WO2014007352A1 - Transmitting device and non-contact power transmission device - Google Patents

Transmitting device and non-contact power transmission device Download PDF

Info

Publication number
WO2014007352A1
WO2014007352A1 PCT/JP2013/068437 JP2013068437W WO2014007352A1 WO 2014007352 A1 WO2014007352 A1 WO 2014007352A1 JP 2013068437 W JP2013068437 W JP 2013068437W WO 2014007352 A1 WO2014007352 A1 WO 2014007352A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
power supply
output
transmission device
Prior art date
Application number
PCT/JP2013/068437
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 松倉
中島 豊
古池 剛
勝永 浩史
田口 雄一
博樹 戸叶
裕輝 恒川
琢磨 小野
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2014007352A1 publication Critical patent/WO2014007352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

A transmitting device comprises; an AC power supply capable of outputting an AC power; a primary side winding to which the AC power is input; and a power value variable unit provided between the AC power supply and the primary side winding and having at least one of a capacitor and an inductor. The transmitting device is configured so as to be able to transmit the AC power to a receiving device having a secondary side winding in a non-contact manner. The power value variable unit is configured so as to be able to vary at least one of the values of the capacitor and the inductor. By varying at least one of the values of the capacitor and the inductor, the output power value of the AC power supply is changed to a predetermined value.

