JP6454943B2 - Non-contact power supply device and non-contact power supply system using the same - Google Patents

Non-contact power supply device and non-contact power supply system using the same Download PDF

Info

Publication number
JP6454943B2
JP6454943B2 JP2015061459A JP2015061459A JP6454943B2 JP 6454943 B2 JP6454943 B2 JP 6454943B2 JP 2015061459 A JP2015061459 A JP 2015061459A JP 2015061459 A JP2015061459 A JP 2015061459A JP 6454943 B2 JP6454943 B2 JP 6454943B2
Authority
JP
Japan
Prior art keywords
frequency
electric vehicle
primary side
resonance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015061459A
Other languages
Japanese (ja)
Other versions
JP2016182002A (en
Inventor
田村 秀樹
秀樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015061459A priority Critical patent/JP6454943B2/en
Publication of JP2016182002A publication Critical patent/JP2016182002A/en
Application granted granted Critical
Publication of JP6454943B2 publication Critical patent/JP6454943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、非接触給電装置及びそれを用いた非接触給電システムに関し、より詳細には、電動車両に非接触で給電する非接触給電装置及びそれを用いた非接触給電システムに関する。   The present invention relates to a contactless power supply device and a contactless power supply system using the same, and more particularly to a contactless power supply device that supplies power to an electric vehicle in a contactless manner and a contactless power supply system using the same.

従来、電気自動車(EV)やハイブリッド電気自動車(HEV)などの車両に非接触で給電する非接触給電装置が提供されている(例えば特許文献1参照)。特許文献1記載の非接触給電装置は、インバータ部(インバータ回路)と、送電アンテナと、送電制御部とを備える。   2. Description of the Related Art Conventionally, a non-contact power supply device that supplies power to a vehicle such as an electric vehicle (EV) or a hybrid electric vehicle (HEV) in a non-contact manner is provided (for example, see Patent Document 1). The contactless power supply device described in Patent Document 1 includes an inverter unit (inverter circuit), a power transmission antenna, and a power transmission control unit.

インバータ部は、4つの電界効果トランジスタで構成されたフルブリッジ型のインバータ回路からなる。このインバータ部は、直流電圧を所定の周波数の交流電圧に変換し、変換した交流電圧を送電アンテナに出力する。送電制御部は、インバータ部に入力される直流電圧の電圧値と、インバータ部から出力される交流電圧の周波数とを制御する。   The inverter unit is composed of a full-bridge type inverter circuit composed of four field effect transistors. The inverter unit converts a DC voltage into an AC voltage having a predetermined frequency, and outputs the converted AC voltage to the power transmission antenna. The power transmission control unit controls the voltage value of the DC voltage input to the inverter unit and the frequency of the AC voltage output from the inverter unit.

この非接触給電装置では、車両に搭載された受電アンテナが送電アンテナと向かい合う位置に配置されると、送電アンテナと受電アンテナとの共鳴現象により送電アンテナから受電アンテナに非接触で交流電力が伝送される。そして、車両では、受電アンテナに伝送された交流電力が車両に設けられた整流器及び充電器を介して電池に充電される。   In this non-contact power feeding device, when the power receiving antenna mounted on the vehicle is arranged at a position facing the power transmitting antenna, AC power is transmitted from the power transmitting antenna to the power receiving antenna in a contactless manner due to a resonance phenomenon between the power transmitting antenna and the power receiving antenna. The In the vehicle, the AC power transmitted to the power receiving antenna is charged to the battery via a rectifier and a charger provided in the vehicle.

特開2013−211932号公報JP2013-211932A

上述の非接触給電装置による車両への給電中に人の乗降や荷物の積み下ろしなどがあると車高が変化し、その結果、送電アンテナのコイル(一次側コイル)と受電アンテナのコイル(二次側コイル)とのギャップが変化することでコイル間の結合係数が変化する。そして、コイル間の結合係数が変化すると、送電アンテナ及び受電アンテナの共振特性が変化し、その結果、インバータ部の動作周波数が進相領域に入る可能性があった。   If there is a person getting on or off or loading or unloading a load while the vehicle is powered by the non-contact power feeding device described above, the vehicle height changes. As a result, the coil of the power transmission antenna (primary coil) and the coil of the power receiving antenna (secondary The coupling coefficient between the coils changes as the gap with the side coil) changes. When the coupling coefficient between the coils changes, the resonance characteristics of the power transmitting antenna and the power receiving antenna change, and as a result, the operating frequency of the inverter unit may enter the phase advance region.

