current I 1 coincide with each other, and the power factor on the primary side is 1. At this time, the effective power use efficiency was improved to 96.3%.
  • FIGS. 8 and 9 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIGS. 4 the lower the same spirit, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation.
  • the “power transmission device 10”, the “capacity control unit 140”, the “coupling coefficient estimation unit 150”, the “distance sensor 151”, and the “distance-coupling coefficient conversion unit 152” according to the present embodiment are respectively “ It is an example of a “contactless power transmission device”, “capacity control means”, “coupling estimation means”, “distance measurement means”, and “conversion means”.
  • FIG. 10 is a block diagram showing a configuration of a non-contact power feeding system according to the second embodiment having the same concept as in FIG.
  • the coupling coefficient estimator 150 includes, for example, an imaging device 154 disposed on the surface of the power transmission coil 120 facing the power reception coil 220 and in the vicinity of the center of the power transmission coil 120, and imaging by the imaging device 154. Based on the obtained image, a positional deviation amount detection unit 153 that detects the positional deviation amount between the center of the power transmission coil 120 and the center of the power reception coil 220, the distance measured by the distance sensor 151, and the positional deviation amount detection unit 153. And a distance / position deviation amount-coupling coefficient conversion unit 155 for obtaining a coupling coefficient based on the positional deviation amount detected by the above.
  • the power receiving device 20 is provided with a positioning mark 220m.
  • an imaging device 154 that is a CCD (Charge Coupled Device) camera, an optical sensor, or the like images the mark 220m, and the positional deviation amount detection unit 153 detects the positional deviation amount based on the captured mark 220m.
  • CCD Charge Coupled Device
  • the distance / position deviation amount-coupling coefficient conversion unit 155 records information indicating what value the coupling coefficient between the power transmission coil 120 and the power reception coil 220 takes when the distance and the position deviation amount each change. (Lookup table) is stored. Based on the distance measured by the distance sensor 151 and the positional deviation amount detected by the positional deviation amount detection unit 153, the distance / position deviation amount-coupling coefficient conversion unit 155 obtains a corresponding coupling coefficient from the lookup table. Ask.
  • the capacitance control unit 140 sets the capacitance value of the variable capacitor 130 according to the coupling coefficient obtained by the distance / position deviation amount-coupling coefficient conversion unit 155 and the above (Equation 4).
  • the “position displacement amount detection unit 153” according to the present embodiment is an example of the “position displacement amount detection unit” according to the present invention.
  • the “distance / position deviation amount-coupling coefficient conversion unit 155” according to the present embodiment is another example of the “conversion unit” according to the present invention.
  • FIG. 11 is a block diagram showing a configuration of a non-contact power feeding system according to the third embodiment having the same concept as in FIG.
  • the power receiving device 20 transmits a voltage sensor 241 that measures a voltage value in the power receiving device 20, a current sensor 242 that measures a current value in the power receiving device 20, and the measured voltage value and current value. And a wireless interface (I / F) unit 243 for transmitting to the device 10.
  • a voltage sensor 241 that measures a voltage value in the power receiving device 20
  • a current sensor 242 that measures a current value in the power receiving device 20
  • a wireless interface (I / F) unit 243 for transmitting to the device 10.
  • the power transmission device 10 includes a voltage sensor 161 that detects a voltage value of AC power, a current sensor 162 that detects a current value of the AC power, a wireless interface unit 163, and an efficiency calculation unit 164 that calculates power transmission efficiency. And an efficiency-coupling coefficient conversion unit 165 that converts the calculated power transmission efficiency into a coupling coefficient.
  • the efficiency calculation unit 164 includes at least one of the voltage value detected by the voltage sensor 161 and the current value detected by the current sensor 162, and the voltage value and current value in the power receiving device 20 acquired via the wireless interface unit 163.
  • the power transmission efficiency is calculated based on at least one of the above.
  • the efficiency-coupling coefficient conversion unit 165 stores information indicating the correspondence relationship between the power transmission efficiency and the coupling coefficient in advance. Then, the efficiency-coupling coefficient conversion unit 165 converts the calculated power transmission efficiency into a coupling coefficient based on information indicating a correspondence relationship between the power transmission efficiency and the coupling coefficient.
  • the information indicating the correspondence relationship between the power transmission efficiency and the coupling coefficient is obtained by, for example, experimenting or simulating the value of the primary series capacitor after fixing the value of the primary series capacitor to, for example, the self-inductance of the power transmission coil 120. And the leakage inductance may be obtained while changing the distance between the primary coil and the secondary coil, and the leakage inductance may be constructed based on the obtained relationship.
  • the “voltage sensor 161” and the “current sensor 162” according to the present embodiment are examples of the “detection unit” according to the present invention.
  • the “wireless interface unit 163” and the “efficiency calculation unit 164” according to the present embodiment are examples of the “acquisition unit” and the “calculation unit” according to the present invention, respectively.
  • the “efficiency-coupling coefficient conversion unit 165” according to the present embodiment is another example of the “conversion unit” according to the present invention.
  • FIG. 12 is a block diagram showing a configuration of a non-contact power feeding system according to the fourth embodiment having the same concept as in FIG.
  • the power receiving device 20 further includes a secondary coil open / short circuit unit 244 that enables the power receiving coil 220 to be opened or short-circuited.
  • the power transmission device 10 controls the secondary coil open / short circuit 244 and the coupling coefficient measurement that controls the inductance measurement unit 166 via the (i) inductance measurement unit 166 and (ii) the wireless interface unit 163.
  • the control unit 167 further includes (iii) a coupling coefficient calculation unit 168 that calculates a coupling coefficient based on the inductance measured by the inductance measurement unit 166.
  • the method for obtaining the coupling coefficient in the present embodiment is a method based on the coupling coefficient measurement method defined in JIS-C5321.
  • the coupling coefficient measurement control unit 167 controls the secondary coil open / short circuit unit 244 via the wireless interface unit 163 so that the power receiving coil 220 is opened. At this time, the inductance value (Lopen) of the power transmission coil 120 is measured by the inductance measuring unit 166.
  • the coupling coefficient measurement control unit 167 controls the secondary coil open / short circuit unit 244 via the wireless interface unit 163 so that the power receiving coil 220 is short-circuited.
  • the inductance measurement unit 166 measures the inductance value (Lshort) of the power transmission coil 120.
  • the coupling coefficient calculation unit 168 calculates a coupling coefficient according to the following (Equation 5) based on the measured two inductance values (“Lopen” and “Lshort”).
  • the capacitance control unit 140 sets the capacitance value of the variable capacitor 130 in accordance with the above (Equation 4) using the coupling coefficient calculated by the coupling coefficient calculation unit 168.
  • FIG. 13 is a block diagram showing a configuration of a non-contact power feeding system according to the fifth embodiment having the same concept as in FIG. Especially in 5th Embodiment, the power receiving apparatus 20 shall be mounted in the electric vehicle as an example of the "moving body" concerning this invention.
  • the power receiving device 20 includes (i) a database 250 that stores information on the electric vehicle on which the power receiving device 20 is mounted, and (ii) at least the electric vehicle among the information stored in the database 250.
  • the wireless interface unit 243 further transmits information indicating the vehicle type to the power transmission device 10.
  • the power transmission device 10 further includes a wireless interface unit 163, a database 172 that stores information related to each of a plurality of vehicle types in advance, and a vehicle type-coupling coefficient conversion unit 171 that obtains a coupling coefficient based on the information related to the vehicle type. It is prepared for.
  • the vehicle type-coupling coefficient conversion unit 171 is information related to each of a plurality of vehicle types stored in the database 172 based on the information indicating the vehicle type of the electric vehicle on which the power receiving device 20 is acquired, acquired via the wireless interface unit 163. Then, information (for example, vehicle height value) related to the corresponding vehicle type is acquired, and a coupling coefficient is obtained based on the acquired information.
  • the database 172 accesses, for example, a server device (not shown) provided on an external network 173 such as the Internet via a wireless LAN (Local Area Network) or the like, and stores information related to each of a plurality of stored vehicle types. It is configured to be at least partially updateable.
  • a server device not shown
  • an external network 173 such as the Internet via a wireless LAN (Local Area Network) or the like
  • the “wireless interface unit 163” according to the present embodiment is an example of the “type acquisition unit” according to the present invention, and the “vehicle type-coupling coefficient conversion unit 171” according to the present embodiment is the “conversion unit” according to the present invention. Is another example.
  • FIG. 14 is a block diagram showing the configuration of the non-contact power feeding system according to the sixth embodiment having the same concept as in FIG.
  • the power transmission device 10 includes a voltage sensor 161 that detects a voltage value of AC power, a current sensor 162 that detects a current value of the AC power, and a level between a voltage value phase and a current value phase. And a phase difference calculation unit 180 that calculates the phase difference.
  • the capacitance control unit 140 controls the capacitance value of the variable capacitor 130 so that the phase difference calculated by the phase difference calculation unit 180 becomes small.
  • phase difference calculation unit 180 is an example of the “voltage phase detection unit” and the “current phase detection unit” according to the present invention.
  • FIG. 15 is a block diagram showing a configuration of a non-contact power feeding system according to the seventh embodiment having the same concept as in FIG.
  • the non-contact power feeding system 2 includes a power transmitting device 11 and a power receiving device 21.
  • the power transmission device 11 includes a power transmission circuit 110, a power transmission coil 120 electrically connected to the power transmission circuit 110, and a fixed capacitor 190 electrically connected to the power transmission coil 120 in parallel. ing.
  • the power receiving device 21 includes (i) a load 210, (ii) a power receiving coil 220 electrically connected to the load 210, and (iii) a variable capacitor 261 electrically connected in series to the power receiving coil 220. And (iv) a database 250 that stores information related to the electric vehicle on which the power receiving device 21 is mounted, and (v) out of information stored in the database 250, based on information indicating the type of the electric vehicle.
  • the vehicle type-coupling coefficient conversion unit 263 that determines the coupling coefficient, and (vi) a capacity control unit 262 that controls the capacitance value of the variable capacitor 261 based on the determined conversion coefficient.
  • the “power receiving device 21” according to the present embodiment is an example of the “non-contact power receiving device” according to the present invention.
  • a device, a non-contact power receiving device, and a non-contact power transmission system are also included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A non-contact power transmitting apparatus (10) transmits power in a non-contact manner by means of electromagnetic induction to a power receiving apparatus (20), which is provided with a power receiving coil (220), and a fixed-capacity capacitor (230) electrically connected in parallel to the power receiving coil. The non-contact power transmitting apparatus is provided with: an alternating current power supply (110) that generates alternating current power; a power transmitting coil (120) electrically connected to the alternating current power supply; a variable-capacity capacitor (130) electrically connected in series to the power transmitting coil; and a capacity control means (140), which controls a capacity value of the variable-capacity capacitor such that a phase difference between a voltage phase and a current phase of the alternating current power is small.