Description

送電機器及び非接触電力伝送装置Power transmission equipment and contactless power transmission device
 本発明は、送電機器及び非接触電力伝送装置に関する。 The present invention relates to a power transmission device and a non-contact power transmission device.
 従来から、電源コードや送電ケーブルを用いない非接触電力伝送装置として、例えば磁場共鳴を用いたものが知られている。例えば特許文献1の非接触電力伝送装置は、交流電源と、交流電源から交流電力が入力される1次側の共振コイルとが設けられた送電機器を備えている。また、非接触電力伝送装置は、1次側の共振コイルと磁場共鳴可能な2次側の共振コイルを有する受電機器を備えている。そして、1次側の共振コイルと2次側の共振コイルとが磁場共鳴することにより、送電機器から受電機器に交流電力が伝送され、受電機器に設けられた車両用バッテリが充電される。 Conventionally, as a non-contact power transmission device that does not use a power cord or a power transmission cable, for example, a device using magnetic field resonance is known. For example, the non-contact power transmission device of Patent Document 1 includes a power transmission device provided with an AC power source and a primary resonance coil to which AC power is input from the AC power source. The non-contact power transmission device includes a power receiving device having a primary side resonance coil and a secondary side resonance coil capable of magnetic field resonance. Then, when the primary resonance coil and the secondary resonance coil perform magnetic field resonance, AC power is transmitted from the power transmission device to the power reception device, and the vehicle battery provided in the power reception device is charged.
特開2009-106136号公報JP 2009-106136 A
 ここで、例えば車両用バッテリの充電を好適に行うために、状況に応じて、交流電源から異なる電力値の交流電力を出力させたい場合がある。なお、上述した事情は、磁場共鳴にて非接触の電力伝送を行うものに限られず、電磁誘導にて非接触の電力伝送を行うものについても共通の事情である。 Here, for example, in order to suitably charge the vehicle battery, there is a case where it is desired to output AC power having different power values from the AC power source depending on the situation. In addition, the situation mentioned above is not restricted to what performs non-contact electric power transmission by magnetic field resonance, It is a common situation also about what performs non-contact electric power transmission by electromagnetic induction.
 本発明の目的は、交流電源から所望の電力値の交流電力が出力されるようにすることができる送電機器及びその送電機器を備えた非接触電力伝送装置を提供することを目的とする。 An object of the present invention is to provide a power transmission device capable of outputting AC power having a desired power value from an AC power source, and a non-contact power transmission device including the power transmission device.
 上記目的を達成するために、本発明の第1の態様は、交流電力を出力可能な交流電源と、前記交流電力が入力される1次側コイルと、前記交流電源と前記1次側コイルとの間に設けられるとともに、キャパシタ及びインダクタの少なくとも一方を有する電力値可変部と、を備え、2次側コイルを有する受電機器に対して非接触で前記交流電力を送電可能な送電機器を提供する。前記電力値可変部は、前記キャパシタ及び前記インダクタの少なくとも一方の値を変更可能に構成され、前記キャパシタ及び前記インダクタの少なくとも一方の値が変更されることで、前記交流電源の出力電力の値が所定の値に変更される。 To achieve the above object, according to a first aspect of the present invention, there is provided an AC power source capable of outputting AC power, a primary coil to which the AC power is input, the AC power source, and the primary coil. And a power value variable unit having at least one of a capacitor and an inductor, and a power transmission device capable of transmitting the AC power in a non-contact manner to a power receiving device having a secondary coil . The power value variable unit is configured to be able to change the value of at least one of the capacitor and the inductor, and the value of the output power of the AC power supply is changed by changing the value of at least one of the capacitor and the inductor. It is changed to a predetermined value.
 かかる構成によれば、キャパシタ及びインダクタの少なくとも一方の値が変更されることで、交流電源の出力電力の値が所定の値に変更される。これにより、電力値可変部のキャパシタ及びインダクタの少なくとも一方の値(定数)を調整することにより、交流電源から所望の電力値の交流電力が出力されるようにすることができる。 According to such a configuration, the value of the output power of the AC power supply is changed to a predetermined value by changing the value of at least one of the capacitor and the inductor. Thereby, by adjusting at least one value (constant) of the capacitor and the inductor of the power value variable unit, it is possible to output AC power having a desired power value from the AC power supply.
 交流電源は単一の電力値の交流電力のみ出力するものであってもよい。即ち、内部で出力される交流電力の値を変更することができない交流電源を用いる場合であっても、状況に応じた電力値の調整を実現することができる。このような交流電源は、内部で出力される交流電力の値を変更することができる交流電源と比較して、簡素な構成となり易い。よって、所望の電力値の交流電力を出力させつつ、交流電源の構成の簡素化を図ることができる。 The AC power supply may output only AC power with a single power value. That is, even when an AC power supply that cannot change the value of the AC power output internally is used, the power value can be adjusted according to the situation. Such an AC power source is likely to have a simple configuration as compared with an AC power source that can change the value of the AC power output internally. Therefore, it is possible to simplify the configuration of the AC power supply while outputting AC power having a desired power value.
 また、仮に内部で出力される交流電力の値を変更することができる交流電源を用いる場合においては、電力値可変部と組み合わせることにより、電力値の可変幅を広げることができる。さらに、仮に交流電源の出力電力の値が変更されることに起因して、当該出力電力が入力される負荷のインピーダンスが変動する構成にあっては、負荷のインピーダンスの変動に起因して、交流電源内にて変更された電力値と、負荷に入力される交流電力の値とがずれる場合がある。これに対して、本発明によれば、キャパシタ及びインダクタの少なくとも一方の値を変更することにより、負荷に入力される交流電力の値を、交流電源内にて変更された電力値に近づけることができる。これにより、交流電源から所望の電力値の交流電力を出力させ、要求された電力値の交流電力を負荷に入力させることができる。 Also, in the case of using an AC power source that can change the value of the AC power output internally, the variable range of the power value can be widened by combining with the power value variable unit. Furthermore, in the configuration in which the impedance of the load to which the output power is input varies due to the change in the output power value of the AC power supply, the AC There is a case where the power value changed in the power supply and the value of the AC power input to the load are deviated. On the other hand, according to the present invention, by changing the value of at least one of the capacitor and the inductor, the value of the AC power input to the load can be made closer to the power value changed in the AC power supply. it can. Thereby, AC power having a desired power value can be output from the AC power source, and AC power having a required power value can be input to the load.
 以上のことから、交流電源から所望の電力値の交流電力が出力されるようにすることができる。 From the above, it is possible to output AC power having a desired power value from the AC power supply.
 前記第1の態様において、前記交流電源は、当該交流電源内にて電圧値又は電流値を変更することで電力値が異なる複数種類の交流電力を前記交流電源から出力させる変更部を備え、前記交流電源に接続される負荷は、入力される交流電力の電力値に応じてインピーダンスが変動するものであり、前記電力値可変部は、前記負荷のインピーダンスの変動に対応させて前記キャパシタ及び前記インダクタの少なくとも一方の値が変更されることで、前記交流電源から出力される交流電力の電力値を、前記変更部により変更された電圧値又は電流値の交流電力の電力値に近づけるものあってもよい。 In the first aspect, the AC power source includes a changing unit that outputs a plurality of types of AC power having different power values from the AC power source by changing a voltage value or a current value in the AC power source. The load connected to the AC power supply varies in impedance according to the power value of the input AC power, and the power value variable unit corresponds to the load impedance variation in the capacitor and the inductor. The power value of the AC power output from the AC power supply may be close to the power value of the AC power of the voltage value or the current value changed by the changing unit by changing at least one of the values. Good.
 かかる構成によれば、交流電源から出力される電力の値を決定する際には、インピーダンスの変動を考慮する必要がなく、単純に所望の電力値との関係で設定すればよい。これにより、交流電源の設定値の設計の容易化を図ることができる。 According to such a configuration, when determining the value of the power output from the AC power supply, it is not necessary to consider the fluctuation of the impedance, and it may be set simply in relation to the desired power value. Thereby, the design of the set value of the AC power supply can be facilitated.
 本発明の第2の態様は、交流電力を出力可能な交流電源、及び前記交流電力が入力される1次側コイルを有する送電機器と、第1の態様の送電機器を備える非接触電力伝送装置を提供する。かかる構成によれば、非接触電力伝送装置において、交流電源から所望の値の交流電力が出力されるようにすることができる。 According to a second aspect of the present invention, there is provided a non-contact power transmission apparatus including an AC power source capable of outputting AC power, a power transmission device having a primary coil to which the AC power is input, and the power transmission device according to the first aspect. I will provide a. According to such a configuration, a desired value of AC power can be output from the AC power supply in the non-contact power transmission apparatus.
 本発明の第3の態様は、交流電力を出力可能な交流電源と、前記交流電力が入力される1次側コイルと、前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと、前記2次側コイルにて受電された交流電力を整流する整流部と、前記整流部にて整流された直流電力が入力される負荷と、前記交流電源から前記負荷に向けて伝送する電力の電力値を測定する測定部と、前記交流電源から前記整流部までの間に設けられるとともに、キャパシタ及びインダクタの少なくとも一方を有する電力値可変部と、前記測定部の測定結果に基づいて前記キャパシタ及び前記インダクタの少なくとも一方の値を変更することで前記交流電源の出力電力の値を所定の値に変更する制御部とを備えている非接触電力伝送装置を提供する。かかる構成によれば、非接触電力伝送装置において、交流電源から所望の値の交流電力が出力されるようにすることができる。 According to a third aspect of the present invention, there is provided an AC power source capable of outputting AC power, a primary side coil to which the AC power is input, and a secondary capable of receiving the AC power without contact from the primary side coil. A side coil, a rectification unit that rectifies AC power received by the secondary side coil, a load to which DC power rectified by the rectification unit is input, and transmission from the AC power source toward the load Based on the measurement result of the measurement unit that measures the power value of the power to be performed, the power value variable unit that is provided between the AC power source and the rectification unit, and that has at least one of a capacitor and an inductor, and the measurement unit There is provided a non-contact power transmission device including a control unit that changes a value of output power of the AC power supply to a predetermined value by changing a value of at least one of the capacitor and the inductor. According to such a configuration, a desired value of AC power can be output from the AC power supply in the non-contact power transmission apparatus.
第1実施形態の非接触電力伝送装置のブロック図。The block diagram of the non-contact electric power transmission apparatus of 1st Embodiment. 第2実施形態の非接触電力伝送装置のブロック図。The block diagram of the non-contact electric power transmission apparatus of 2nd Embodiment.
 (第1実施形態)
 図1に示すように、非接触電力伝送装置(非接触電力伝送システム)10は、地上に設けられた地上機器11と、車両に搭載された車両機器21とを備えている。地上機器11が1次側機器(送電機器、送電装置)に対応し、車両機器21が2次側機器(受電機器、受電装置)に対応する。
(First embodiment)
As shown in FIG. 1, the non-contact power transmission device (non-contact power transmission system) 10 includes a ground device 11 provided on the ground and a vehicle device 21 mounted on the vehicle. The ground device 11 corresponds to a primary device (power transmission device, power transmission device), and the vehicle device 21 corresponds to a secondary device (power reception device, power reception device).
