JP2014207764A - Non-contact power-feeding device - Google Patents

Non-contact power-feeding device Download PDF

Info

Publication number
JP2014207764A
JP2014207764A JP2013083469A JP2013083469A JP2014207764A JP 2014207764 A JP2014207764 A JP 2014207764A JP 2013083469 A JP2013083469 A JP 2013083469A JP 2013083469 A JP2013083469 A JP 2013083469A JP 2014207764 A JP2014207764 A JP 2014207764A
Authority
JP
Japan
Prior art keywords
power
primary
circuit
duty
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013083469A
Other languages
Japanese (ja)
Other versions
JP6053597B2 (en
Inventor
一史 田中
Kazufumi Tanaka
一史 田中
松本 貞行
Sadayuki Matsumoto
貞行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013083469A priority Critical patent/JP6053597B2/en
Publication of JP2014207764A publication Critical patent/JP2014207764A/en
Application granted granted Critical
Publication of JP6053597B2 publication Critical patent/JP6053597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power-feeding device which, even when a coupling coefficient between a primary side coil and a secondary side coil changes, can perform power transmission between the two coils with maximum efficiency at the coupling coefficient.SOLUTION: A secondary side coil short-circuit means 23 for short-circuiting between opposite ends of a secondary side coil 21 on a power-receiving device 2 side is provided, an inductance Lat a short-circuiting time of the secondary coil 21 is measured, and a coupling coefficient k is calculated. Then, control is exerted so that a power transmission efficiency η in a non-contact power-feeding unit 3 is at maximum by appropriately selecting the duty of a power converter 25 provided in front of a load 4 in accordance with the coupling coefficient k and a resistance value Rof the load 4.

Description

この発明は、電磁誘導型の非接触給電装置に関する。   The present invention relates to an electromagnetic induction type non-contact power feeding device.

従来の非接触給電においては、一次側巻線と二次側巻線とを空間的ギャップを介して対向配置するとともに、一次側巻線と共振する一次側コンデンサ、二次側巻線と共振する二次側コンデンサを設け、共振現象を利用して両巻線間を電磁誘導結合することで非接触の電力伝送を行う技術がある。   In the conventional non-contact power feeding, the primary side winding and the secondary side winding are arranged to face each other through a spatial gap, and the primary side capacitor that resonates with the primary side winding and the secondary side winding resonate. There is a technique for providing non-contact power transmission by providing a secondary side capacitor and electromagnetically coupling between both windings using a resonance phenomenon.

この場合、例えば、下記の特許文献1記載の従来技術では、一次側巻線にはこれと共振する一次側コンデンサを直列接続する一方、二次側巻線にはこれと共振する二次側コンデンサを並列接続し、これによって電力伝送効率を高めるようにしている。   In this case, for example, in the prior art described in Patent Document 1 below, a primary side capacitor that resonates with the primary side winding is connected in series, while a secondary side capacitor that resonates with the secondary side winding. Are connected in parallel to increase power transmission efficiency.

特許第4644827号公報Japanese Patent No. 4644827

しかし、特許文献1記載の非接触給電装置では、例えば一次側巻線と二次側巻線間の対向間距離が変化したり、両巻線が巻線軸方向に互いに位置ずれする等して、一次側巻線と二次側巻線の結合状態が変化すると、これに伴って、両巻線間の電力伝送効率が最大となる負荷の値が変動してしまう。   However, in the non-contact power feeding device described in Patent Document 1, for example, the distance between the primary winding and the secondary winding is changed, or both windings are displaced from each other in the winding axis direction. When the coupling state of the primary side winding and the secondary side winding changes, the value of the load that maximizes the power transmission efficiency between the two windings changes accordingly.

従来技術では、両巻線間の結合状態の変化を検出し、その検出した値に基づいて両巻線間の電力伝送効率が最大となるように制御を行うような手段が何ら設けられていなかった。このため、一次側巻線と二次側巻線の結合状態の変化によって電力伝送効率が低下するという問題点があった。   In the prior art, there is no means for detecting a change in the coupling state between the two windings and performing control so as to maximize the power transmission efficiency between the two windings based on the detected value. It was. For this reason, there has been a problem that the power transmission efficiency is lowered due to a change in the coupling state of the primary side winding and the secondary side winding.

この発明は、上記のような課題を解決するためになされたもので、一次側巻線と二次側巻線の結合状態を示す結合係数が変化した場合でも、その結合係数における最大の効率で電力伝送が可能な非接触給電装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even when the coupling coefficient indicating the coupling state of the primary winding and the secondary winding changes, the maximum efficiency in the coupling coefficient is achieved. An object of the present invention is to provide a non-contact power supply device capable of transmitting power.

この発明の非接触給電装置は、高周波電力を出力するインバータ回路と、上記インバータ回路から供給される上記高周波電力を空間的ギャップを介して電磁誘導によって送受電する非接触給電部と、上記非接触給電部で送受電された上記高周波電力を直流電力に変換する整流回路と、上記整流回路から出力される直流電力の電圧を任意に変化させて負荷に出力する電力変換器とを備え、上記非接触給電部は、一次側コンデンサと共振して上記インバータ回路から供給される高周波電力の送電を行う一次側巻線と、二次側コンデンサと共振して上記一次側巻線から送電された高周波電力の受電を行う二次側巻線と、を有するものであって、
上記二次側巻線の両端を任意のタイミングで短絡させる二次側巻線短絡手段と、上記インバータ回路の駆動電圧を検出する駆動電圧検出手段と、上記インバータ回路の駆動電流を検出する駆動電流検出手段と、上記駆動電圧検出手段と上記駆動電流検出手段で検出された駆動電圧および駆動電流に基づいて上記インバータ回路の駆動周波数と同一の周波数を有する一次成分を含む一次駆動電圧および一次駆動電流を抽出する一次成分抽出手段と、上記インバータ回路を制御するとともに、上記二次側巻線短絡手段で上記二次側巻線が短絡されたときの上記一次成分抽出手段で抽出された上記一次駆動電圧および上記一次駆動電流の値に基づいて上記非接触給電部の結合係数kおよび電力伝送効率ηが最大となる抵抗値RLmaxを算出する一次側制御回路と、上記一次側制御回路で算出された上記抵抗値RLmaxの情報を送受信する通信手段と、上記二次側巻線短絡手段の動作を制御するとともに、上記通信手段を介して受信された上記抵抗値RLmaxの値に基づいて上記電力変換器の動作を制御する二次側制御回路と、を備えたものである。
The contactless power supply device of the present invention includes an inverter circuit that outputs high-frequency power, a contactless power supply unit that transmits and receives the high-frequency power supplied from the inverter circuit through electromagnetic induction via a spatial gap, and the contactless power supply. A rectifier circuit that converts the high-frequency power transmitted and received by the power feeding unit into DC power; and a power converter that arbitrarily changes the voltage of the DC power output from the rectifier circuit and outputs the voltage to a load. The contact power feeding unit includes a primary side winding that resonates with the primary side capacitor and transmits high frequency power supplied from the inverter circuit, and a high frequency power that resonates with the secondary side capacitor and is transmitted from the primary side winding. A secondary winding that receives the power of
Secondary-side winding short-circuiting means for short-circuiting both ends of the secondary-side winding at an arbitrary timing, driving voltage detecting means for detecting the driving voltage of the inverter circuit, and driving current for detecting the driving current of the inverter circuit A primary drive voltage and a primary drive current including a primary component having the same frequency as the drive frequency of the inverter circuit based on the drive voltage and the drive current detected by the detection means and the drive voltage detection means and the drive current detection means; Primary component extraction means for extracting the primary drive extracted by the primary component extraction means for controlling the inverter circuit and the secondary side winding short-circuit means for short-circuiting the secondary-side winding. one to calculate the voltage and the resistance value R Lmax coupling coefficient of the based on the value of the primary drive current above the non-contact power feeding section k and the power transmission efficiency η is maximum And side control circuit, and a communication means for transmitting and receiving the information of the resistance value R Lmax calculated by the primary-side control circuit controls the operation of the secondary winding short-circuiting means, received via the communication means And a secondary side control circuit for controlling the operation of the power converter based on the resistance value RLmax .

この発明に係る非接触給電装置は、一次側巻線と二次側巻線との間の結合係数kを検出し、この検出した結合係数kと負荷の状態に基づいて両巻線間の電力伝送効率ηが最大となるように制御を行うので、一次側巻線と二次側巻線との間の結合係数kの変化に応じて、その結合係数kにおける最大の電力伝送効率ηでもって電力伝送を行うことが可能となる。   The contactless power feeding device according to the present invention detects a coupling coefficient k between the primary side winding and the secondary side winding, and based on the detected coupling coefficient k and the state of the load, the electric power between the two windings. Since the control is performed so that the transmission efficiency η is maximized, the maximum power transmission efficiency η at the coupling coefficient k is obtained according to the change of the coupling coefficient k between the primary side winding and the secondary side winding. Power transmission can be performed.

この発明の実施の形態1における非接触給電装置の電気的構成を示す回路ブロック図である。It is a circuit block diagram which shows the electric constitution of the non-contact electric power feeder in Embodiment 1 of this invention. 図1の非接触給電装置の非接触給電部および負荷の詳細等価回路図である。It is a detailed equivalent circuit diagram of the non-contact electric power feeding part and load of the non-contact electric power feeder of FIG. 図2の詳細等価回路図を簡略化した等価回路である。FIG. 3 is an equivalent circuit obtained by simplifying the detailed equivalent circuit diagram of FIG. 2. この発明の実施の形態1における非接触給電装置において、二次側巻線を二次側巻線短絡手段によって短絡した場合の非接触給電部の詳細等価回路図である。In the non-contact electric power feeder in Embodiment 1 of this invention, it is a detailed equivalent circuit diagram of the non-contact electric power feeding part when a secondary side coil is short-circuited by the secondary side coil short-circuit means. この発明の実施の形態1における駆動電圧検出手段および駆動電流検出手段によって検出された駆動電圧および駆動電流の波形図である。It is a wave form diagram of the drive voltage and drive current which were detected by the drive voltage detection means and drive current detection means in Embodiment 1 of this invention. この発明の実施の形態1における非接触給電装置の電力変換器の一例である降圧コンバータの簡易回路図である。It is a simple circuit diagram of the step-down converter which is an example of the power converter of the non-contact electric power feeder in Embodiment 1 of this invention. この発明の実施の形態1における非接触給電装置の電力変換器の一例である昇圧コンバータの簡易回路図である。It is a simple circuit diagram of the boost converter which is an example of the power converter of the non-contact electric power feeder in Embodiment 1 of this invention. この発明の実施の形態1における非接触給電装置の電力変換器の一例である昇降圧コンバータの簡易回路図である。It is a simple circuit diagram of the buck-boost converter which is an example of the power converter of the non-contact electric power feeder in Embodiment 1 of this invention. この発明の実施の形態1における非接触給電装置の整流回路の一例であるチョークインプット型フルブリッジ整流回路の回路図である。It is a circuit diagram of the choke input type full bridge rectifier circuit which is an example of the rectifier circuit of the non-contact electric power feeder in Embodiment 1 of this invention. この発明の実施の形態1における非接触給電装置の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the non-contact electric power feeder in Embodiment 1 of this invention.