Description

非接触電力送電装置、非接触電力受電装置、及び非接触給電システムNon-contact power transmission device, non-contact power reception device, and non-contact power supply system
 本発明は、非接触に電力授受を行う非接触電力送電装置、非接触電力受電装置、及び非接触給電システムの技術分野に関する。 The present invention relates to a technical field of a non-contact power transmission apparatus, a non-contact power reception apparatus, and a non-contact power supply system that perform power transfer in a contactless manner.
 この種の装置として、例えば交流電源で駆動される一次コイル(送電コイル)に電気的に直列に接続された直列コンデンサと、二次コイル(受電コイル)に電気的に並列に接続された並列コンデンサと、を備える非接触給電装置が提案されている。この方式は、一次直列・二次並列共振コンデンサ方式と呼ばれる。この方式では、二次側の並列コンデンサの容量値Cpは、電源の駆動周波数(ωとする)において励磁リアクタンスxと二次側の漏洩リアクタンスxとの和と共振する値に設定され(式1)、一次側の直列コンデンサの容量値Csは、駆動周波数において一次側の力率が1となるように設定される(式2)(特許文献1参照)。 As this type of device, for example, a series capacitor electrically connected in series to a primary coil (power transmission coil) driven by an AC power supply, and a parallel capacitor electrically connected in parallel to a secondary coil (power reception coil) There has been proposed a non-contact power feeding device including: This method is called a primary series / secondary parallel resonant capacitor method. In this manner, the capacitance value Cp of the parallel capacitor on the secondary side is set to a value resonating with the sum of the leakage reactance x 2 excitation reactance x 0 and the secondary side in the power supply of the driving frequency (the omega 0) (Equation 1) The capacitance value Cs of the primary side series capacitor is set so that the primary side power factor becomes 1 at the drive frequency (Equation 2) (see Patent Document 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
                                    (式1) S
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
                                    (式2)
 或いは、受電回路のインダクタンスが変化した場合にその補正を行うために、受電回路に、固定容量の共振コンデンサと、スイッチングの時間率で容量が変化する可変容量コンデンサと、が設けられた装置が提案されている(特許文献2参照)。
(Formula 2)
Alternatively, in order to correct when the inductance of the power receiving circuit changes, a device is proposed in which the power receiving circuit is provided with a fixed-capacitance resonant capacitor and a variable capacitor whose capacity changes with the switching time rate. (See Patent Document 2).
国際公開第2007/029438号International Publication No. 2007/029438 特開2004-72832号公報JP 2004-72832 A
 上記特許文献1及び2に記載の技術が、例えば電気自動車に搭載されるバッテリの充電に適用された場合、典型的には、給電側回路(一次コイル)は地面に埋め込まれ、受電側回路(二次コイル)は電気自動車の下部に搭載される。このため、給電側回路と受電側回路との間の距離は、電気自動車の車高によって変化することとなる。また、運転者が電気自動車を停車させた位置により、給電側回路と受電側回路との間に水平方向の位置ずれが発生する可能性がある。 When the techniques described in Patent Documents 1 and 2 are applied to, for example, charging a battery mounted on an electric vehicle, typically, a power supply side circuit (primary coil) is embedded in the ground, and a power reception side circuit ( The secondary coil) is mounted on the lower part of the electric vehicle. For this reason, the distance between the power feeding side circuit and the power receiving side circuit varies depending on the height of the electric vehicle. Further, depending on the position where the driver stops the electric vehicle, there is a possibility that a horizontal displacement occurs between the power supply side circuit and the power reception side circuit.
 上記特許文献1に記載の技術において、並列コンデンサの容量値Cp、及び直列コンデンサの容量値Csを設定する上記二つの式(式1)及び(式2)を、一次コイル及び二次コイル各々の自己インダクタンスL及びL、一次コイル及び二次コイル間の相互インダクタンスLを用いて変形すると、下記(式3)及び(式4)のように表わされる。尚、この変形では、一次コイル及び二次コイル間の磁気的な結合の度合いを表わす係数(即ち、結合係数)をkとして、L=k√(L×L)の関係を用いている。 In the technique described in Patent Document 1, the two equations (Equation 1) and (Equation 2) for setting the capacitance value Cp of the parallel capacitor and the capacitance value Cs of the series capacitor are expressed by the respective values of the primary coil and the secondary coil. When transformed using the self-inductances L 1 and L 2 and the mutual inductance L m between the primary coil and the secondary coil, they are expressed as (Equation 3) and (Equation 4) below. In this modification, the coefficient representing the degree of magnetic coupling between the primary coil and the secondary coil (that is, the coupling coefficient) is k, and the relationship of L m = k√ (L 1 × L 2 ) is used. Yes.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
                                    (式3) S
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
                                    (式4)
 (式3)より、並列コンデンサの要領値Cpは二次コイルの自己インダクタンスL2と電源の駆動周波数とで決定されることが分かる。他方、(式4)より、直列コンデンサの容量値Csは一次コイルの自己インダクタンスL1と駆動周波数に加えて、一次コイル及び二次コイル間の結合係数kに依存していることが分かる。従って、直列コンデンサの容量値Csをある設計値に固定してしまうと、電気自動車のバッテリの充電に適用された場合で述べたように、給電側回路と受電側回路との間の距離が設計値からずれた場合や、給電側回路と受電側回路との間に水平方向の位置ずれが発生した場合では、一次コイル及び二次コイル間の結合係数が変化してしまうため、給電効率が著しく低下する可能性があるという技術的問題点がある。他方、上記特許文献2に記載の技術のように、受電側回路に、コイルと電気的に並列に接続された可変容量コンデンサを設けると、給電側回路の電源の利用効率が低下する可能性があるという技術的問題点がある。
(Formula 4)
From (Equation 3), it is understood that the value Cp of the parallel capacitor is determined by the self-inductance L2 of the secondary coil and the driving frequency of the power source. On the other hand, it can be seen from (Equation 4) that the capacitance value Cs of the series capacitor depends on the coupling coefficient k between the primary coil and the secondary coil in addition to the self-inductance L1 of the primary coil and the driving frequency. Therefore, if the capacitance value Cs of the series capacitor is fixed to a certain design value, the distance between the power supply side circuit and the power reception side circuit is designed as described in the case of application to the charging of the battery of the electric vehicle. When the value deviates from the value, or when a horizontal displacement occurs between the power supply side circuit and the power reception side circuit, the coupling coefficient between the primary coil and the secondary coil changes. There is a technical problem that it may be reduced. On the other hand, if a variable capacitor connected electrically in parallel with the coil is provided in the power receiving side circuit as in the technique described in Patent Document 2, the power use efficiency of the power feeding side circuit may be reduced. There is a technical problem.
 本発明は、例えば上記問題点に鑑みてなされたものであり、給電側回路と受電側回路との間の距離に依らずに、また、給電側回路と受電側回路との間に水平方向の位置ずれが発生しても、効率良く電力伝送を行うことができる非接触電力送電装置、非接触電力受電装置、及び非接触給電システムを提案することを課題とする。 The present invention has been made in view of, for example, the above-described problems, and does not depend on the distance between the power feeding side circuit and the power receiving side circuit and between the power feeding side circuit and the power receiving side circuit. It is an object of the present invention to propose a non-contact power transmission device, a non-contact power reception device, and a non-contact power feeding system that can efficiently transmit power even if a positional shift occurs.
 本発明の非接触電力送電装置は、上記課題を解決するために、受電コイルと、前記受電コイルに電気的に並列に接続された固定容量コンデンサと、を備える受電装置に対して、電磁誘導により非接触で電力を送電する非接触電力送電装置であって、交流電力を発生させる交流電源と、前記交流電源に電気的に接続された送電コイルと、前記送電コイルに電気的に直列に接続された可変容量コンデンサと、前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、を備えて構成される。つまり、当該非接触電力送電装置は、所謂一次直列・二次並列共振コンデンサ方式の非接触給電システムを構成する非接触電力送電装置である。 In order to solve the above-described problem, a contactless power transmission device according to the present invention provides a power reception device including a power reception coil and a fixed capacitor electrically connected in parallel to the power reception coil by electromagnetic induction. A contactless power transmission device that transmits power in a contactless manner, an AC power source that generates AC power, a power transmission coil that is electrically connected to the AC power source, and a power transmission coil that is electrically connected in series And a capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced. That is, the contactless power transmission device is a contactless power transmission device that constitutes a so-called primary series / secondary parallel resonance capacitor type contactless power feeding system.
 ここで、受電装置における固定容量コンデンサの容量値は、駆動周波数において受電コイルに係る自己インダクタンスと共振するように決定される。他方、送電装置において送電コイルと電気的に直列に接続された直列コンデンサの容量値は、上記駆動周波数において送電装置側(即ち、一次側)の力率が1となるように決定される(式1参照)。 Here, the capacitance value of the fixed capacitor in the power receiving device is determined so as to resonate with the self-inductance associated with the power receiving coil at the driving frequency. On the other hand, the capacitance value of the series capacitor electrically connected in series with the power transmission coil in the power transmission device is determined so that the power factor on the power transmission device side (that is, the primary side) becomes 1 at the above driving frequency (formula 1).
 この直列コンデンサの容量値は、送電コイル及び受電コイル間の磁気的な結合の度合い(結合係数)に応じて最適値が変化する(式4参照)。すると、送電コイル及び受電コイル間の距離を一の値に設定して、上記駆動周波数において送電装置側の力率が1となるように直列コンデンサの容量値が決定されたとしても、実際の送電コイル及び受電コイル間の距離が上記一の値からずれたり、送電コイルと受電コイルとの間に水平方向の位置ずれが発生したりすると力率が1より小さくなってしまう(つまり、電源の利用効率が低下してしまう)。 The optimum value of the capacitance value of this series capacitor varies depending on the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil (see Equation 4). Then, even if the distance between the power transmission coil and the power reception coil is set to one value and the capacitance value of the series capacitor is determined so that the power factor on the power transmission device side becomes 1 at the driving frequency, the actual power transmission If the distance between the coil and the power receiving coil deviates from the above one value, or if a horizontal displacement occurs between the power transmitting coil and the power receiving coil, the power factor becomes smaller than 1 (that is, the use of the power source). Efficiency decreases).
 そこで本発明では、可変容量コンデンサが、送電コイルに電気的に直列に接続されると共に、例えばメモリ、プロセッサ等を備えてなる容量制御手段により、交流電力の電圧位相と電流位相との間の位相差が小さくなるように(即ち、力率が1に近づくように)可変容量コンデンサの容量値が制御される。 Therefore, in the present invention, the variable capacitor is electrically connected to the power transmission coil in series, and the level between the voltage phase and the current phase of the AC power is controlled by a capacity control means including a memory, a processor, The capacitance value of the variable capacitor is controlled so that the phase difference becomes small (that is, the power factor approaches 1).
 この結果、本発明の非接触電力送電装置によれば、送電コイル及び受電コイル間の距離が変化したり、水平方向の位置ずれが発生したりしても、つまり送電コイル及び受電コイル間の結合の度合い(結合係数)が変化しても、効率良く電力伝送を行うことができる。 As a result, according to the contactless power transmission device of the present invention, even if the distance between the power transmission coil and the power reception coil changes or a horizontal displacement occurs, that is, the coupling between the power transmission coil and the power reception coil. Even if the degree (coupling coefficient) changes, power transmission can be performed efficiently.
 本発明の非接触電力送電装置の一態様では、前記送電コイルと前記受電コイルとの磁気的な結合の度合いを推定する結合推定手段を更に備え、前記容量制御手段は、前記推定された磁気的な結合の度合いに基づいて、前記可変容量コンデンサの容量値を制御する。 In one aspect of the non-contact power transmission apparatus of the present invention, the wireless communication device further includes coupling estimation means for estimating a degree of magnetic coupling between the power transmission coil and the power reception coil, and the capacity control means includes the estimated magnetic The capacitance value of the variable capacitor is controlled based on the degree of proper coupling.
 この態様によれば、例えばメモリ、プロセッサ等を備えてなる結合推定手段は、送電コイルと受電コイルとの磁気的な結合の度合い(結合係数)を推定する。直列コンデンサの最適な容量値は(式4)に示すように結合係数に依存しているので、
この態様によれば、交流電力の電圧位相と電流位相との間の位相差が小さくなるように可変容量コンデンサの容量値を制御することができる。
According to this aspect, the coupling estimation means including, for example, a memory, a processor, and the like estimates the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil. Since the optimum capacitance value of the series capacitor depends on the coupling coefficient as shown in (Equation 4),
According to this aspect, the capacitance value of the variable capacitor can be controlled so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
 結合推定手段を備える態様では、前記結合推定手段は、前記送電コイルと前記受電コイルとの間の距離を測定する距離測定手段と、前記距離と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記測定された距離を前記結合係数に変換する変換手段と、を有してよい。 In an aspect including a coupling estimation unit, the coupling estimation unit includes a distance measurement unit that measures a distance between the power transmission coil and the power reception coil, the distance, and a coupling coefficient that indicates a degree of the magnetic coupling. Conversion means for converting the measured distance into the coupling coefficient based on the stored correspondence relation.
 このように構成すれば、比較的容易にして磁気的な結合の度合いを推定することができ、実用上非常に有利である。 Such a configuration makes it possible to estimate the degree of magnetic coupling relatively easily and is very advantageous in practice.
 或いは、結合推定手段を備える態様では、前記結合推定手段は、前記受電装置における受電側電圧値及び受電側電流値の少なくとも一方を取得する取得手段と、前記交流電力の電圧値である送電側電圧値、及び前記交流電力の電流値である送電側電流値の少なくとも一方を検出する検出手段と、前記取得された受電側電圧値及び受電側電流値の少なくとも一方と、前記検出された送電側電圧値及び送電側電流値の少なくとも一方と、に基づいて電力伝送効率を算出する算出手段と、前記電力伝送効率と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記算出された電力伝送効率を前記結合係数に変換する変換手段と、を有してよい。 Alternatively, in an aspect including a coupling estimation unit, the coupling estimation unit includes an acquisition unit that acquires at least one of a power reception side voltage value and a power reception side current value in the power receiving device, and a power transmission side voltage that is a voltage value of the AC power. Detecting means for detecting at least one of a value and a power transmission side current value which is a current value of the AC power, at least one of the acquired power receiving side voltage value and power receiving side current value, and the detected power transmission side voltage A correspondence between the calculation means for calculating the power transmission efficiency based on at least one of the value and the current value on the power transmission side, the power transmission efficiency, and the coupling coefficient indicating the degree of magnetic coupling is stored in advance. And converting means for converting the calculated power transmission efficiency into the coupling coefficient based on the stored correspondence.
 このように構成すれば、比較的容易にして磁気的な結合の度合いを推定することができ、実用上非常に有利である。 Such a configuration makes it possible to estimate the degree of magnetic coupling relatively easily and is very advantageous in practice.
 或いは、結合推定手段を備える態様では、前記受電装置は移動体に搭載されており、前記結合推定手段は、前記移動体の種別を取得する種別取得手段と、前記種別と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記取得された種別を前記結合係数に変換する変換手段と、を有してよい。 Alternatively, in an aspect including a coupling estimation unit, the power receiving device is mounted on a mobile body, and the coupling estimation unit includes a type acquisition unit that acquires a type of the mobile unit, the type, and the magnetic coupling. And a conversion means for previously storing the correspondence relationship with the coupling coefficient indicating the degree of the above and converting the acquired type into the coupling coefficient based on the stored correspondence relationship.
 このように構成すれば、当該非接触電力送電装置を、例えば電気自動車等の移動体に適用した場合に、比較的容易にして磁気的な結合の度合いを推定することができる。 With this configuration, when the contactless power transmission device is applied to a moving body such as an electric vehicle, the degree of magnetic coupling can be estimated relatively easily.
 或いは、結合推定手段を備える態様では、前記結合推定手段は、前記送電コイルと前記受電コイルとの間の距離を測定する距離測定手段と、前記送電コイルの前記受電コイルに対向する面に沿う方向における前記送電コイルの前記受電コイルに対する位置ずれ量を検出する位置ずれ量検出手段と、前記距離及び前記位置ずれ量と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記測定された距離及び前記検出された位置ずれ量を、前記結合係数に変換する変換手段と、を有してよい。 Alternatively, in an aspect including a coupling estimation unit, the coupling estimation unit includes a distance measurement unit that measures a distance between the power transmission coil and the power reception coil, and a direction along a surface of the power transmission coil that faces the power reception coil. The positional deviation amount detecting means for detecting the positional deviation amount of the power transmission coil with respect to the power receiving coil, and the correspondence relationship between the distance and the positional deviation amount, and the coupling coefficient indicating the degree of magnetic coupling are stored in advance. In addition, conversion means for converting the measured distance and the detected displacement amount into the coupling coefficient based on the stored correspondence relationship may be included.
