JP7477840B2 - Non-contact power supply circuit - Google Patents

Non-contact power supply circuit Download PDF

Info

Publication number
JP7477840B2
JP7477840B2 JP2020138710A JP2020138710A JP7477840B2 JP 7477840 B2 JP7477840 B2 JP 7477840B2 JP 2020138710 A JP2020138710 A JP 2020138710A JP 2020138710 A JP2020138710 A JP 2020138710A JP 7477840 B2 JP7477840 B2 JP 7477840B2
Authority
JP
Japan
Prior art keywords
power
coil
power transmitting
circuit
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020138710A
Other languages
Japanese (ja)
Other versions
JP2022034826A (en
Inventor
美郷 秋山
宏靖 佐野
秀勝 佐々木
敬久 鈴木
昌生 多氣
真 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI), Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2020138710A priority Critical patent/JP7477840B2/en
Publication of JP2022034826A publication Critical patent/JP2022034826A/en
Application granted granted Critical
Publication of JP7477840B2 publication Critical patent/JP7477840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本開示は、受電側の回路に設けられた2つの受電コイルを、送電側の回路に設けられた2つの送電コイルで挟み込むように配置した非接触状態において、電力を伝送する非接触給電回路に関する。 This disclosure relates to a non-contact power supply circuit that transmits power in a non-contact state in which two power receiving coils provided in a power receiving circuit are sandwiched between two power transmitting coils provided in a power transmitting circuit.

例えば、二次電池を備えた機器等に充電を行う場合、この機器等に充電器の電極、充電用ケーブルなどを接続することなく、即ち、非接触の状態で電力を供給する技術がある。
非接触状態で給電を行う場合には、上記の機器等である給電対象に設置された受電コイル等と、充電機器等に設置された送電コイル等を近接させて対向配置し、電磁誘導などを用いて電力を伝送する。
非接触状態において電力の伝送効率を高めるため、例えば、二次電池等の負荷を有する給電対象側(受電側の回路)に2つの受電コイルを備え、また、各受電コイルに対向配置される2つの送電コイルを充電器等の電力供給側(送電側の回路)に備え、2対の送受電コイルを用いることが考えられる。
For example, when charging a device equipped with a secondary battery, there is a technique for supplying power without connecting the electrodes of a charger, a charging cable, etc. to the device, that is, in a non-contact state.
When power is supplied in a non-contact manner, a receiving coil or the like installed in the power supply target, which is the above-mentioned device, and a transmitting coil or the like installed in a charging device, etc. are placed close to each other and facing each other, and power is transmitted using electromagnetic induction or the like.
In order to improve the efficiency of power transmission in a non-contact state, it is possible to use two pairs of transmitting and receiving coils, for example, by providing two receiving coils on the power supply target side (power receiving circuit) having a load such as a secondary battery, and two transmitting coils arranged opposite each receiving coil on the power supply side (power transmitting circuit) of a charger, etc.

2対の送受信コイルを用いて非接触給電を行う技術(非接触給電構造)として、例えば、次のようなものがある。バッテリ(二次電池)を備えた電動自転車の前輪に、一の受電コイルと他の受電コイルとを備える。また、一の受電コイルと対向配置される一の送電コイルと、他の受電コイルと対向配置される他の送電コイルとを、電力供給側となる駐輪施設の支持部材に設ける。
この非接触給電構造は、駐輪施設に設けられた一の送電コイルと他の送電コイルとの間に、電動自転車の前輪を挟み込むように駐輪し、挟み込まれた前輪に設けられた一の受電コイルおよび他の受電コイルに対して非接触給電を行うように構成されている(例えば、特許文献1参照)。
An example of a technology (contactless power supply structure) for contactless power supply using two pairs of transmitting and receiving coils is as follows: One power receiving coil and another power receiving coil are provided on the front wheel of an electric bicycle equipped with a battery (secondary battery). Also, one power transmitting coil arranged opposite the one power receiving coil, and another power transmitting coil arranged opposite the other power receiving coil are provided on a support member of a bicycle parking facility that serves as the power supply side.
This non-contact power supply structure is configured so that the front wheel of an electric bicycle is sandwiched between one power transmission coil and another power transmission coil provided in a bicycle parking facility, and power is supplied non-contact to one power receiving coil and another power receiving coil provided on the sandwiched front wheel (see, for example, Patent Document 1).

特開2018-143067号公報JP 2018-143067 A

例えば、自転車の前輪に設置された2つの受電コイルを挟み込むように、2つの送電コイルを設け、2対の送受電コイルによって非接触給電を行うように構成すると、通常の1対の送受電コイルを用いた給電では生じることのない磁界結合が発生する。即ち、それぞれ2つの送受電コイルを用いた場合には、意図しない磁界結合も発生するため、電力を伝送する際に電圧と電流との位相差が大きくなり、電力の伝送効率が低下する場合がある。 For example, if two power transmitting coils are provided so as to sandwich two power receiving coils installed on the front wheel of a bicycle, and power is supplied contactlessly using the two pairs of power transmitting and receiving coils, magnetic field coupling occurs that does not occur when power is supplied using a normal pair of power transmitting and receiving coils. In other words, when two power transmitting and receiving coils are used, unintended magnetic field coupling also occurs, which increases the phase difference between the voltage and current when transmitting power, and may reduce the efficiency of power transmission.

本開示は、上記の問題を解決するためになされたもので、複数の送受電コイルを用いた非接触給電の伝送効率を良好にする非接触給電回路を提供する。 This disclosure has been made to solve the above problems, and provides a contactless power supply circuit that improves the transmission efficiency of contactless power supply using multiple power transmitting and receiving coils.

本開示に係る非接触給電回路は、送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、を備え、前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、前記第1受電コイルと前記第2受電コイルとの結合係数に応じた値の補償リアクタンスを前記受電側の回路に設けたことを特徴とする。 The non-contact power supply circuit according to the present disclosure includes a first power transmission coil and a second power transmission coil arranged at a predetermined distance in a power transmission circuit, and a first power receiving coil and a second power receiving coil arranged in a power receiving circuit so as to be sandwiched between the first power transmission coil and the second power transmission coil, the first power transmission coil is arranged to face the first power receiving coil, and the second power transmission coil is arranged to face the second power receiving coil, and a compensation reactance having a value according to a coupling coefficient between the first power receiving coil and the second power receiving coil is provided in the power receiving circuit.

また、本開示に係る非接触給電回路は、送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、を備え、前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、前記第1送電コイルと前記第2送電コイルとの結合係数に応じた値の補償リアクタンスを前記送電側の回路に設けたことを特徴とする。 The non-contact power supply circuit according to the present disclosure is characterized in that it comprises a first power transmission coil and a second power transmission coil provided in a power transmission circuit and arranged at a predetermined interval, and a first power receiving coil and a second power receiving coil provided in a power receiving circuit and arranged so as to be sandwiched between the first power transmission coil and the second power transmission coil, the first power transmission coil is arranged so as to face the first power receiving coil and the second power transmission coil is arranged so as to face the second power receiving coil, and a compensation reactance having a value according to the coupling coefficient between the first power transmission coil and the second power transmission coil is provided in the power transmission circuit.