実施の形態1.
図1は、この発明の実施の形態1における非接触給電装置の電気的構成を示す回路ブロック図である。
Embodiment 1 FIG.
1 is a circuit block diagram showing an electrical configuration of a non-contact power feeding apparatus according to Embodiment 1 of the present invention.

この実施の形態1の非接触給電装置は、送電装置1と受電装置2を備える。
送電装置1は、直流電源11、この直流電源11からの直流電力を高周波の交流電力に変換して出力するインバータ回路12、インバータ回路12から高周波電力が供給される一次側巻線13、およびこの一次側巻線13と共振する一次側コンデンサ14を有する。この場合、一次側巻線13には一次側コンデンサ14が直列に接続されており、一次側巻線13は一次側コンデンサ14と共振して電磁誘導によって送電を行う。
The contactless power supply device according to the first embodiment includes a power transmission device 1 and a power reception device 2.
The power transmission device 1 includes a DC power supply 11, an inverter circuit 12 that converts DC power from the DC power supply 11 into high-frequency AC power, and outputs the power, a primary winding 13 to which high-frequency power is supplied from the inverter circuit 12, and A primary side capacitor 14 that resonates with the primary side winding 13 is included. In this case, a primary side capacitor 14 is connected to the primary side winding 13 in series, and the primary side winding 13 resonates with the primary side capacitor 14 to transmit power by electromagnetic induction.

なお、直流電源11は、二相または三相の交流電源(図示せず)からの交流電力を整流回路(図示せず)によって直流電力に変換したものであってもよい。また、インバータ回路12は、任意の回路構成のものを用いることができ、例えばハーフブリッジ回路またはフルブリッジ回路で構成することができる。   The DC power supply 11 may be one obtained by converting AC power from a two-phase or three-phase AC power supply (not shown) into DC power by a rectifier circuit (not shown). The inverter circuit 12 can be of any circuit configuration, for example, can be configured by a half bridge circuit or a full bridge circuit.

さらに、送電装置1は、インバータ回路12の駆動電圧を検出する駆動電圧検出器15、インバータ回路12の駆動電流を検出する駆動電流検出器16、両検出器15,16で検出された駆動電圧および駆動電流に基づいて上記インバータ回路12の駆動周波数と同一の周波数を有する一次成分を含む一次駆動電圧および一次駆動電流を抽出する一次成分抽出手段17、非接触給電部3に対して一定の高周波の交流電力が供給されるようにインバータ回路12の動作を制御するとともに、後述の二次側巻線短絡手段23で二次側巻線21が短絡されたときの一次成分抽出手段17で抽出された一次駆動電圧および一次駆動電流に基づいて非接触給電部3の結合係数kや電力伝送効率ηが最大となる抵抗値RLmaxを算出する一次側制御回路18、および後述の二次側通信手段29との間で無線の情報通信を行う一次側通信手段19を含む。 Further, the power transmission device 1 includes a drive voltage detector 15 that detects the drive voltage of the inverter circuit 12, a drive current detector 16 that detects the drive current of the inverter circuit 12, the drive voltage detected by both the detectors 15 and 16, and Based on the drive current, the primary component extraction means 17 for extracting the primary drive voltage and primary drive current including the primary component having the same frequency as the drive frequency of the inverter circuit 12, and a constant high frequency with respect to the non-contact power feeding unit 3. The operation of the inverter circuit 12 is controlled so that AC power is supplied, and is extracted by the primary component extraction means 17 when the secondary winding 21 is short-circuited by the secondary winding short-circuit means 23 described later. the primary side control circuit that calculates the primary drive voltage and the primary coupling coefficient of the non-contact power feeding section 3 based on the drive current k and power transmission efficiency η is maximum resistance R Lmax 8, and it includes a primary-side communication means 19 for performing wireless information communication with the later-described secondary-side communication means 29.

なお、上記の駆動電圧検出器15、駆動電流検出器16は、当業者によって容易に想定される任意の回路構成を有するものであればよい。また、一次成分抽出手段17としては例えば離散フーリエ変換回路などが適用される。そして、上記の駆動電圧検出器15と駆動電流検出器16が特許請求の範囲における駆動電圧検出手段と駆動電流検出手段にそれぞれ対応している。   The drive voltage detector 15 and the drive current detector 16 may have any circuit configuration easily assumed by those skilled in the art. As the primary component extraction means 17, for example, a discrete Fourier transform circuit is applied. The drive voltage detector 15 and the drive current detector 16 correspond to the drive voltage detection means and the drive current detection means in the claims.

一方、受電装置2は、一次側巻線13に空間ギャップを介して対向配置された二次側巻線21、この二次側巻線21と共振する二次側コンデンサ22、二次側巻線21の両端を任意のタイミングで短絡させるリレー回路等で構成された二次側巻線短絡手段23、二次側巻線21で受電された高周波電力を直流電力へ変換する整流回路24、および整流回路24から出力された直流電力を任意の電圧へ変換する電力変換器25を備え、電力変換器25の出力側には受電された電力を消費する負荷4が接続されている。この場合、二次側巻線21には二次側コンデンサ22が並列に接続されており、二次側巻線21は、二次側コンデンサ22と共振して一次側巻線13との電磁誘導によって受電を行う。   On the other hand, the power receiving device 2 includes a secondary winding 21 that is opposed to the primary winding 13 via a space gap, a secondary capacitor 22 that resonates with the secondary winding 21, and a secondary winding. Secondary-side winding short-circuit means 23 composed of a relay circuit or the like that short-circuits both ends of the terminal 21 at an arbitrary timing, a rectifier circuit 24 that converts high-frequency power received by the secondary-side winding 21 into DC power, and rectification A power converter 25 that converts the DC power output from the circuit 24 into an arbitrary voltage is provided, and a load 4 that consumes the received power is connected to the output side of the power converter 25. In this case, a secondary side capacitor 22 is connected in parallel to the secondary side winding 21, and the secondary side winding 21 resonates with the secondary side capacitor 22 and electromagnetic induction with the primary side winding 13. To receive power.

すなわち、一次側巻線13に高周波電力が供給されると、その周囲に交流磁場が形成され、交流磁場が二次側巻線21を鎖交し、電磁誘導現象によって二次側巻線21に誘導起電力が発生する。これによって、一次側巻線13と二次側巻線21との間で非接触の送受電が行われる。   That is, when high frequency power is supplied to the primary side winding 13, an alternating magnetic field is formed around the primary side winding 13, and the alternating magnetic field links the secondary side winding 21 to the secondary side winding 21 by an electromagnetic induction phenomenon. An induced electromotive force is generated. Thereby, non-contact power transmission / reception is performed between the primary side winding 13 and the secondary side winding 21.

さらに、受電装置2は、電力変換器25の出力電圧および出力電流をそれぞれ検出する出力電圧検出器26と出力電流検出器27、二次側巻線短絡手段23の動作を制御するとともに、出力電圧検出器26と出力電流検出器27で検出された出力電圧と出力電流、および一次側通信手段19から送られてくる上記の結合係数kおよび抵抗値RLmaxの値に基づいて電力変換器25の動作を制御する二次側制御回路28、および一次側通信手段19との間で無線の情報通信を行う二次側通信手段29を含む。 Furthermore, the power receiving device 2 controls the operation of the output voltage detector 26, the output current detector 27, and the secondary winding short-circuit means 23 that detect the output voltage and output current of the power converter 25, respectively, and the output voltage. Based on the output voltage and output current detected by the detector 26 and the output current detector 27, and the value of the coupling coefficient k and the resistance value RLmax sent from the primary side communication means 19, the power converter 25 A secondary side control circuit 28 for controlling the operation and a secondary side communication means 29 for performing wireless information communication with the primary side communication means 19 are included.

なお、上記の出力電圧検出器26と出力電流検出器27が特許請求の範囲における出力電圧検出手段と出力電流検出手段にそれぞれ対応している。また、上記の一次側通信手段19と二次側通信手段29が特許請求の範囲における通信手段に対応している。   The output voltage detector 26 and the output current detector 27 correspond to the output voltage detection means and the output current detection means in the claims. The primary communication means 19 and the secondary communication means 29 correspond to the communication means in the claims.

また、ここでは、電力を非接触で送受電する一次側巻線13、一次側コンデンサ14、二次側巻線21、および二次側コンデンサ22をまとめて、以降、非接触給電部3と称する。   In addition, here, the primary side winding 13, the primary side capacitor 14, the secondary side winding 21, and the secondary side capacitor 22 that transmit and receive power in a contactless manner are collectively referred to as a non-contact power feeding unit 3 hereinafter. .