本発明は上記問題点に鑑みてなされており、一次側コイルと二次側コイルとのギャップが変化した場合でもインバータ回路の動作周波数を進相領域に入りにくくした非接触給電装置及びそれを用いた非接触給電システムを提供することを目的とする。   The present invention has been made in view of the above problems, and uses a non-contact power feeding device that makes it difficult for the operating frequency of an inverter circuit to enter the phase advance region even when the gap between the primary side coil and the secondary side coil changes. An object of the present invention is to provide a non-contact power feeding system.

本発明の非接触給電装置は、一次側コイル及び一次側コンデンサからなる一次側共振部と、直流電力を交流電力に変換して前記一次側共振部に出力するインバータ回路と、前記インバータ回路を制御する制御部とを備え、前記一次側共振部は、二次側コイル及び二次側コンデンサからなる電動車両側の二次側共振部との電磁結合を利用して前記電動車両に非接触で給電するように構成され、前記制御部は、予め設定した前記一次側共振部の第1共振周波数より制御値だけ高い周波数を前記インバータ回路の動作周波数とし、前記制御値は、前記電動車両への積載量が最大のときの第2共振周波数と、前記電動車両への積載量がゼロのときの第3共振周波数との差分以上であることを特徴とする。   A contactless power supply device according to the present invention includes a primary side resonance unit including a primary side coil and a primary side capacitor, an inverter circuit that converts DC power into AC power and outputs the AC power to the primary side resonance unit, and controls the inverter circuit The primary-side resonance unit supplies power to the electric vehicle in a non-contact manner using electromagnetic coupling with a secondary-side resonance unit on the electric vehicle side including a secondary-side coil and a secondary-side capacitor. The control unit sets a frequency higher than a preset first resonance frequency of the primary-side resonance unit by a control value as an operating frequency of the inverter circuit, and the control value is loaded on the electric vehicle. It is more than the difference between the second resonance frequency when the amount is maximum and the third resonance frequency when the load on the electric vehicle is zero.

本発明の非接触給電システムは、上述の非接触給電装置と、少なくとも前記二次側共振部を有し前記電動車両に搭載される非接触受電装置とを備えたことを特徴とする。   A non-contact power feeding system according to the present invention includes the above-described non-contact power feeding device and a non-contact power receiving device that has at least the secondary side resonance unit and is mounted on the electric vehicle.

本発明の非接触給電装置は、一次側コイルと二次側コイルとのギャップが変化した場合でもインバータ回路の動作周波数を進相領域に入りにくくすることができる。   The contactless power supply device of the present invention can make the operating frequency of the inverter circuit difficult to enter the phase advance region even when the gap between the primary side coil and the secondary side coil changes.

本発明の非接触給電システムは、一次側コイルと二次側コイルとのギャップが変化した場合でもインバータ回路の動作周波数を進相領域に入りにくくすることができる。   The contactless power feeding system of the present invention can make the operating frequency of the inverter circuit difficult to enter the phase advance region even when the gap between the primary side coil and the secondary side coil changes.