 このように構成すれば、比較的容易にして磁気的な結合の度合いを推定することができ、実用上非常に有利である。 Such a configuration makes it possible to estimate the degree of magnetic coupling relatively easily and is very advantageous in practice.
 本発明の非接触電力送電装置の他の態様では、前記交流電力の電圧位相を検出する電圧位相検出手段と、前記交流電力の電流位相を検出する電流位相検出手段と、を更に備え、前記容量制御手段は、前記検出された電圧位相及び前記検出された電流位相間の位相差が小さくなるように、前記可変容量コンデンサの容量値を制御する。 In another aspect of the non-contact power transmission apparatus of the present invention, the non-contact power transmission device further includes: a voltage phase detection unit that detects a voltage phase of the AC power; and a current phase detection unit that detects a current phase of the AC power, and the capacitance The control means controls the capacitance value of the variable capacitor so that a phase difference between the detected voltage phase and the detected current phase becomes small.
 この態様によれば、比較的容易にして、交流電力の電圧位相と電流位相との間の位相差が小さくなるように可変容量コンデンサの容量値を制御することができる。 According to this aspect, the capacitance value of the variable capacitor can be controlled relatively easily so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
 本発明の非接触電力送電装置の他の態様では、前記送電コイルと前記受電コイルとの結合係数を算出する結合係数算出手段を更に備え、前記容量制御手段は、前記算出された結合係数に基づいて、前記可変容量コンデンサの容量値を制御する。 In another aspect of the non-contact power transmission apparatus of the present invention, the wireless communication device further includes a coupling coefficient calculating unit that calculates a coupling coefficient between the power transmission coil and the power receiving coil, and the capacity control unit is based on the calculated coupling coefficient. Then, the capacitance value of the variable capacitor is controlled.
 この態様によれば、比較的容易にして、交流電力の電圧位相と電流位相との間の位相差が小さくなるように可変容量コンデンサの容量値を制御することができる。 According to this aspect, the capacitance value of the variable capacitor can be controlled relatively easily so that the phase difference between the voltage phase and the current phase of the AC power is reduced.
 本発明の非接触電力受電装置は、上記課題を解決するために、交流電流を発生させる交流電源と、前記交流電源に電気的に接続された送電コイルと、前記送電コイルに電気的に並列に接続された固定容量コンデンサと、を備える送電装置から、電磁誘導により非接触で電力を受電する非接触電力受電装置であって、受電コイルと、前記受電コイルに電気的に直列に接続された可変容量コンデンサと、前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、を備えて構成される。つまり、当該非接触電力受電装置は、所謂一次並列・二次直列共振コンデンサ方式の非接触給電システムを構成する非接触電力受電装置である。 In order to solve the above problems, a contactless power receiving device of the present invention includes an AC power source that generates an AC current, a power transmission coil that is electrically connected to the AC power source, and a power transmission coil that is electrically parallel to the power transmission coil. A non-contact power receiving device for receiving electric power in a non-contact manner by electromagnetic induction from a power transmission device comprising a connected fixed capacitor, wherein the variable coil is electrically connected in series to the receiving coil and the receiving coil A capacitance capacitor; and capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced. That is, the non-contact power receiving device is a non-contact power receiving device that constitutes a so-called primary parallel / secondary series resonance capacitor type non-contact power feeding system.
 本発明の非接触電力受電装置では特に、容量制御手段により、送電装置における交流電力の電圧位相と電流位相との間の位相差が小さくなるように(即ち、送電装置側の力率が1となるように)、可変容量コンデンサの容量値が制御される。この結果、本発明の非接触電力受電装置によれば、送電コイル及び受電コイル間の磁気的な結合の度合い(結合係数)が変化しても、効率良く電力伝送を行うことができる。 In the contactless power receiving device of the present invention, in particular, the capacity control means reduces the phase difference between the voltage phase and the current phase of the AC power in the power transmission device (that is, the power factor on the power transmission device side is 1). The capacitance value of the variable capacitor is controlled. As a result, according to the contactless power receiving device of the present invention, even if the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power receiving coil changes, power transmission can be performed efficiently.
 尚、本発明の非接触電力受電装置においても、上述した本発明の非接触電力送電装置の各種態様と同様の各種態様を採ることができる。 In addition, also in the non-contact electric power receiving apparatus of this invention, the various aspects similar to the various aspects of the non-contact electric power transmission apparatus of this invention mentioned above can be taken.
 本発明の非接触給電システムは、上記課題を解決するために、交流電流を発生させる交流電源と、前記交流電源に電気的に接続された送電コイルと、前記送電コイルから電磁誘導により非接触で電力を受電する受電コイルと、を備える非接触給電システムであって、前記送電コイル及び前記受電コイルの一方に電気的に並列に接続された固定容量コンデンサと、前記送電コイル及び前記受電コイルの他方に電気的に直列に接続された可変容量コンデンサと、前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、を備える。 In order to solve the above-described problems, a contactless power supply system of the present invention is an AC power source that generates an AC current, a power transmission coil that is electrically connected to the AC power source, and non-contact by electromagnetic induction from the power transmission coil. A non-contact power feeding system comprising a power receiving coil for receiving power, wherein the fixed capacitor is electrically connected in parallel to one of the power transmitting coil and the power receiving coil, and the other of the power transmitting coil and the power receiving coil And a capacitance control means for controlling a capacitance value of the variable capacitance capacitor so that a phase difference between a voltage phase and a current phase of the AC power is reduced. Prepare.
 本発明の非接触電力送電システムによれば、上述した本発明の非接触電力送電装置及び非接触電力受電装置と同様に、送電コイル及び受電コイル間の磁気的な結合の度合い(結合係数)が変化しても、効率良く電力伝送を行うことができる。 According to the contactless power transmission system of the present invention, the degree of magnetic coupling (coupling coefficient) between the power transmission coil and the power reception coil is the same as that of the contactless power transmission device and the contactless power reception device of the present invention described above. Even if it changes, electric power transmission can be performed efficiently.
 尚、本発明の非接触給電システムにおいても、上述した本発明の非接触電力送電装置の各種態様と同様の各種態様を採ることができる。 In addition, also in the non-contact electric power feeding system of this invention, the various aspects similar to the various aspects of the non-contact electric power transmission apparatus of this invention mentioned above can be taken.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
第1実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 1st Embodiment. 第1実施形態に係る可変容量コンデンサの一例を示す概念図である。It is a conceptual diagram which shows an example of the variable capacitor which concerns on 1st Embodiment. 比較例に係る非接触給電システムの構成を示す回路図である。It is a circuit diagram which shows the structure of the non-contact electric power feeding system which concerns on a comparative example. 一次側電圧V、二次側電圧V、一次側電流I及び二次側電流I各々の時間変動の一例である。Primary voltage V 1, the secondary-side voltage V 2, which is an example of a primary-side current I 1 and the secondary-side current I 2 each time fluctuation. 一次側電圧V、二次側電圧V、一次側電流I及び二次側電流I各々の時間変動の他の一例である。Primary voltage V 1, the secondary-side voltage V 2, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation. 一次側電圧V、二次側電圧V、一次側電流I及び二次側電流I各々の時間変動の他の一例である。Primary voltage V 1, the secondary-side voltage V 2, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation. 結合係数と電源有効利用効率との関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between a coupling coefficient and power supply effective utilization efficiency. 一次側電圧V、二次側電圧V、一次側電流I及び二次側電流I各々の時間変動の他の一例である。Primary voltage V 1, the secondary-side voltage V 2, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation. 一次側電圧V、二次側電圧V、一次側電流I及び二次側電流I各々の時間変動の他の一例である。Primary voltage V 1, the secondary-side voltage V 2, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation. 第2実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 2nd Embodiment. 第3実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 3rd Embodiment. 第4実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 4th Embodiment. 第5実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 5th Embodiment. 第6実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 6th Embodiment. 第7実施形態に係る非接触給電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power feeding system which concerns on 7th Embodiment.
 以下、本発明の非接触給電システムに係る実施形態について、図面に基づいて説明する。尚、以下の図では、本発明に直接関係する部材のみを示し、その他の部材については図示を省略している。 Hereinafter, embodiments of the contactless power supply system of the present invention will be described with reference to the drawings. In the following drawings, only members directly related to the present invention are shown, and illustration of other members is omitted.
 <第1実施形態>
 本発明の非接触給電システムの第1実施形態について、図1乃至図9を参照して説明する。
<First Embodiment>
A first embodiment of a contactless power feeding system of the present invention will be described with reference to FIGS. 1 to 9.
 (非接触給電システムの構成)
 本実施形態に係る非接触給電システムの構成について、図1を参照して説明する。図1は、第1実施形態に係る非接触給電システムの構成を示すブロック図である。
(Configuration of contactless power supply system)
The configuration of the non-contact power feeding system according to this embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the non-contact power feeding system according to the first embodiment.
 図1において、非接触給電システム1は、送電装置10及び受電装置20を備えて構成されている。 In FIG. 1, the non-contact power feeding system 1 includes a power transmission device 10 and a power reception device 20.
 送電装置10は、(i)交流電力を発生させる交流電源(図示せず)を含む送電回路110と、(ii)該送電回路110に電気的に接続された送電コイル120と、(iii)該送電コイル120に電気的に直列に接続された可変容量コンデンサ130と、(iv)該可変容量コンデンサ130の容量値を制御する容量制御部140と、(v)送電コイル120と、後述する受電コイル220との結合の度合いを示す結合係数を推定する結合係数推定部150と、を備えて構成されている。 The power transmission device 10 includes: (i) a power transmission circuit 110 including an AC power source (not shown) that generates AC power; (ii) a power transmission coil 120 electrically connected to the power transmission circuit 110; A variable capacitor 130 electrically connected in series to the power transmission coil 120; (iv) a capacity control unit 140 that controls a capacitance value of the variable capacitor 130; (v) a power transmission coil 120; 220, and a coupling coefficient estimating unit 150 that estimates a coupling coefficient indicating the degree of coupling with 220.
 結合係数推定部150は、送電コイル120及び受電コイル220間の距離を測定する距離センサ151と、該距離センサ151により測定された距離を結合係数に変換する距離-結合係数変換部152と、を備えて構成されている。 The coupling coefficient estimation unit 150 includes a distance sensor 151 that measures the distance between the power transmission coil 120 and the power reception coil 220, and a distance-coupling coefficient conversion unit 152 that converts the distance measured by the distance sensor 151 into a coupling coefficient. It is prepared for.
 ここで、距離-結合係数変換部152には、予め、距離と結合係数との対応関係を示す情報が記憶されている。そして、距離-結合係数変換部152は、距離と結合係数との対応関係を示す情報に基づいて、距離センサ151により測定された距離を結合係数に変換する。尚、距離と結合係数との対応関係を示す情報は、実験又はシミュレーションにより、例えば、送電コイル120及び受電コイル220間の距離と、送電コイル120の自己インダクタンス及び漏れインダクタンスと、の関係を求め、該求められた関係に基づいて構築すればよい。 Here, the distance-coupling coefficient conversion unit 152 stores information indicating the correspondence between the distance and the coupling coefficient in advance. Then, the distance-coupling coefficient conversion unit 152 converts the distance measured by the distance sensor 151 into a coupling coefficient based on the information indicating the correspondence relationship between the distance and the coupling coefficient. Note that the information indicating the correspondence between the distance and the coupling coefficient is obtained by experiment or simulation, for example, by determining the relationship between the distance between the power transmission coil 120 and the power reception coil 220 and the self-inductance and leakage inductance of the power transmission coil 120. What is necessary is just to build based on this calculated | required relationship.
 可変容量コンデンサ130は、例えば図2に示すように、複数の固定容量コンデンサ各々をスイッチング素子により並列加算可能に構成されている。このように構成すれば、例えば0.01μF(マイクロファラド)から0.15μFまで、0.01μF刻みで可変することができる。図2は、第1実施形態に係る可変容量コンデンサの一例を示す概念図である。 As shown in FIG. 2, for example, the variable capacitor 130 is configured such that a plurality of fixed capacitors can be added in parallel by switching elements. If constituted in this way, it can be varied in increments of 0.01 μF, for example, from 0.01 μF (microfarad) to 0.15 μF. FIG. 2 is a conceptual diagram illustrating an example of the variable capacitor according to the first embodiment.
 尚、可変容量コンデンサ130は、図2に示した構成に限らず、例えば、回転軸を回すことにより静電容量を変更可能なコンデンサ(所謂、バリコン)と、該コンデンサの回転軸を回転させるステッピングモータと、で構成されてもよい。 Note that the variable capacitor 130 is not limited to the configuration shown in FIG. 2, for example, a capacitor (so-called variable capacitor) whose capacitance can be changed by rotating the rotating shaft, and a stepping that rotates the rotating shaft of the capacitor. And a motor.
 再び図1に戻り、受電装置20は、例えばバッテリ等の負荷210と、該負荷210に電気的に接続された受電コイル220と、該受電コイル220に電気的に並列に接続された固定容量コンデンサ230と、を備えて構成されている。 Returning to FIG. 1 again, the power receiving device 20 includes a load 210 such as a battery, a power receiving coil 220 electrically connected to the load 210, and a fixed capacitance capacitor electrically connected to the power receiving coil 220 in parallel. 230.
 (発明の効果)
 次に、可変容量コンデンサ130を、送電コイル120に電気的に直列に接続することによる効果について、図3乃至図9を参照して説明する。図3は、比較例に係る非接触給電システムの構成を示す回路図である。
(The invention's effect)
Next, an effect obtained by electrically connecting the variable capacitor 130 to the power transmission coil 120 in series will be described with reference to FIGS. 3 to 9. FIG. 3 is a circuit diagram showing a configuration of a non-contact power feeding system according to a comparative example.
 図3において、一次側(即ち、送電装置)は、交流電源ACと、該交流電源ACに電気的に接続された一次コイルLと、該一次コイルLに電気的に直列に接続された直列コンデンサCsと、を備えて構成されている。尚、一次側の損失抵抗はRであるとする。 In FIG. 3, the primary side (that is, the power transmission device) is connected in series to the AC power source AC, the primary coil L 1 electrically connected to the AC power source AC, and the primary coil L 1 . And a series capacitor Cs. Incidentally, the loss resistance of the primary side is R 1.
 他方、二次側(即ち、受電装置)は、負荷抵抗Rと、該負荷抵抗Rに電気的に接続された二次コイルLと、該二次コイルLに電気的に並列に接続された並列コイルCpと、を備えて構成されている。尚、二次側の損失抵抗はRであるとする。 On the other hand, the secondary side (that is, the power receiving device) includes a load resistance R L , a secondary coil L 2 electrically connected to the load resistance R L, and an electrical parallel to the secondary coil L 2. And a connected parallel coil Cp. Incidentally, the loss resistance of the secondary side is assumed to be R 2.
 直列コンデンサCs及び並列コンデンサCpが共に固定容量コンデンサである場合、先ず、並列コンデンサCpの容量値は、二次コイルの自己インダクタンスLと電源の駆動周波数を基にして、上記(式3)に従って決定される。続いて、直列コンデンサCsの容量値は、一次コイルと二次コイルとの間の距離を所定の値にした上で、相互インダクタンス若しくは結合係数を測定して、上記(式4)に従って決定される。 If the series capacitor Cs and the parallel capacitor Cp are both fixed capacitor, first, the capacitance value of the parallel capacitor Cp is formed based on the self-inductance L 2 and the power of the driving frequency of the secondary coil according to the above (Equation 3) It is determined. Subsequently, the capacitance value of the series capacitor Cs is determined according to the above (Equation 4) by measuring the mutual inductance or the coupling coefficient after setting the distance between the primary coil and the secondary coil to a predetermined value. .
 尚、(式3)及び(式4)に従って並列コンデンサCpの容量値、直列コンデンサCsの容量値が決定されることで、一次側の力率=1とすることができるが、送電回路にインバータを用いる場合は、スイッチングロスの低減を目的としてソフトスイッチング方式が採用される場合がある。この場合には、実用上故意に力率=1の状態から若干ずらせて動作させるようにすることがある。本発明の記載では「力率=1となるように」との表現を用いているが、その程度のずれを許容して実装することも本発明に含めるものとする。 Note that the power value on the primary side can be set to 1 by determining the capacitance value of the parallel capacitor Cp and the capacitance value of the series capacitor Cs according to (Equation 3) and (Equation 4). In some cases, a soft switching method may be employed for the purpose of reducing switching loss. In this case, there is a case where the operation is intentionally deviated slightly from the power factor = 1 state in practice. In the description of the present invention, the expression “so that the power factor = 1” is used. However, the present invention includes mounting by allowing such a deviation.