また、本開示に係る非接触給電回路は、送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、を備え、前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、前記第1送電コイルと前記第2送電コイルとの結合係数に応じた値の補償リアクタンスを前記送電側の回路に設け、前記第1受電コイルと前記第2受電コイルとの結合係数に応じた値の補償リアクタンスを前記受電側の回路に設けたことを特徴とする。 The non-contact power supply circuit according to the present disclosure includes a first power transmission coil and a second power transmission coil arranged at a predetermined interval in a power transmission circuit, and a first power receiving coil and a second power receiving coil arranged in a power receiving circuit so as to be sandwiched between the first power transmission coil and the second power transmission coil, the first power transmission coil is arranged to face the first power receiving coil, and the second power transmission coil is arranged to face the second power receiving coil, a compensating reactance having a value according to the coupling coefficient between the first power transmission coil and the second power transmission coil is provided in the power transmission circuit, and a compensating reactance having a value according to the coupling coefficient between the first power receiving coil and the second power receiving coil is provided in the power receiving circuit.

また、前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルに生じる磁界の向きが同相となるように、前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルを設けたとき、前記補償リアクタンスは、コンデンサであることを特徴とする。 Furthermore, when the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are arranged so that the directions of the magnetic fields generated in the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are in phase, the compensation reactance is a capacitor.

また、前記第1送電コイルに生じる磁界の向きと前記第2送電コイルに生じる磁界の向きとが逆相になり、前記第1受電コイルに生じる磁界の向きと前記第2受電コイルに生じる磁界の向きとが逆相になり、前記第1送電コイルに生じる磁界の向きと前記第1受電コイルに生じる磁界の向きとが同相になり、前記第2送電コイルに生じる磁界の向きと前記第2受電コイルに生じる磁界の向きとが同相となるように、前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルを設けたとき、前記補償リアクタンスは、インダクタであることを特徴とする。 Furthermore, when the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are arranged so that the magnetic field generated in the first power transmitting coil and the magnetic field generated in the second power transmitting coil are in opposite phase, the magnetic field generated in the first power receiving coil and the magnetic field generated in the second power receiving coil are in opposite phase, the magnetic field generated in the first power transmitting coil and the magnetic field generated in the first power receiving coil are in phase, and the magnetic field generated in the second power transmitting coil and the magnetic field generated in the second power receiving coil are in phase, the compensation reactance is an inductor.

本開示によれば、送電側の回路に設けられた2つの送電コイルの間に、受電側の回路に設けられた2つの受電コイルを挟み込むように配置した場合の、電力の伝送効率を向上させることができる。 According to the present disclosure, it is possible to improve the power transmission efficiency when two power receiving coils provided in a power receiving circuit are sandwiched between two power transmitting coils provided in a power transmitting circuit.

本開示の実施の形態による非接触給電回路の基本構成を示す回路図である。1 is a circuit diagram showing a basic configuration of a contactless power supply circuit according to an embodiment of the present disclosure. 図1の非接触給電回路の概略構成を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic configuration of the non-contact power supply circuit of FIG. 1 . 図2の各コイルが発生させる磁界の向きを示す説明図である。3 is an explanatory diagram showing the direction of a magnetic field generated by each coil in FIG. 2. 各送電コイルおよび各受電コイルの配置を示す説明図である。FIG. 2 is an explanatory diagram showing the arrangement of each power transmitting coil and each power receiving coil. 補償リアクタンスを備えた非接触給電回路の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a contactless power supply circuit having a compensating reactance. 補償コンデンサを備えていない非接触給電回路の動作特性を示す説明図である。FIG. 10 is an explanatory diagram showing the operating characteristics of a contactless power supply circuit not including a compensation capacitor. 補償コンデンサを備えた非接触給電回路の動作特性を示す説明図である。FIG. 1 is an explanatory diagram showing the operating characteristics of a contactless power supply circuit including a compensation capacitor. 動作の実測に用いた補償コンデンサを備えた非接触給電回路の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a contactless power supply circuit including a compensation capacitor used in actual measurement of operation. 補償コンデンサを備えていない非接触給電回路の動作を実測した結果を示す説明図である。FIG. 11 is an explanatory diagram showing the results of actual measurement of the operation of a contactless power supply circuit not including a compensation capacitor. 補償コンデンサを備えた非接触給電回路の動作を実測した結果を示す説明図である。FIG. 11 is an explanatory diagram showing the results of actual measurement of the operation of a contactless power supply circuit including a compensation capacitor.

以下、この発明の実施の一形態を説明する。
図1は、本開示の実施の形態による給電回路1の構成を示す回路図である。図1の給電回路1は、挟み込み型の非接触給電回路の基本となる(後述する補償リアクタンスを省略した)回路構成を示している。
給電回路1は、送電側の回路と受電側の回路を有し、送電側の回路は、送電コイルLt1,Lt2、コンデンサCt1,Ct2、電源10によって構成されている。また、上記の受電側の回路は、受電コイルLr1,Lr2、コンデンサCr1,Cr2によって構成され、負荷Rrが接続されている。
An embodiment of the present invention will now be described.
Fig. 1 is a circuit diagram showing a configuration of a power supply circuit 1 according to an embodiment of the present disclosure. The power supply circuit 1 in Fig. 1 shows a basic circuit configuration (without a compensation reactance, which will be described later) of a sandwich-type contactless power supply circuit.
The power supply circuit 1 has a power transmission side circuit and a power receiving side circuit, and the power transmission side circuit is composed of power transmission coils Lt1, Lt2, capacitors Ct1, Ct2, and a power source 10. The power receiving side circuit is composed of power receiving coils Lr1, Lr2, and capacitors Cr1, Cr2, and is connected to a load Rr.

詳しくは、給電回路1の送電側の回路は、次のように接続構成されている。電源10の高電位側端子にコンデンサCt1の一端が接続され、コンデンサCt1の他端に送電コイルLt1の一端が接続されている。送電コイルLt1の他端に送電コイルLt2の一端が接続され、送電コイルLt2の他端にコンデンサCt2の一端が接続されている。コンデンサCt2の他端に電源10の低電位側端子が接続されている。送電コイルLt1の他端と送電コイルLt2の一端との接続点は、接地接続されている。
即ち、送電コイルLt1と送電コイルLt2が直列接続され、直列接続された送電コイルLt1,Lt2の両端が電源10に接続されている。
In detail, the power transmission side circuit of the power supply circuit 1 is connected as follows: One end of the capacitor Ct1 is connected to the high potential terminal of the power source 10, and one end of the power transmission coil Lt1 is connected to the other end of the capacitor Ct1. One end of the power transmission coil Lt2 is connected to the other end of the power transmission coil Lt1, and one end of the capacitor Ct2 is connected to the other end of the power transmission coil Lt2. The other end of the capacitor Ct2 is connected to the low potential terminal of the power source 10. The connection point between the other end of the power transmission coil Lt1 and one end of the power transmission coil Lt2 is grounded.
That is, the power transmitting coil Lt1 and the power transmitting coil Lt2 are connected in series, and both ends of the power transmitting coils Lt1 and Lt2 connected in series are connected to the power source 10.