本発明の実施形態に係る非接触給電装置及び非接触給電システムを示す概略回路図である。It is a schematic circuit diagram which shows the non-contact electric power feeder and non-contact electric power feeding system which concern on embodiment of this invention. 本発明の実施形態に係る非接触給電システムの使用例を示す概略図である。It is the schematic which shows the usage example of the non-contact electric power feeding system which concerns on embodiment of this invention. 図3Aは一次側コイルと二次側コイルとのギャップが最も小さいときの周波数特性を示す図、図3Bは一次側コイルと二次側コイルとのギャップが最も大きいときの周波数特性を示す図である。FIG. 3A is a diagram showing frequency characteristics when the gap between the primary side coil and the secondary side coil is the smallest, and FIG. 3B is a diagram showing frequency characteristics when the gap between the primary side coil and the secondary side coil is largest. is there. 図4Aは一次側コイルと二次側コイルとの結合係数が大きいときの周波数特性を示す図、図4Bは一次側コイルと二次側コイルとの結合係数が小さいときの周波数特性を示す図である。4A is a diagram showing frequency characteristics when the coupling coefficient between the primary side coil and the secondary side coil is large, and FIG. 4B is a diagram showing frequency characteristics when the coupling coefficient between the primary side coil and the secondary side coil is small. is there.

本発明の実施形態に係る非接触給電装置2及び非接触給電システム1について、図面を参照しながら具体的に説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は下記の実施形態に限定されない。したがって、この実施形態以外であっても、本発明に係る技術思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。   A non-contact power supply device 2 and a non-contact power supply system 1 according to an embodiment of the present invention will be specifically described with reference to the drawings. However, the configuration described below is merely an example of the present invention, and the present invention is not limited to the following embodiment. Therefore, various modifications other than this embodiment can be made according to the design and the like as long as they do not depart from the technical idea of the present invention.

本実施形態の非接触給電システム1は、図1に示すように、非接触給電装置2と、非接触受電装置3とを備える。非接触給電装置2は、インバータ回路21と、制御部22と、一次側共振部23とを備える。また、非接触給電装置2は、直流電源20と、一次側通信部24と、記憶部25とをさらに備えるのが好ましい。   As shown in FIG. 1, the contactless power supply system 1 of the present embodiment includes a contactless power supply device 2 and a contactless power receiving device 3. The non-contact power feeding device 2 includes an inverter circuit 21, a control unit 22, and a primary side resonance unit 23. The non-contact power feeding device 2 preferably further includes a DC power source 20, a primary side communication unit 24, and a storage unit 25.

インバータ回路21は、図1に示すように、例えばnチャネルのエンハンスメント型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)からなる4つのスイッチング素子Q1〜Q4で構成されるフルブリッジ型のインバータ回路である。なお、スイッチング素子Q1〜Q4は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等の他の半導体スイッチング素子で構成してもよい。   As shown in FIG. 1, the inverter circuit 21 is a full-bridge type inverter circuit composed of four switching elements Q1 to Q4 made of, for example, an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). is there. The switching elements Q1 to Q4 may be composed of other semiconductor switching elements such as bipolar transistors and IGBTs (Insulated Gate Bipolar Transistors).

インバータ回路21では、2つのスイッチング素子Q1,Q2の直列回路と、2つのスイッチング素子Q3,Q4の直列回路とが並列に電気的に接続される。スイッチング素子Q1,Q3のドレインは、直流電源20の高電位側の出力端にそれぞれ電気的に接続される。また、スイッチング素子Q2,Q4のソースは、直流電源20の低電位側の出力端にそれぞれ電気的に接続される。   In the inverter circuit 21, a series circuit of two switching elements Q1 and Q2 and a series circuit of two switching elements Q3 and Q4 are electrically connected in parallel. The drains of the switching elements Q1 and Q3 are electrically connected to the output terminal on the high potential side of the DC power supply 20, respectively. The sources of the switching elements Q2 and Q4 are electrically connected to the output terminal on the low potential side of the DC power supply 20, respectively.

そして、スイッチング素子Q3のソース及びスイッチング素子Q4のドレインの接続点が、インバータ回路21の第1出力端となる。また、スイッチング素子Q1のソース及びスイッチング素子Q2のドレインの接続点が、インバータ回路21の第2出力端となる。   A connection point between the source of the switching element Q3 and the drain of the switching element Q4 is the first output terminal of the inverter circuit 21. The connection point between the source of the switching element Q1 and the drain of the switching element Q2 is a second output terminal of the inverter circuit 21.