 ここでは、一次コイルL及び二次コイルL間の結合係数を0.46(一次コイルL及び二次コイルL間の距離が10cm(センチメートル)である場合に相当)として、直列コンデンサCs及び並列コンデンサCp各々の容量値が決定されているとする。電源の駆動周波数を95kHz、一次コイル及び二次コイル各々の自己インダクタンスL及びLを共に36μHとした場合、Cs=0.1μF、Cp=0.078μFとなる。 Here, as 0.46 the coupling coefficient between the primary coil L 1 and the secondary coil L 2 (corresponding to when the distance between the primary coil L 1 and the secondary coil L 2 is 10 cm (centimeters)), the series Assume that the capacitance values of the capacitor Cs and the parallel capacitor Cp are determined. When the drive frequency of the power supply is 95 kHz and the self-inductances L 1 and L 2 of the primary coil and the secondary coil are both 36 μH, Cs = 0.1 μF and Cp = 0.078 μF.
 上述の如く構成された比較例に係る非接触給電システムにおいて、一次コイルL及び二次コイルL間の距離が10cm(即ち、結合係数が0.46)である場合、一次側電圧V、一次側電流I、二次側電圧V及び二次側電流I各々の時間変動は、例えば図4のようになる。図4上段は、一次側電圧V及び二次側電圧V各々の時間変動の一例であり、図4下段は、一次側電流I及び二次側電流I各々の時間変動の一例である。 In the non-contact power supply system according to a comparative example configured as described above, when the distance between the primary coil L 1 and the secondary coil L 2 is 10 cm (i.e., the coupling coefficient is 0.46), the primary voltages V 1 The time variation of each of the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 is, for example, as shown in FIG. 4 upper part, an example of a primary voltage V 1 and the secondary-side voltage V 2 each time variation, 4 lower stage, an example of a primary-side current I 1 and the secondary-side current I 2 each time variation is there.
 図4で注目すべき点は、一次側電圧Vの位相と、一次側電流Iの位相とが一致しており、一次側の力率が1となっていることである。このため、電源有効利用効率(即ち、二次側有効電力/一次皮相電力×100)は、95.1%となる。 What should be noted in FIG. 4 is that the phase of the primary side voltage V 1 and the phase of the primary side current I 1 are in agreement, and the power factor on the primary side is 1. For this reason, the power supply effective utilization efficiency (that is, secondary side effective power / primary apparent power × 100) is 95.1%.
 比較例に係る非接触給電システムにおいて、一次コイルL及び二次コイルL間の距離が10cmより大きくなり、結合係数が0.2となった場合、一次側電圧V、一次側電流I、二次側電圧V及び二次側電流I各々の時間変動は、例えば図5のようになる。図5上段は、図4上段と同趣旨の、一次側電圧V及び二次側電圧V各々の時間変動の他の一例であり、図5下段は、図4下段と同趣旨の、一次側電流I及び二次側電流I各々の時間変動の他の一例である。 In the non-contact power feeding system according to the comparative example, when the distance between the primary coil L 1 and the secondary coil L 2 is greater than 10 cm and the coupling coefficient is 0.2, the primary side voltage V 1 , the primary side current I 1 , time variations of the secondary side voltage V 2 and the secondary side current I 2 are, for example, as shown in FIG. The upper part of FIG. 5 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIG. 5 is the primary part having the same purpose as the lower part of FIG. it is another example of a side current I 1 and the secondary-side current I 2 each time fluctuation.
 図5で注目すべき点は、一次側電流Iの位相が、一次側電圧Vの位相よりも、約65度遅れていることである。このため、一次側の力率は0.41まで低下し、電源有効利用効率も34.7%まで低下する。 What should be noted in FIG. 5 is that the phase of the primary current I 1 is delayed by about 65 degrees from the phase of the primary voltage V 1 . For this reason, the power factor on the primary side is reduced to 0.41, and the effective power use efficiency is also reduced to 34.7%.
 或いは、比較例に係る非接触給電システムにおいて、一次コイルL及び二次コイルL間の距離が10cmより小さく、結合係数が0.7となった場合、一次側電圧V、一次側電流I、二次側電圧V及び二次側電流I各々の時間変動は、例えば図6のようになる。図6上段は、図4上段と同趣旨の、一次側電圧V及び二次側電圧V各々の時間変動の他の一例であり、図6下段は、図4下段と同趣旨の、一次側電流I及び二次側電流I各々の時間変動の他の一例である。 Alternatively, in the non-contact power feeding system according to the comparative example, when the distance between the primary coil L 1 and the secondary coil L 2 is smaller than 10 cm and the coupling coefficient is 0.7, the primary voltage V 1 and the primary current The time variation of each of I 1 , secondary side voltage V 2 and secondary side current I 2 is, for example, as shown in FIG. The upper part of FIG. 6 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIG. 6 is the primary part having the same purpose as the lower part of FIG. it is another example of a side current I 1 and the secondary-side current I 2 each time fluctuation.
 図6で注目すべき点は、一次側電流Iの位相が、一次側電圧Vの位相よりも、約17度進んでいることである。このため、一次側の力率は0.96まで低下し、電源有効利用効率も92.3%まで低下する。 What should be noted in FIG. 6 is that the phase of the primary current I 1 is advanced about 17 degrees from the phase of the primary voltage V 1 . For this reason, the power factor on the primary side is reduced to 0.96, and the effective power use efficiency is also reduced to 92.3%.
 結合係数と電源有効利用効率との関係を図7に示す。図7は、結合係数と電源有効利用効率との関係の一例を示す特性図である。図7において、実線は、本実施形態に係る非接触給電システムの結合係数と電源有効利用効率との関係の一例を示しており、破線は、比較例に係る非接触給電システムの結合係数と電源有効利用効率との関係の一例を示している。 Fig. 7 shows the relationship between the coupling coefficient and the effective power utilization efficiency. FIG. 7 is a characteristic diagram showing an example of the relationship between the coupling coefficient and the power supply effective utilization efficiency. In FIG. 7, the solid line shows an example of the relationship between the coupling coefficient of the contactless power feeding system according to this embodiment and the power supply effective utilization efficiency, and the broken line shows the coupling coefficient and the power source of the contactless power feeding system according to the comparative example. An example of the relationship with the effective utilization efficiency is shown.
 非接触給電システムが、例えば電気自動車に搭載されるバッテリの充電システムに適用される場合、典型的には、一次側は地面に埋め込まれ、二次側は電気自動車の下部に搭載される。そして、非接触給電システムの設計段階では、設計者側が予め何らかの基準(例えば、当該非接触給電システムを搭載する予定の電気自動車の車高情報等)によって設定した、一次コイルL及び二次コイルL間の距離における結合係数を用いて、直列コンデンサCsの容量値が決定される。 When the non-contact power supply system is applied to, for example, a battery charging system mounted on an electric vehicle, the primary side is typically embedded in the ground and the secondary side is mounted on the lower portion of the electric vehicle. At the design stage of the non-contact power feeding system, the primary coil L 1 and the secondary coil set by the designer in advance according to some standard (for example, vehicle height information of an electric vehicle scheduled to be equipped with the non-contact power feeding system). using coupling coefficients in the distance between L 2, the capacitance value of the series capacitor Cs is determined.
 すると、一次コイルL及び二次コイルL間の距離が、設計値より大きくなった場合、即ち、結合係数が設計値より小さくなった場合、図7に破線で示すように、電源有効利用効率が著しく低下する可能性がある。 Then, the distance between the primary coil L 1 and the secondary coil L 2 is, when it becomes larger than the design value, i.e., if the coupling coefficient is smaller than the design value, as shown by the broken line in FIG. 7, the power efficient use Efficiency can be significantly reduced.
 しかるに本実施形態に係る非接触給電システム1では、容量制御部140により、結合係数推定部150で推定された結合係数に基づいて、交流電源(即ち、一次側)の電圧位相と電流位相との位相差が小さくなるように、言い換えれば、一次側の力率が1に近づくように、可変容量コンデンサ130の容量値が制御される。このため、図7に実線で示すように、送電コイル120及び受電コイル220間の距離(即ち、一次コイルL及び二次コイルL間の距離に相当)が、設計値からずれたとしても、電源有効利用効率の低下を抑制することができる。 However, in the non-contact power feeding system 1 according to the present embodiment, based on the coupling coefficient estimated by the coupling coefficient estimation unit 150 by the capacity control unit 140, the voltage phase and current phase of the AC power source (that is, the primary side) The capacitance value of the variable capacitor 130 is controlled so that the phase difference becomes small, in other words, the power factor on the primary side approaches 1. Therefore, as shown by the solid line in FIG. 7, the transmitting coil 120 and the distance between the power receiving coil 220 (i.e., corresponding to the distance between the primary coil L 1 and the secondary coil L 2) even if, deviates from the design value Thus, it is possible to suppress a decrease in the effective power use efficiency.
 具体的には、図5を用いて説明した場合のように、一次コイル及び二次コイル間の距離が設計値の10cmより大きくなり、結合係数が0.2まで下がった場合、一次側の直列コンデンサの容量値を、上記(式4)に従ってCs=0.082に変更する。このときの一次側電圧V、一次側電流I、二次側電圧V及び二次側電流I各々の時間変動は、例えば図8のようになる。図8で注目すべきは一次側電圧Vの位相と、一次側電流Iの位相とが一致しており、一次側の力率が1となっている点である。このとき、電源有効利用効率は85.1%まで改善した。 Specifically, as described with reference to FIG. 5, when the distance between the primary coil and the secondary coil is larger than the design value of 10 cm and the coupling coefficient is reduced to 0.2, the primary side series The capacitance value of the capacitor is changed to Cs = 0.082 according to the above (Equation 4). The time variations of the primary side voltage V 1 , the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 at this time are, for example, as shown in FIG. It should be noted in FIG. 8 that the phase of the primary side voltage V 1 and the phase of the primary side current I 1 coincide with each other, and the primary side power factor is 1. At this time, the effective power use efficiency was improved to 85.1%.
 他方、図6を用いて説明した場合のように、一次コイル及び二次コイル間の距離が設計値の10cmより小さくなり、結合係数が0.7まで上がった場合、一次側の直列コンデンサの容量値を、上記(式4)に従ってCs=0.15に変更する。このときの一次側電圧V、一次側電流I、二次側電圧V及び二次側電流I各々の時間変動は、例えば図9のようになる。図9で注目すべきは一次側電圧Vの位相と、一次側電流Iの位相とが一致しており、一次側の力率が1となっている点である。このとき、電源有効利用効率は96.3%まで改善した。 On the other hand, when the distance between the primary coil and the secondary coil becomes smaller than the designed value of 10 cm and the coupling coefficient increases to 0.7 as in the case described with reference to FIG. 6, the capacitance of the primary side series capacitor The value is changed to Cs = 0.15 according to the above (formula 4). The time variations of the primary side voltage V 1 , the primary side current I 1 , the secondary side voltage V 2, and the secondary side current I 2 at this time are, for example, as shown in FIG. It should be noted in FIG. 9 that the phase of the primary side voltage V 1 and the phase of the primary side current I 1 coincide with each other, and the power factor on the primary side is 1. At this time, the effective power use efficiency was improved to 96.3%.
 図8及び図9の上段は、図4上段と同趣旨の、一次側電圧V及び二次側電圧V各々の時間変動の他の一例であり、図8及び図9の下段は、図4下段と同趣旨の、一次側電流I及び二次側電流I各々の時間変動の他の一例である。 The upper part of FIGS. 8 and 9 is another example of the time variation of each of the primary side voltage V 1 and the secondary side voltage V 2 having the same meaning as the upper part of FIG. 4, and the lower part of FIGS. 4 the lower the same spirit, which is another example of the primary-side current I 1 and the secondary-side current I 2 each time fluctuation.
 本実施形態に係る「送電装置10」、「容量制御部140」、「結合係数推定部150」、「距離センサ151」及び「距離-結合係数変換部152」は、夫々、本発明に係る「非接触電力送電装置」、「容量制御手段」、「結合推定手段」、「距離測定手段」及び「変換手段」の一例である。 The “power transmission device 10”, the “capacity control unit 140”, the “coupling coefficient estimation unit 150”, the “distance sensor 151”, and the “distance-coupling coefficient conversion unit 152” according to the present embodiment are respectively “ It is an example of a “contactless power transmission device”, “capacity control means”, “coupling estimation means”, “distance measurement means”, and “conversion means”.
 <第2実施形態>
 本発明の非接触給電システムに係る第2実施形態を、図10を参照して説明する。第2実施形態では、非接触給電システムの構成が一部異なる以外は、第1実施形態の構成と同様である。よって、第2実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図10を参照して説明する。図10は、図1と同趣旨の、第2実施形態に係る非接触給電システムの構成を示すブロック図である。
<Second Embodiment>
A second embodiment according to the non-contact power feeding system of the present invention will be described with reference to FIG. The second embodiment is the same as the first embodiment except that the configuration of the non-contact power feeding system is partially different. Therefore, in the second embodiment, the description overlapping with that of the first embodiment is omitted, and common portions on the drawing are denoted by the same reference numerals, and only fundamentally different points are described with reference to FIG. explain. FIG. 10 is a block diagram showing a configuration of a non-contact power feeding system according to the second embodiment having the same concept as in FIG.
 図10において、結合係数推定部150は、例えば、送電コイル120の受電コイル220と対向する面上、且つ該送電コイル120の中心近傍に配設された撮像デバイス154と、該撮像デバイス154により撮像された画像に基づいて、送電コイル120の中心と受電コイル220の中心との位置ずれ量を検出する位置ずれ量検出部153と、距離センサ151により測定された距離、及び位置ずれ量検出部153により検出された位置ずれ量に基づいて、結合係数を求める距離・位置ずれ量-結合係数変換部155と、を更に備えて構成されている。 In FIG. 10, the coupling coefficient estimator 150 includes, for example, an imaging device 154 disposed on the surface of the power transmission coil 120 facing the power reception coil 220 and in the vicinity of the center of the power transmission coil 120, and imaging by the imaging device 154. Based on the obtained image, a positional deviation amount detection unit 153 that detects the positional deviation amount between the center of the power transmission coil 120 and the center of the power reception coil 220, the distance measured by the distance sensor 151, and the positional deviation amount detection unit 153. And a distance / position deviation amount-coupling coefficient conversion unit 155 for obtaining a coupling coefficient based on the positional deviation amount detected by the above.
 受電装置20には、位置決め用のマーク220mが設けられている。例えばCCD(Charge Coupled Device)カメラ、光学センサ等である撮像デバイス154は、該マーク220mを撮像し、位置ずれ量検出部153は、撮像されたマーク220mに基づいて、位置ずれ量を検出する。 The power receiving device 20 is provided with a positioning mark 220m. For example, an imaging device 154 that is a CCD (Charge Coupled Device) camera, an optical sensor, or the like images the mark 220m, and the positional deviation amount detection unit 153 detects the positional deviation amount based on the captured mark 220m.
 距離・位置ずれ量-結合係数変換部155には、距離及び位置ずれ量の各々が変化した場合に、送電コイル120及び受電コイル220間の結合係数がどのような値をとるかを記録した情報(ルックアップテーブル)が記憶されている。距離・位置ずれ量-結合係数変換部155は、距離センサ151により測定された距離、及び位置ずれ量検出部153により検出された位置ずれ量に基づいて、該ルックアップテーブルから対応する結合係数を求める。 The distance / position deviation amount-coupling coefficient conversion unit 155 records information indicating what value the coupling coefficient between the power transmission coil 120 and the power reception coil 220 takes when the distance and the position deviation amount each change. (Lookup table) is stored. Based on the distance measured by the distance sensor 151 and the positional deviation amount detected by the positional deviation amount detection unit 153, the distance / position deviation amount-coupling coefficient conversion unit 155 obtains a corresponding coupling coefficient from the lookup table. Ask.
 容量制御部140は、距離・位置ずれ量-結合係数変換部155により求められた結合係数と、上記(式4)とに従って、可変容量コンデンサ130の容量値を設定する。 The capacitance control unit 140 sets the capacitance value of the variable capacitor 130 according to the coupling coefficient obtained by the distance / position deviation amount-coupling coefficient conversion unit 155 and the above (Equation 4).
 本実施形態に係る「位置ずれ量検出部153」は、本発明に係る「位置ずれ量検出手段」の一例である。本実施形態に係る「距離・位置ずれ量-結合係数変換部155」は、本発明に係る「変換手段」の他の一例である。 The “position displacement amount detection unit 153” according to the present embodiment is an example of the “position displacement amount detection unit” according to the present invention. The “distance / position deviation amount-coupling coefficient conversion unit 155” according to the present embodiment is another example of the “conversion unit” according to the present invention.
 <第3実施形態>
 本発明の非接触給電システムに係る第3実施形態を、図11を参照して説明する。第3実施形態では、非接触給電システムの構成が一部異なる以外は、第1実施形態の構成と同様である。よって、第3実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図11を参照して説明する。図11は、図1と同趣旨の、第3実施形態に係る非接触給電システムの構成を示すブロック図である。
<Third Embodiment>
A third embodiment of the wireless power supply system of the present invention will be described with reference to FIG. The third embodiment is the same as the configuration of the first embodiment except that the configuration of the non-contact power feeding system is partially different. Therefore, the description of the third embodiment that is the same as that of the first embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only the points that are basically different are described with reference to FIG. explain. FIG. 11 is a block diagram showing a configuration of a non-contact power feeding system according to the third embodiment having the same concept as in FIG.
 図11において、受電装置20は、該受電装置20における電圧値を測定する電圧センサ241と、該受電装置20における電流値を測定する電流センサ242と、測定された電圧値及び電流値を、送電装置10に対して送信する無線インターフェイス(I/F)部243と、を更に備えて構成されている。 In FIG. 11, the power receiving device 20 transmits a voltage sensor 241 that measures a voltage value in the power receiving device 20, a current sensor 242 that measures a current value in the power receiving device 20, and the measured voltage value and current value. And a wireless interface (I / F) unit 243 for transmitting to the device 10.