 地上機器11は、所定の周波数の高周波電力(交流電力)を出力可能な高周波電源12を備えている。高周波電源12は、系統電力を用いて正弦波の高周波電力を出力可能に構成されている。具体的には、高周波電源12は、系統電力を直流電力に変換するAC/DC変換器12aと、その直流電力を高周波電力に変換するDC/RF変換器12bとを備えている。これら各変換器12a,12bは、スイッチング素子を有しており、当該スイッチング素子のスイッチング動作によって動作するものである。つまり、高周波電源12は、スイッチング素子のスイッチング動作によって上記所定の周波数の高周波電力を得るスイッチング電源である。 The ground device 11 includes a high-frequency power source 12 that can output high-frequency power (AC power) having a predetermined frequency. The high frequency power source 12 is configured to be capable of outputting sinusoidal high frequency power using system power. Specifically, the high frequency power supply 12 includes an AC / DC converter 12a that converts system power into DC power, and a DC / RF converter 12b that converts the DC power into high frequency power. Each of these converters 12a and 12b has a switching element, and operates by a switching operation of the switching element. That is, the high frequency power supply 12 is a switching power supply that obtains high frequency power of the predetermined frequency by the switching operation of the switching element.
 高周波電源12から出力された高周波電力は、非接触で車両機器21に伝送され、車両機器21に設けられた車両用バッテリ22(車載蓄電装置)の充電に用いられる。具体的には、非接触電力伝送装置10は、地上機器11及び車両機器21間の電力伝送を行うものとして地上機器11に設けられた送電器13と、車両機器21に設けられた受電器23とを備えている。送電器13には高周波電力が入力される。 The high-frequency power output from the high-frequency power source 12 is transmitted to the vehicle device 21 in a non-contact manner, and used for charging a vehicle battery 22 (vehicle power storage device) provided in the vehicle device 21. Specifically, the non-contact power transmission device 10 includes a power transmitter 13 provided in the ground device 11 for performing power transmission between the ground device 11 and the vehicle device 21, and a power receiver 23 provided in the vehicle device 21. And. High frequency power is input to the power transmitter 13.
 送電器13及び受電器23は磁場共鳴可能に構成されている。具体的には、送電器13は、互いに並列に接続された1次側コイル13a及び1次側コンデンサ13bからなる共振回路で構成されている。受電器23は、互いに並列に接続された2次側コイル23a及び2次側コンデンサ23bからなる共振回路で構成されている。送電器13の共振回路及び受電器23の共振回路の共振周波数は互いに同一である。 The power transmitter 13 and the power receiver 23 are configured to be capable of magnetic field resonance. Specifically, the power transmitter 13 includes a resonance circuit including a primary side coil 13a and a primary side capacitor 13b connected in parallel to each other. The power receiver 23 is composed of a resonance circuit including a secondary coil 23a and a secondary capacitor 23b connected in parallel to each other. The resonance frequencies of the resonance circuit of the power transmitter 13 and the resonance circuit of the power receiver 23 are the same.
 かかる構成によれば、高周波電源12から高周波電力が送電器13(1次側コイル13a)に入力された場合、送電器13(1次側コイル13a)と受電器23(2次側コイル23a)とが磁場共鳴する。これにより、受電器23は送電器13のエネルギの一部を受け取る。すなわち、受電器23は、送電器13から高周波電力を受電する。 According to this configuration, when high frequency power is input from the high frequency power source 12 to the power transmitter 13 (primary side coil 13a), the power transmitter 13 (primary side coil 13a) and the power receiver 23 (secondary side coil 23a). And magnetic field resonance. As a result, the power receiver 23 receives a part of the energy of the power transmitter 13. That is, the power receiver 23 receives high frequency power from the power transmitter 13.
 車両機器21は、受電器23にて受電した高周波電力を直流電力に整流する整流部としての整流器24を備えている。車両用バッテリ22は、例えば直列に接続された複数の電池セルから構成されており、整流器24から直流電力が入力される。 The vehicle device 21 includes a rectifier 24 as a rectifier that rectifies high-frequency power received by the power receiver 23 into DC power. The vehicle battery 22 is composed of, for example, a plurality of battery cells connected in series, and DC power is input from the rectifier 24.
 ちなみに、伝送効率を高めるべく、車両機器21における受電器23と整流器24との間には、インピーダンス整合を行う2次側整合器26が設けられている。2次側整合器26は、例えばLC回路で構成されており、2次側整合器26の定数は可変となっている。また、整流器24と車両用バッテリ22との間には、車両用バッテリ22の充電量を検知するバッテリセンサ27が設けられている。バッテリセンサ27の検知結果は、車両機器21に設けられた車両コントローラ28に入力される。これにより、車両コントローラ28は、車両用バッテリ22の充電量を把握することができる。 Incidentally, a secondary side matching device 26 for impedance matching is provided between the power receiver 23 and the rectifier 24 in the vehicle device 21 in order to increase the transmission efficiency. The secondary side matching unit 26 is configured by, for example, an LC circuit, and the constant of the secondary side matching unit 26 is variable. A battery sensor 27 that detects the amount of charge of the vehicle battery 22 is provided between the rectifier 24 and the vehicle battery 22. The detection result of the battery sensor 27 is input to a vehicle controller 28 provided in the vehicle device 21. Thereby, the vehicle controller 28 can grasp the charge amount of the vehicle battery 22.
 また、地上機器11には、車両コントローラ28と無線通信可能な制御部としての電源コントローラ14が設けられている。電源コントローラ14は、車両コントローラ28と情報のやり取りを行うことを通じて、高周波電源12から高周波電力を出力するかどうか判断する。 Further, the ground device 11 is provided with a power supply controller 14 as a control unit capable of wireless communication with the vehicle controller 28. The power supply controller 14 determines whether to output high frequency power from the high frequency power supply 12 through exchanging information with the vehicle controller 28.
 ここで、高周波電源12は、高周波電源12内で、出力される高周波電力の電圧値及び電流値を変更することができない電源である。換言すれば、高周波電源12内にて設定可能な電力値は1種類のみとなっている。高周波電源12は、単一の電力値の交流電力のみ出力する。 Here, the high frequency power supply 12 is a power supply that cannot change the voltage value and current value of the high frequency power output in the high frequency power supply 12. In other words, there is only one power value that can be set in the high-frequency power source 12. The high frequency power supply 12 outputs only AC power having a single power value.
 ちなみに、高周波電源12の出力端から車両用バッテリ22までを1つの負荷30とすると、高周波電源12から出力される高周波電力は負荷30に入力されることとなる。この場合、負荷30のインピーダンスZinの基準値(初期値)は、高周波電源12から、車両用バッテリ22を充電するのに適した電力値の高周波電力(以下、設定値電力という)を出力するように設定されている。 Incidentally, if one load 30 is from the output end of the high frequency power supply 12 to the vehicle battery 22, the high frequency power output from the high frequency power supply 12 is input to the load 30. In this case, the reference value (initial value) of the impedance Zin of the load 30 is output from the high-frequency power supply 12 as a high-frequency power having a power value suitable for charging the vehicle battery 22 (hereinafter referred to as set value power). Is set to
 設定値電力は、車両用バッテリ22を充電するのに適した電力値の直流電力(以下、充電電力)を車両用バッテリ22に入力するために必要な電力値を有する高周波電力である。 The set value power is high-frequency power having a power value necessary for inputting DC power having a power value suitable for charging the vehicle battery 22 (hereinafter referred to as charging power) to the vehicle battery 22.
 詳述すると、高周波電源12から出力される高周波電力の値は、負荷30のインピーダンスZinに依存し、当該インピーダンスZinに応じて変動する。そして、高周波電源12から出力される高周波電力の値が変動すれば、車両用バッテリ22に入力される直流電力も変動する。例えば負荷30のインピーダンスZinが基準値よりも高い場合には、充電電力よりも小さい電力値の直流電力が車両用バッテリ22に入力されることとなる。これに対して、負荷30のインピーダンスZinが基準値よりも低い場合には、充電電力よりも大きい電力値の直流電力が車両用バッテリ22に入力されることとなる。つまり、負荷30のインピーダンスZinを変えることで、車両用バッテリ22に所望の電力値の直流電力を入力することが可能となる。 More specifically, the value of the high-frequency power output from the high-frequency power source 12 depends on the impedance Zin of the load 30 and fluctuates according to the impedance Zin. And if the value of the high frequency power output from the high frequency power supply 12 fluctuates, the DC power input to the vehicle battery 22 also fluctuates. For example, when the impedance Zin of the load 30 is higher than the reference value, DC power having a power value smaller than the charging power is input to the vehicle battery 22. On the other hand, when the impedance Zin of the load 30 is lower than the reference value, DC power having a power value larger than the charging power is input to the vehicle battery 22. That is, by changing the impedance Zin of the load 30, it is possible to input DC power having a desired power value to the vehicle battery 22.
 かかる構成において、地上機器11は、高周波電源12から出力されている高周波電力の値を測定する測定部としての測定器40と、負荷30のインピーダンスZinを可変させる電力値可変部としての1次側整合器41と含む。測定器40は、高周波電源12の出力端に接続されており、高周波電源12の出力電圧及び出力電流を測定し、その測定結果を電源コントローラ14に送信する。 In such a configuration, the ground device 11 includes a measuring device 40 as a measuring unit that measures the value of the high-frequency power output from the high-frequency power source 12 and a primary side as a power value variable unit that varies the impedance Zin of the load 30. And a matching unit 41. The measuring device 40 is connected to the output terminal of the high frequency power supply 12, measures the output voltage and output current of the high frequency power supply 12, and transmits the measurement results to the power supply controller 14.
 1次側整合器41は、測定器40の出力端、詳細には測定器40と送電器13との間に設けられている。このため、負荷30には1次側整合器41が含まれている。1次側整合器41は、LC回路で構成されており、インダクタ41aと、当該インダクタ41aに並列に接続された第1キャパシタ41bと、インダクタ41aに直列に接続された第2キャパシタ41cとを備えている。また、1次側整合器41の定数は可変となっており、詳細には各キャパシタ41b,41cのキャパシタンスは可変となっている。なお、負荷30のインピーダンスZinは、1次側整合器41の定数を可変制御することで可変制御される。 The primary side matching device 41 is provided at the output end of the measuring device 40, specifically between the measuring device 40 and the power transmitter 13. For this reason, the load 30 includes a primary side matching device 41. The primary side matching device 41 is configured by an LC circuit, and includes an inductor 41a, a first capacitor 41b connected in parallel to the inductor 41a, and a second capacitor 41c connected in series to the inductor 41a. ing. Moreover, the constant of the primary side matching device 41 is variable, and specifically, the capacitances of the capacitors 41b and 41c are variable. The impedance Zin of the load 30 is variably controlled by variably controlling the constant of the primary side matching unit 41.
 電源コントローラ14は、測定器40の測定結果に基づいて、1次側整合器41の定数を可変制御することにより、負荷30のインピーダンスZinを可変制御して、高周波電源12の出力電力の値を調整する。詳細には、電源コントローラ14は、1次側整合器41の定数を可変制御することにより、設定値電力とは異なる電力値の高周波電力を出力することができる。なお、以降の説明において、車両用バッテリ22を押し込み充電するのに適した電力値の直流電力を「押し込み電力」といい、車両用バッテリ22に「押し込み電力」を入力するために必要な電力値の高周波電力を、「調整電力」という。電源コントローラ14が「制御部」に対応する。 The power supply controller 14 variably controls the constant of the primary side matching device 41 based on the measurement result of the measuring device 40, thereby variably controlling the impedance Zin of the load 30, and the value of the output power of the high frequency power supply 12 is set. adjust. Specifically, the power supply controller 14 can output high frequency power having a power value different from the set value power by variably controlling the constant of the primary side matching device 41. In the following description, DC power having a power value suitable for pushing and charging the vehicle battery 22 is referred to as “push power”, and the power value necessary for inputting “push power” to the vehicle battery 22. The high frequency power is referred to as “regulated power”. The power supply controller 14 corresponds to a “control unit”.