給電回路1の受電側の回路は、次のように接続構成されている。受電コイルLr1の一端にコンデンサCr1の一端が接続されている。受電コイルLr1の他端に負荷Rrの一端が接続され、受電コイルLr2の一端に負荷Rrの他端が接続されている。受電コイルLr2の他端にコンデンサCr2の一端が接続され、コンデンサCr2の他端にコンデンサCr1の他端が接続されている。コンデンサCr2の他端とコンデンサCr1の他端との接続点は、接地接続されている。
即ち、受電コイルLr1と受電コイルLr2が直列接続され、直列接続された受電コイルLr1,Lr2の両端が負荷Rrに接続されている。
The circuit on the power receiving side of the power supply circuit 1 is connected as follows: One end of the capacitor Cr1 is connected to one end of the power receiving coil Lr1. One end of the load Rr is connected to the other end of the power receiving coil Lr1, and the other end of the load Rr is connected to one end of the power receiving coil Lr2. One end of the capacitor Cr2 is connected to the other end of the power receiving coil Lr2, and the other end of the capacitor Cr1 is connected to the other end of the capacitor Cr2. The connection point between the other end of the capacitor Cr2 and the other end of the capacitor Cr1 is connected to ground.
That is, the power receiving coil Lr1 and the power receiving coil Lr2 are connected in series, and both ends of the series connected power receiving coils Lr1, Lr2 are connected to the load Rr.

上記の送電コイルLt1,Lt2、ならびに受電コイルLr1,Lr2の各一端は、図1においてドット印が付記された端部であり、このドット印は各コイルの相互誘導における極性を示している。 One end of each of the above-mentioned power transmission coils Lt1 and Lt2 and power receiving coils Lr1 and Lr2 is the end marked with a dot in Figure 1, and this dot indicates the polarity of the mutual induction of each coil.

給電回路1は、各送受電コイルを挟み込み型に配置させたもので、送電コイルLt1と送電コイルLt2との間に、受電コイルLr1および受電コイルLr2が挟み込まれるように配置されている。
詳しくは、給電回路1は、送電コイルLt1に受電コイルLr1が対向配置され、送電コイルLt2に受電コイルLr2が対向配置されるように構成されている。
In the power supply circuit 1, the power transmitting and receiving coils are arranged in a sandwiched manner, with the power receiving coils Lr1 and Lr2 being arranged to be sandwiched between the power transmitting coil Lt1 and the power transmitting coil Lt2.
Specifically, the power supply circuit 1 is configured such that the power receiving coil Lr1 is disposed opposite the power transmitting coil Lt1, and the power receiving coil Lr2 is disposed opposite the power transmitting coil Lt2.

次に給電回路1の動作について説明する。
ここで、送電コイルLt1と受電コイルLr1との結合係数をk1、送電コイルLt2と受電コイルLr2との結合係数をk2とする。
また、送電コイルLt1と受電コイルLr2との結合係数をk12、送電コイルLt2と受電コイルLr1との結合係数をk21とする。
また、送電コイルLt1と送電コイルLt2との結合係数をkt、受電コイルLr1と受電コイルLr2との結合係数をkrとする。
また、送電コイルLt1,Lt2および受電コイルLr1,Lr2の各インダクタンスをLとし、コンデンサCt1,Ct2,Cr1,Cr2の各キャパシタンスをCとする。
Next, the operation of the power supply circuit 1 will be described.
Here, the coupling coefficient between the power transmitting coil Lt1 and the power receiving coil Lr1 is k1, and the coupling coefficient between the power transmitting coil Lt2 and the power receiving coil Lr2 is k2.
The coupling coefficient between the power transmitting coil Lt1 and the power receiving coil Lr2 is k12, and the coupling coefficient between the power transmitting coil Lt2 and the power receiving coil Lr1 is k21.
The coupling coefficient between the power transmitting coil Lt1 and the power transmitting coil Lt2 is kt, and the coupling coefficient between the power receiving coil Lr1 and the power receiving coil Lr2 is kr.
Also, the inductance of each of the power transmitting coils Lt1, Lt2 and the power receiving coils Lr1, Lr2 is represented by L, and the capacitance of each of the capacitors Ct1, Ct2, Cr1, Cr2 is represented by C.

給電回路1の各コイルに生じる全ての磁気結合を考慮すると、次の回路方程式が導出される。 Taking into account all the magnetic couplings occurring in each coil of the power supply circuit 1, the following circuit equation is derived:

Figure 0007477840000001
Figure 0007477840000001

上記の回路方程式から、挟み込み型に配置した送電コイル(Lt1,Lt2)と受電コイル(Lr1,Lr2)との結合においては、各コイル間の相互インダクタンス(2jωktL,2jωkrL)の影響を受けて送電側力率が低下すると、送受電間の給電効率が低下することがわかる。
即ち、送電コイルLt1と送電コイルLt2との磁気結合、ならびに、受電コイルLr1と受電コイルLr2との磁気結合によって送電側力率が低下し、非接触による電力の伝送効率が低下する。
そこで、送電側力率の低下を防ぐ(抑える)対策として、補償リアクタンスを給電回路1に追加する。
From the above circuit equation, it can be seen that in the coupling between the transmitting coil (Lt1, Lt2) and the receiving coil (Lr1, Lr2) arranged in a sandwiched configuration, if the transmitting side power factor decreases due to the influence of the mutual inductance (2jωktL, 2jωkrL) between each coil, the power supply efficiency between the transmitting and receiving sides decreases.
That is, the magnetic coupling between the power transmitting coil Lt1 and the power transmitting coil Lt2 and the magnetic coupling between the power receiving coil Lr1 and the power receiving coil Lr2 reduces the power factor on the power transmitting side, and reduces the efficiency of contactless power transmission.
Therefore, as a measure to prevent (suppress) the decrease in the power factor on the power transmission side, a compensating reactance is added to the power supply circuit 1.

図2は、図1の給電回路1の概略構成を示す説明図である。図2の給電回路1は、図1に示したものと同一部分に同じ符号を付記している。
図2の第1送電部12は、図1に示した送電コイルLt1、コンデンサCt1等によって構成された部分である。また、第2送電部13は、送電コイルLt2、コンデンサCt2等によって構成された部分である。また、受電部14は、受電コイルLr1、コンデンサCr1、受電コイルLr2、コンデンサCr2等によって構成され、負荷Rrに相当する負荷11が接続された部分である。
Fig. 2 is an explanatory diagram showing a schematic configuration of the power supply circuit 1 of Fig. 1. In the power supply circuit 1 of Fig. 2, the same components as those shown in Fig. 1 are denoted by the same reference numerals.
The first power transmission unit 12 in Fig. 2 is a portion configured with the power transmission coil Lt1, the capacitor Ct1, etc. shown in Fig. 1. The second power transmission unit 13 is a portion configured with the power transmission coil Lt2, the capacitor Ct2, etc. The power receiving unit 14 is a portion configured with the power receiving coil Lr1, the capacitor Cr1, the power receiving coil Lr2, the capacitor Cr2, etc., and is a portion to which a load 11 corresponding to the load Rr is connected.