 他方、送電装置10は、交流電力の電圧値を検出する電圧センサ161と、該交流電力の電流値を検出する電流センサ162と、無線インターフェイス部163と、電力伝送効率を算出する効率算出部164と、該算出された電力伝送効率を結合係数に変換する効率-結合係数変換部165と、を更に備えて構成されている。 On the other hand, the power transmission device 10 includes a voltage sensor 161 that detects a voltage value of AC power, a current sensor 162 that detects a current value of the AC power, a wireless interface unit 163, and an efficiency calculation unit 164 that calculates power transmission efficiency. And an efficiency-coupling coefficient conversion unit 165 that converts the calculated power transmission efficiency into a coupling coefficient.
 効率算出部164は、電圧センサ161により検出された電圧値、及び電流センサ162により検出された電流値の少なくとも一方と、無線インターフェイス部163を介して取得された受電装置20における電圧値及び電流値の少なくとも一方と、に基づいて電力伝送効率を算出する。 The efficiency calculation unit 164 includes at least one of the voltage value detected by the voltage sensor 161 and the current value detected by the current sensor 162, and the voltage value and current value in the power receiving device 20 acquired via the wireless interface unit 163. The power transmission efficiency is calculated based on at least one of the above.
 効率-結合係数変換部165は、予め、電力伝送効率と結合係数との対応関係を示す情報が記憶されている。そして、効率-結合係数変換部165は、電力伝送効率と結合係数との対応関係を示す情報に基づいて、算出された電力伝送効率を結合係数に変換する。尚、電力伝送効率と結合係数との対応関係を示す情報は、一次直列コンデンサの値を所定の値に固定した上で、実験又はシミュレーションにより、例えば、電力伝送効率と、送電コイル120の自己インダクタンス及び漏れインダクタンスと、の関係を一次コイル及び二次コイルの間の距離を変えながら求め、該求められた関係に基づいて構築すればよい。 The efficiency-coupling coefficient conversion unit 165 stores information indicating the correspondence relationship between the power transmission efficiency and the coupling coefficient in advance. Then, the efficiency-coupling coefficient conversion unit 165 converts the calculated power transmission efficiency into a coupling coefficient based on information indicating a correspondence relationship between the power transmission efficiency and the coupling coefficient. The information indicating the correspondence relationship between the power transmission efficiency and the coupling coefficient is obtained by, for example, experimenting or simulating the value of the primary series capacitor after fixing the value of the primary series capacitor to, for example, the self-inductance of the power transmission coil 120. And the leakage inductance may be obtained while changing the distance between the primary coil and the secondary coil, and the leakage inductance may be constructed based on the obtained relationship.
 本実施形態に係る「電圧センサ161」及び「電流センサ162」は、本発明に係る「検出手段」の一例である。本実施形態に係る「無線インターフェイス部163」及び「効率算出部164」は、夫々、本発明に係る「取得手段」及び「算出手段」の一例である。本実施形態に係る「効率-結合係数変換部165」は、本発明に係る「変換手段」の他の一例である。 The “voltage sensor 161” and the “current sensor 162” according to the present embodiment are examples of the “detection unit” according to the present invention. The “wireless interface unit 163” and the “efficiency calculation unit 164” according to the present embodiment are examples of the “acquisition unit” and the “calculation unit” according to the present invention, respectively. The “efficiency-coupling coefficient conversion unit 165” according to the present embodiment is another example of the “conversion unit” according to the present invention.
 <第4実施形態>
 本発明の非接触給電システムに係る第4実施形態を、図12を参照して説明する。第4実施形態では、非接触給電システムの構成が一部異なる以外は、第3実施形態の構成と同様である。よって、第4実施形態について、第3実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図12を参照して説明する。図12は、図1と同趣旨の、第4実施形態に係る非接触給電システムの構成を示すブロック図である。
<Fourth embodiment>
A fourth embodiment according to the non-contact power feeding system of the present invention will be described with reference to FIG. The fourth embodiment is the same as the configuration of the third embodiment except that the configuration of the non-contact power feeding system is partially different. Accordingly, the description of the fourth embodiment that is the same as that of the third embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only the points that are fundamentally different refer to FIG. explain. FIG. 12 is a block diagram showing a configuration of a non-contact power feeding system according to the fourth embodiment having the same concept as in FIG.
 図12において、受電装置20は、受電コイル220の開放又は短絡を可能とする二次コイル開放・短絡部244を更に備えて構成されている。 12, the power receiving device 20 further includes a secondary coil open / short circuit unit 244 that enables the power receiving coil 220 to be opened or short-circuited.
 他方、送電装置10は、(i)インダクタンス測定部166と、(ii)無線インターフェイス部163を介して、二次コイル開放・短絡部244を制御すると共に、インダクタンス測定部166を制御する結合係数計測制御部167と、(iii)インダクタンス測定部166により測定されたインダクタンスに基づいて結合係数を算出する結合係数算出部168と、を更に備えて構成されている。 On the other hand, the power transmission device 10 controls the secondary coil open / short circuit 244 and the coupling coefficient measurement that controls the inductance measurement unit 166 via the (i) inductance measurement unit 166 and (ii) the wireless interface unit 163. The control unit 167 further includes (iii) a coupling coefficient calculation unit 168 that calculates a coupling coefficient based on the inductance measured by the inductance measurement unit 166.
 本実施形態における結合係数を求める方法は、JIS-C5321に規定された結合係数の測定方法に基づく方法である。 The method for obtaining the coupling coefficient in the present embodiment is a method based on the coupling coefficient measurement method defined in JIS-C5321.
 具体的には例えば、先ず、結合係数計測制御部167は、無線インターフェイス部163を介して、受電コイル220が開放となるように、二次コイル開放・短絡部244を制御する。この際、インダクタンス測定部166により送電コイル120のインダクタンス値(Lopen)が計測される。 Specifically, for example, first, the coupling coefficient measurement control unit 167 controls the secondary coil open / short circuit unit 244 via the wireless interface unit 163 so that the power receiving coil 220 is opened. At this time, the inductance value (Lopen) of the power transmission coil 120 is measured by the inductance measuring unit 166.
 次に、結合係数計測制御部167は、無線インターフェイス部163を介して、受電コイル220が短絡となるように、二次コイル開放・短絡部244を制御する。この際、インダクタンス測定部166により送電コイル120のインダクタンス値(Lshort)が計測される。 Next, the coupling coefficient measurement control unit 167 controls the secondary coil open / short circuit unit 244 via the wireless interface unit 163 so that the power receiving coil 220 is short-circuited. At this time, the inductance measurement unit 166 measures the inductance value (Lshort) of the power transmission coil 120.
 次に、結合係数算出部168は、計測された二つのインダクタンス値(“Lopen”及び“Lshort”)に基づいて、下記(式5)に従って、結合係数を算出する。 Next, the coupling coefficient calculation unit 168 calculates a coupling coefficient according to the following (Equation 5) based on the measured two inductance values (“Lopen” and “Lshort”).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
                                    (式5)
 容量制御部140は、結合係数算出部168により算出された結合係数を用いて、上記(式4)に従って、可変容量コンデンサ130の容量値を設定する。
(Formula 5)
The capacitance control unit 140 sets the capacitance value of the variable capacitor 130 in accordance with the above (Equation 4) using the coupling coefficient calculated by the coupling coefficient calculation unit 168.
 <第5実施形態>
 本発明の非接触給電システムに係る第5実施形態を、図13を参照して説明する。第5実施形態では、非接触給電システムの構成が一部異なる以外は、第1実施形態の構成と同様である。よって、第5実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図13を参照して説明する。図13は、図1と同趣旨の、第5実施形態に係る非接触給電システムの構成を示すブロック図である。第5実施形態では特に、受電装置20は、本発明に係る「移動体」の一例としての、電気自動車に搭載されているものとする。
<Fifth Embodiment>
A fifth embodiment according to the non-contact power feeding system of the present invention will be described with reference to FIG. The fifth embodiment is the same as the first embodiment except that the configuration of the non-contact power feeding system is partially different. Accordingly, the description of the fifth embodiment that is the same as that of the first embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only fundamentally different points are described with reference to FIG. explain. FIG. 13 is a block diagram showing a configuration of a non-contact power feeding system according to the fifth embodiment having the same concept as in FIG. Especially in 5th Embodiment, the power receiving apparatus 20 shall be mounted in the electric vehicle as an example of the "moving body" concerning this invention.
 図13において、受電装置20は、(i)該受電装置20が搭載される電気自動車に係る情報を格納するデータベース250と、(ii)該データベース250に格納された情報のうち、少なくとも電気自動車の車種を示す情報を、送電装置10に対して送信する無線インターフェイス部243と、を更に備えて構成されている。 In FIG. 13, the power receiving device 20 includes (i) a database 250 that stores information on the electric vehicle on which the power receiving device 20 is mounted, and (ii) at least the electric vehicle among the information stored in the database 250. The wireless interface unit 243 further transmits information indicating the vehicle type to the power transmission device 10.
 他方、送電装置10は、無線インターフェイス部163と、複数の車種各々に係る情報を予め格納するデータベース172と、車種に係る情報に基づいて結合係数を求める車種-結合係数変換部171と、を更に備えて構成されている。 On the other hand, the power transmission device 10 further includes a wireless interface unit 163, a database 172 that stores information related to each of a plurality of vehicle types in advance, and a vehicle type-coupling coefficient conversion unit 171 that obtains a coupling coefficient based on the information related to the vehicle type. It is prepared for.
 車種-結合係数変換部171は、無線インターフェイス部163を介して取得された受電装置20が搭載される電気自動車の車種を示す情報に基づいて、データベース172に格納された複数の車種各々に係る情報から、該当する車種に係る情報(例えば、車高値)を取得して、該取得された情報に基づいて結合係数を求める。 The vehicle type-coupling coefficient conversion unit 171 is information related to each of a plurality of vehicle types stored in the database 172 based on the information indicating the vehicle type of the electric vehicle on which the power receiving device 20 is acquired, acquired via the wireless interface unit 163. Then, information (for example, vehicle height value) related to the corresponding vehicle type is acquired, and a coupling coefficient is obtained based on the acquired information.
 データベース172は、例えば無線LAN(Local Area Network)等により、例えばインターネット等の外部ネットワーク173上に設けられたサーバ装置(図示せず)にアクセスして、格納されている複数の車種各々に係る情報の少なくとも一部を更新可能に構成されている。 The database 172 accesses, for example, a server device (not shown) provided on an external network 173 such as the Internet via a wireless LAN (Local Area Network) or the like, and stores information related to each of a plurality of stored vehicle types. It is configured to be at least partially updateable.
 本実施形態に係る「無線インターフェイス部163」は、本発明に係る「種別取得手段」の一例であり、本実施形態に係る「車種-結合係数変換部171」は、本発明に係る「変換手段」の他の一例である。 The “wireless interface unit 163” according to the present embodiment is an example of the “type acquisition unit” according to the present invention, and the “vehicle type-coupling coefficient conversion unit 171” according to the present embodiment is the “conversion unit” according to the present invention. Is another example.
 <第6実施形態>
 本発明の非接触給電システムに係る第6実施形態を、図14を参照して説明する。第6実施形態では、非接触給電システムの構成が一部異なる以外は、第1実施形態の構成と同様である。よって、第4実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図14を参照して説明する。図14は、図1と同趣旨の、第6実施形態に係る非接触給電システムの構成を示すブロック図である。
<Sixth Embodiment>
A sixth embodiment according to the non-contact power feeding system of the present invention will be described with reference to FIG. The sixth embodiment is the same as the first embodiment except that the configuration of the non-contact power feeding system is partially different. Accordingly, the description of the fourth embodiment that is the same as that of the first embodiment is omitted, and common portions in the drawings are denoted by the same reference numerals, and only the points that are basically different are described with reference to FIG. explain. FIG. 14 is a block diagram showing the configuration of the non-contact power feeding system according to the sixth embodiment having the same concept as in FIG.
 図14において、送電装置10は、交流電力の電圧値を検出する電圧センサ161と、該交流電力の電流値を検出する電流センサ162と、電圧値の位相と電流値の位相との間の位相差を算出する位相差算出部180と、を更に備えて構成されている。 In FIG. 14, the power transmission device 10 includes a voltage sensor 161 that detects a voltage value of AC power, a current sensor 162 that detects a current value of the AC power, and a level between a voltage value phase and a current value phase. And a phase difference calculation unit 180 that calculates the phase difference.
 容量制御部140は、位相差算出部180により算出された位相差が小さくなるように、可変容量コンデンサ130の容量値を制御する。 The capacitance control unit 140 controls the capacitance value of the variable capacitor 130 so that the phase difference calculated by the phase difference calculation unit 180 becomes small.
 本実施形態に係る「位相差算出部180」は、本発明に係る「電圧位相検出手段」及び「電流位相検出手段」の一例である。 The “phase difference calculation unit 180” according to the present embodiment is an example of the “voltage phase detection unit” and the “current phase detection unit” according to the present invention.
 <第7実施形態>
 本発明の非接触給電システムに係る第7実施形態を、図15を参照して説明する。第7実施形態では、非接触給電システムの構成が一部異なる以外は、第1実施形態の構成と同様である。よって、第7実施形態について、第1実施形態と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図15を参照して説明する。図15は、図1と同趣旨の、第7実施形態に係る非接触給電システムの構成を示すブロック図である。
<Seventh embodiment>
A seventh embodiment according to the non-contact power feeding system of the present invention will be described with reference to FIG. The seventh embodiment is the same as the first embodiment except that the configuration of the non-contact power feeding system is partially different. Accordingly, the description of the seventh embodiment that is the same as that of the first embodiment is omitted, and common portions in the drawing are denoted by the same reference numerals, and only fundamentally different points are described with reference to FIG. explain. FIG. 15 is a block diagram showing a configuration of a non-contact power feeding system according to the seventh embodiment having the same concept as in FIG.
 図15において、非接触給電システム2は、送電装置11及び受電装置21を備えて構成されている。 In FIG. 15, the non-contact power feeding system 2 includes a power transmitting device 11 and a power receiving device 21.
 送電装置11は、送電回路110と、該送電回路110に電気的に接続された送電コイル120と、該送電コイル120に電気的に並列に接続された固定容量コンデンサ190と、を備えて構成されている。 The power transmission device 11 includes a power transmission circuit 110, a power transmission coil 120 electrically connected to the power transmission circuit 110, and a fixed capacitor 190 electrically connected to the power transmission coil 120 in parallel. ing.
 受電装置21は、(i)負荷210と、(ii)該負荷210と電気的に接続された受電コイル220と、(iii)該受電コイル220に電気的に直列に接続された可変容量コンデンサ261と、(iv)該受電装置21が搭載される電気自動車に係る情報を格納するデータベース250と、(v)該データベース250に格納された情報のうち、該電気自動車の車種を示す情報に基づいて結合係数を求める車種-結合係数変換部263と、(vi)該求められた変換係数に基づいて可変容量コンデンサ261の容量値を制御する容量制御部262と、を備えて構成されている。 The power receiving device 21 includes (i) a load 210, (ii) a power receiving coil 220 electrically connected to the load 210, and (iii) a variable capacitor 261 electrically connected in series to the power receiving coil 220. And (iv) a database 250 that stores information related to the electric vehicle on which the power receiving device 21 is mounted, and (v) out of information stored in the database 250, based on information indicating the type of the electric vehicle. The vehicle type-coupling coefficient conversion unit 263 that determines the coupling coefficient, and (vi) a capacity control unit 262 that controls the capacitance value of the variable capacitor 261 based on the determined conversion coefficient.
 本実施形態に係る「受電装置21」は、本発明に係る「非接触電力受電装置」の一例である。 The “power receiving device 21” according to the present embodiment is an example of the “non-contact power receiving device” according to the present invention.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う非接触電力送電装置、非接触電力受電装置、及び非接触電力送電システムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification. A device, a non-contact power receiving device, and a non-contact power transmission system are also included in the technical scope of the present invention.
 1、2…非接触給電システム、10、11…送電装置、20、21…受電装置、110…送電回路、120…送電コイル、130、261…可変容量コンデンサ、140、262…容量制御部、190、230…固定容量コンデンサ、210…負荷、220…受電コイル DESCRIPTION OF SYMBOLS 1, 2 ... Non-contact electric power feeding system 10, 11 ... Power transmission apparatus, 20, 21 ... Power receiving apparatus, 110 ... Power transmission circuit, 120 ... Power transmission coil, 130, 261 ... Variable capacitor, 140, 262 ... Capacity control part, 190 , 230 ... fixed capacitor, 210 ... load, 220 ... power receiving coil