 次に、各コントローラ14,28の制御に係る構成について説明する。 Next, the configuration related to the control of the controllers 14 and 28 will be described.
 図1に示すように、各コントローラ14,28は、充電可能な位置に車両が配置された場合、詳細には送電器13(1次側コイル13a)と受電器23(2次側コイル23a)とが磁場共鳴可能な位置に車両が配置された場合、車両用バッテリ22の現状の充電量を把握し、充電量に応じた制御を行う。 As shown in FIG. 1, each controller 14, 28 has a power transmitter 13 (primary coil 13 a) and a power receiver 23 (secondary coil 23 a) in detail when the vehicle is disposed at a chargeable position. When the vehicle is disposed at a position where magnetic resonance can be performed, the current charge amount of the vehicle battery 22 is grasped, and control according to the charge amount is performed.
 具体的には、車両コントローラ28は、現状の充電量が予め定められた閾値充電量よりも大きいか否かを判定する。そして、車両コントローラ28は、現状の充電量が閾値充電量よりも小さい場合には、設定値電力を要求する第1要求信号を電源コントローラ14に送信する。これに対して、車両コントローラ28は、現状の充電量が閾値充電量よりも大きい場合には、調整電力を要求する第2要求信号を電源コントローラ14に送信する。 Specifically, the vehicle controller 28 determines whether or not the current charge amount is larger than a predetermined threshold charge amount. Then, when the current charge amount is smaller than the threshold charge amount, the vehicle controller 28 transmits a first request signal for requesting the set value power to the power supply controller 14. In contrast, when the current charge amount is larger than the threshold charge amount, the vehicle controller 28 transmits a second request signal for requesting adjusted power to the power supply controller 14.
 電源コントローラ14は、各要求信号を受信した場合に高周波電源12から高周波電力が出力されるように制御するとともに、1次側整合器41の定数を各要求信号に応じたものに設定する。詳細には、電源コントローラ14は、第1要求信号を受信した場合には、高周波電源12から設定値電力が出力されるように、1次側整合器41の定数を可変制御する一方、第2要求信号を受信した場合には、高周波電源12から調整電力が出力されるように、測定器40の測定結果に基づいて1次側整合器41の定数を可変制御する。 The power supply controller 14 controls the high-frequency power to be output from the high-frequency power supply 12 when each request signal is received, and sets the constant of the primary-side matching unit 41 according to each request signal. Specifically, when the power supply controller 14 receives the first request signal, the power supply controller 14 variably controls the constant of the primary side matching unit 41 so that the set value power is output from the high frequency power supply 12, while When the request signal is received, the constant of the primary side matching device 41 is variably controlled based on the measurement result of the measuring device 40 so that the adjustment power is output from the high frequency power supply 12.
 また、車両コントローラ28は、充電中定期的に車両用バッテリ22の充電量を把握する。高周波電源12から設定値電力が出力されている状況において車両用バッテリ22の充電量が閾値充電量よりも大きくなった場合には、車両コントローラ28は第2要求信号を電源コントローラ14に送信する。電源コントローラ14は、第2要求信号を受信した場合、測定器40の測定結果に基づいて、1次側整合器41の定数を可変制御することにより、高周波電源12から出力される高周波電力を、設定値電力から調整電力に切り換える。これにより、車両用バッテリ22には、調整電力に対応した直流電力(押し込み電力)が入力され、車両用バッテリ22を構成する各電池セルの容量ばらつきを補償するように車両用バッテリ22の充電が行われる(押し込み充電)。 Further, the vehicle controller 28 periodically grasps the charge amount of the vehicle battery 22 during charging. If the charge amount of the vehicle battery 22 becomes larger than the threshold charge amount in a situation where the set value power is output from the high frequency power supply 12, the vehicle controller 28 transmits a second request signal to the power supply controller 14. When the power supply controller 14 receives the second request signal, the power controller 14 variably controls the constant of the primary-side matching device 41 based on the measurement result of the measuring device 40, so that the high-frequency power output from the high-frequency power supply 12 is Switch from set power to adjusted power. As a result, DC power (push-in power) corresponding to the adjusted power is input to the vehicle battery 22, and the vehicle battery 22 is charged so as to compensate for the capacity variation of each battery cell constituting the vehicle battery 22. Performed (push-in charging).
 そして、車両用バッテリ22の充電が完了、即ち終了した場合には、車両コントローラ28は、停止要求信号を電源コントローラ14に送信する。電源コントローラ14は、停止要求信号を受信した場合に高周波電源12を制御して、高周波電力の出力を停止させる。これにより、車両用バッテリ22の充電が終了する。 Then, when the charging of the vehicle battery 22 is completed, that is, when the vehicle battery 28 is finished, the vehicle controller 28 transmits a stop request signal to the power supply controller 14. When receiving the stop request signal, the power supply controller 14 controls the high frequency power supply 12 to stop the output of the high frequency power. Thereby, charging of the battery 22 for vehicles is complete | finished.
 次に、本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 既に説明したとおり、1次側整合器41の定数が変化することにより、負荷30のインピーダンスZinが変化し、高周波電源12の出力電力の値が変化する。これにより、高周波電源12内で、高周波電源12から出力される高周波電力の値又は電流値を変更することなく、高周波電源12から出力される高周波電力の値を変化させることができる。 As already described, when the constant of the primary side matching device 41 changes, the impedance Zin of the load 30 changes, and the value of the output power of the high-frequency power source 12 changes. Thereby, the value of the high frequency power output from the high frequency power source 12 can be changed without changing the value or current value of the high frequency power output from the high frequency power source 12 in the high frequency power source 12.
 以上詳述した本実施形態によれば以下の優れた効果を奏する。 According to the embodiment described above in detail, the following excellent effects are obtained.
 (1)負荷30に1次側整合器41が設けられ、当該1次側整合器41の定数が可変であるため、高周波電源12の出力電力の値が可変である。これにより、高周波電源12内で出力される高周波電力の電圧値及び電流値を変更できない場合であっても、高周波電源12から異なる電力値の高周波電力を出力させることができる。よって、高周波電源12から出力される高周波電力の値を可変させる部品、例えばDC/DCコンバータを省略することができる。したがって、高周波電源12の構成の簡素化を図りつつ、異なる電力値の高周波電力を出力させることができる。 (1) Since the primary side matching device 41 is provided in the load 30 and the constant of the primary side matching device 41 is variable, the value of the output power of the high frequency power supply 12 is variable. Thereby, even when the voltage value and the current value of the high-frequency power output in the high-frequency power source 12 cannot be changed, the high-frequency power having a different power value can be output from the high-frequency power source 12. Therefore, components that change the value of the high-frequency power output from the high-frequency power source 12, such as a DC / DC converter, can be omitted. Therefore, it is possible to output high-frequency power having different power values while simplifying the configuration of the high-frequency power source 12.
 (2)特に、1次側整合器41が比較的簡素なLC回路で構成されている。これにより、比較的な簡素な構成で高周波電源12の出力電力の値の調整を行うことができる。 (2) In particular, the primary side matching unit 41 is configured by a relatively simple LC circuit. Thereby, the value of the output power of the high frequency power supply 12 can be adjusted with a comparatively simple configuration.
 (3)高周波電源12から出力された高周波電力は直流電力に整流されて、車両用バッテリ22に入力される。ここで、車両用バッテリ22の押し込み充電を行う場合、押し込み充電に適した直流電力の値(押し込み電力の値)が充電電力の値と異なる場合がある。例えば、充電に要する時間の短縮化等の観点から、充電電力の値を比較的高く設定した場合、押し込み電力の値は、充電電力の値よりも小さくなる場合が生じ得る。 (3) The high frequency power output from the high frequency power supply 12 is rectified into DC power and input to the vehicle battery 22. Here, when the in-charge charging of the vehicle battery 22 is performed, the value of the DC power suitable for the in-charging (the value of the in-pressing power) may be different from the value of the charging power. For example, from the viewpoint of shortening the time required for charging, when the value of charging power is set relatively high, the value of pushing power may be smaller than the value of charging power.
 これに対して、本実施形態によれば、1次側整合器41の定数を可変制御することにより、高周波電源12内で出力される高周波電力の電圧値及び電流値を変更できない場合であっても、高周波電源12から、充電電力に対応する設定値電力と、押し込み電力に対応する調整電力とを出力させることができる。これにより、高周波電源12の構成の簡素化を図りつつ、車両用バッテリ22の充電を好適に行うことができる。 On the other hand, according to the present embodiment, the voltage value and current value of the high-frequency power output in the high-frequency power source 12 cannot be changed by variably controlling the constant of the primary side matching device 41. Also, the set value power corresponding to the charging power and the adjustment power corresponding to the pushing power can be output from the high frequency power source 12. As a result, the vehicle battery 22 can be suitably charged while simplifying the configuration of the high-frequency power source 12.
 ちなみに、車両用バッテリ22に入力される直流電力に着目すれば、電源コントローラ14は、1次側整合器41の定数を可変制御することにより、車両用バッテリ22に入力される直流電力の値を可変制御するものであるとも言える。 Incidentally, focusing on the DC power input to the vehicle battery 22, the power supply controller 14 variably controls the constant of the primary side matching unit 41, thereby changing the value of the DC power input to the vehicle battery 22. It can be said that the control is variable.
 (第2実施形態)
 本実施形態では、高周波電源の構成が第1実施形態と異なっている。その異なる点について図2を用いて説明する。なお、同一の構成については同一の符号を付すとともに、その説明を省略する。
(Second Embodiment)
In the present embodiment, the configuration of the high frequency power supply is different from that of the first embodiment. The different points will be described with reference to FIG. In addition, about the same structure, while attaching | subjecting the same code | symbol, the description is abbreviate | omitted.
 図2に示すように、本実施形態の高周波電源52は、当該高周波電源52内にて電圧値を可変制御することで電力値が異なる複数種類の高周波電力を出力可能に構成されている。換言すれば、高周波電源52内にて設定可能な電力値は複数種類存在する。詳細には、高周波電源52は、AC/DC変換器52a及びDC/RF変換器52bを備えているとともに、両者の間に設けられたDC/DCコンバータ52c(変更部)を備えている。DC/DCコンバータ52cは、スイッチング素子52ccを有している。DC/DCコンバータ52cは、当該スイッチング素子52ccのスイッチング動作に基づいて、AC/DC変換器52aにて変換された直流電力の電圧値を異なる電圧値、詳細にはスイッチング動作のデューティ比に対応した電圧値に変換してDC/RF変換器52bに出力する。そして、高周波電源52は、そのDC/DCコンバータ52cから出力される直流電力の電圧値に対応した電力値の高周波電力を出力する。DC/DCコンバータ52cから出力される直流電力の電圧値は、上記デューティ比によって規定されるため、高周波電源52の出力電力の値は上記デューティ比によって規定される。 As shown in FIG. 2, the high frequency power supply 52 of the present embodiment is configured to be capable of outputting a plurality of types of high frequency power having different power values by variably controlling the voltage value in the high frequency power supply 52. In other words, there are a plurality of types of power values that can be set in the high-frequency power source 52. Specifically, the high-frequency power source 52 includes an AC / DC converter 52a and a DC / RF converter 52b, and a DC / DC converter 52c (changing unit) provided between the two. The DC / DC converter 52c has a switching element 52cc. The DC / DC converter 52c corresponds to the voltage value of the DC power converted by the AC / DC converter 52a based on the switching operation of the switching element 52cc, specifically, the duty ratio of the switching operation. The voltage value is converted and output to the DC / RF converter 52b. The high frequency power supply 52 outputs high frequency power having a power value corresponding to the voltage value of the direct current power output from the DC / DC converter 52c. Since the voltage value of the DC power output from the DC / DC converter 52c is defined by the duty ratio, the value of the output power of the high frequency power supply 52 is defined by the duty ratio.