また、図1に示した一次側巻線13と一次側コンデンサ14の直列接続、二次側巻線21と二次側コンデンサ22の並列接続は一例であり、このような接続形態に限定されず、一次側コンデンサ14の並列接続、二次側コンデンサ22の直列接続でも良いし、それぞれが直並列接続でも良く、共振を利用できる接続形態ならいずれの接続形態でも良い。また、一次側巻線13および二次側巻線21は、リッツ線等の線材をパンケーキ状に巻いたものに、鉄心(図示せず)としてフェライト等を貼り付けて構成することもできる。また、図1では、一次側巻線13と二次側巻線21との巻線方向が同じ極性になるように図示しているが、巻線方向が逆極性になってもよい。   Further, the series connection of the primary side winding 13 and the primary side capacitor 14 and the parallel connection of the secondary side winding 21 and the secondary side capacitor 22 shown in FIG. 1 are examples, and the present invention is not limited to such a connection form. The primary side capacitor 14 may be connected in parallel and the secondary side capacitor 22 may be connected in series, or each of them may be connected in series and parallel. Moreover, the primary side winding 13 and the secondary side winding 21 can also be configured by attaching ferrite or the like as an iron core (not shown) to a wire rod such as a litz wire wound in a pancake shape. In FIG. 1, the winding direction of the primary winding 13 and the secondary winding 21 is shown to have the same polarity, but the winding direction may be reversed.

なお、この実施の形態1においては、非接触給電装置のうちの二次側巻線21、二次側コンデンサ22、整流回路24、電力変換器25、二次側制御回路28、負荷4、二次側巻線短絡手段23、および二次側通信手段29は移動体側に配置され、それ以外のものは固定側に配置されている。例えば、電気自動車にこの発明に係る非接触給電装置を適用する場合、移動体側は電気自動車、固定側は地上設備となる。   In the first embodiment, the secondary winding 21, the secondary capacitor 22, the rectifier circuit 24, the power converter 25, the secondary control circuit 28, the load 4, The secondary winding short-circuit means 23 and the secondary communication means 29 are arranged on the moving body side, and the others are arranged on the fixed side. For example, when the non-contact power feeding device according to the present invention is applied to an electric vehicle, the moving body side is an electric vehicle and the stationary side is a ground facility.

次に、非接触給電部3の一次側巻線13と二次側巻線21間の結合係数k、電力伝送効率η、および電力伝送効率ηが最大となる負荷の抵抗値RLmaxの相互の関係について説明する。 Next, the coupling coefficient k between the primary side winding 13 and the secondary side winding 21 of the non-contact power feeding unit 3, the power transmission efficiency η, and the load resistance value R Lmax that maximizes the power transmission efficiency η The relationship will be described.

先行の特許文献1記載の内容と同様に、一次側巻線13、一次側コンデンサ14、二次側巻線21、および二次側コンデンサ22からなる非接触給電部3に直接に負荷4が接続されている場合を考える。そして、非接触給電部3および負荷4を等価回路化すると図2のようになる。なお、一次側パラメータは二次側に換算して’(ダッシュ)をつけて表記している。   Similar to the contents described in the prior patent document 1, the load 4 is directly connected to the non-contact power feeding unit 3 including the primary side winding 13, the primary side capacitor 14, the secondary side winding 21, and the secondary side capacitor 22. Consider the case. And when the non-contact electric power feeding part 3 and the load 4 are made into an equivalent circuit, it will become like FIG. Note that the primary side parameter is converted to the secondary side and expressed with '(dash).

図2において、r’は二次側に換算された励磁抵抗(鉄損)、r’は二次側に換算された一次側巻線13の抵抗、rは二次側巻線21の抵抗、x’は二次側に換算された励磁リアクタンス、x’は二次側に換算された一次側漏れリアクタンス、xは二次側漏れリアクタンス、x’は二次側に換算された一次側コンデンサ14のリアクタンス、xは二次側コンデンサ22のリアクタンス、VIN’は二次側に換算された入力電圧、IIN’は二次側に換算された入力電流、I’は二次側に換算された一次側電流、Vは二次側電圧、Iは二次側電流、Rは負荷4の抵抗値、Vは負荷4への出力電圧、Iは負荷4への出力電流である。 In FIG. 2, r 0 ′ is the excitation resistance (iron loss) converted to the secondary side, r 1 ′ is the resistance of the primary side winding 13 converted to the secondary side, and r 2 is the secondary side winding 21. X 0 ′ is the excitation reactance converted to the secondary side, x 1 ′ is the primary side leakage reactance converted to the secondary side, x 2 is the secondary side leakage reactance, and x S ′ is the secondary side The converted reactance of the primary capacitor 14, x P is the reactance of the secondary capacitor 22, V IN ′ is the input voltage converted to the secondary side, I IN ′ is the input current converted to the secondary side, I 1 ′ is the primary side current converted to the secondary side, V 2 is the secondary side voltage, I 2 is the secondary side current, RL is the resistance value of the load 4, VL is the output voltage to the load 4, I L is an output current to the load 4.

ここで、一次側巻線13と二次側巻線21の巻数比をa=N/Nとし、また、鉄損を表すr’や一次側巻線13と二次側巻線21の各抵抗r’、rは、インバータ回路12の駆動周波数fにおいて、リアクタンスx’(=ωM/a=2πfM/a、ただし、Mは相互インダクタンス、fは駆動周波数、ωは駆動角速度)や、一次側漏れリアクタンスx’、二次側漏れリアクタンスxと比較して十分小さいので、省略すると、図3の簡易等価回路となる。 Here, the turn ratio of the primary side winding 13 and the secondary side winding 21 is set to a = N 1 / N 2 , r 0 ′ representing iron loss, the primary side winding 13 and the secondary side winding 21. Each of the resistors r 1 ′ and r 2 has reactance x 0 ′ (= ω 0 M / a = 2πf 0 M / a at the drive frequency f 0 of the inverter circuit 12, where M is a mutual inductance and f 0 is a drive. Since the frequency, ω 0 is the driving angular velocity), the primary side leakage reactance x 1 ′, and the secondary side leakage reactance x 2 are sufficiently small, if omitted, the simplified equivalent circuit of FIG. 3 is obtained.

図3の簡易等価回路において、一次側コンデンサ14の容量をC、二次側コンデンサ22の容量をCとすると、各容量C,Cを次の式(1)のように決める。 In the simple equivalent circuit of FIG. 3, when the capacitance of the primary side capacitor 14 is C S and the capacitance of the secondary side capacitor 22 is C P , the respective capacitances C S and C P are determined as in the following equation (1).

Figure 2014207764
Figure 2014207764

このとき、非接触給電部3の入力電圧VIN’と出力電圧V、非接触給電部3の入力電流IIN’と出力電流Iの関係を求めると、次の式(2)となる。 At this time, the input voltage V IN of the non-contact power feeding section 3 'and the output voltage V 2, the non-contact input current I IN of the power supply unit 3' when seeking the relationship between the output current I L, the following equation (2) .

Figure 2014207764
Figure 2014207764

図2の詳細等価回路と、上記式(2)の関係から、非接触給電部3の電力伝送効率ηを求める理論式は、次の式(3)となり、非接触給電部3の電力伝送効率ηが負荷4の抵抗値Rに依存していることが分かる。なお、ここでは、r’による鉄損を無視している。 From the detailed equivalent circuit of FIG. 2 and the relationship of the above formula (2), the theoretical formula for obtaining the power transmission efficiency η of the non-contact power feeding unit 3 is the following formula (3). It can be seen that η depends on the resistance value RL of the load 4. Here, iron loss due to r 0 ′ is ignored.

Figure 2014207764
Figure 2014207764

上記式(3)を微分して電力伝送効率ηが最大となる抵抗値RLmaxを求めると、次の式(4)が得られる。 When the above equation (3) is differentiated to obtain the resistance value R Lmax that maximizes the power transmission efficiency η, the following equation (4) is obtained.

Figure 2014207764
Figure 2014207764

ここで、一次側巻線13と二次側巻線21の共振の鋭さをそれぞれQ,Qとし、結合係数kを次の式(5)で定義する。 Here, the sharpness of resonance between the primary winding 13 and the secondary winding 21 is defined as Q 1 and Q 2 , respectively, and the coupling coefficient k is defined by the following equation (5).

Figure 2014207764
Figure 2014207764

この式(5)を用いて前述の式(1)のxと、式(2)のbを変形すると、次の式(6)となる。 And x P of the equation (5) Equation (1) described above with reference to, Transforming b of formula (2), the following equation (6).

Figure 2014207764
Figure 2014207764

上記の式(4)に着目し、この式(4)の平方根内の式を変形すると、次の式(7)となる。   Paying attention to the above equation (4) and transforming the equation within the square root of this equation (4), the following equation (7) is obtained.

Figure 2014207764
Figure 2014207764

したがって、この式(7)において、次の式(8)の関係が成立するとすれば、上記の式(4)の平方根内の式の1の値を無視できることになるので、さらに以下の式(9)に近似することができる。   Therefore, in this equation (7), if the relationship of the following equation (8) is established, the value of 1 in the square root of the above equation (4) can be ignored. 9).

Figure 2014207764
Figure 2014207764

Figure 2014207764
Figure 2014207764

上記の式(9)から明らかなように、電力伝送効率ηが最大となる抵抗値RLmaxが結合係数kの値に依存していることが分かる。なお、ここでは、一次側コンデンサ14は一次側巻線13に直列に、二次側コンデンサ22は二次側巻線21に並列に、それぞれ接続された場合について説明したが、他の接続形態でも電力伝送効率ηが最大となる抵抗値RLmaxは、結合係数kに依存する。 As is clear from the above equation (9), it can be seen that the resistance value R Lmax at which the power transmission efficiency η is maximum depends on the value of the coupling coefficient k. Here, the case where the primary side capacitor 14 is connected in series to the primary side winding 13 and the secondary side capacitor 22 is connected in parallel to the secondary side winding 21 has been described. The resistance value R Lmax that maximizes the power transmission efficiency η depends on the coupling coefficient k.

例えば、一次側コンデンサ14が一次側巻線13に並列に、二次側コンデンサ22も二次側巻線21に並列にそれぞれ接続された場合には、上記の式(9)が同様に成立する。また、一次側コンデンサ14が一次側巻線13に並列に、二次側コンデンサ22が二次側巻線21に直列に接続された場合や、一次側コンデンサ14が一次側巻線13に直列に、二次側コンデンサ22が二次側巻線21に直列に接続された場合には、次の式(10)が成立する。いずれの場合も電力伝送効率ηが最大となる抵抗値RLmaxは、結合係数kに依存することが分かる。 For example, when the primary side capacitor 14 is connected in parallel to the primary side winding 13 and the secondary side capacitor 22 is also connected in parallel to the secondary side winding 21, the above equation (9) is similarly established. . Further, when the primary side capacitor 14 is connected in parallel to the primary side winding 13 and the secondary side capacitor 22 is connected in series to the secondary side winding 21, or the primary side capacitor 14 is connected in series to the primary side winding 13. When the secondary side capacitor 22 is connected in series to the secondary side winding 21, the following equation (10) is established. In any case, it can be seen that the resistance value R Lmax that maximizes the power transmission efficiency η depends on the coupling coefficient k.