スイッチング素子Q1,Q4は、制御部22から出力される第1駆動信号G1によりオン/オフする。また、スイッチング素子Q2,Q3は、制御部22から出力される第2駆動信号G2によりオン/オフする。第2駆動信号G2は、第1駆動信号G1とは位相が180度異なる矩形波状の信号である。   The switching elements Q1, Q4 are turned on / off by the first drive signal G1 output from the control unit 22. Further, the switching elements Q2, Q3 are turned on / off by the second drive signal G2 output from the control unit 22. The second drive signal G2 is a rectangular wave signal that is 180 degrees out of phase with the first drive signal G1.

インバータ回路21は、第1駆動信号G1及び第2駆動信号G2により、スイッチング素子Q1,Q4のオン期間と、スイッチング素子Q2,Q3のオン期間とを交互に切り替えるように動作する。これにより、インバータ回路21は、直流電源20から供給される直流電力を交流電力に変換して出力する。以下では、図1に示すように、インバータ回路21が出力する電圧を「出力電圧V1」、インバータ回路21が出力する電流を「出力電流I1」と称す。   The inverter circuit 21 operates so as to alternately switch between the ON periods of the switching elements Q1 and Q4 and the ON periods of the switching elements Q2 and Q3 by the first drive signal G1 and the second drive signal G2. Thereby, the inverter circuit 21 converts the DC power supplied from the DC power source 20 into AC power and outputs the AC power. In the following, as shown in FIG. 1, the voltage output from the inverter circuit 21 is referred to as “output voltage V1”, and the current output from the inverter circuit 21 is referred to as “output current I1”.

制御部22は、例えばマイクロコンピュータで構成される。この制御部22は、インバータ回路21のスイッチング素子Q1〜Q4に第1駆動信号G1及び第2駆動信号G2を出力することにより、インバータ回路21の動作を制御する。また、制御部22は、一次側通信部24の動作を制御する。   The control unit 22 is configured by a microcomputer, for example. The control unit 22 controls the operation of the inverter circuit 21 by outputting the first drive signal G1 and the second drive signal G2 to the switching elements Q1 to Q4 of the inverter circuit 21. Further, the control unit 22 controls the operation of the primary side communication unit 24.

一次側共振部23は、例えば導線が渦巻状に巻かれたスパイラル型のコイルからなる一次側コイルL1と、一次側コイルL1に直列に電気的に接続された一次側コンデンサC1とを有する。この一次側共振部23は、一次側コイルL1と一次側コンデンサC1とで共振回路(一次側の共振回路)を形成する。   The primary side resonance part 23 has the primary side coil L1 which consists of a spiral type coil by which conducting wire was wound, for example, and the primary side capacitor | condenser C1 electrically connected in series with the primary side coil L1. The primary side resonance section 23 forms a resonance circuit (primary side resonance circuit) with the primary side coil L1 and the primary side capacitor C1.

一次側コイルL1は、インバータ回路21が出力する交流電流が流れると、磁束を発生する。つまり、一次側コイルL1は、インバータ回路21が出力する交流電力を受けて磁束を発生する。   The primary coil L1 generates a magnetic flux when an alternating current output from the inverter circuit 21 flows. That is, the primary coil L1 receives the AC power output from the inverter circuit 21 and generates a magnetic flux.

一次側通信部24は、例えば電波を媒体とする無線信号により後述する二次側通信部34と通信を行うように構成される。この一次側通信部24は、例えば後述する電動車両100の車種情報を含む無線信号を二次側通信部34より受信する。車種情報には、例えば、積載量が最大のときの電動車両100の車高情報(以下、第1車高情報)、及び積載量がゼロのときの電動車両100の車高情報(以下、第2車高情報)が含まれる。   The primary side communication unit 24 is configured to communicate with a secondary side communication unit 34 to be described later, for example, by a radio signal using radio waves as a medium. This primary side communication part 24 receives the radio signal containing the vehicle type information of the electric vehicle 100 mentioned later from the secondary side communication part 34, for example. The vehicle type information includes, for example, vehicle height information (hereinafter referred to as first vehicle height information) of the electric vehicle 100 when the loading amount is maximum, and vehicle height information (hereinafter referred to as the first vehicle height information) when the loading amount is zero. 2 vehicle height information).