 かかる構成において、電源コントローラ14は、状況に応じて高周波電源52から出力される高周波電力の値を変更する。例えば、電源コントローラ14は、車両コントローラ28から第1要求信号を受信した場合には、高周波電源52から第1実施形態と同様の設定値電力が出力されるようにDC/DCコンバータ52cのスイッチング素子52ccにおけるスイッチング動作のデューティ比を制御する。 In such a configuration, the power supply controller 14 changes the value of the high-frequency power output from the high-frequency power supply 52 according to the situation. For example, when the power supply controller 14 receives the first request signal from the vehicle controller 28, the switching element of the DC / DC converter 52c so that the set value power similar to that of the first embodiment is output from the high frequency power supply 52. The duty ratio of the switching operation at 52 cc is controlled.
 また、電源コントローラ14は、車両コントローラ28から第2要求信号を受信した場合には、高周波電源52から第1実施形態と同様の調整電力が出力されるように高周波電源52(DC/DCコンバータ52c)を制御する。これにより、押し込み充電を行うことが可能となっている。 In addition, when the power supply controller 14 receives the second request signal from the vehicle controller 28, the high frequency power supply 52 (DC / DC converter 52c) is configured so that the adjustment power similar to that of the first embodiment is output from the high frequency power supply 52. ) To control. Thereby, it is possible to perform push-in charging.
 ここで、車両用バッテリ22は、入力される直流電力の値や車両用バッテリ22の充電量に応じてインピーダンスが変動する変動負荷である。このため、高周波電源52から出力される高周波電力の値が変化することによって、車両用バッテリ22に入力される直流電力の値が変動すると、車両用バッテリ22のインピーダンスが変動し、高周波電源52の出力端から車両用バッテリ22までの負荷30のインピーダンスZinが変動することとなる。すると、高周波電源52から負荷30に入力される高周波電力の値が調整電力の値からずれてしまう。 Here, the vehicle battery 22 is a variable load whose impedance varies according to the value of the input DC power and the amount of charge of the vehicle battery 22. For this reason, when the value of the high-frequency power output from the high-frequency power source 52 changes and the value of the DC power input to the vehicle battery 22 varies, the impedance of the vehicle battery 22 varies, The impedance Zin of the load 30 from the output end to the vehicle battery 22 varies. Then, the value of the high frequency power input from the high frequency power supply 52 to the load 30 deviates from the value of the adjustment power.
 これに対して、本実施形態においては、車両用バッテリ22に入力される直流電力の値が変化することに起因する負荷30のインピーダンスZinの変動に対応させて、1次側整合器41の定数の可変制御が行われるようになっている。詳細には、電源コントローラ14は、測定器40の測定結果から高周波電源52から出力される高周波電力の値を把握し、高周波電源52から出力される高周波電力の値と調整電力の値とが異なる場合には、高周波電源52から出力される高周波電力の値が調整電力の値に近づくように1次側整合器41の定数を可変制御する。 On the other hand, in this embodiment, the constant of the primary side matching device 41 is matched with the fluctuation of the impedance Zin of the load 30 caused by the change in the value of the DC power input to the vehicle battery 22. The variable control is performed. Specifically, the power supply controller 14 grasps the value of the high frequency power output from the high frequency power supply 52 from the measurement result of the measuring instrument 40, and the value of the high frequency power output from the high frequency power supply 52 is different from the value of the adjustment power. In this case, the constant of the primary matching unit 41 is variably controlled so that the value of the high frequency power output from the high frequency power supply 52 approaches the value of the adjustment power.
 次に本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 高周波電源52が電圧値を可変制御することで電力値が異なる複数種類の高周波電力を出力可能な構成である場合において、設定値電力から調整電力に変更した場合に、その変更に伴い変動する負荷30のインピーダンスZinに対応させて、1次側整合器41の定数が可変制御される。詳細には、1次側整合器41の定数は、高周波電源52から負荷30に入力される高周波電力の値が調整電力の値と一致するように変更される。これにより、車両用バッテリ22のインピーダンスが変動する場合であっても要求された電力値の高周波電力を負荷30に対して入力させることができる。 When the high-frequency power supply 52 is configured to output a plurality of types of high-frequency power having different power values by variably controlling the voltage value, the load that fluctuates with the change when the set-value power is changed to the adjusted power Corresponding to the impedance Zin of 30, the constant of the primary side matching device 41 is variably controlled. Specifically, the constant of the primary side matching unit 41 is changed so that the value of the high frequency power input from the high frequency power supply 52 to the load 30 matches the value of the adjustment power. Thereby, even if the impedance of the vehicle battery 22 fluctuates, the high frequency power having the required power value can be input to the load 30.
 以上詳述した本実施形態によれば、以下の優れた効果を奏する。 According to the embodiment described above in detail, the following excellent effects are obtained.
 (4)車両用バッテリ22に入力される直流電力の変更に伴う負荷30のインピーダンスZinの変動に対応させて1次側整合器41の定数が可変制御される。これにより、高周波電源52から出力される高周波電力の値を決定する際には、上記インピーダンスZinの変動を考慮する必要がなく、単純に所望の電力値との関係で設定すればよい。これにより、高周波電源52の設定値の設計の容易化を図ることができる。 (4) The constant of the primary matching unit 41 is variably controlled in accordance with the fluctuation of the impedance Zin of the load 30 accompanying the change of the DC power input to the vehicle battery 22. Thereby, when determining the value of the high-frequency power output from the high-frequency power source 52, it is not necessary to consider the fluctuation of the impedance Zin, and the value may be set simply in relation to the desired power value. Thereby, the design of the set value of the high frequency power supply 52 can be facilitated.
 (5)高周波電源52から出力される高周波電力の値を可変させるパラメータとして、高周波電源52内の電圧値(スイッチング素子52ccのスイッチング動作のデューティ比)及び1次側整合器41の定数の双方が存在するため、両者を組み合わせることにより、高周波電力の値の変動範囲(可変幅)を広くすることができる。これにより、仮に仕様の変更等に起因して、電力伝送に用いられる電力値(の最大値)が変更される場合であっても、好適に対応することができる。 (5) As a parameter for changing the value of the high frequency power output from the high frequency power supply 52, both the voltage value in the high frequency power supply 52 (duty ratio of the switching operation of the switching element 52cc) and the constant of the primary side matching unit 41 are included. Therefore, by combining the two, the fluctuation range (variable width) of the value of the high frequency power can be widened. Thereby, even if it is a case where the electric power value (the maximum value) used for electric power transmission changes due to the change of a specification etc., it can respond suitably.
 なお、上記各実施形態は以下のように変更してもよい。 In addition, you may change each said embodiment as follows.
 ○ 各実施形態では、2次側整合器26の定数は固定であったが、これに限られず、可変であってもよい。この場合、車両コントローラ28が、各コイル13a,23a間の位置ずれに対応させて、2次側整合器26の定数を可変制御してもよい。かかる構成においては、2次側整合器26の定数の可変制御を行った後に、1次側整合器41の定数を可変制御する構成とするか、1次側整合器41の定数と2次側整合器26の定数とを同時に可変制御する構成とするとよい。これにより、2次側整合器26の定数が変化することに起因して、高周波電源12,52から所望の電力値の高周波電力が出力されないという不都合を回避することができる。 In each embodiment, the constant of the secondary matching unit 26 is fixed, but is not limited to this, and may be variable. In this case, the vehicle controller 28 may variably control the constant of the secondary side matching unit 26 in accordance with the positional deviation between the coils 13a and 23a. In such a configuration, after the variable control of the constant of the secondary side matching unit 26 is performed, the constant of the primary side matching unit 41 is variably controlled, or the constant of the primary side matching unit 41 and the secondary side are controlled. The constant of the matching unit 26 may be variably controlled at the same time. As a result, it is possible to avoid the inconvenience that high-frequency power of a desired power value is not output from the high- frequency power sources 12 and 52 due to the change in the constant of the secondary side matching unit 26.
 ○ また、各実施形態では、1次側整合器41の定数を可変制御することにより、負荷30のインピーダンスZinが調整される。これに限られず、1次側整合器41の定数を固定とし、2次側整合器26の定数を可変制御することで負荷30のインピーダンスZinの調整を行ってもよい。 In each embodiment, the impedance Zin of the load 30 is adjusted by variably controlling the constant of the primary side matching device 41. However, the present invention is not limited thereto, and the constant of the primary side matching unit 41 may be fixed, and the constant of the secondary side matching unit 26 may be variably controlled to adjust the impedance Zin of the load 30.
 ○ 各実施形態において、1次側整合器41とは別にインピーダンス変換又はインピーダンス整合を行う整合器を設けてもよい。 In each embodiment, a matching unit that performs impedance conversion or impedance matching may be provided separately from the primary side matching unit 41.
 ○ 1次側整合器41を複数の整合器から構成してもよいし、2次側整合器26を複数の整合器から構成してもよい。また、1次側整合器41及び2次側整合器26のいずれか一方を省略してもよい。 ○ The primary side matching unit 41 may be configured from a plurality of matching units, and the secondary side matching unit 26 may be configured from a plurality of matching units. Further, either the primary side matching device 41 or the secondary side matching device 26 may be omitted.
 ○ 各実施形態では、1次側整合器41は1つのインダクタ41aと2つのキャパシタ41b,41cからなるLC回路で構成されていたが、これに限られず、具体的な構成は任意である。例えば、π型、L型、逆L型等を用いてもよい。また、インダクタとキャパシタのいずれか一方のみを備えている構成であってもよい。 In each embodiment, the primary-side matching unit 41 is configured by an LC circuit including one inductor 41a and two capacitors 41b and 41c, but is not limited thereto, and a specific configuration is arbitrary. For example, a π type, an L type, an inverted L type, or the like may be used. Moreover, the structure provided with either one of an inductor and a capacitor may be sufficient.
 ○ また、各キャパシタ41b,41cのキャパシタンスが可変であるが、これに限られず、インダクタ41aのインダクタンスが可変であってもよく、キャパシタンス及びインダクタンスの双方が可変であってもよい。要は、1次側整合器は、キャパシタンスが可変の可変キャパシタ及びインダクタンスが可変の可変インダクタの少なくとも一方を備えていればよい。 Further, although the capacitance of each of the capacitors 41b and 41c is variable, the present invention is not limited to this, and the inductance of the inductor 41a may be variable, and both the capacitance and the inductance may be variable. In short, the primary side matching device may include at least one of a variable capacitor having a variable capacitance and a variable inductor having a variable inductance.
 ○ また、1次側整合器41はLC回路に限られず、インダクタンスが可変のトランスを用いてもよい。 ○ Further, the primary side matching device 41 is not limited to the LC circuit, and a transformer having a variable inductance may be used.