第1送電部12に備える第1送電コイル20は、送電コイルLt1に相当する。第2送電部13に備える第2送電コイル23は、送電コイルLt2に相当する。
受電部14に備える第1受電コイル21は、受電コイルLr1に相当する。また、第2受電コイル22は、受電コイルLr2に相当する。
The first power transmission coil 20 included in the first power transmission section 12 corresponds to the power transmission coil Lt1. The second power transmission coil 23 included in the second power transmission section 13 corresponds to the power transmission coil Lt2.
The first power receiving coil 21 provided in the power receiving unit 14 corresponds to the power receiving coil Lr1, and the second power receiving coil 22 corresponds to the power receiving coil Lr2.

図3は、図2の各コイルが発生させる磁界の向きを示す説明図である。図中、タイプA~Dのように配置された4つのコイルは、両端の各コイルが第1送電コイル20ならびに第2送電コイル23に相当し、中央の2つのコイルが第1受電コイル21ならびに第2受電コイル22に相当する。図3に示した各矢印は、各コイルに発生する磁界の向きを示している。 Figure 3 is an explanatory diagram showing the direction of the magnetic field generated by each coil in Figure 2. In the figure, of the four coils arranged as types A to D, the coils at both ends correspond to the first power transmission coil 20 and the second power transmission coil 23, and the two coils in the middle correspond to the first power receiving coil 21 and the second power receiving coil 22. Each arrow in Figure 3 indicates the direction of the magnetic field generated in each coil.

2対の送受電コイルを挟み込み型に配置する場合、図3に示したように4つの磁界配置モード(タイプA~D)が考えられる。
タイプBは、例えば、第1送電コイル20が発生する磁界の向きと第2送電コイル23が発生する磁界の向きが同相となり、第1受電コイル21に発生する磁界の向きと第2受電コイル22に発生する磁界の向きが逆相となるように配置構成されている。各コイルの中心軸を一致させて、タイプBのように磁界の向きを配置すると、受電部14に電力が伝送されない。
タイプCは、例えば、第1送電コイル20が発生する磁界の向きと第2送電コイル23が発生する磁界の向きが逆相で、第1受電コイル21に発生する磁界の向きと第2受電コイル22に発生する磁界の向きが同相となるように配置構成されている。各コイルの中心軸を一致させて、タイプCのように磁界の向きを配置すると、受電部14に電力が伝送されない。
When two pairs of transmitting and receiving coils are arranged in a sandwiched configuration, four magnetic field arrangement modes (types A to D) are possible, as shown in FIG.
Type B is configured, for example, so that the direction of the magnetic field generated by the first power transmitting coil 20 and the direction of the magnetic field generated by the second power transmitting coil 23 are in phase, and the direction of the magnetic field generated by the first power receiving coil 21 and the direction of the magnetic field generated by the second power receiving coil 22 are in opposite phase. If the central axes of the coils are aligned and the magnetic field directions are arranged as in Type B, power is not transmitted to the power receiving unit 14.
Type C is configured, for example, so that the direction of the magnetic field generated by the first power transmitting coil 20 and the direction of the magnetic field generated by the second power transmitting coil 23 are in opposite phase, and the direction of the magnetic field generated by the first power receiving coil 21 and the direction of the magnetic field generated by the second power receiving coil 22 are in phase. If the central axes of the coils are aligned and the magnetic field directions are arranged as in Type C, power is not transmitted to the power receiving unit 14.

給電回路1は、タイプAまたはタイプDの磁界配置モードとなるように、各コイルの極性ならびに各コイルに流れる電流の向きを設定して構成されている。
また、給電回路1は、タイプAのように構成された回路においては、補償リアクタンスとして補償コンデンサを備え、タイプDのように構成された回路においては、補償リアクタンスとして補償インダクタを備える。
詳しくは、タイプAのように構成された回路では、送電側に回路に流れる電流itの位相が電圧vtの位相よりも早くなるため、補償コンデンサCt,rを備える。
また、タイプDのように構成された回路では、送電側に回路に流れる電流itの位相が電圧vtの位相よりも遅くなるため、補償インダクタLt,rを備える。
補償コンデンサCt,rの容量、ならびに、補償インダクタLt,rのインダクタンスは、次の式で表される。
The power supply circuit 1 is configured by setting the polarity of each coil and the direction of the current flowing through each coil so as to achieve a type A or type D magnetic field arrangement mode.
Moreover, in the power supply circuit 1, in the circuit configured as Type A, a compensation capacitor is provided as a compensation reactance, and in the circuit configured as Type D, a compensation inductor is provided as a compensation reactance.
More specifically, in a circuit configured like Type A, the phase of the current it flowing through the circuit on the power transmission side leads the phase of the voltage vt, so compensation capacitors Ct,r are provided.
Furthermore, in a circuit configured like Type D, the phase of the current it flowing through the circuit on the power transmission side lags behind the phase of the voltage vt, so compensation inductors Lt and r are provided.
The capacitance of the compensation capacitor Ct,r and the inductance of the compensation inductor Lt,r are expressed by the following equations.

Figure 0007477840000002
Figure 0007477840000002

図4は、第1送電コイル20、第1受電コイル21、第2受電コイル22および第2送電コイル23の配置を示す説明図である。タイプAまたはタイプDのように配置される各コイルは、例えば、図4に示した間隔を設けて配置されている。
第1送電コイル20と第1受電コイル21との間の距離がd1、第1受電コイル21と第2受電コイル22との間の距離がd2、第2受電コイル22と第2送電コイル23との間の距離がd1となるように、各コイルを配置する。なお、第1送電コイル20と第2送電コイル23との間の距離をd3とする。また、距離d2は、距離d1よりも大きい値である。
Fig. 4 is an explanatory diagram showing the arrangement of the first power transmitting coil 20, the first power receiving coil 21, the second power receiving coil 22, and the second power transmitting coil 23. The coils arranged as in Type A or Type D are arranged, for example, at intervals shown in Fig. 4.
The coils are arranged such that the distance between the first power transmitting coil 20 and the first power receiving coil 21 is d1, the distance between the first power receiving coil 21 and the second power receiving coil 22 is d2, and the distance between the second power receiving coil 22 and the second power transmitting coil 23 is d1. The distance between the first power transmitting coil 20 and the second power transmitting coil 23 is d3. The distance d2 is greater than the distance d1.