記憶部25は、ROM(ReadOnly Memory)やRAM(Random Access Memory)、フラッシュメモリなどで構成される。この記憶部25は、電動車両100から送信される車種情報(第1車高情報及び第2車高情報)と、後述する制御値(Δf1、Δf2、Δf3)とを関連付けて記憶する。また、この記憶部25は、事前に計測した特定の電動車両100の周波数特性(例えば、図4Aに示す周波数特性)を記憶する。   The storage unit 25 includes a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and the like. The storage unit 25 stores vehicle type information (first vehicle height information and second vehicle height information) transmitted from the electric vehicle 100 in association with control values (Δf1, Δf2, Δf3) described later. Further, the storage unit 25 stores a frequency characteristic (for example, a frequency characteristic shown in FIG. 4A) of a specific electric vehicle 100 measured in advance.

本実施形態の非接触給電システム1において、非接触給電装置2は、図2に示すように、床や地面上に設置される。なお、非接触給電装置2は、床や地面上のみならず、床や地面に埋め込んで配置してもよい。また、非接触給電装置2は、一次側コイルL1のみを二次側コイルL2と対向可能な位置に配置し、その他の部品や回路等を一次側コイルL1から離れた場所に配置するように構成してもよい。   In the non-contact power feeding system 1 of the present embodiment, the non-contact power feeding device 2 is installed on the floor or the ground as shown in FIG. The non-contact power feeding device 2 may be arranged not only on the floor or the ground but also embedded in the floor or the ground. Further, the non-contact power feeding device 2 is configured such that only the primary coil L1 is disposed at a position that can be opposed to the secondary coil L2, and other components, circuits, and the like are disposed away from the primary coil L1. May be.

非接触受電装置3は、図1に示すように、二次側共振部31を備える。また、非接触受電装置3は、整流部32と、制御部33と、二次側通信部34とをさらに備えるのが好ましい。   As shown in FIG. 1, the non-contact power receiving device 3 includes a secondary side resonance unit 31. Moreover, it is preferable that the non-contact power receiving device 3 further includes a rectification unit 32, a control unit 33, and a secondary side communication unit 34.

二次側共振部31は、図1に示すように、整流部32の一対の入力端に、二次側コイルL2と二次側コンデンサC2とを直列に電気的に接続して構成される。また、二次側コイルL2は、二次側コンデンサC2とともに共振回路(二次側の共振回路)を形成する。   As shown in FIG. 1, the secondary side resonance unit 31 is configured by electrically connecting a secondary side coil L <b> 2 and a secondary side capacitor C <b> 2 in series to a pair of input ends of the rectification unit 32. The secondary coil L2 forms a resonance circuit (secondary resonance circuit) together with the secondary capacitor C2.

二次側コイルL2は、一次側コイルL1と同様に、例えば導線が渦巻状に巻かれたスパイラル型のコイルである。この二次側コイルL2は、図2に示すように、電動車両100が規定の停車位置に停車すると、一次側コイルL1の近傍に位置するように配置される。言い換えれば、二次側コイルL2は、電動車両100が規定の停車位置に停車すると、一次側コイルL1と所定の間隔を空けて対向するように配置される。   The secondary coil L2 is a spiral type coil in which, for example, a conducting wire is wound in a spiral shape, like the primary coil L1. As shown in FIG. 2, the secondary coil L <b> 2 is disposed so as to be positioned in the vicinity of the primary coil L <b> 1 when the electric vehicle 100 stops at a predetermined stop position. In other words, the secondary coil L2 is arranged to face the primary coil L1 with a predetermined interval when the electric vehicle 100 stops at a predetermined stop position.