Claims (10)

  1.  受電コイルと、前記受電コイルに電気的に並列に接続された固定容量コンデンサと、を備える受電装置に対して、電磁誘導により非接触で電力を送電する非接触電力送電装置であって、
     交流電力を発生させる交流電源と、
     前記交流電源に電気的に接続された送電コイルと、
     前記送電コイルに電気的に直列に接続された可変容量コンデンサと、
     前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、
     を備えることを特徴とする非接触電力送電装置。
    A non-contact power transmission device that transmits power in a non-contact manner by electromagnetic induction to a power reception device including a power reception coil and a fixed capacitor electrically connected to the power reception coil in parallel.
    An AC power source for generating AC power;
    A power transmission coil electrically connected to the AC power source;
    A variable capacitor electrically connected in series to the power transmission coil;
    Capacity control means for controlling the capacitance value of the variable capacitor so that the phase difference between the voltage phase and the current phase of the AC power is reduced;
    A non-contact power transmission device comprising:
  2.  前記送電コイルと前記受電コイルとの磁気的な結合の度合いを推定する結合推定手段を更に備え、
     前記容量制御手段は、前記推定された磁気的な結合の度合いに基づいて、前記可変容量コンデンサの容量値を制御する
     ことを特徴とする請求項1に記載の非接触電力送電装置。
    A coupling estimation means for estimating a degree of magnetic coupling between the power transmission coil and the power reception coil;
    The contactless power transmission device according to claim 1, wherein the capacitance control unit controls a capacitance value of the variable capacitor based on the estimated degree of magnetic coupling.
  3.  前記結合推定手段は、
     前記送電コイルと前記受電コイルとの間の距離を測定する距離測定手段と、
     前記距離と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記測定された距離を前記結合係数に変換する変換手段と、
     を有することを特徴とする請求項2に記載の非接触電力送電装置。
    The joint estimation means includes
    Distance measuring means for measuring a distance between the power transmission coil and the power receiving coil;
    Conversion means for storing in advance a correspondence relationship between the distance and a coupling coefficient indicating the degree of magnetic coupling, and converting the measured distance into the coupling coefficient based on the stored correspondence relationship; ,
    The non-contact power transmission device according to claim 2, wherein
  4.  前記結合推定手段は、
     前記受電装置における受電側電圧値及び受電側電流値の少なくとも一方を取得する取得手段と、
     前記交流電力の電圧値である送電側電圧値、及び前記交流電力の電流値である送電側電流値の少なくとも一方を検出する検出手段と、
     前記取得された受電側電圧値及び受電側電流値の少なくとも一方と、前記検出された送電側電圧値及び送電側電流値の少なくとも一方と、に基づいて電力伝送効率を算出する算出手段と、
     前記電力伝送効率と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記算出された電力伝送効率を前記結合係数に変換する変換手段と、
     を有することを特徴とする請求項2に記載の非接触電力送電装置。
    The joint estimation means includes
    Obtaining means for obtaining at least one of a power receiving side voltage value and a power receiving side current value in the power receiving device;
    Detecting means for detecting at least one of a power transmission side voltage value that is a voltage value of the AC power and a power transmission side current value that is a current value of the AC power;
    Calculation means for calculating power transmission efficiency based on at least one of the acquired power receiving side voltage value and power receiving side current value and at least one of the detected power transmission side voltage value and power transmission side current value;
    A correspondence relationship between the power transmission efficiency and a coupling coefficient indicating the degree of magnetic coupling is stored in advance, and the calculated power transmission efficiency is converted into the coupling coefficient based on the stored correspondence relationship. Conversion means to
    The non-contact power transmission device according to claim 2, wherein
  5.  前記受電装置は移動体に搭載されており、
     前記結合推定手段は、
     前記移動体の種別を取得する種別取得手段と、
     前記種別と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記取得された種別を前記結合係数に変換する変換手段と、
     を有することを特徴とする請求項2に記載の非接触電力送電装置。
    The power receiving device is mounted on a moving body,
    The joint estimation means includes
    Type acquisition means for acquiring the type of the moving object;
    Conversion means for previously storing a correspondence relationship between the type and a coupling coefficient indicating the degree of magnetic coupling, and converting the acquired type into the coupling coefficient based on the stored correspondence relationship; ,
    The non-contact power transmission device according to claim 2, wherein
  6.  前記結合推定手段は、
     前記送電コイルと前記受電コイルとの間の距離を測定する距離測定手段と、
     前記送電コイルの前記受電コイルに対向する面に沿う方向における前記送電コイルの前記受電コイルに対する位置ずれ量を検出する位置ずれ量検出手段と、
     前記距離及び前記位置ずれ量と、前記磁気的な結合の度合いを示す結合係数との対応関係を予め記憶すると共に、前記記憶された対応関係に基づいて、前記測定された距離及び前記検出された位置ずれ量を、前記結合係数に変換する変換手段と、
     を有することを特徴とする請求項2に記載の非接触電力送電装置。
    The joint estimation means includes
    Distance measuring means for measuring a distance between the power transmission coil and the power receiving coil;
    A displacement amount detection means for detecting a displacement amount of the power transmission coil with respect to the power reception coil in a direction along a surface of the power transmission coil facing the power reception coil;
    A correspondence relationship between the distance and the amount of displacement and a coupling coefficient indicating the degree of magnetic coupling is stored in advance, and the measured distance and the detected amount are detected based on the stored correspondence relationship. Conversion means for converting a positional deviation amount into the coupling coefficient;
    The non-contact power transmission device according to claim 2, wherein
  7.  前記交流電力の電圧位相を検出する電圧位相検出手段と、
     前記交流電力の電流位相を検出する電流位相検出手段と、
     を更に備え、
     前記容量制御手段は、前記検出された電圧位相及び前記検出された電流位相間の位相差が小さくなるように、前記可変容量コンデンサの容量値を制御する
     ことを特徴とする請求項1に記載の非接触電力送電装置。
    Voltage phase detection means for detecting the voltage phase of the AC power;
    Current phase detection means for detecting the current phase of the AC power;
    Further comprising
    The said capacity | capacitance control means controls the capacitance value of the said variable capacity capacitor so that the phase difference between the said detected voltage phase and the said detected current phase may become small. Non-contact power transmission device.
  8.  前記送電コイルと前記受電コイルとの結合係数を算出する結合係数算出手段を更に備え、
     前記容量制御手段は、前記算出された結合係数に基づいて、前記可変容量コンデンサの容量値を制御する
     ことを特徴とする請求項1に記載の非接触電力送電装置。
    A coupling coefficient calculating means for calculating a coupling coefficient between the power transmission coil and the power receiving coil;
    The contactless power transmission device according to claim 1, wherein the capacitance control unit controls a capacitance value of the variable capacitor based on the calculated coupling coefficient.
  9.  交流電流を発生させる交流電源と、前記交流電源に電気的に接続された送電コイルと、前記送電コイルに電気的に並列に接続された固定容量コンデンサと、を備える送電装置から、電磁誘導により非接触で電力を受電する非接触電力受電装置であって、
     受電コイルと、
     前記受電コイルに電気的に直列に接続された可変容量コンデンサと、
     前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、
     を備えることを特徴とする非接触電力受電装置。
    From a power transmission device comprising: an AC power source for generating an AC current; a power transmission coil electrically connected to the AC power source; and a fixed capacitor electrically connected to the power transmission coil in parallel. A non-contact power receiving device that receives power by contact,
    A receiving coil;
    A variable capacitor electrically connected in series to the power receiving coil;
    Capacity control means for controlling the capacitance value of the variable capacitor so that the phase difference between the voltage phase and the current phase of the AC power is reduced;
    A non-contact power receiving apparatus comprising:
  10.  交流電流を発生させる交流電源と、前記交流電源に電気的に接続された送電コイルと、前記送電コイルから電磁誘導により非接触で電力を受電する受電コイルと、を備える非接触給電システムであって、
     前記送電コイル及び前記受電コイルの一方に電気的に並列に接続された固定容量コンデンサと、
     前記送電コイル及び前記受電コイルの他方に電気的に直列に接続された可変容量コンデンサと、
     前記交流電力の電圧位相と電流位相との間の位相差が小さくなるように前記可変容量コンデンサの容量値を制御する容量制御手段と、
     を備えることを特徴とする非接触給電システム。
    A non-contact power feeding system comprising: an AC power source that generates an AC current; a power transmission coil that is electrically connected to the AC power source; and a power reception coil that receives power from the power transmission coil by electromagnetic induction in a contactless manner. ,
    A fixed capacitor electrically connected to one of the power transmission coil and the power reception coil in parallel;
    A variable capacitor electrically connected in series to the other of the power transmission coil and the power reception coil;
    Capacity control means for controlling the capacitance value of the variable capacitor so that the phase difference between the voltage phase and the current phase of the AC power is reduced;
    A non-contact power feeding system comprising:
PCT/JP2011/071475 2011-09-21 2011-09-21 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system WO2013042224A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012513109A JP5010061B1 (en) 2011-09-21 2011-09-21 Non-contact power transmission device, non-contact power reception device, and non-contact power supply system
US14/346,153 US20150326028A1 (en) 2011-09-21 2011-09-21 Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
PCT/JP2011/071475 WO2013042224A1 (en) 2011-09-21 2011-09-21 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system
JP2012051760A JP2013070590A (en) 2011-09-21 2012-03-08 Non-contact power transmission device, non-contact power reception device and non-contact power supply system
US14/568,207 US20150130294A1 (en) 2011-09-21 2014-12-12 Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
US14/568,470 US20150130272A1 (en) 2011-09-21 2014-12-12 Wireless power receiving apparatus and control method for such apparatus
US14/568,350 US20150130271A1 (en) 2011-09-21 2014-12-12 Wireless power transmitting apparatus and control method for such apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071475 WO2013042224A1 (en) 2011-09-21 2011-09-21 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US14/346,153 A-371-Of-International US20150326028A1 (en) 2011-09-21 2011-09-21 Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
US14/568,470 Division US20150130272A1 (en) 2011-09-21 2014-12-12 Wireless power receiving apparatus and control method for such apparatus
US14/568,207 Division US20150130294A1 (en) 2011-09-21 2014-12-12 Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
US14/568,350 Division US20150130271A1 (en) 2011-09-21 2014-12-12 Wireless power transmitting apparatus and control method for such apparatus