図5は、補償リアクタンスを備えた給電回路1aの構成を示す回路図である。
給電回路1aは、各コイルに生じる磁界の向きがタイプAとなるように構成されており、補償リアクタンスとして補償コンデンサCtおよび補償コンデンサCrを備えている。
また、給電回路1aは、各コイルの配置等に関して給電回路1と同様に(図4に例示したように)構成されており、また、回路接続等に関して給電回路1と概ね同様に構成されている。
図5の給電回路1aは、図1の給電回路1と同一あるいは相当する部分に同じ符号が付記されている。ここでは、同一符号の部分について詳細説明を省略する。
FIG. 5 is a circuit diagram showing the configuration of a power supply circuit 1a equipped with a compensating reactance.
The power supply circuit 1a is configured so that the direction of the magnetic field generated in each coil is Type A, and includes a compensation capacitor Ct and a compensation capacitor Cr as compensation reactances.
The power supply circuit 1a is configured similarly to the power supply circuit 1 in terms of the arrangement of the coils, etc. (as shown in FIG. 4), and is also configured generally similarly to the power supply circuit 1 in terms of circuit connections, etc.
In the power supply circuit 1a in Fig. 5, the same reference numerals are used for the same or corresponding parts as those in the power supply circuit 1 in Fig. 1. Here, detailed description of the parts with the same reference numerals will be omitted.

給電回路1aは、補償コンデンサCtの一端に、送電コイルLt2の一端が接続され、補償コンデンサCtの他端に、送電コイルLt1の他端が接続されている。即ち、補償コンデンサCtは、送電コイルLt1と送電コイルLt2との間を繋ぐように接続されている。 In the power supply circuit 1a, one end of the power transmission coil Lt2 is connected to one end of the compensation capacitor Ct, and the other end of the power transmission coil Lt1 is connected to the other end of the compensation capacitor Ct. In other words, the compensation capacitor Ct is connected to connect between the power transmission coil Lt1 and the power transmission coil Lt2.

また、給電回路1aは、補償コンデンサCrの一端に、コンデンサCr1の他端が接続され、補償コンデンサCrの他端に、コンデンサCr2の他端が接続されている。即ち、補償コンデンサCrは、コンデンサCr1とコンデンサCr2との間に(受電コイルLr1と受電コイルLr2との間を繋ぐように)接続されている。
なお、給電回路1aは、補償コンデンサCtおよび補償コンデンサCrの各両端が接地接続されないように回路構成されており、コンデンサCt2と電源10の低電位側端子との接続点が接地接続されている。
In the power supply circuit 1a, one end of the compensation capacitor Cr is connected to the other end of the capacitor Cr1, and the other end of the compensation capacitor Cr is connected to the other end of the capacitor Cr2. That is, the compensation capacitor Cr is connected between the capacitors Cr1 and Cr2 (so as to connect between the receiving coil Lr1 and the receiving coil Lr2).
The power supply circuit 1a is configured such that both ends of the compensation capacitor Ct and the compensation capacitor Cr are not grounded, and the connection point between the capacitor Ct2 and the low potential terminal of the power supply 10 is grounded.

次に給電回路1aの動作(解析)について説明する。
図6は、給電回路1aが補償コンデンサCt,rを備えていない場合の動作特性を示す説明図である。この図は、補償コンデンサCt,rを除いて回路構成された給電回路1aの非接触給電の伝送効率を示したもので、横軸が非接触給電(電力の伝送)に用いる周波数を表し、縦軸が電力の伝送効率、ならびに、送電側の電圧と電流との位相差を表している。
図中、一点鎖線の特性曲線は各周波数における伝送効率を表し、実線の特性曲線は各周波数における送電側の電圧と電流との位相差を表している。
Next, the operation (analysis) of the power supply circuit 1a will be described.
6 is an explanatory diagram showing the operating characteristics of the power supply circuit 1a when it does not include the compensation capacitors Ct, r. This diagram shows the transmission efficiency of contactless power supply of the power supply circuit 1a configured without the compensation capacitors Ct, r, where the horizontal axis represents the frequency used for contactless power supply (power transmission) and the vertical axis represents the power transmission efficiency and the phase difference between the voltage and current on the power transmission side.
In the figure, the dashed-dotted characteristic curves represent the transmission efficiency at each frequency, and the solid-line characteristic curves represent the phase difference between the voltage and current on the power transmission side at each frequency.

図7は、給電回路1aが補償コンデンサCt,rを備えている場合の動作特性を示す説明図である。この図は、前述のように補償コンデンサCt,rを備えて回路構成された給電回路1aの非接触給電の伝送効率を示したもので、横軸が非接触給電(電力の伝送)に用いる周波数を表し、縦軸が電力の伝送効率、ならびに、送電側の電圧と電流との位相差を表している。
図中、一点鎖線の特性曲線は各周波数における伝送効率を表し、実線の特性曲線は各周波数における送電側の電圧と電流との位相差を表している。
7 is an explanatory diagram showing the operating characteristics of the power supply circuit 1a when it is equipped with the compensation capacitors Ct, r. This diagram shows the transmission efficiency of contactless power supply of the power supply circuit 1a configured with the compensation capacitors Ct, r as described above, where the horizontal axis represents the frequency used for contactless power supply (power transmission) and the vertical axis represents the power transmission efficiency and the phase difference between the voltage and current on the power transmission side.
In the figure, the dashed-dotted characteristic curves represent the transmission efficiency at each frequency, and the solid-line characteristic curves represent the phase difference between the voltage and current on the power transmission side at each frequency.

図6および図7は、回路シミュレータを用いて、タイプAの構成を有する給電回路1aの、伝送効率および送電側の電圧と電流との位相差を解析し、この解析結果から取得された各特性曲線を示したものである。上記の伝送効率は、対を形成する送受電コイル間の伝送効率であり、高周波回路の特性を表すSパラメータにおいて、S21に相当するものである。
なお、上記の回路シミュレータによる解析は、給電回路1a(電源10)の電源インピーダンス(後述する内部インピーダンスImpに相当するもの)の値、および、受電側が有する負荷Rrの値として、それぞれ最適値を設定して行ったものである。
6 and 7 show characteristic curves obtained from the analysis results of the transmission efficiency and the phase difference between the voltage and current on the power transmitting side of the power feeding circuit 1a having the configuration of Type A, which are analyzed using a circuit simulator. The above transmission efficiency is the transmission efficiency between the power transmitting and receiving coils that form a pair, and corresponds to S21 in the S parameters that represent the characteristics of a high-frequency circuit.
The analysis using the circuit simulator was performed by setting optimal values for the power supply impedance (corresponding to an internal impedance Imp, which will be described later) of the power supply circuit 1 a (power supply 10) and the load Rr on the power receiving side.

図6に示した特性曲線と図7に示した特性曲線とを比較すると、補償コンデンサCt,rを備えることにより、電力の伝送に使用する周波数が85[kHz]の場合に、送電側の電圧と電流との位相差が解消され、伝送効率が向上することがわかる。 Comparing the characteristic curves shown in Figure 6 and Figure 7, it can be seen that by providing compensation capacitors Ct,r, when the frequency used to transmit power is 85 kHz, the phase difference between the voltage and current on the power transmission side is eliminated, improving transmission efficiency.