二次側コイルL2は、一次側コイルL1が発生する磁束を受けると、電磁誘導により交流電流が流れる。つまり、二次側コイルL2は、一次側コイルL1が発生する磁束を受けて交流電力を発生する。   When the secondary coil L2 receives the magnetic flux generated by the primary coil L1, an alternating current flows by electromagnetic induction. That is, the secondary coil L2 receives the magnetic flux generated by the primary coil L1 and generates AC power.

整流部32は、図1に示すように、4つのダイオードで構成されるダイオードブリッジ321と、コンデンサC3とで構成される。ダイオードブリッジ321は、二次側コイルL2で発生した交流電流を脈流電流に変換して出力する。コンデンサC3は、ダイオードブリッジ321の一対の出力端に電気的に接続され、ダイオードブリッジ321から出力される脈流電流を平滑化し、直流電流を出力する。   As shown in FIG. 1, the rectifying unit 32 includes a diode bridge 321 including four diodes and a capacitor C3. The diode bridge 321 converts the alternating current generated in the secondary coil L2 into a pulsating current and outputs it. The capacitor C3 is electrically connected to a pair of output terminals of the diode bridge 321, smoothes the pulsating current output from the diode bridge 321, and outputs a direct current.

つまり、整流部32は、二次側コイルL2で発生した交流電力を直流電力に整流して出力する。整流部32が出力する直流電力は、負荷4(本実施形態では、充電回路102)に供給される。   That is, the rectification unit 32 rectifies and outputs AC power generated in the secondary coil L2 to DC power. The DC power output from the rectifying unit 32 is supplied to the load 4 (in the present embodiment, the charging circuit 102).

制御部33は、上述の制御部22と同様にマイクロコンピュータで構成される。この制御部33は、二次側通信部34の動作を制御する。   The control unit 33 is configured by a microcomputer similarly to the control unit 22 described above. The control unit 33 controls the operation of the secondary side communication unit 34.

二次側通信部34は、電波を媒体とする無線信号により一次側通信部24と通信を行うように構成される。この二次側通信部34は、電動車両100の車種情報(第1車高情報及び第2車高情報)を含む無線信号を一次側通信部24に送信する。   The secondary side communication unit 34 is configured to communicate with the primary side communication unit 24 by a radio signal using radio waves as a medium. The secondary side communication unit 34 transmits a radio signal including vehicle type information (first vehicle height information and second vehicle height information) of the electric vehicle 100 to the primary side communication unit 24.

本実施形態の非接触給電システム1において、非接触受電装置3は、図2に示すように、電動車両100の車両内に設置される。非接触受電装置3は、充電回路102を介して蓄電池101に電気的に接続される。蓄電池101は、例えばニッケル水素電池やリチウムイオン電池、高容量のコンデンサ等で構成される。蓄電池101は、電動車両100が備える電動機の電源として用いられる。   In the non-contact power feeding system 1 of the present embodiment, the non-contact power receiving device 3 is installed in the vehicle of the electric vehicle 100 as shown in FIG. The non-contact power receiving device 3 is electrically connected to the storage battery 101 via the charging circuit 102. The storage battery 101 is composed of, for example, a nickel metal hydride battery, a lithium ion battery, a high-capacity capacitor, or the like. The storage battery 101 is used as a power source for an electric motor included in the electric vehicle 100.

なお、電動車両100には、例えば動力源として電動機のみを備えた電気自動車(EV)や、動力源としてエンジンと電動機を併用するハイブリッド車(HEV)などがある。また、電動車両100には、四輪の車両だけでなく、二輪の車両が含まれていてもよい。   The electric vehicle 100 includes, for example, an electric vehicle (EV) that includes only an electric motor as a power source, and a hybrid vehicle (HEV) that uses an engine and an electric motor as power sources. The electric vehicle 100 may include not only a four-wheel vehicle but also a two-wheel vehicle.