Figure 2014207764
Figure 2014207764

ここで、非接触給電部3から電力供給側を見た場合の負荷は、実際には、電力変換器25に接続された負荷4だけでなく、整流回路24や電力変換器25といった負荷が付属している。したがって、結合係数kに合わせて電力伝送効率ηが最大となる抵抗値RLmaxを決定する場合、非接触給電部3から見た負荷4、電力変換器25、および整流回路24を合成した合成負荷の抵抗値を考慮し、この合成負荷の抵抗値を適切に調整することで、結合係数kの変化に伴う電力伝送効率ηの低下を最小限に抑えることができる。よって、以下では電力伝送効率ηが最大となる抵抗値RLmaxとは、合成負荷についてのものであるとする。 Here, the load when the power supply side is viewed from the non-contact power feeding unit 3 is actually not only the load 4 connected to the power converter 25 but also a load such as the rectifier circuit 24 or the power converter 25. doing. Therefore, when determining the resistance value R Lmax that maximizes the power transmission efficiency η in accordance with the coupling coefficient k, the combined load obtained by combining the load 4, the power converter 25, and the rectifier circuit 24 viewed from the non-contact power feeding unit 3. By appropriately adjusting the resistance value of the combined load in consideration of the resistance value of the power supply, it is possible to minimize the decrease in the power transmission efficiency η accompanying the change in the coupling coefficient k. Therefore, in the following, it is assumed that the resistance value R Lmax that maximizes the power transmission efficiency η is for the combined load.

次に、二次側巻線短絡手段23により二次側巻線21の両端を短絡した場合の非接触給電部3の等価回路を図4に示す。二次側巻線21の両端を短絡させる理由は、非接触給電部3より下流側にある整流回路24、電力変換器25、負荷4といった抵抗成分を電気的に切り離し、図4の等価回路で示すインバータ負荷のインピーダンスの大きさ|Z|と位相θの値を求めるためである。   Next, an equivalent circuit of the non-contact power feeding unit 3 when both ends of the secondary winding 21 are short-circuited by the secondary winding short-circuit means 23 is shown in FIG. The reason why the both ends of the secondary winding 21 are short-circuited is that the resistance components such as the rectifier circuit 24, the power converter 25, and the load 4 on the downstream side of the non-contact power feeding unit 3 are electrically disconnected, and the equivalent circuit of FIG. This is because the magnitude of the impedance of the inverter load shown | Z | and the value of the phase θ are obtained.

鉄損は非常に小さいので、ここではr’を無視する。また、予め一次側制御回路18には、一次側巻線13のインダクタンスL、抵抗r、巻数N、一次側コンデンサ14の容量Cの各情報を記憶させておくものとする。また、二次側制御回路28には、二次側巻線21のインダクタンスL、抵抗r、巻数N、二次側コンデンサ22の容量Cの各情報を記憶させておくものとする。受電装置2の上記の各パラメータは、両通信手段19,29によって送電装置1の一次側制御回路18に送信することができるので、未知のパラメータは結合係数kによって変化するリアクタンスx’、x’、xのみである。 Since iron loss is very small, r 0 ′ is ignored here. In addition, the advance primary side control circuit 18, the inductance L 1 of the primary winding 13, resistor r 1, the number of turns N 1, assumed to be to store the respective information volume C S of the primary side capacitor 14. Further, the secondary side control circuit 28 is assumed to be to store the respective information volume C P of the secondary inductance L 2 of the primary winding 21, resistor r 2, the number of turns N 2, the secondary-side capacitor 22 . Since each parameter of the power receiving device 2 can be transmitted to the primary side control circuit 18 of the power transmitting device 1 by the two communication units 19 and 29, the unknown parameter is a reactance x 0 ′, x that varies depending on the coupling coefficient k. 1 ', it is only x 2.

二次側巻線短絡手段23によって二次側巻線21を短絡したときの図4の等価回路で示すインバータ負荷のインピーダンスの大きさ|Z|と位相θの値を求めることができれば、これらの|Z|,θの値から二次側巻線21を短絡した時のインダクタンスLは、次の式(11)により求めることができる。ただし、x’は二次側に換算された一次側コンデンサ14のリアクタンス、ωは駆動角速度(=2πf)であり、これらx’,ωの値は既知である。 If the value of the impedance | Z | and the phase θ of the inverter load shown in the equivalent circuit of FIG. 4 when the secondary winding 21 is short-circuited by the secondary winding short-circuit means 23 can be obtained. The inductance L S when the secondary winding 21 is short-circuited from the values of | Z | and θ can be obtained by the following equation (11). However, x S ′ is the reactance of the primary capacitor 14 converted to the secondary side, ω 0 is the driving angular velocity (= 2πf 0 ), and the values of these x S ′ and ω 0 are known.

Figure 2014207764
Figure 2014207764

ここで、一次側巻線13のインダクタンスL(=L)は既知であるため、上記の式(11)により二次側巻線21を短絡した時のインダクタンスLが求まれば、結合係数kは、次の式(12)から求めることができる。 Here, since the inductance L O (= L 1 ) of the primary side winding 13 is known, if the inductance L S when the secondary side winding 21 is short-circuited is obtained by the above equation (11), the coupling is established. The coefficient k can be obtained from the following equation (12).

Figure 2014207764
Figure 2014207764

つまり、二次側巻線短絡手段23により二次側巻線21を短絡したときのインバータ負荷のインピーダンスの大きさ|Z|と位相θを検出できれば、式(11)からLが求まり、かつL(=L)は既知であるので、式(12)から結合係数kを算出することができる。そして、結合係数kが決まれば、前述の式(9)や式(10)から非接触給電部3の電力伝送効率ηが最大となる抵抗値RLmaxを決めることができる。 That is, if the magnitude | Z | and the phase θ of the inverter load impedance when the secondary winding 21 is short-circuited by the secondary winding short-circuit means 23, L S can be obtained from the equation (11), and Since L O (= L 1 ) is known, the coupling coefficient k can be calculated from the equation (12). When the coupling coefficient k is determined, the resistance value R Lmax that maximizes the power transmission efficiency η of the non-contact power feeding unit 3 can be determined from the above-described equations (9) and (10).

次に、二次側巻線短絡手段23により二次側巻線21の両端を短絡したときのインバータ負荷のインピーダンスの大きさ|Z|と位相θの検出方法について説明する。   Next, a method for detecting the magnitude | Z | of the inverter load impedance and the phase θ when both ends of the secondary winding 21 are short-circuited by the secondary winding short-circuit means 23 will be described.

二次側巻線短絡手段23により二次側巻線21を短絡した際、一次側制御回路18から制御信号を出力してインバータ回路12を僅かな時間だけ所定の駆動周波数で駆動し、その間に駆動電圧検出器15と駆動電流検出器16により、インバータ回路12から出力される高調波変調された駆動電圧Vと駆動電流Iをそれぞれ検出する。なお、インバータ回路12を制御信号で駆動する際の所定の駆動周波数は、インバータ回路12の焼損を防ぐため、直流電源11の電圧を十分低くする、または、インバータ負荷の共振周波数よりも十分高い周波数を選択するのが好ましい。   When the secondary-side winding 21 is short-circuited by the secondary-side winding short-circuit means 23, a control signal is output from the primary-side control circuit 18 to drive the inverter circuit 12 at a predetermined drive frequency for a short time. The drive voltage detector 15 and the drive current detector 16 detect the harmonically modulated drive voltage V and the drive current I output from the inverter circuit 12, respectively. The predetermined drive frequency when the inverter circuit 12 is driven by the control signal is a frequency that is sufficiently lower than the DC power supply 11 voltage or higher than the resonance frequency of the inverter load in order to prevent the inverter circuit 12 from being burned out. Is preferably selected.

次いで、一次成分抽出手段17により、両検出器15,16によって検出された駆動電圧Vおよび駆動電流Iから、インバータ回路12の駆動周波数と同一の周波数を有する一次成分を含む一次駆動電圧V1、および一次駆動電流I1を抽出する。   Next, a primary drive voltage V1 including a primary component having the same frequency as the drive frequency of the inverter circuit 12 from the drive voltage V and the drive current I detected by the detectors 15 and 16 by the primary component extraction means 17, and The primary drive current I1 is extracted.

図5に、駆動電圧検出器15、および駆動電流検出器16によって検出された駆動電圧V、および駆動電流Iの波形図の一例を示す。なお、図5において、横軸は時間、縦軸は駆動電圧Vと駆動電流Iを示す。   FIG. 5 shows an example of a waveform diagram of the drive voltage V and the drive current I detected by the drive voltage detector 15 and the drive current detector 16. In FIG. 5, the horizontal axis represents time, and the vertical axis represents drive voltage V and drive current I.

高周波変調された駆動電圧V、および駆動電流Iは、一般に、駆動周波数の整数倍の高次周波数成分を含む合成波形として表される。よって、一次成分抽出手段17は、両検出器15,16で検出された図5に示す駆動電圧V、および駆動電流Iを、例えば駆動周波数の整数倍のサンプリング周波数を用いて離散フーリエ変換し、これにより駆動電圧Vおよび駆動電流Iの一次成分、すなわち駆動周波数と同一の周波数を有する成分だけを抽出する。   The high-frequency modulated drive voltage V and the drive current I are generally expressed as a composite waveform including high-order frequency components that are integer multiples of the drive frequency. Therefore, the primary component extraction means 17 performs discrete Fourier transform on the drive voltage V and the drive current I shown in FIG. 5 detected by both detectors 15 and 16 using a sampling frequency that is an integral multiple of the drive frequency, for example. As a result, only the primary component of the drive voltage V and the drive current I, that is, the component having the same frequency as the drive frequency is extracted.