次に、補償コンデンサC1を有する給電回路1bが動作したときの各電圧波形および各電流波形を実測した結果を示す。
図8は、動作の実測に用いた補償コンデンサC1を備えた給電回路1bの構成を示す回路図である。給電回路1bは、前述の給電回路1等と概ね同様に構成されたもので、図1等に示したものと同一あるいは相当する部分に同じ符号を付記している。ここでは、図1等と同一符号を付記した部分について詳細説明を省略する。
Next, the results of measuring the voltage waveforms and the current waveforms when the power supply circuit 1b having the compensation capacitor C1 is in operation will be shown.
Fig. 8 is a circuit diagram showing the configuration of a power supply circuit 1b equipped with a compensation capacitor C1 used in the actual measurement of operation. The power supply circuit 1b is configured in a similar manner to the above-mentioned power supply circuit 1, etc., and the same reference numerals are used for the same or corresponding parts as those shown in Fig. 1, etc. Here, detailed explanations of the parts with the same reference numerals as those in Fig. 1, etc. are omitted.

給電回路1bは、給電回路1等と同様に、タイプAのように配置された各送受電コイルを備えている。
給電回路1bは、受電側の回路に補償コンデンサC1を備えている。補償コンデンサC1は、図2の補償コンデンサCrに相当するもので、補償コンデンサCrと同様にコンデンサCr1とコンデンサCr2との間(受電コイルLr1と受電コイルLr2との間)に接続されている。
なお、給電回路1bの動作シミュレーションを行った結果、送電側の回路に補償コンデンサを設けた場合と、設けなかった場合に大きさ差異がないことが確認された。そのため、ここで説明する給電回路1bにおいては、送電側回路に補償コンデンサを設けることを省略している。
The power supply circuit 1b includes power transmitting and receiving coils arranged as in Type A, similarly to the power supply circuit 1 and the like.
The power supply circuit 1b includes a compensation capacitor C1 in the power receiving circuit. The compensation capacitor C1 corresponds to the compensation capacitor Cr in Fig. 2 and is connected between the capacitors Cr1 and Cr2 (between the power receiving coil Lr1 and the power receiving coil Lr2) in the same manner as the compensation capacitor Cr.
In addition, as a result of performing an operational simulation of the power supply circuit 1b, it was confirmed that there was no difference in size between when a compensation capacitor was provided in the power transmission side circuit and when it was not provided. Therefore, in the power supply circuit 1b described here, the provision of a compensation capacitor in the power transmission side circuit is omitted.

図9は、補償コンデンサC1を備えていない給電回路1bの動作を実測した結果を示す説明図である。この図は、給電回路1bの各部で実測された電圧vt、電圧vr、電流it、電流irの波形を示したもので、横軸は時間軸であり、縦軸は電圧値ならびに電流値を示している。
図9の電圧vtは、給電回路1bの送電側の回路において実測された電圧波形であり、補償コンデンサC1を備えていない場合の電圧波形を表している。また、図9の電流itは、給電回路1bの送電側の回路において実測された電流波形であり、補償コンデンサC1を備えていない場合の電流波形を表している。
図9の電圧vrは、給電回路1bの受電側の回路において実測された電圧波形であり、補償コンデンサC1を備えていない場合の電圧波形を表している。また、図9の電流irは、給電回路1bの受電側の回路において実測された電流波形であり、補償コンデンサC1を備えていない場合の電流波形を表している。
9 is an explanatory diagram showing the results of actual measurement of the operation of the power supply circuit 1b not including the compensation capacitor C1. This diagram shows the waveforms of the voltage vt, voltage vr, current it, and current ir actually measured at each part of the power supply circuit 1b, with the horizontal axis representing time and the vertical axis representing the voltage value and the current value.
The voltage vt in Fig. 9 is a voltage waveform actually measured in the power transmission circuit of the power supply circuit 1b, and represents the voltage waveform when the compensation capacitor C1 is not provided. The current it in Fig. 9 is a current waveform actually measured in the power transmission circuit of the power supply circuit 1b, and represents the current waveform when the compensation capacitor C1 is not provided.
The voltage vr in Fig. 9 is a voltage waveform actually measured in the power receiving circuit of the power supply circuit 1b, and represents the voltage waveform when the compensation capacitor C1 is not provided. The current ir in Fig. 9 is a current waveform actually measured in the power receiving circuit of the power supply circuit 1b, and represents the current waveform when the compensation capacitor C1 is not provided.

図10は、補償コンデンサC1を備えた給電回路1bの動作を実測した結果を示す説明図である。この図は、補償コンデンサC1を備えた給電回路1bの各部で実測された電圧vt、電圧vr、電流it、電流irの波形を示したもので、横軸は時間軸であり、縦軸は電圧値ならびに電流値を表している。
図10の電圧vtは、給電回路1bの送電側の回路において実測された電圧波形であり、補償コンデンサC1を備えた場合の電圧波形を表している。また、図10の電流itは、給電回路1bの送電側の回路において実測された電流波形であり、補償コンデンサC1を備えた場合の電流波形を表している。
図10の電圧vrは、給電回路1bの受電側の回路において実測された電圧波形であり、補償コンデンサC1を備えた場合の電圧波形を表している。また、図10の電流irは、給電回路1bの受電側の回路において実測された電流波形であり、補償コンデンサC1を備えた場合の電流波形を表している。
10 is an explanatory diagram showing the results of actual measurement of the operation of the power supply circuit 1b equipped with the compensation capacitor C1. This diagram shows the waveforms of the voltage vt, voltage vr, current it, and current ir measured at each part of the power supply circuit 1b equipped with the compensation capacitor C1, with the horizontal axis representing time and the vertical axis representing the voltage value and the current value.
The voltage vt in Fig. 10 is a voltage waveform actually measured in the power transmission circuit of the power supply circuit 1b, and represents the voltage waveform when the compensation capacitor C1 is provided. The current it in Fig. 10 is a current waveform actually measured in the power transmission circuit of the power supply circuit 1b, and represents the current waveform when the compensation capacitor C1 is provided.
The voltage vr in Fig. 10 is a voltage waveform actually measured in the power receiving circuit of the power supply circuit 1b, and represents the voltage waveform when the compensation capacitor C1 is provided. The current ir in Fig. 10 is a current waveform actually measured in the power receiving circuit of the power supply circuit 1b, and represents the current waveform when the compensation capacitor C1 is provided.