本実施形態の非接触給電システム1では、磁気共鳴現象を利用した共鳴方式により、一次側共振部23から二次側共振部31に電力を伝送している。そして、本実施形態の非接触給電システム1では、一次側共振部23と二次側共振部31との磁気共鳴を利用して、非接触給電装置2の出力電力を効率よく非接触受電装置3に伝送している。したがって、一次側共振部23の周波数特性と、二次側共振部31の周波数特性とが互いに一致するのが好ましい。   In the non-contact power feeding system 1 of the present embodiment, power is transmitted from the primary side resonance unit 23 to the secondary side resonance unit 31 by a resonance method using a magnetic resonance phenomenon. And in the non-contact electric power feeding system 1 of this embodiment, the non-contact electric power receiving apparatus 3 uses the magnetic resonance of the primary side resonance part 23 and the secondary side resonance part 31 efficiently for the output electric power of the non-contact electric power supply apparatus 2. Is transmitted to. Therefore, it is preferable that the frequency characteristic of the primary side resonance unit 23 and the frequency characteristic of the secondary side resonance unit 31 coincide with each other.

以下、本実施形態の非接触給電システム1における一次側共振部23の周波数特性(以下、「共振特性」と称す)について、図3A及び図3Bを参照しながら具体的に説明する。なお、図3Aは、一次側コイルL1と二次側コイルL2とのギャップが最小である場合、言い換えれば、電動車両100の車高が最も低い場合の周波数特性を示す図である。また、図3Bは、一次側コイルL1と二次側コイルL2とのギャップが最大である場合、言い換えれば、電動車両100の車高が最も高い場合の周波数特性を示す図である。   Hereinafter, the frequency characteristics (hereinafter referred to as “resonance characteristics”) of the primary side resonance unit 23 in the non-contact power feeding system 1 of the present embodiment will be specifically described with reference to FIGS. 3A and 3B. FIG. 3A is a diagram illustrating frequency characteristics when the gap between the primary side coil L1 and the secondary side coil L2 is minimum, in other words, when the vehicle height of the electric vehicle 100 is the lowest. FIG. 3B is a diagram illustrating frequency characteristics when the gap between the primary side coil L1 and the secondary side coil L2 is the maximum, in other words, when the vehicle height of the electric vehicle 100 is the highest.

本実施形態の非接触給電システム1では、共振特性は、一次側コイルL1と二次側コイルL2との磁気的な結合の疎密に応じて変化する。言い換えれば、共振特性は、一次側コイルL1と二次側コイルL2との結合係数の大小に応じて変化する。そして、結合係数がある程度大きい場合、共振特性は、図3Aに示すように一次側共振部23の出力の極大値が2箇所現れる、いわゆる双峰特性を示す。   In the non-contact power feeding system 1 of the present embodiment, the resonance characteristics change according to the density of magnetic coupling between the primary side coil L1 and the secondary side coil L2. In other words, the resonance characteristics change according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2. When the coupling coefficient is large to some extent, the resonance characteristic shows a so-called bimodal characteristic in which two local maximum values of the output of the primary side resonance unit 23 appear as shown in FIG. 3A.

この共振特性では、第1周波数fr1で一次側共振部23の出力が極大値となる山と、第2周波数fr2(fr2>fr1)で一次側共振部23の出力が極小値となる谷とが現れている。また、この共振特性では、第3周波数fr3(fr3>fr2)で一次側共振部23の出力が極大値となる山が現れている。つまり、この共振特性(双峰特性)は、2つの共振周波数(第1周波数fr1、第3周波数fr3)を有している。   In this resonance characteristic, there is a peak where the output of the primary side resonance unit 23 becomes a maximum value at the first frequency fr1, and a valley where the output of the primary side resonance unit 23 becomes a minimum value at the second frequency fr2 (fr2> fr1). Appears. Further, in this resonance characteristic, there is a peak where the output of the primary side resonance unit 23 becomes a maximum value at the third frequency fr3 (fr3> fr2). That is, this resonance characteristic (bimodal characteristic) has two resonance frequencies (first frequency fr1 and third frequency fr3).