Publications (1)

Publication Number Publication Date
WO2013042224A1 true WO2013042224A1 (en) 2013-03-28

Family

ID=46844510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071475 WO2013042224A1 (en) 2011-09-21 2011-09-21 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system

Country Status (3)

Country Link
US (1) US20150326028A1 (en)
JP (2) JP5010061B1 (en)
WO (1) WO2013042224A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123306A (en) * 2011-12-09 2013-06-20 Toyota Industries Corp Non-contact power transmission apparatus
JP2014093829A (en) * 2012-11-01 2014-05-19 Panasonic Corp Non-contact power supply system
JP2014207764A (en) * 2013-04-12 2014-10-30 三菱電機株式会社 Non-contact power-feeding device
CN104518674A (en) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 Adjusting method and system of non-contact transformer
JP2015089267A (en) * 2013-10-31 2015-05-07 船井電機株式会社 Device and system for non-contact power supply
JP2015136281A (en) * 2013-12-19 2015-07-27 パナソニックIpマネジメント株式会社 Power transmitter and power receiver for radio power transmission, and radio power transmission system
CN105594098A (en) * 2014-02-28 2016-05-18 松下知识产权经营株式会社 Embedded permanent magnet type electric motor, compressor, and refrigeration air-conditioning device
EP3089322A4 (en) * 2013-12-10 2016-12-21 Chugoku Electric Power Power-receiving device and power-feeding system
EP3145047A4 (en) * 2014-05-14 2018-05-02 WQC, Inc. Wireless power transfer device
US10090711B2 (en) 2013-06-24 2018-10-02 Fujitsu Limited Power transmission apparatus and power transmission method
JP2021035267A (en) * 2019-08-28 2021-03-01 オムロン株式会社 Non-contact power supply device
US11101699B2 (en) 2018-03-08 2021-08-24 Daihen Corporation Power reception device, wearable device, and non-contact power feeding system
JP7477840B2 (en) 2020-08-19 2024-05-02 地方独立行政法人東京都立産業技術研究センター Non-contact power supply circuit