なお、図5の場合、一次成分抽出手段17は、図5に示したようなインバータ回路12の駆動周波数の単一周期に相当する時間における駆動電圧V、および駆動電流Iに基づいて、一次駆動電圧V1、一次駆動電流I1を抽出する。また、一次成分抽出手段17において、複数の高次周波数成分を有する信号から一次成分だけを抽出する手法、およびアルゴリズムとしては、例えば、一般に市販された離散フーリエ変換用のソフトウェアを用いて駆動電圧V、および駆動電流Iの一次成分V1,I1だけを抽出することができる。   In the case of FIG. 5, the primary component extraction means 17 performs the primary drive based on the drive voltage V and the drive current I in a time corresponding to a single cycle of the drive frequency of the inverter circuit 12 as shown in FIG. The voltage V1 and the primary drive current I1 are extracted. In addition, as a method and algorithm for extracting only the primary component from a signal having a plurality of higher-order frequency components in the primary component extraction means 17, for example, a drive voltage V using, for example, generally commercially available software for discrete Fourier transform , And only the primary components V1, I1 of the drive current I can be extracted.

一次成分抽出手段17において抽出されるインバータ回路12の駆動周波数と同一の周波数を有する駆動電圧V、および駆動電流Iの一次成分V1,I1は、次の式(13)のように複素数表示される。   The drive voltage V having the same frequency as the drive frequency of the inverter circuit 12 extracted by the primary component extraction means 17 and the primary components V1, I1 of the drive current I are displayed in complex numbers as in the following equation (13). .

Figure 2014207764
Figure 2014207764

ここで、V1は駆動電圧Vの一次成分である一次駆動電圧を示し、I1は駆動電流Iの一次成分である一次駆動電流を示す。なお、V1Re、I1ReはV1、I1の実部、V1Im、I1ImはV1、I1の虚部、jは虚数単位を示す。 Here, V1 indicates a primary drive voltage that is a primary component of the drive voltage V, and I1 indicates a primary drive current that is a primary component of the drive current I. V1 Re and I1 Re are the real parts of V1 and I1, V1 Im and I1 Im are V1 and the imaginary part of I1, and j is an imaginary unit.

二次側巻線短絡手段23により二次側巻線21を短絡したときのインバータ負荷のインピーダンスの大きさ|Z|と位相θ(一次駆動電圧V1、および一次駆動電流I1の位相)は、次の式(14)により求めることができる。   The magnitude of the impedance of the inverter load | Z | and the phase θ (the phases of the primary drive voltage V1 and the primary drive current I1) when the secondary winding 21 is short-circuited by the secondary winding short-circuit means 23 are as follows: (14).

Figure 2014207764
Figure 2014207764

ここで、Re(Z)、およびIm(Z)はそれぞれインピーダンスZの実部、および虚部を意味する。なお、駆動電圧V、および駆動電流Iの位相θは、arctanの代わりにarcsin、またはarccosを用いて算出してもよい。位相θが90°付近ではarctanは発散し、誤差を多く含み得るので、arcsin、またはarccosを用いて位相θを算出することが好ましい場合がある。   Here, Re (Z) and Im (Z) mean the real part and the imaginary part of the impedance Z, respectively. The drive voltage V and the phase θ of the drive current I may be calculated using arcsin or arccos instead of arctan. When the phase θ is around 90 °, arctan diverges and may contain many errors. Therefore, it may be preferable to calculate the phase θ using arcsin or arccos.

このようにして、二次側巻線短絡手段23により二次側巻線21を短絡したときのインバータ負荷のインピーダンスの大きさ|Z|と位相θの値が求まれば、前述の式(11)、式(12)から結合係数kを算出することができ、結合係数kが決まれば、前述の式(9)や式(10)から非接触給電部3の電力伝送効率ηが最大となる抵抗値RLmaxを決めることができる。 Thus, if the magnitude of the impedance | Z | and the value of the phase θ of the inverter load when the secondary winding 21 is short-circuited by the secondary winding short-circuit means 23, the value of the above equation (11 ), The coupling coefficient k can be calculated from the expression (12), and when the coupling coefficient k is determined, the power transmission efficiency η of the non-contact power feeding unit 3 is maximized from the above-described expressions (9) and (10). The resistance value R Lmax can be determined.

前述したように、非接触給電部3から電力供給側を見た場合、実際には、負荷4だけでなく整流回路24や電力変換器25といった負荷が付属しているので、電力伝送効率ηが最大となる抵抗値RLmaxを設定するに当たり、非接触給電部3から見た整流回路24、電力変換器25、および負荷4を合成した合成負荷の抵抗値を適切に調整する必要がある。以下、合成負荷の抵抗値を適切に調整するための手法について説明する。 As described above, when the power supply side is viewed from the non-contact power feeding unit 3, in fact, not only the load 4 but also a load such as the rectifier circuit 24 and the power converter 25 is attached. In setting the maximum resistance value R Lmax , it is necessary to appropriately adjust the resistance value of the combined load obtained by combining the rectifier circuit 24, the power converter 25, and the load 4 as viewed from the non-contact power feeding unit 3. Hereinafter, a method for appropriately adjusting the resistance value of the combined load will be described.

まず、電力変換器25の一例として、降圧コンバータの簡易回路図を図6に、昇圧コンバータの簡易回路図を図7に、昇降圧コンバータの簡易回路図を図8にそれぞれ示す。なお、これらの図において、VC_INは入力電圧、IC_INは入力電流、VC_OUTは出力電圧、IC_OUTは出力電流、SWはスイッチング素子、Lはインダクタ、Dはダイオード、Cは電界コンデンサを表している。 First, as an example of the power converter 25, a simplified circuit diagram of a step-down converter is shown in FIG. 6, a simplified circuit diagram of a boost converter is shown in FIG. 7, and a simplified circuit diagram of a buck-boost converter is shown in FIG. In these figures, V C_IN is an input voltage, I C_IN is an input current, V C_OUT is an output voltage, I C_OUT is an output current, SW is a switching element, L is an inductor, D is a diode, and C is an electric field capacitor. ing.

ここで、図6に示すような降圧コンバータでは、入力電圧VC_INと出力電圧VC_OUTの関係は、ダイオードDの順方向降下電圧Vとスイッチング素子SWをオン/オフする制御信号のDutyを用いて次の式(15)で表すことができる。 Here, in the step-down converter as shown in FIG. 6, the relationship between the input voltage V C_IN and the output voltage V C_OUT uses the forward drop voltage V F of the diode D and the duty of the control signal for turning on / off the switching element SW. Can be expressed by the following equation (15).

Figure 2014207764
Figure 2014207764

ここで、次の式(16)の関係が成立すれば、上記の式(15)は下記の式(17)に近似することができる。   Here, if the relationship of the following equation (16) is established, the above equation (15) can be approximated to the following equation (17).

Figure 2014207764
Figure 2014207764

Figure 2014207764
Figure 2014207764

さらに、近年の電力変換器25は高効率化がなされ、効率ηが98%以上を実現するものも出てきているので、電力変換器25の損失を無視して次の式(18)が成立すると仮定する。   Furthermore, recent power converters 25 have been made highly efficient, and some have realized an efficiency η of 98% or more. Therefore, the following equation (18) is satisfied ignoring the loss of the power converter 25: Assume that.

Figure 2014207764
Figure 2014207764

上記の式(18)に式(17)を代入して整理すると、入力電流IC_INと出力電流IC_OUTの関係は、次の式(19)で表すことができる。 When the equation (17) is substituted into the equation (18) and rearranged , the relationship between the input current I C_IN and the output current I C_OUT can be expressed by the following equation (19).

Figure 2014207764
Figure 2014207764

ここで、入力電圧VC_INと入力電流IC_INを用いて入力抵抗RC_INを求めて整理すると、入力抵抗RC_INと出力抵抗RC_OUTの関係を次の式(20)で表すことができる。この式(20)から、入力抵抗RC_INは出力抵抗RC_OUT以上の値となり、かつ入力抵抗RC_INと出力抵抗RC_OUTの比率がDutyに依存していることが分かる。 Here, when organized prompted resistor R C_IN with input current I C_IN the input voltage V C_IN, the relationship between the output resistor R C_OUT the input resistor R C_IN can be expressed by the following equation (20). From this equation (20), the input resistor R C_IN is the value of the above output resistance R C_OUT, and it can be seen that the ratio of the input resistor R C_IN output resistance R C_OUT relies on Duty.

Figure 2014207764
Figure 2014207764

次に、図7に示すような昇圧コンバータでは、入力電圧VC_INと出力電圧VC_OUTの関係は、ダイオードDの順方向降下電圧Vとスイッチング素子SWをオン/オフする制御信号のDutyを用いて次の式(21)で表すことができる。 Next, in the boost converter as shown in FIG. 7, the relationship between the input voltage V C_IN and the output voltage V C_OUT uses the forward drop voltage V F of the diode D and the duty of the control signal for turning on / off the switching element SW. Can be expressed by the following equation (21).

Figure 2014207764
Figure 2014207764

ここで、次の式(22)の関係が成立するとすれば、上記の式(21)を以下の式(23)に近似することができる。   Here, if the relationship of the following equation (22) is established, the above equation (21) can be approximated to the following equation (23).

Figure 2014207764
Figure 2014207764

Figure 2014207764
Figure 2014207764

さらに、降圧コンバータの場合と同様に、電力変換器25の損失を無視して次の式(24)が成立すると仮定する。   Further, as in the case of the step-down converter, it is assumed that the following expression (24) is established by ignoring the loss of the power converter 25.

Figure 2014207764
Figure 2014207764

上記の式(24)に式(23)を代入して整理すると、入力電流IC_INと出力電流IC_OUTの関係は、次の式(25)で表すことができる。 When the equation (23) is substituted into the above equation (24) and rearranged , the relationship between the input current I C_IN and the output current I C_OUT can be expressed by the following equation (25).