図9に示した電圧vtと電流itとの位相差は11[°]生じているが、図10に示した電圧vtと電流itとの位相差は0.3[°]になっている。即ち、補償コンデンサC1を備えることにより、電圧vtと電流itとの位相差が小さくなる。
また、図9に示した電圧vrと電流irとの位相差に比べて、図10に示した電圧vrと電流irとの位相差の方が小さくなっている。
このように、補償コンデンサC1を備えることによって、各コイルにおける電圧と電流との位相差が小さくなり、皮相電力における送受電伝送効率が94[%]から97[%]に向上する。
上記の給電回路1bの実測結果は、回路シミュレーションによる給電回路1aの解析結果と同等となっており、補償リアクタンスを備えた場合に電力の伝送効率が向上することが確認された。
The phase difference between the voltage vt and the current it shown in Fig. 9 is 11°, but the phase difference between the voltage vt and the current it shown in Fig. 10 is 0.3°. In other words, by providing the compensation capacitor C1, the phase difference between the voltage vt and the current it becomes smaller.
9. Moreover, the phase difference between the voltage vr and the current ir shown in FIG. 10 is smaller than the phase difference between the voltage vr and the current ir shown in FIG.
In this way, by providing the compensation capacitor C1, the phase difference between the voltage and current in each coil is reduced, and the transmission efficiency of the apparent power is improved from 94% to 97%.
The actual measurement results of the above-mentioned power supply circuit 1b are equivalent to the analysis results of the power supply circuit 1a by circuit simulation, and it has been confirmed that the power transmission efficiency is improved when a compensating reactance is provided.

本開示の非接触給電回路は、例えば、給電回路1aのように、送電側の回路に、結合係数ktに応じた値の補償リアクタンス(補償コンデンサCt)を設け、受電側の回路に、結合係数krに応じた値の補償リアクタンス(補償コンデンサCr)を設けて、各コイルによる伝送効率を向上させるように構成されている。
また、本開示の非接触給電回路は、給電回路1bのように、受電側の回路に補償リアクタンス(補償コンデンサC1)を設け、送電側の回路に補償リアクタンス等を設けることなく構成し、各コイルによる伝送効率を向上させるように構成してもよい。
また、本開示の非接触給電回路は、送電側の回路に補償リアクタンスを設け、受電側の回路に補償リアクタンスを設けることなく構成し、各コイルによる伝送効率を向上させるように構成してもよい。
The contactless power supply circuit of the present disclosure is configured, for example, as in the power supply circuit 1a, by providing a compensating reactance (compensating capacitor Ct) having a value corresponding to the coupling coefficient kt in the power transmitting circuit and providing a compensating reactance (compensating capacitor Cr) having a value corresponding to the coupling coefficient kr in the power receiving circuit, thereby improving the transmission efficiency of each coil.
In addition, the contactless power supply circuit disclosed herein may be configured, like power supply circuit 1b, by providing a compensating reactance (compensating capacitor C1) in the power receiving circuit and not providing a compensating reactance or the like in the power transmitting circuit, thereby improving the transmission efficiency by each coil.
Furthermore, the contactless power supply circuit of the present disclosure may be configured so that a compensating reactance is provided in the power transmitting circuit and no compensating reactance is provided in the power receiving circuit, thereby improving the transmission efficiency of each coil.

本開示の非接触給電回路は、前述の回路方程式を確立し、この回路方程式に基づいて補償リアクタンスを設定するようにしたので、各送受信コイルに生じる磁界の向き(磁界配位)に応じて、補償リアクタンスとしてインダクタ(インダクタンス)またはコンデンサ(キャパシタンス)を用い、電力の伝送効率を高めることができる。
また、本開示の非接触給電回路は、送電コイルLt1と送電コイルLt2との結合係数kt、ならびに、受電コイルLr1と受電コイルLr2との結合係数krに応じて補償リアクタンスの値を設定するようにしたので、送電コイルLt1,Lt2に対して受電コイルLr1,Lr2が移動する場合においても、補償リアクタンスの値を可変する必要がなく、高い効率で電力を伝送することができる。
The contactless power supply circuit disclosed herein establishes the above-mentioned circuit equation and sets the compensation reactance based on this circuit equation. Therefore, it is possible to improve the power transmission efficiency by using an inductor (inductance) or a capacitor (capacitance) as the compensation reactance depending on the direction of the magnetic field (magnetic field configuration) generated in each transmitting and receiving coil.
Furthermore, in the non-contact power supply circuit disclosed herein, the value of the compensation reactance is set according to the coupling coefficient kt between the transmitting coil Lt1 and the transmitting coil Lt2, and the coupling coefficient kr between the receiving coil Lr1 and the receiving coil Lr2. Therefore, even when the receiving coils Lr1, Lr2 move relative to the transmitting coils Lt1, Lt2, there is no need to vary the value of the compensation reactance, and power can be transmitted with high efficiency.

1,1a,1b 給電回路
10 電源
11 負荷
12 第1送電部
13 第2送電部
14 受電部
20 第1送電コイル
21 第1受電コイル
22 第2受電コイル
23 第2送電コイル
Reference Signs List 1, 1a, 1b Power supply circuit 10 Power source 11 Load 12 First power transmission section 13 Second power transmission section 14 Power receiving section 20 First power transmission coil 21 First power receiving coil 22 Second power receiving coil 23 Second power transmission coil

Claims (5)