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300147B2 (en) * 2011-06-29 2016-03-29 Lg Electronics Inc. Method for avoiding signal collision in wireless power transfer
WO2013098975A1 (en) * 2011-12-27 2013-07-04 富士通株式会社 Wireless power supply apparatus, wireless power supply system, and wireless power supply method
DE102012000408A1 (en) 2012-01-12 2013-07-18 Phoenix Contact Gmbh & Co. Kg Resonant inductive power supply device
DE102012000409A1 (en) * 2012-01-12 2013-07-18 Phoenix Contact Gmbh & Co. Kg Modular data system with inductive energy transfer
US20140333150A1 (en) * 2012-01-26 2014-11-13 Pioneer Corporation Power transmitting apparatus and power transmitting method
EP2838178A4 (en) * 2012-04-13 2016-05-04 Ihi Corp Power-receiving structure for ship, power supply device, and power supply method
WO2014041655A1 (en) * 2012-09-13 2014-03-20 トヨタ自動車株式会社 Non-contact power supply system, power transmission device used therein, and vehicle
KR101991341B1 (en) 2013-01-04 2019-06-20 삼성전자 주식회사 Wireless power reception device and wireless power transmission system
JP6081214B2 (en) * 2013-02-13 2017-02-15 国立大学法人埼玉大学 Non-contact power feeding device
JP2014204603A (en) * 2013-04-08 2014-10-27 ソニー株式会社 Power feeding apparatus and power feeding system
WO2015087400A1 (en) 2013-12-10 2015-06-18 中国電力株式会社 Power-transmitting device, power-feeding system, and device for adjusting impedance of electrical circuit
CN105850005A (en) 2013-12-10 2016-08-10 中国电力株式会社 Power-transmitting device and power-feeding system
WO2015104779A1 (en) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 Wireless power supply device and wireless power supply device start-up method
JP2015228739A (en) * 2014-05-30 2015-12-17 株式会社Ihi Power transmission apparatus
CN106165244A (en) 2014-05-30 2016-11-23 株式会社Ihi Contactless power supply system, current-collecting device and power transmission device
JP2016021827A (en) * 2014-07-15 2016-02-04 矢崎総業株式会社 Power feeding system
EP3214729B1 (en) 2014-10-28 2020-06-24 IHI Corporation Power transmission device, power transmission method, and non-contact power supply system
JP6213485B2 (en) * 2014-11-28 2017-10-18 トヨタ自動車株式会社 Power transmission equipment
JP6323346B2 (en) * 2014-11-28 2018-05-16 トヨタ自動車株式会社 Power transmission equipment
KR101656260B1 (en) * 2015-01-05 2016-09-09 주식회사 아모센스 Shielding unit for a wireless charging and wireless charging module having the same
US9899883B2 (en) * 2015-01-09 2018-02-20 Richtek Technology Corporation Wireless power transfer system having positioning function and positioning device and method therefor
JP6402818B2 (en) * 2015-02-20 2018-10-10 富士通株式会社 Power receiver and power transmission system
EP3270487B1 (en) * 2015-03-12 2020-04-29 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system
JP6454943B2 (en) * 2015-03-24 2019-01-23 パナソニックIpマネジメント株式会社 Non-contact power supply device and non-contact power supply system using the same
WO2016157758A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Contactless power supply device, program, method for controlling contactless power supply device, and contactless power transmission system
CN107636933B (en) * 2015-05-25 2020-06-26 株式会社村田制作所 Wireless power supply system
KR101810001B1 (en) * 2015-05-26 2017-12-18 주식회사 아모센스 A wireless power receiver module
JP6531498B2 (en) * 2015-06-03 2019-06-19 船井電機株式会社 Power supply device
JP6531942B2 (en) * 2015-07-21 2019-06-19 パナソニックIpマネジメント株式会社 Power transmission device
WO2017035143A1 (en) * 2015-08-24 2017-03-02 The Regents Of The University Of California Low power magnetic field body area network
JP6278012B2 (en) * 2015-08-28 2018-02-14 トヨタ自動車株式会社 Non-contact power transmission system and power transmission device
JP6618006B2 (en) * 2015-09-29 2019-12-11 パナソニックIpマネジメント株式会社 Wireless power transmission system and power transmission device
JP6120116B2 (en) 2015-10-02 2017-04-26 パナソニックIpマネジメント株式会社 Wireless power transmission system
WO2017061773A1 (en) * 2015-10-05 2017-04-13 주식회사 아모그린텍 Magnetic sheet, module comprising same, and portable device comprising same
JP6595319B2 (en) * 2015-11-26 2019-10-23 株式会社Soken Wireless power feeding system and power receiving device
US9936440B2 (en) 2016-07-12 2018-04-03 Coco Communications Corp. Systems and methods for automatic transmission rate control in a vehicle-based wireless network
US10594160B2 (en) * 2017-01-11 2020-03-17 Apple Inc. Noise mitigation in wireless power systems
JP2018117404A (en) * 2017-01-16 2018-07-26 株式会社Soken Power transmission unit of wireless power supply device
KR102624303B1 (en) * 2017-02-16 2024-01-15 주식회사 위츠 Wireless power transmitter
US20190074719A1 (en) 2017-09-06 2019-03-07 Apple Inc. Multiple-structure wireless charging receiver systems having multiple receiver coils
US10381881B2 (en) * 2017-09-06 2019-08-13 Apple Inc. Architecture of portable electronic devices with wireless charging receiver systems
US11426091B2 (en) 2017-09-06 2022-08-30 Apple Inc. Film coatings as electrically conductive pathways
WO2019172366A1 (en) * 2018-03-08 2019-09-12 株式会社ダイヘン Power receiving deviceapparatus, wearable device, and contactless power feedfeeding system
JP6974243B2 (en) * 2018-04-25 2021-12-01 株式会社Soken Contactless power transmission device
JP6974244B2 (en) * 2018-04-25 2021-12-01 株式会社Soken Contactless power transmission device
CN111016690B (en) * 2018-10-09 2021-08-17 郑州宇通客车股份有限公司 Wireless charging control method and device for electric automobile
US20240162753A1 (en) * 2019-03-12 2024-05-16 Daanaa Resolution Inc. Decoupled platen power transfer system and methods
CN110208679A (en) * 2019-06-19 2019-09-06 珠海格力电器股份有限公司 Mainboard fault inquiry device, system and air conditioning unit
US11700904B2 (en) * 2021-11-12 2023-07-18 Orpyx Medical Technologies Inc. Wireless charging assemblies for sensorized insoles, methods for charging sensorized insoles, and footwear systems including sensorized insoles
CA3175982A1 (en) 2021-12-16 2023-06-16 Orpyx Medical Technologies Inc. Wireless charging assemblies for sensorized insoles, methods for charging sensorized insoles, and footwear systems including sensorized insoles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225129A (en) * 1997-02-13 1998-08-21 Ishikawajima Harima Heavy Ind Co Ltd Non-contact power supply facility
JPH10303790A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Data carrier system
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2010166693A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Non-contact power supply device
JP2011160653A (en) * 2010-01-28 2011-08-18 Toyota Infotechnology Center Co Ltd System and method of energy transfer for mobile vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188113A (en) * 1997-12-26 1999-07-13 Nec Corp Power transmission system, power transmission method and electric stimulation device provided with the power transmission system
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
JP3488166B2 (en) * 2000-02-24 2004-01-19 日本電信電話株式会社 Contactless IC card system, its reader / writer and contactless IC card
US8686684B2 (en) * 2009-03-27 2014-04-01 Microsoft Corporation Magnetic inductive charging with low far fields
JP5396634B2 (en) * 2009-03-31 2014-01-22 株式会社ニデック Power transmission circuit and visual reproduction assisting device having the same
JP5211088B2 (en) * 2010-02-12 2013-06-12 トヨタ自動車株式会社 Power feeding device and vehicle power feeding system
DE112011102539T5 (en) * 2010-07-29 2013-05-16 Kabushiki Kaisha Toyota Jidoshokki Non-contact energy supply system of resonance type
US8664803B2 (en) * 2010-12-28 2014-03-04 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225129A (en) * 1997-02-13 1998-08-21 Ishikawajima Harima Heavy Ind Co Ltd Non-contact power supply facility
JPH10303790A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Data carrier system
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2010166693A (en) * 2009-01-15 2010-07-29 Nissan Motor Co Ltd Non-contact power supply device
JP2011160653A (en) * 2010-01-28 2011-08-18 Toyota Infotechnology Center Co Ltd System and method of energy transfer for mobile vehicle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123306A (en) * 2011-12-09 2013-06-20 Toyota Industries Corp Non-contact power transmission apparatus
JP2014093829A (en) * 2012-11-01 2014-05-19 Panasonic Corp Non-contact power supply system
JP2014207764A (en) * 2013-04-12 2014-10-30 三菱電機株式会社 Non-contact power-feeding device
US10090711B2 (en) 2013-06-24 2018-10-02 Fujitsu Limited Power transmission apparatus and power transmission method
CN104518674A (en) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 Adjusting method and system of non-contact transformer
JP2016535563A (en) * 2013-09-27 2016-11-10 ゼットティーイー コーポレーションZte Corporation Method and system for adjusting a non-contact transformer
US10236729B2 (en) 2013-09-27 2019-03-19 Zte Corporation Method and system for regulating contactless transformer
JP2015089267A (en) * 2013-10-31 2015-05-07 船井電機株式会社 Device and system for non-contact power supply
US9905358B2 (en) 2013-10-31 2018-02-27 Funai Electric Co., Ltd. Contactless power feeding apparatus and contactless power feeding system
EP3089322A4 (en) * 2013-12-10 2016-12-21 Chugoku Electric Power Power-receiving device and power-feeding system
US9912196B2 (en) 2013-12-10 2018-03-06 The Chugoku Electric Power Co., Inc. Power receiving device and power feeding system
JP2015136281A (en) * 2013-12-19 2015-07-27 パナソニックIpマネジメント株式会社 Power transmitter and power receiver for radio power transmission, and radio power transmission system
CN105594098A (en) * 2014-02-28 2016-05-18 松下知识产权经营株式会社 Embedded permanent magnet type electric motor, compressor, and refrigeration air-conditioning device
US10170939B2 (en) 2014-02-28 2019-01-01 Panasonic Intellectual Property Management Co. Ltd. Foreign object detector, power transmitting device and power receiving device for wireless power transmission, and wireless power transmission system
US10547214B2 (en) 2014-05-14 2020-01-28 WQC, Inc. Wireless power transfer system
US10243406B2 (en) 2014-05-14 2019-03-26 WQC, Inc. Wireless power transfer system
EP3487038A1 (en) * 2014-05-14 2019-05-22 WQC, Inc. Wireless power transfer system
TWI667858B (en) * 2014-05-14 2019-08-01 日商速充股份有限公司 Wireless power transmission apparatus
EP3561997A1 (en) * 2014-05-14 2019-10-30 WQC, Inc. Wireless power transfer system
EP3145047A4 (en) * 2014-05-14 2018-05-02 WQC, Inc. Wireless power transfer device
TWI702769B (en) * 2014-05-14 2020-08-21 日商速充股份有限公司 Wireless power transmission apparatus
US11005300B2 (en) 2014-05-14 2021-05-11 WQC, Inc. Wireless power transfer system
EP3826141A1 (en) * 2014-05-14 2021-05-26 WQC, Inc. Wireless power transfer system
US11101699B2 (en) 2018-03-08 2021-08-24 Daihen Corporation Power reception device, wearable device, and non-contact power feeding system
JP2021035267A (en) * 2019-08-28 2021-03-01 オムロン株式会社 Non-contact power supply device
JP7408952B2 (en) 2019-08-28 2024-01-09 オムロン株式会社 Contactless power supply device
JP7477840B2 (en) 2020-08-19 2024-05-02 地方独立行政法人東京都立産業技術研究センター Non-contact power supply circuit

Also Published As

Publication number Publication date
JP5010061B1 (en) 2012-08-29
US20150326028A1 (en) 2015-11-12
JPWO2013042224A1 (en) 2015-03-26
JP2013070590A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5010061B1 (en) Non-contact power transmission device, non-contact power reception device, and non-contact power supply system
US20150130294A1 (en) Wireless power transmitting apparatus, wireless power receiving apparatus, and wireless power feeding system
US20150130271A1 (en) Wireless power transmitting apparatus and control method for such apparatus
US20150130272A1 (en) Wireless power receiving apparatus and control method for such apparatus
JP5083480B2 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
WO2013137054A1 (en) Non-contact power feeding apparatus and non-contact power feeding method
JP6036995B2 (en) Contactless power supply system
US10256675B2 (en) Power-supplying device and wireless power supply system
EP3157118B1 (en) Power-transmitting device and contactless power-supplying system
KR102230057B1 (en) Power transmitting device and power transmission system
JP6089464B2 (en) Non-contact power transmission device
WO2013084754A1 (en) Contactless power transmission device
US20140167523A1 (en) Power transmission device and wireless power transmission system using the power transmission device
EP3419144B1 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP2011155733A (en) Noncontact power transmission system and noncontact power transmission device
EP3439135A1 (en) Wireless power receiving device
US10833534B2 (en) Power transmitting device and power receiving device
JP6094204B2 (en) Wireless power transmission system
KR101996966B1 (en) Wireless Power Transfer System and Operating method thereof
JP6178404B2 (en) Power receiving device
CN209833410U (en) Dynamic calibration system for hybrid sensor of electric vehicle
JP2015080296A (en) Power reception apparatus and non-contact power transmission device
EP4298714A1 (en) Wireless power transfer
JP6015608B2 (en) Power receiving device and non-contact power transmission device
JP2020174453A (en) Non-contact power supply system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012513109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14346153

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11872874

Country of ref document: EP

Kind code of ref document: A1