Figure 2014207764
Figure 2014207764

ここで、入力電圧VC_INと入力電流IC_INを用いて入力抵抗RC_INを求めて整理すると、入力抵抗RC_INと出力抵抗RC_OUTの関係を次の式(26)で表すことができる。この式(26)から、入力抵抗RC_INは出力抵抗RC_OUT以下の値となり、かつ入力抵抗RC_INと出力抵抗RC_OUTの比率がDutyに依存していることが分かる。 Here, when organized prompted resistor R C_IN with input current I C_IN the input voltage V C_IN, the relationship between the output resistor R C_OUT the input resistor R C_IN can be expressed by the following equation (26). From this equation (26), it can be seen that the input resistance RC_IN has a value less than or equal to the output resistance RC_OUT , and the ratio of the input resistance RC_IN to the output resistance RC_OUT depends on the duty.

Figure 2014207764
Figure 2014207764

次に、図8に示すような昇降圧コンバータでは、入力電圧VC_INと出力電圧VC_OUTの関係は、ダイオードDの順方向降下電圧Vとスイッチング素子SWをオン/オフする制御信号のDutyを用いて次の式(27)で表すことができる。 Next, in the step-up / step-down converter as shown in FIG. 8, the relationship between the input voltage V C_IN and the output voltage V C_OUT is that the forward drop voltage V F of the diode D and the duty of the control signal for turning on / off the switching element SW are set. And can be expressed by the following equation (27).

Figure 2014207764
Figure 2014207764

ここで、次の式(28)の関係が成立するとすれば、上記の式(27)を以下の式(29)に近似することができる。   Here, if the relationship of the following equation (28) is established, the above equation (27) can be approximated to the following equation (29).

Figure 2014207764
Figure 2014207764

Figure 2014207764
Figure 2014207764

さらに、降圧コンバータや昇圧コンバータの場合と同様に、電力変換器25の損失を無視して次の式(30)が成立すると仮定する。   Further, as in the case of the step-down converter or the step-up converter, it is assumed that the following expression (30) is satisfied ignoring the loss of the power converter 25.

Figure 2014207764
Figure 2014207764

上記の式(30)に式(29)を代入して整理すると、入力電流IC_INと出力電流IC_OUTの関係は、次の式(31)で表すことができる。 When the equation (29) is substituted into the above equation (30) and rearranged , the relationship between the input current I C_IN and the output current I C_OUT can be expressed by the following equation (31).

Figure 2014207764
Figure 2014207764

ここで、入力電圧VC_INと入力電流IC_INを用いて入力抵抗RC_INを求めて整理すると、入力抵抗RC_INと出力抵抗RC_OUTの関係を次の式(32)で表すことができる。この式(32)から、入力抵抗RC_INが出力抵抗RC_OUT以下の値となるか以上の値になるかはDutyの大小に依存し、かつ入力抵抗RC_INと出力抵抗RC_OUTの比率がDutyに依存していることが分かる。 Here, when organized prompted resistor R C_IN with input current I C_IN the input voltage V C_IN, the relationship between the output resistor R C_OUT the input resistor R C_IN can be expressed by the following equation (32). From this equation (32), whether the input resistance RC_IN is equal to or less than the output resistance RC_OUT depends on the size of the duty, and the ratio of the input resistance RC_IN to the output resistance RC_OUT is the duty. It turns out that it depends on.

Figure 2014207764
Figure 2014207764

以上のことから、電力変換器25として降圧コンバータを設けた場合は、その抵抗値をより大きな値に見せかけることができ、昇圧コンバータを設けた場合は、その抵抗値をより小さな値に見せかけることができ、昇降圧コンバータを設けた場合は、その抵抗値をより大きな値に見せかけることも、より小さな値に見せかけることもできることが分かる。また、いずれの場合もこれらの各抵抗値はDutyに依存するので、Dutyを制御することで電力変換器25による抵抗値の変化を調整することができる。   From the above, when the step-down converter is provided as the power converter 25, the resistance value can appear to be a larger value, and when the step-up converter is provided, the resistance value can appear to be a smaller value. In addition, it can be seen that when the buck-boost converter is provided, the resistance value can be made to appear larger or smaller. In any case, since each of these resistance values depends on the duty, the change of the resistance value by the power converter 25 can be adjusted by controlling the duty.

続いて、整流回路24の一例であるチョークインプット型フルブリッジ整流回路を図9に示す。   Next, FIG. 9 shows a choke input type full bridge rectifier circuit as an example of the rectifier circuit 24.

図9のようなチョークインプット型フルブリッジ整流回路では、インダクタLのインダクタンスが十分大きく、インダクタLとダイオードD1〜D4の内部抵抗が十分小さい場合、入力電圧VR_INと出力電圧VR_OUTの関係は、次の式(33)で表すことができる。なお、図9でIR_INは入力電流、IR_OUTは出力電流、RR_INは入力抵抗、RR_OUTは出力抵抗、Cは電界コンデンサである。 In choke input type full bridge rectifier circuit as shown in Figure 9, increases the inductance of the inductor L is sufficiently, if the internal resistance of the inductor L and the diode D1~D4 is sufficiently small, the relationship between the input voltage V R - IN output voltage V R_OUT is It can be represented by the following formula (33). Incidentally, I R - IN in FIG. 9 is an input current, I R_OUT the output current, R R - IN is the input resistance, R R_OUT output resistance, C is a field capacitor.

Figure 2014207764
Figure 2014207764

さらに、近年の整流回路24は高効率化がなされ、効率ηが99%以上を実現するものも出てきているので、整流回路24の損失を無視して、次の式(34)が成立すると仮定する。   Furthermore, the efficiency of the rectifier circuit 24 in recent years has been improved, and some have realized an efficiency η of 99% or more. Therefore, if the loss of the rectifier circuit 24 is ignored and the following equation (34) is established: Assume.

Figure 2014207764
Figure 2014207764

ここで、入力電圧VR_INと入力電流IR_INを用いて入力抵抗RR_INを求めて整理すると、入力抵抗RR_INと出力抵抗RR_OUTの関係は、次の式(35)で表すことができる。この式(35)から、入力抵抗RR_INと出力抵抗RR_OUTの比は一定(=1.23)となることが分かる。 Here, when organized prompted resistor R R - IN with the input current I R - IN and the input voltage V R - IN, the relationship between the output resistance R R_OUT the input resistor R R - IN, can be expressed by the following equation (35). From this equation (35), the ratio of the output resistance R R_OUT the input resistor R R - IN is understood to be a constant (= 1.23).

Figure 2014207764
Figure 2014207764

このように、電力変換器25の入力側の手前に整流回路24が付属している場合、電力変換器25の入力抵抗RR_INと出力抵抗RR_OUTの関係を示す式(20)、式(26)、式(32)において、整流回路24による抵抗値の変化分を考慮する必要がある。 Thus, if the rectifier circuit 24 in front of the input side of the power converter 25 is supplied with the formula showing the relationship between the input resistor R R - IN and the output resistance R R_OUT power converter 25 (20), formula (26 ), In equation (32), it is necessary to consider the amount of change in the resistance value caused by the rectifier circuit 24.

これまで、非接触給電装置の各構成要素の作用について説明した。
ここからは、図10に示すフローチャートに沿って、一次側巻線13と二次側巻線21との間の結合係数kを検出し、検出した結合係数kと負荷4の状態に基づいて電力変換器25を最適に制御することで非接触給電部3の巻線13,21間の電力伝送効率ηを最大化する方法について説明する。なお、図10において、符号Sは各処理ステップを意味する。
So far, the operation of each component of the non-contact power feeding device has been described.
From here, according to the flowchart shown in FIG. 10, the coupling coefficient k between the primary side winding 13 and the secondary side winding 21 is detected, and the power is based on the detected coupling coefficient k and the state of the load 4. A method for maximizing the power transmission efficiency η between the windings 13 and 21 of the non-contact power feeding unit 3 by optimally controlling the converter 25 will be described. In FIG. 10, the symbol S means each processing step.

まず、スタートの合図として、二次側制御回路28から通信手段29,19によって一次側制御回路18に対して送電開始要求を送る。次に、ステップS1では、予め二次側制御回路28に記憶させておいた二次側巻線21のインダクタンスL、抵抗r、巻数N、二次側コンデンサ22の容量Cの各バラメータの情報を通信手段29,19によって一次側制御回路18に送る。 First, as a start signal, a transmission start request is sent from the secondary control circuit 28 to the primary control circuit 18 by the communication means 29 and 19. In step S1, the inductance L 2, the resistance r 2 of the pre-secondary-side control circuit 28 two or may be stored in the primary winding 21, the number of turns N 2, each of the capacitance C P of the secondary-side capacitor 22 The parameter information is sent to the primary side control circuit 18 by the communication means 29 and 19.

なお、仮に一次側と二次側がセットになっている場合は、予め一次側制御回路18に一次側巻線13のインダクタンスL、抵抗r、巻数N、一次側コンデンサ14の容量Cの情報と合わせて、二次側巻線21のインダクタンスL、抵抗r、巻数N、二次側コンデンサ22の容量Cの情報を記憶させておくことで、ステップS1を省略することができる。 If the primary side and the secondary side are set as a set, the primary side control circuit 18 is previously provided with the inductance L 1 of the primary side winding 13, the resistance r 1 , the number of turns N 1 , and the capacitance C S of the primary side capacitor 14. the combined information and the inductance L 2 of the secondary winding 21, resistor r 2, the number of turns N 2, by storing the information of the capacity C P of the secondary-side capacitor 22, omitting the step S1 Can do.

ステップS2では、二次側制御回路28は、二次側巻線短絡手段23によって二次側巻線21を短絡した後、短絡完了の合図を通信手段29,19によって一次側制御回路18に送る。   In step S <b> 2, the secondary side control circuit 28 short-circuits the secondary side winding 21 by the secondary side winding short circuit means 23, and then sends a short-circuit completion signal to the primary side control circuit 18 by the communication means 29 and 19. .