送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、
受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、
を備え、
前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、
前記第1受電コイルと前記第2受電コイルとの結合係数に応じた値の補償リアクタンスを前記受電側の回路に設けた、
ことを特徴とする非接触給電回路。
a first power transmitting coil and a second power transmitting coil provided in a power transmitting circuit and arranged at a predetermined interval;
a first power receiving coil and a second power receiving coil provided in a power receiving circuit and disposed so as to be sandwiched between the first power transmitting coil and the second power transmitting coil;
Equipped with
The first power transmitting coil is disposed to face the first power receiving coil, and the second power transmitting coil is disposed to face the second power receiving coil,
A compensation reactance having a value corresponding to a coupling coefficient between the first receiving coil and the second receiving coil is provided in the power receiving side circuit.
A non-contact power supply circuit comprising:
送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、
受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、
を備え、
前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、
前記第1送電コイルと前記第2送電コイルとの結合係数に応じた値の補償リアクタンスを前記送電側の回路に設けた、
ことを特徴とする非接触給電回路。
a first power transmitting coil and a second power transmitting coil provided in a power transmitting circuit and arranged at a predetermined interval;
a first power receiving coil and a second power receiving coil provided in a power receiving circuit and disposed so as to be sandwiched between the first power transmitting coil and the second power transmitting coil;
Equipped with
The first power transmitting coil is disposed to face the first power receiving coil, and the second power transmitting coil is disposed to face the second power receiving coil,
A compensating reactance having a value corresponding to a coupling coefficient between the first power transmitting coil and the second power transmitting coil is provided in the power transmitting side circuit.
A non-contact power supply circuit comprising:
送電側の回路に設けられ、所定間隔を開けて配置された第1送電コイルおよび第2送電コイルと、
受電側の回路に設けられ、前記第1送電コイルと前記第2送電コイルとの間に挟み込まれるように配置された第1受電コイルおよび第2受電コイルと、
を備え、
前記第1送電コイルが前記第1受電コイルに対向し、前記第2送電コイルが前記第2受電コイルに対向するように配置され、
前記第1送電コイルと前記第2送電コイルとの結合係数に応じた値の補償リアクタンスを前記送電側の回路に設け、
前記第1受電コイルと前記第2受電コイルとの結合係数に応じた値の補償リアクタンスを前記受電側の回路に設けた、
ことを特徴とする非接触給電回路。
a first power transmitting coil and a second power transmitting coil provided in a power transmitting circuit and arranged at a predetermined interval;
a first power receiving coil and a second power receiving coil provided in a power receiving circuit and disposed so as to be sandwiched between the first power transmitting coil and the second power transmitting coil;
Equipped with
The first power transmitting coil is disposed to face the first power receiving coil, and the second power transmitting coil is disposed to face the second power receiving coil,
a compensating reactance having a value corresponding to a coupling coefficient between the first power transmitting coil and the second power transmitting coil is provided in the power transmitting circuit;
A compensation reactance having a value corresponding to a coupling coefficient between the first receiving coil and the second receiving coil is provided in the power receiving side circuit.
A non-contact power supply circuit comprising:
前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルに生じる磁界の向きが同相となるように、前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルを設けたとき、
前記補償リアクタンスは、コンデンサである、
ことを特徴とする請求項1から請求項3のいずれか1項に記載の非接触給電回路。
When the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are provided so that the directions of magnetic fields generated in the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are in phase with each other,
The compensating reactance is a capacitor.
The non-contact power supply circuit according to any one of claims 1 to 3.
前記第1送電コイルに生じる磁界の向きと前記第2送電コイルに生じる磁界の向きとが逆相になり、
前記第1受電コイルに生じる磁界の向きと前記第2受電コイルに生じる磁界の向きとが逆相になり、
前記第1送電コイルに生じる磁界の向きと前記第1受電コイルに生じる磁界の向きとが同相になり、
前記第2送電コイルに生じる磁界の向きと前記第2受電コイルに生じる磁界の向きとが同相となるように、前記第1送電コイル、前記第2送電コイル、前記第1受電コイル、および、前記第2受電コイルを設けたとき、
前記補償リアクタンスは、インダクタである、
ことを特徴とする請求項1から請求項3のいずれか1項に記載の非接触給電回路。
the direction of the magnetic field generated in the first power transmitting coil and the direction of the magnetic field generated in the second power transmitting coil are in opposite phase to each other,
The direction of the magnetic field generated in the first power receiving coil and the direction of the magnetic field generated in the second power receiving coil are in opposite phases,
The direction of the magnetic field generated in the first power transmitting coil and the direction of the magnetic field generated in the first power receiving coil are in phase with each other,
When the first power transmitting coil, the second power transmitting coil, the first power receiving coil, and the second power receiving coil are provided so that the direction of the magnetic field generated in the second power transmitting coil and the direction of the magnetic field generated in the second power receiving coil are in phase with each other,
The compensation reactance is an inductor.
The non-contact power supply circuit according to any one of claims 1 to 3.
JP2020138710A 2020-08-19 2020-08-19 Non-contact power supply circuit Active JP7477840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020138710A JP7477840B2 (en) 2020-08-19 2020-08-19 Non-contact power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020138710A JP7477840B2 (en) 2020-08-19 2020-08-19 Non-contact power supply circuit

Publications (2)

Publication Number Publication Date
JP2022034826A JP2022034826A (en) 2022-03-04
JP7477840B2 true JP7477840B2 (en) 2024-05-02

Family

ID=80443107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020138710A Active JP7477840B2 (en) 2020-08-19 2020-08-19 Non-contact power supply circuit

Country Status (1)

Country Link
JP (1) JP7477840B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463303A (en) 1993-11-02 1995-10-31 Hughes Aircraft Company Multilayer separate windings of inductive charge coupler for automobile battery charging transformer
JP2002280241A (en) 2001-03-21 2002-09-27 Yazaki Corp Electromagnetic induction type connector
WO2013042224A1 (en) 2011-09-21 2013-03-28 パイオニア株式会社 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system
JP2015154543A (en) 2014-02-13 2015-08-24 国立大学法人 東京大学 Wireless power transmission device
JP2018143067A (en) 2017-02-28 2018-09-13 地方独立行政法人東京都立産業技術研究センター Non-contact power supply structure and parking facility having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463303A (en) 1993-11-02 1995-10-31 Hughes Aircraft Company Multilayer separate windings of inductive charge coupler for automobile battery charging transformer
JP2002280241A (en) 2001-03-21 2002-09-27 Yazaki Corp Electromagnetic induction type connector
WO2013042224A1 (en) 2011-09-21 2013-03-28 パイオニア株式会社 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system
JP2015154543A (en) 2014-02-13 2015-08-24 国立大学法人 東京大学 Wireless power transmission device
JP2018143067A (en) 2017-02-28 2018-09-13 地方独立行政法人東京都立産業技術研究センター Non-contact power supply structure and parking facility having the same

Also Published As

Publication number Publication date
JP2022034826A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
CN109895643B (en) Online electric automobile wireless charging positioning system based on differential inductance
CN109941128B (en) Electric field coupling type voltage optimization method for wireless charging technology of electric automobile
EP2894764B1 (en) Contactless power supply system and contactless extension plug
KR20170055426A (en) Non-contact power transmission system
EP2854146B1 (en) Non-contact power supply transformer
CN106451819A (en) Wireless electric energy transmissions system and control method of equivalent impedance of wireless electric energy transmissions system
CN104682576A (en) Resonance wireless power transmission system added with adaptive double-end impendence conversion networks
Lin et al. Design of a SAE compliant multicoil ground assembly
CN106202690B (en) A kind of design method reducing wireless charging system electric stress
Dean et al. Wireless sensor node powered by unipolar resonant capacitive power transfer
JP7477840B2 (en) Non-contact power supply circuit
CN114844240A (en) Power matching-based multi-relay coil IPT system
Muharam et al. An improved ground stability in shielded capacitive wireless power transfer
Kim et al. Near-field analysis and design of inductively-coupled wireless power transfer system in FEKO
Minnaert et al. Design of a capacitive wireless power transfer link with minimal receiver circuitry
Liu et al. Investigation of reactive power distribution between two coils of inductive power transfer system by Poynting vector analysis
Wang et al. Principle elaboration and system structure validation of wireless power transfer via strongly coupled magnetic resonances
CN209844651U (en) Three-phase excitation type capacitive wireless power transmission system
CN113555967A (en) Resonance compensation method, device and system for wireless charging transmitting coil
Imura et al. Superiority of magnetic resonant coupling at large air gap in wireless power transfer
Zahedi et al. Comparative study of self-compensated coil geometries for wireless power transfer system
Kim ABCD Parameters in Series-Series Compensation Wireless Power Transfer System
Qian et al. Sensitivity comparison of impedance matching circuits for inductively coupled WPT
Masuda A high electric power supply to electric cars using the electric field resonance
Namiki et al. Unified Theory of Series, Parallel and LCL/CLC Resonant Circuits in Inductive Power Transfer and Capacitive Power Transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7477840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150