 ○ 調整電力に加えて(又は代えて)、他の電力値の高周波電力を出力させるようにしてもよい。例えば、通常の充電よりも充電時間が短くなる急速充電を行う場合には、充電電力の値よりも大きな電力値の直流電力が入力されるように1次側整合器41の定数を可変制御してもよい。 ○ In addition to (or instead of) the adjusted power, high-frequency power with other power values may be output. For example, when performing quick charging in which the charging time is shorter than normal charging, the constant of the primary side matching unit 41 is variably controlled so that DC power having a power value larger than the charging power value is input. May be.
 ○ 第2実施形態において、1次側整合器41の定数を可変制御することにより、高周波電源52から出力される高周波電力の値を調整電力の値に近づけるとともに、力率を改善させる構成としてもよい。これにより、伝送効率の更なる向上を図ることができる。 ○ In the second embodiment, the constant of the primary side matching device 41 is variably controlled so that the value of the high-frequency power output from the high-frequency power supply 52 is close to the value of the adjustment power and the power factor is improved. Good. Thereby, the transmission efficiency can be further improved.
 ○ 各実施形態では、高周波電源12,52の出力端に、出力電力の値を測定する測定器40を設けたが、これに限られず、設定箇所については任意である。例えば車両機器21に測定器40を設け、その測定結果に基づいて出力電力の値を推定する構成としてもよい。但し、推定という処理の複雑化及び精度の低下等を鑑みれば、高周波電源12,52の出力端に測定器40を設ける構成の方が好ましい。 In each embodiment, the measuring device 40 that measures the value of the output power is provided at the output end of the high- frequency power supplies 12 and 52. However, the present invention is not limited to this, and the setting location is arbitrary. For example, the measuring device 40 may be provided in the vehicle device 21 and the output power value may be estimated based on the measurement result. However, in view of complication of the process of estimation and a decrease in accuracy, a configuration in which the measuring device 40 is provided at the output end of the high- frequency power sources 12 and 52 is preferable.
 ○ 各実施形態では、電源コントローラ14が1次側整合器41の定数の可変制御を行う構成であったが、制御の主体は任意であり、例えば電源コントローラ14とは別に専用の制御回路を設けてもよい。また、例えば1次側整合器41の定数を可変させる駆動回路を設け、車両コントローラ28がその駆動回路の制御を行う構成としてもよい。 ○ In each embodiment, the power supply controller 14 is configured to perform variable control of the constants of the primary side matching unit 41. However, the control subject is arbitrary, and for example, a dedicated control circuit is provided separately from the power supply controller 14 May be. Further, for example, a drive circuit that varies the constant of the primary matching unit 41 may be provided, and the vehicle controller 28 may control the drive circuit.
 ○ また、各実施形態では、測定器40が設けられていたが、これに限られず、測定器40を省略してもよい。この場合、予め所望の電力値の出力電力となる1次側整合器41の定数を把握、即ち算出しておき、それに基づいて1次側整合器41の定数を可変制御するとよい。例えば、所望の電力値と、当該所望の電力値が負荷30に入力されるための1次側整合器41の定数とが対応付けられて設定されたマップを所定のメモリに記憶させておく。そして、電源コントローラ14は、当該マップを参照することで、1次側整合器41の定数を特定し、その特定結果に基づいて1次側整合器41の定数を可変制御する。 In each embodiment, the measuring device 40 is provided. However, the measuring device 40 is not limited to this, and the measuring device 40 may be omitted. In this case, it is preferable that the constant of the primary side matching unit 41 that becomes the output power of a desired power value is grasped, that is, calculated, and the constant of the primary side matching unit 41 is variably controlled based on the constant. For example, a map in which a desired power value and a constant of the primary side matching device 41 for inputting the desired power value to the load 30 are associated with each other and stored is stored in a predetermined memory. And the power supply controller 14 specifies the constant of the primary side matching device 41 with reference to the said map, and variably controls the constant of the primary side matching device 41 based on the specification result.
 ○ 高周波電源12,52から出力される交流電圧の波形としては、パルス波形、正弦波等任意である。 ○ The waveform of the AC voltage output from the high- frequency power supplies 12 and 52 is arbitrary, such as a pulse waveform or a sine wave.
 ○ 高周波電源12,52を省略して、系統電源と1次側整合器41とを接続する構成としてもよい。 O The high frequency power supplies 12 and 52 may be omitted, and the system power supply and the primary matching unit 41 may be connected.
 ○ 各実施形態では、各コンデンサ13b,23bを設けたが、これらを省略してもよい。この場合、各コイル13a,23aの寄生容量を用いて磁場共鳴させる。 In each embodiment, the capacitors 13b and 23b are provided, but these may be omitted. In this case, magnetic field resonance is performed using the parasitic capacitances of the coils 13a and 23a.
 ○ 各実施形態では、送電器13の共振周波数と受電器23の共振周波数とは同一に設定されていたが、これに限られず、電力伝送が可能な範囲内で両者を異ならせてもよい。 In each embodiment, the resonance frequency of the power transmitter 13 and the resonance frequency of the power receiver 23 are set to be the same. However, the present invention is not limited to this, and they may be different within a range where power transmission is possible.
 ○ 各実施形態では、送電器13及び受電器23の構成は同一であったが、これに限られず、両者が異なる構成であってもよい。 In each embodiment, the configurations of the power transmitter 13 and the power receiver 23 are the same, but the configuration is not limited to this, and the configurations may be different.
 ○ 各実施形態では、非接触の電力伝送を実現させるために磁場共鳴を用いたが、これに限られず、電磁誘導を用いてもよい。 In each embodiment, magnetic field resonance is used in order to realize non-contact power transmission. However, the present invention is not limited to this, and electromagnetic induction may be used.
 ○ 送電器13に、1次側コイル13a及び1次側コンデンサ13bからなる共振回路と電磁誘導で結合する1次側結合コイルを別途設けてもよい。この場合、1次側結合コイルと高周波電源12,52とを接続し、上記共振回路は、上記1次側結合コイルから電磁誘導によって高周波電力を受ける構成とする。同様に、受電器23に、2次側コイル23a及び2次側コンデンサ23bからなる共振回路と電磁誘導で結合する2次側結合コイルを設け、2次側結合コイルを用いて受電器23の共振回路から高周波電力を取り出してもよい。 O The power transmitter 13 may be separately provided with a primary side coupling coil that is coupled with a resonance circuit composed of the primary side coil 13a and the primary side capacitor 13b by electromagnetic induction. In this case, the primary side coupling coil and the high frequency power sources 12 and 52 are connected, and the resonance circuit is configured to receive high frequency power from the primary side coupling coil by electromagnetic induction. Similarly, the power receiver 23 is provided with a secondary side coupling coil that is coupled by electromagnetic induction to a resonance circuit including the secondary side coil 23a and the secondary side capacitor 23b, and the resonance of the power receiver 23 is performed using the secondary side coupling coil. High frequency power may be extracted from the circuit.
 ○ 高周波電源12は、電圧値が一定の電圧源でも、電流値が一定の電流源であってもよい。また、高周波電源52は、当該高周波電源52内にて電圧値を可変制御することで電力値が異なる複数種類の高周波電力を出力可能に構成されているが、高周波電源52内にて電流値を可変制御することで電力値が異なる複数種類の高周波電力を出力可能に構成されていてもよい。なお、「高周波電源52内にて電圧値又は電流値を可変制御する」とは、高周波電源52に入力される交流電力(系統電力)の電圧値又は電流値を可変制御するとも言える。つまり、高周波電源52は、入力される交流電力の電圧値又は電流値を可変制御することで電力値が異なる複数種類の高周波電力を出力可能に構成されているとも言える。 ○ The high-frequency power supply 12 may be a voltage source having a constant voltage value or a current source having a constant current value. The high frequency power supply 52 is configured to output a plurality of types of high frequency power having different power values by variably controlling the voltage value in the high frequency power supply 52. A plurality of types of high-frequency power having different power values may be output by variably controlling. “Variable control of the voltage value or current value in the high frequency power supply 52” can be said to variably control the voltage value or current value of the AC power (system power) input to the high frequency power supply 52. That is, it can be said that the high frequency power supply 52 is configured to be capable of outputting a plurality of types of high frequency power having different power values by variably controlling the voltage value or current value of the input AC power.
 ○ 各実施形態では、非接触電力伝送装置10は、車両に適用されていたが、これに限られず、他の機器に適用してもよい。例えば、携帯電話のバッテリを充電するのに適用してもよい。 In each embodiment, the non-contact power transmission device 10 is applied to a vehicle, but is not limited thereto, and may be applied to other devices. For example, it may be applied to charge a battery of a mobile phone.
 ○ また、受電器23にて受電された高周波電力を、車両用バッテリ22の充電以外の用途に用いてもよい。例えば予め定められた固定値のインピーダンスを有する他の機器を駆動させるのに用いてもよい。 ○ Alternatively, the high frequency power received by the power receiver 23 may be used for purposes other than charging the vehicle battery 22. For example, it may be used to drive another device having a predetermined fixed impedance.
 ○ 受電器23(2次側コイル23a)の出力インピーダンス(高周波電源12,52から受電器23の出力端までのインピーダンス)には、他の(所定の)インピーダンスと比較して相対的に高い伝送効率となる特定出力インピーダンスが存在する。これに対応させて、2次側整合器26の定数を、当該2次側整合器26の入力インピーダンスが特定出力インピーダンスの共役複素数に近づくように設定してもよい。詳細には、仮に送電器13の入力端に仮想負荷を設けた場合において、当該仮想負荷のインピーダンスをRa1とし、受電器23から仮想負荷までのインピーダンスをRb1とすると、特定出力インピーダンスは√(Ra1×Rb1)である。 ○ The output impedance of the power receiver 23 (secondary coil 23a) (impedance from the high- frequency power supply 12, 52 to the output terminal of the power receiver 23) is relatively high transmission compared to other (predetermined) impedances. There is a specific output impedance that is efficient. Correspondingly, the constant of the secondary side matching unit 26 may be set so that the input impedance of the secondary side matching unit 26 approaches the conjugate complex number of the specific output impedance. Specifically, if a virtual load is provided at the input end of the power transmitter 13, assuming that the impedance of the virtual load is Ra1 and the impedance from the power receiver 23 to the virtual load is Rb1, the specific output impedance is √ (Ra1 × Rb1).
 ○ 送電器13(1次側コイル13a)の入力インピーダンス(送電器13の入力端から負荷22までのインピーダンス)には、他の(所定の)インピーダンスと比較して相対的に高い伝送効率となる特定入力インピーダンスが存在する。これに対応させて、1次側整合器41と送電器13との間に、出力インピーダンスが特定入力インピーダンスの共役複素数に近づくよう定数が設定された整合器を別途設けてもよい。詳細には、仮に受電器23の出力端に仮想負荷を設けた場合において、当該仮想負荷のインピーダンスをRa2とし、送電器13から仮想負荷までのインピーダンスをRb2とすると、特定入力インピーダンスは√(Ra2×Rb2)である。 ○ The input impedance of the power transmitter 13 (primary coil 13a) (impedance from the input end of the power transmitter 13 to the load 22) has a relatively high transmission efficiency compared to other (predetermined) impedances. There is a specific input impedance. Correspondingly, a matching unit in which a constant is set between the primary side matching unit 41 and the power transmitter 13 so that the output impedance approaches the conjugate complex number of the specific input impedance may be provided. Specifically, if a virtual load is provided at the output terminal of the power receiver 23, assuming that the impedance of the virtual load is Ra2 and the impedance from the power transmitter 13 to the virtual load is Rb2, the specific input impedance is √ (Ra2 × Rb2).
 ○ なお、本願発明において、電力値(電力の値)は、交流電力の実効値、最大値、平均値等の当該交流電力に固有の任意の値であってもよい。 In the present invention, the power value (power value) may be an arbitrary value unique to the AC power, such as an effective value, maximum value, or average value of AC power.