ステップS3では、一次側制御回路18は、短絡完了の合図を受けると、これに応じてインバータ回路12に制御信号を出力し、インバータ回路12を僅かな時間だけ駆動する。その間に駆動電圧検出器15と駆動電流検出器16により、インバータ回路12の駆動電圧V、駆動電流Iを検出する。そして、一次成分抽出手段17によって駆動電圧V、駆動電流Iの一次成分V1、I1を抽出し、前述の式(14)に基づいて二次側巻線短絡手段23によって二次側巻線21を短絡した場合のインピーダンスの大きさ|Z|と位相θを求める。
なお、ここで、インバータ回路12を駆動する場合は、回路の焼損を防ぐために直流電源11の電圧を十分低くするか、インバータ負荷の共振周波数よりも十分高い駆動周波数を選択して駆動することが望ましい。
In step S3, when receiving a signal indicating completion of the short circuit, the primary side control circuit 18 outputs a control signal to the inverter circuit 12 in response thereto, and drives the inverter circuit 12 for a short time. Meanwhile, the drive voltage V and the drive current I of the inverter circuit 12 are detected by the drive voltage detector 15 and the drive current detector 16. The primary component extraction means 17 extracts the primary components V1 and I1 of the drive voltage V and the drive current I, and the secondary side winding short-circuit means 23 extracts the secondary side winding 21 based on the above-described equation (14). The magnitude of the impedance | Z | and the phase θ when short-circuited are obtained.
Here, when the inverter circuit 12 is driven, the voltage of the DC power source 11 is sufficiently lowered to prevent the circuit from being burned, or it is driven by selecting a driving frequency sufficiently higher than the resonance frequency of the inverter load. desirable.

ステップS4では、一次側制御回路18から通信手段19,29によって二次側制御回路28に対して二次側巻線21の開放要求を送る。これに応じて、二次側制御回路28は、二次側巻線短絡手段23によって短絡されていた二次側巻線21を開放する。そして、二次側制御回路28は開放完了の合図を通信手段29,19によって一次側制御回路18に送る。   In step S <b> 4, the primary side control circuit 18 sends a request for opening the secondary side winding 21 to the secondary side control circuit 28 by the communication means 19 and 29. In response to this, the secondary side control circuit 28 opens the secondary side winding 21 short-circuited by the secondary side winding short-circuit means 23. Then, the secondary side control circuit 28 sends a signal of completion of opening to the primary side control circuit 18 by the communication means 29 and 19.

ステップS5では、一次側制御回路18は、開放完了の合図を受け取ると、これに応じて先のステップS3で測定したインピーダンスの大きさ|Z|と位相θの値を用いて、式(11)と式(12)に基づいて結合係数kを計算する。引き続いて、一次側制御回路18は、ステップS1で入手した情報と結合係数kから式(5)と式(9)とに基づいて、電力伝送効率ηが最大となる抵抗値RLmaxを計算する。 In step S5, when the primary control circuit 18 receives the signal indicating the completion of opening, the primary side control circuit 18 uses the impedance magnitude | Z | measured in the previous step S3 and the value of the phase θ in response to the signal (11). And the coupling coefficient k is calculated based on the equation (12). Subsequently, the primary side control circuit 18 calculates a resistance value R Lmax that maximizes the power transmission efficiency η based on the information obtained in step S1 and the coupling coefficient k based on the equations (5) and (9) . .

ステップS6では、一次側制御回路18は、ステップS5で計算した電力伝送効率ηが最大となる抵抗値RLmaxの情報を通信手段19,29によって二次側制御回路28に送る。なお、ステップS4,S5,S6については、ステップS5→S4→S6、またはステップS5→S6→S4の手順で処理を行ってもよい。 In step S6, the primary side control circuit 18 sends information on the resistance value RLmax that maximizes the power transmission efficiency η calculated in step S5 to the secondary side control circuit 28 by the communication means 19 and 29. In addition, about step S4, S5, S6, you may process in the procedure of step S5->S4-> S6 or step S5->S6-> S4.

ステップS7では、一次側制御回路18はインバータ回路12へ、二次側制御回路28は電力変換器25へそれぞれ制御信号を送ることにより送電を開始する。この送電開始当初は、インバータ回路12の出力電力を最小値に、また電力変換器25のDutyを最小値に設定して開始することで、負荷4の抵抗値Rが小さい場合であっても安全に非接触給電装置を起動させることができる。 In step S <b> 7, the primary side control circuit 18 starts transmission by sending a control signal to the inverter circuit 12, and the secondary side control circuit 28 sends a control signal to the power converter 25. Even when the resistance value RL of the load 4 is small by starting the power transmission by starting with the output power of the inverter circuit 12 set to the minimum value and the duty of the power converter 25 set to the minimum value. The non-contact power feeding device can be activated safely.

ステップS8では、二次側制御回路28は、出力電圧検出器26と出力電流検出器27の各検出値から負荷4の現時点の抵抗値Rを測定する。 In step S <b> 8, the secondary side control circuit 28 measures the current resistance value RL of the load 4 from the detected values of the output voltage detector 26 and the output current detector 27.

ステップS9では、二次側制御回路28は、上記のステップS8で検出した負荷4の抵抗値Rの情報と先のステップS6で入手した電力伝送効率ηが最大となる抵抗値RLmaxの情報から、非接触給電部3の電力伝送効率ηを最大化することのできる電力変換器25のDutyを、次の式(36)を利用してDutyについて解くことによって求める。 In step S9, the secondary side control circuit 28 has information on the resistance value RL of the load 4 detected in step S8 and information on the resistance value RLmax that maximizes the power transmission efficiency η obtained in step S6 . From this, the duty of the power converter 25 that can maximize the power transmission efficiency η of the non-contact power feeding unit 3 is obtained by solving the duty using the following equation (36).

Figure 2014207764
Figure 2014207764

ここで、数値の1.23は、整流回路24がチョークインプット型フルブリッジ整流回路24とした場合にその抵抗値が変化する分である。また、電力変換器25が降圧コンバータの場合の(1/Duty)は式(20)に対応して、また、昇圧コンバータの場合の(1−Duty)は式(26)に対応して、さらに昇降圧コンバータの場合の{(1−Duty)/Duty}は式(32)に対応して、それぞれ抵抗値が変化する分である。また、RLmaxとRはそれぞれステップS5、S8によって既知であるので、式(36)を用いて非接触給電部3の電力伝送効率ηを最大化することのできる電力変換器25のDutyを求めることができる。
ただし、電力変換器25が降圧コンバータの場合と昇圧コンバータの場合は解が求まらない場合があるが、そのときは、降圧コンバータではDutyをなるべく1に近い実現可能な値に、昇圧コンバータではDutyをなるべく0に近い実現可能な値にそれぞれ選択する。
Here, the numerical value 1.23 corresponds to a change in the resistance value when the rectifier circuit 24 is a choke input type full-bridge rectifier circuit 24. Further, (1 / Duty 2 ) when the power converter 25 is a step-down converter corresponds to the equation (20), and (1-Duty) 2 when the power converter 25 is a step-up converter corresponds to the equation (26). Further, {(1-Duty) / Duty} 2 in the case of the step-up / step-down converter corresponds to the amount of change in the resistance value corresponding to the equation (32). Since R Lmax and R L are already known from steps S5 and S8, respectively, the duty of the power converter 25 that can maximize the power transmission efficiency η of the non-contact power feeding unit 3 is calculated using the equation (36). Can be sought.
However, when the power converter 25 is a step-down converter or a step-up converter, a solution may not be obtained. In that case, the step-down converter has a duty as close to 1 as possible and the step-up converter has a feasible value. Duty is selected to a feasible value as close to 0 as possible.

ステップS10では、二次側制御回路28は、電力変換器25のDutyをステップS9で求めた値に更新する。   In step S10, the secondary side control circuit 28 updates the duty of the power converter 25 to the value obtained in step S9.

以上により、結合係数kに合わせて非接触給電部3の電力伝送効率ηを最大化することが可能である。ただし、負荷4の抵抗値Rが既知の場合はステップS8を省略できる。また、負荷4の抵抗値Rが一定でなく時間的に変化する場合には、ステップS8〜S10を繰り返すことで負荷4の変化に影響されることなく非接触給電部3の電力伝送効率ηを最大化することができる。 As described above, the power transmission efficiency η of the non-contact power feeding unit 3 can be maximized in accordance with the coupling coefficient k. However, when the resistance value RL of the load 4 is known, step S8 can be omitted. Further, when the resistance value RL of the load 4 is not constant and changes over time, the power transmission efficiency η of the non-contact power feeding unit 3 is not affected by the change of the load 4 by repeating steps S8 to S10. Can be maximized.

なお、この発明は上記の実施の形態1の構成のみに限定されるものではなく、この発明の趣旨を逸脱しない範囲において各種の変形を加えたり、構成の一部を省略することが可能である。   The present invention is not limited to the configuration of the first embodiment described above, and various modifications can be made or a part of the configuration can be omitted without departing from the spirit of the present invention. .

1 送電装置、2 受電装置、3 非接触給電部、4 負荷、11 直流電源、
12 インバータ回路、13 一次側巻線、14 一次側コンデンサ、
15 駆動電圧検出器、16 駆動電流検出器、17 一次成分抽出手段、
18 一次側制御回路、19 一次側通信手段、21 二次側巻線、
22 二次側コンデンサ、23 二次側巻線短絡手段、24 整流回路、
25 電力変換器、26 出力電圧検出器、27 出力電流検出器、
28 二次側制御回路、29 二次側通信手段、η 電力伝送効率、k 結合係数、
負荷の現時点の抵抗値、RLmax 電力伝送効率が最大となる抵抗値。
DESCRIPTION OF SYMBOLS 1 Power transmission device, 2 Power receiving device, 3 Non-contact electric power feeding part, 4 Load, 11 DC power supply,
12 inverter circuit, 13 primary winding, 14 primary capacitor,
15 drive voltage detector, 16 drive current detector, 17 primary component extraction means,
18 Primary side control circuit, 19 Primary side communication means, 21 Secondary side winding,
22 secondary capacitor, 23 secondary winding short-circuit means, 24 rectifier circuit,
25 power converter, 26 output voltage detector, 27 output current detector,
28 secondary side control circuit, 29 secondary side communication means, η power transmission efficiency, k coupling coefficient,
The current resistance value of the RL load, the resistance value that maximizes the RLmax power transmission efficiency.