Claims (5)

  1.  交流電力を出力可能な交流電源と、
     前記交流電力が入力される1次側コイルと、
     前記交流電源と前記1次側コイルとの間に設けられるとともに、キャパシタ及びインダクタの少なくとも一方を有する電力値可変部と、
    を備え、2次側コイルを有する受電機器に対して非接触で前記交流電力を送電可能に構成された送電機器であって、
     前記電力値可変部は、前記キャパシタ及び前記インダクタの少なくとも一方の値を変更可能に構成され、
     前記キャパシタ及び前記インダクタの少なくとも一方の値が変更されることで、前記交流電源の出力電力の値が所定の値に変更される、送電機器。
    AC power supply capable of outputting AC power,
    A primary coil to which the AC power is input;
    A power value variable unit provided between the AC power source and the primary coil, and having at least one of a capacitor and an inductor;
    A power transmission device configured to transmit the AC power in a contactless manner with respect to a power reception device having a secondary coil,
    The power value variable unit is configured to be able to change the value of at least one of the capacitor and the inductor,
    A power transmission device in which a value of output power of the AC power supply is changed to a predetermined value by changing a value of at least one of the capacitor and the inductor.
  2.  前記交流電源は単一の電力値の交流電力のみ出力する、請求項1に記載の送電機器。 The power transmission device according to claim 1, wherein the AC power source outputs only AC power having a single power value.
  3.  前記交流電源は、当該交流電源内にて電圧値又は電流値を変更することで電力値が異なる複数種類の交流電力を前記交流電源から出力させる変更部を備え、
     前記交流電源に接続される負荷は、入力される交流電力の電力値に応じてインピーダンスが変動するものであり、
     前記電力値可変部は、前記負荷のインピーダンスの変動に対応させて前記キャパシタ及び前記インダクタの少なくとも一方の値が変更されることで、前記交流電源から出力される交流電力の電力値を、前記変更部により変更された電圧値又は電流値の交流電力の電力値に近づける、請求項1に記載の送電機器。
    The AC power supply includes a changing unit that outputs a plurality of types of AC power having different power values by changing a voltage value or a current value in the AC power supply,
    The load connected to the AC power supply is one whose impedance varies according to the power value of the input AC power,
    The power value variable unit changes the power value of the AC power output from the AC power source by changing the value of at least one of the capacitor and the inductor in response to a change in impedance of the load. The power transmission device according to claim 1, wherein the power transmission device is brought close to a power value of AC power having a voltage value or a current value changed by the unit.
  4.  交流電力を出力可能な交流電源、及び前記交流電力が入力される1次側コイルを有する送電機器と、
     請求項1~3の何れか一項に記載の受電機器とを備えている非接触電力伝送装置。
    An AC power source capable of outputting AC power, and a power transmission device having a primary coil to which the AC power is input;
    A non-contact power transmission device comprising: the power receiving device according to any one of claims 1 to 3.
  5.  交流電力を出力可能な交流電源と、
     前記交流電力が入力される1次側コイルと、
     前記1次側コイルから非接触で前記交流電力を受電可能な2次側コイルと、
     前記2次側コイルにて受電された交流電力を整流する整流部と、
     前記整流部にて整流された直流電力が入力される負荷と、
    を備えた非接触電力伝送装置において、
     前記交流電源から前記負荷に向けて伝送する電力の電力値を測定する測定部と、
     前記交流電源から前記整流部までの間に設けられるとともに、キャパシタ及びインダクタの少なくとも一方を有する電力値可変部と、
     前記測定部の測定結果に基づいて前記キャパシタ及び前記インダクタの少なくとも一方の値を変更することで前記交流電源の出力電力の値を所定の値に変更する制御部と、
    を備えている非接触電力伝送装置。
    AC power supply capable of outputting AC power,
    A primary coil to which the AC power is input;
    A secondary coil capable of receiving the AC power in a non-contact manner from the primary coil;
    A rectifying unit that rectifies AC power received by the secondary coil;
    A load to which DC power rectified by the rectifier is input;
    In a non-contact power transmission device comprising:
    A measurement unit for measuring the power value of the power transmitted from the AC power source toward the load;
    Provided between the AC power supply and the rectifier unit, and a power value variable unit having at least one of a capacitor and an inductor,
    A control unit that changes the value of the output power of the AC power supply to a predetermined value by changing the value of at least one of the capacitor and the inductor based on the measurement result of the measurement unit;
    A non-contact power transmission device.
PCT/JP2013/068437 2012-07-05 2013-07-04 Transmitting device and non-contact power transmission device WO2014007352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-151572 2012-07-05
JP2012151572A JP2014017894A (en) 2012-07-05 2012-07-05 Transmitting apparatus and contactless power transmission system

Publications (1)

Publication Number Publication Date
WO2014007352A1 true WO2014007352A1 (en) 2014-01-09

Family

ID=49882103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068437 WO2014007352A1 (en) 2012-07-05 2013-07-04 Transmitting device and non-contact power transmission device

Country Status (2)

Country Link
JP (1) JP2014017894A (en)
WO (1) WO2014007352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057395A1 (en) * 2014-10-09 2016-04-14 General Electric Company Circuit and method for a resonant tank

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231306A (en) * 2014-06-06 2015-12-21 トヨタ自動車株式会社 Non-contact power reception device
WO2016068135A1 (en) 2014-10-28 2016-05-06 株式会社Ihi Power transmission device, power transmission method, and non-contact power supply system
JP6345137B2 (en) * 2015-03-09 2018-06-20 株式会社日立ハイテクファインシステムズ Charger
JP6631058B2 (en) * 2015-07-10 2020-01-15 船井電機株式会社 Power supply device and power supply method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141976A (en) * 2008-12-09 2010-06-24 Toyota Industries Corp Non-contact power transmission apparatus
WO2012073348A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless energy-transfer equipment
WO2012073349A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
WO2012086051A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Contactless power supply system, vehicle, power supply facility, and contactless power supply system control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141976A (en) * 2008-12-09 2010-06-24 Toyota Industries Corp Non-contact power transmission apparatus
WO2012073348A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless energy-transfer equipment
WO2012073349A1 (en) * 2010-12-01 2012-06-07 トヨタ自動車株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
WO2012086051A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Contactless power supply system, vehicle, power supply facility, and contactless power supply system control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057395A1 (en) * 2014-10-09 2016-04-14 General Electric Company Circuit and method for a resonant tank

Also Published As

Publication number Publication date
JP2014017894A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5880122B2 (en) Non-contact power transmission device
JP6089687B2 (en) Power receiving device and non-contact power transmission device
WO2014002940A1 (en) Non-contact power transmission device
WO2014007352A1 (en) Transmitting device and non-contact power transmission device
WO2014054396A1 (en) Power reception device, power transmission device, and noncontact power transfer apparatus
WO2013183700A1 (en) Power reception device and contactless power transmission system
WO2014045873A1 (en) Power receiving device and contactless power transmitting equipment
JP5888201B2 (en) Power receiving device and non-contact power transmission device
WO2014069148A1 (en) Non-contact power transmission device, and power reception apparatus
JP2015080296A (en) Power reception apparatus and non-contact power transmission device
WO2015083578A1 (en) Contactless power transmission device and electricity reception apparatus
WO2014054395A1 (en) Power transmission device, power reception device and noncontact power transfer apparatus
JP6015608B2 (en) Power receiving device and non-contact power transmission device
JP2014124026A (en) Power reception apparatus, non-contact power transmission device, and power transmission apparatus
WO2014003026A1 (en) Non-contact power transmission device and power reception apparatus
WO2015098747A1 (en) Power transmission device and non-contact power transmission apparatus
WO2014030689A1 (en) Non-contact power transmission device and power-receiving apparatus
JP5991380B2 (en) Non-contact power transmission device
WO2014069147A1 (en) Power transmission apparatus and non-contact power transmission device
JP2014166093A (en) Power receiving apparatus and non-contact power transmission device
JP2015019450A (en) Non-contact power transmission device, power transmission apparatus, power reception apparatus
JP2014057500A (en) Power reception apparatus and non-contact power transmission device
WO2013183701A1 (en) Power receiving apparatus, power transmitting apparatus, and non-contact power transmitting device
JP2016208602A (en) Non-contact power transmission device
JP2014090634A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813192

Country of ref document: EP

Kind code of ref document: A1