Claims (5)

高周波電力を出力するインバータ回路と、上記インバータ回路から供給される上記高周波電力を空間的ギャップを介して電磁誘導によって送受電する非接触給電部と、上記非接触給電部で送受電された上記高周波電力を直流電力に変換する整流回路と、上記整流回路から出力される直流電力の電圧を任意に変化させて負荷に出力する電力変換器とを備え、上記非接触給電部は、一次側コンデンサと共振して上記インバータ回路から供給される高周波電力の送電を行う一次側巻線と、二次側コンデンサと共振して上記一次側巻線から送電された高周波電力の受電を行う二次側巻線と、を有する非接触給電装置であって、
上記二次側巻線の両端を任意のタイミングで短絡させる二次側巻線短絡手段と、
上記インバータ回路の駆動電圧を検出する駆動電圧検出手段と、
上記インバータ回路の駆動電流を検出する駆動電流検出手段と、
上記駆動電圧検出手段と上記駆動電流検出手段で検出された駆動電圧および駆動電流に基づいて上記インバータ回路の駆動周波数と同一の周波数を有する一次成分を含む一次駆動電圧および一次駆動電流を抽出する一次成分抽出手段と、
上記インバータ回路を制御するとともに、上記二次側巻線短絡手段で上記二次側巻線が短絡されたときの上記一次成分抽出手段で抽出された上記一次駆動電圧および上記一次駆動電流の値に基づいて上記非接触給電部の結合係数kおよび電力伝送効率ηが最大となる抵抗値RLmaxを算出する一次側制御回路と、
上記一次側制御回路で算出された上記抵抗値RLmaxの情報を送受信する通信手段と、
上記二次側巻線短絡手段の動作を制御するとともに、上記通信手段を介して受信された上記抵抗値RLmaxの値に基づいて上記電力変換器の動作を制御する二次側制御回路と、
を備えた非接触給電装置
An inverter circuit that outputs high-frequency power; a non-contact power feeding unit that transmits and receives the high-frequency power supplied from the inverter circuit by electromagnetic induction through a spatial gap; and the high-frequency power that is transmitted and received by the non-contact power feeding unit A rectifier circuit that converts electric power to DC power; and a power converter that arbitrarily changes the voltage of the DC power output from the rectifier circuit and outputs the voltage to a load. A primary winding that resonates and transmits high-frequency power supplied from the inverter circuit, and a secondary winding that resonates with a secondary capacitor and receives high-frequency power transmitted from the primary winding. A non-contact power feeding device having
A secondary winding short-circuit means for short-circuiting both ends of the secondary winding at an arbitrary timing;
Drive voltage detection means for detecting the drive voltage of the inverter circuit;
Drive current detection means for detecting the drive current of the inverter circuit;
A primary drive voltage and primary drive current including a primary component having the same frequency as the drive frequency of the inverter circuit based on the drive voltage and drive current detected by the drive voltage detection means and the drive current detection means Component extraction means;
The inverter circuit is controlled, and the values of the primary driving voltage and the primary driving current extracted by the primary component extracting means when the secondary winding is short-circuited by the secondary winding short-circuiting means are set. A primary side control circuit that calculates a resistance value R Lmax that maximizes the coupling coefficient k and the power transmission efficiency η of the non-contact power feeding unit based on
Communication means for transmitting and receiving information on the resistance value R Lmax calculated by the primary side control circuit;
A secondary side control circuit for controlling the operation of the power converter based on the value of the resistance value RLmax received through the communication means, while controlling the operation of the secondary side winding short circuit means;
Contactless power supply device with
上記電力変換器の出力電圧を検出する出力電圧検出手段と、
上記電力変換器の出力電流を検出する出力電流検出手段と、
を備えるとともに、
上記二次側制御回路は、上記出力電圧検出手段と上記出力電流検出手段の各検出出力に基づいて上記電力変換器に接続された上記負荷の現時点の抵抗値Rの大きさを算出するとともに、この算出された上記抵抗値R、上記通信手段で受信された上記抵抗値RLmaxの値に基づいて上記電力変換器の動作を制御するものである請求項1に記載の非接触給電装置。
Output voltage detecting means for detecting the output voltage of the power converter;
Output current detection means for detecting the output current of the power converter;
With
The secondary side control circuit calculates the current resistance value RL of the load connected to the power converter based on the detection outputs of the output voltage detection means and the output current detection means. The contactless power feeding device according to claim 1, wherein the operation of the power converter is controlled based on the calculated resistance value R L and the resistance value R Lmax received by the communication means . .
上記電力変換器は降圧コンバータであり、上記二次側制御回路によって上記降圧コンバータを駆動する際のDutyを、RLmax=1.23×(1/Duty)×R(ただし、Rは現時点の負荷の抵抗値)の式をDutyについて解くことにより決定する請求項1又は請求項2に記載の非接触給電装置。 The power converter is a step-down converter, and duty when driving the step-down converter by the secondary side control circuit is R Lmax = 1.23 × (1 / Duty 2 ) × R L (where RL is 3. The non-contact power feeding apparatus according to claim 1, wherein the current resistance value is determined by solving for Duty. 上記電力変換器は昇圧コンバータであり、上記二次側制御回路によって上記昇圧コンバータを駆動する際のDutyを、RLmax=1.23×(1−Duty)×R(ただし、Rは現時点の負荷の抵抗値)の式をDutyについて解くことにより決定する請求項1又は請求項2に記載の非接触給電装置。 The power converter is a boost converter, and Duty when driving the boost converter by the secondary side control circuit is R Lmax = 1.23 × (1−Duty) 2 × R L (where R L is 3. The non-contact power feeding apparatus according to claim 1, wherein the current resistance value is determined by solving for Duty. 上記電力変換器は昇降圧コンバータであり、上記二次側制御回路によって上記昇降圧コンバータを駆動する際のDutyを、RLmax=1.23×{(1−Duty)/Duty}×R(ただし、Rは現時点の負荷の抵抗値)の式をDutyについて解くことにより決定する請求項1又は請求項2に記載の非接触給電装置。 The power converter is a step-up / step-down converter, and Duty when driving the step-up / down converter by the secondary side control circuit is R Lmax = 1.23 × {(1-Duty) / Duty} 2 × R L The non-contact power feeding device according to claim 1 or 2, wherein R L is determined by solving an equation of Duty for Duty, wherein RL is a resistance value of a current load.
JP2013083469A 2013-04-12 2013-04-12 Non-contact power feeding device Active JP6053597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083469A JP6053597B2 (en) 2013-04-12 2013-04-12 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083469A JP6053597B2 (en) 2013-04-12 2013-04-12 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2014207764A true JP2014207764A (en) 2014-10-30
JP6053597B2 JP6053597B2 (en) 2016-12-27

Family

ID=52120918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083469A Active JP6053597B2 (en) 2013-04-12 2013-04-12 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP6053597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186714A (en) * 2015-09-10 2015-12-23 胡江浩 Low-power wireless charging circuit topological structure
JP2016167915A (en) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ Charging device
WO2023089795A1 (en) * 2021-11-22 2023-05-25 三菱電機株式会社 Power transmission device, wireless power transmission system, and voltage control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033660A1 (en) * 2009-09-18 2011-03-24 株式会社 東芝 Wireless power transmission device
JP2011120443A (en) * 2009-11-09 2011-06-16 Toyota Industries Corp Resonance type non-contact power transmission apparatus
WO2013024432A2 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. A capacitive contactless powering system
WO2013038617A1 (en) * 2011-09-15 2013-03-21 三菱電機株式会社 Contactless power supply device
WO2013042224A1 (en) * 2011-09-21 2013-03-28 パイオニア株式会社 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033660A1 (en) * 2009-09-18 2011-03-24 株式会社 東芝 Wireless power transmission device
JP2011120443A (en) * 2009-11-09 2011-06-16 Toyota Industries Corp Resonance type non-contact power transmission apparatus
WO2013024432A2 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. A capacitive contactless powering system
WO2013038617A1 (en) * 2011-09-15 2013-03-21 三菱電機株式会社 Contactless power supply device
WO2013042224A1 (en) * 2011-09-21 2013-03-28 パイオニア株式会社 Non-contact power transmitting apparatus, non-contact power receiving apparatus, and non-contact power feeding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167915A (en) * 2015-03-09 2016-09-15 株式会社日立ハイテクファインシステムズ Charging device
CN105186714A (en) * 2015-09-10 2015-12-23 胡江浩 Low-power wireless charging circuit topological structure
WO2023089795A1 (en) * 2021-11-22 2023-05-25 三菱電機株式会社 Power transmission device, wireless power transmission system, and voltage control device
TWI816416B (en) * 2021-11-22 2023-09-21 日商三菱電機股份有限公司 Power transmission devices, wireless power transmission systems and voltage control devices
JP7370503B2 (en) 2021-11-22 2023-10-27 三菱電機株式会社 Power transmission equipment, wireless power transmission systems and voltage control equipment

Also Published As

Publication number Publication date
JP6053597B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
Kim et al. Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV
US20180138756A1 (en) Wireless power transmission system and method for driving same
US20140167523A1 (en) Power transmission device and wireless power transmission system using the power transmission device
JP2016077142A (en) Apparatus and method for transmitting power wirelessly
GB2501609A (en) A non-contact energy transmitter periodically increases Q factor in order to detect foreign objects
Jianyu et al. Frequency splitting analysis of wireless power transfer system based on T-type transformer model
CN108808875B (en) Constant-current and constant-voltage wireless charging system and wireless charging method suitable for battery characteristics
EP2603964A1 (en) Wireless energy transmission
WO2013031589A1 (en) Battery charger, and charging station
JPWO2014125698A1 (en) Power receiving device and non-contact power feeding device
JP2013198260A (en) Power transmission system
JP5962408B2 (en) Power receiving device and non-contact power transmission device
JP6053597B2 (en) Non-contact power feeding device
JP2014124019A (en) Wireless power transmission system
WO2014007352A1 (en) Transmitting device and non-contact power transmission device
JP6535003B2 (en) Wireless power receiver
JP2014060864A (en) Power reception apparatus and non-contact power transmission device
JP5888201B2 (en) Power receiving device and non-contact power transmission device
JP2013027082A (en) Power transmission system
JP2016092959A (en) Power transmission equipment and contactless power transmission device
WO2014054395A1 (en) Power transmission device, power reception device and noncontact power transfer apparatus
WO2014069148A1 (en) Non-contact power transmission device, and power reception apparatus
KR101305828B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
CN105846551A (en) Wireless power transmission device with adjustable dual-function
JP5761507B2 (en) Power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161129

R150 Certificate of patent or registration of utility model

Ref document number: 6053597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250