ここで、インバータ回路21の動作周波数f1(例えば、85±5kHz)と各周波数fr1〜fr3との相関に応じて、インバータ回路21は遅相モード又は進相モードの何れかのモードで動作する。なお、「動作周波数f1」は、第1駆動信号G1及び第2駆動信号G2の周波数、言い換えれば、インバータ回路21の出力電圧V1の周波数である。   Here, according to the correlation between the operating frequency f1 (for example, 85 ± 5 kHz) of the inverter circuit 21 and the frequencies fr1 to fr3, the inverter circuit 21 operates in either the slow phase mode or the fast phase mode. The “operating frequency f1” is the frequency of the first drive signal G1 and the second drive signal G2, in other words, the frequency of the output voltage V1 of the inverter circuit 21.

進相モードは、インバータ回路21の出力電流I1の位相が、インバータ回路21の出力電圧V1の位相よりも進んだ状態でインバータ回路21が動作するモードである。進相モードでは、インバータ回路21のスイッチング動作がいわゆるハードスイッチングになる。   The phase advance mode is a mode in which the inverter circuit 21 operates in a state where the phase of the output current I1 of the inverter circuit 21 is ahead of the phase of the output voltage V1 of the inverter circuit 21. In the phase advance mode, the switching operation of the inverter circuit 21 is so-called hard switching.

遅相モードは、インバータ回路21の出力電流I1の位相が、インバータ回路21の出力電圧V1の位相よりも遅れた状態でインバータ回路21が動作するモードである。遅相モードでは、インバータ回路21のスイッチング動作がいわゆるソフトスイッチングになる。   The slow phase mode is a mode in which the inverter circuit 21 operates in a state in which the phase of the output current I1 of the inverter circuit 21 is delayed from the phase of the output voltage V1 of the inverter circuit 21. In the slow phase mode, the switching operation of the inverter circuit 21 is so-called soft switching.

遅相モードでは、スイッチング素子Q1〜Q4のスイッチングによる損失を低減することができ、またスイッチング素子Q1〜Q4に過大な電気的ストレスがかかるのを防止することができる。したがって、本実施形態の非接触給電装置2では、インバータ回路21が遅相モードで動作するのが好ましい。   In the slow phase mode, loss due to switching of the switching elements Q1 to Q4 can be reduced, and excessive electrical stress can be prevented from being applied to the switching elements Q1 to Q4. Therefore, in the non-contact power feeding device 2 of the present embodiment, it is preferable that the inverter circuit 21 operates in the slow phase mode.

インバータ回路21は、図3Aに示すように、動作周波数f1が第1周波数fr1と第2周波数fr2との間の周波数領域に位置する場合と、動作周波数f1が第3周波数fr3よりも大きい周波数領域に位置する場合との何れかで、遅相モードで動作する。   As shown in FIG. 3A, the inverter circuit 21 includes a case where the operating frequency f1 is located in a frequency region between the first frequency fr1 and the second frequency fr2, and a frequency region where the operating frequency f1 is larger than the third frequency fr3. It operates in the slow phase mode in either case.

なお、第1周波数fr1と第2周波数fr2との間の周波数領域、及び第3周波数fr3よりも大きい周波数領域が、遅相モードで動作する領域、すなわち「遅相領域」となる。また、第1周波数fr1よりも小さい周波数領域、及び第2周波数fr2と第3周波数fr3との間の周波数領域が、進相モードで動作する領域、すなわち「進相領域」となる。   Note that a frequency region between the first frequency fr1 and the second frequency fr2 and a frequency region larger than the third frequency fr3 are regions that operate in the slow phase mode, that is, the “slow phase region”. Further, a frequency region smaller than the first frequency fr1 and a frequency region between the second frequency fr2 and the third frequency fr3 are regions that operate in the fast phase mode, that is, the “fast phase region”.

ところで、本実施形態の非接触給電装置2では、電動車両100への給電中に電動車両100から人が降りたり、荷物を降ろしたりすると、電動車両100への荷重が減ることで電動車両100の車高が高くなる。その結果、一次側コイルL1と二次側コイルL2とのギャップ(間隔)が大きくなり、一次側コイルL1と二次側コイルL2との磁気的な結合が小さくなる(つまり、結合係数が小さくなる)。すると、各周波数fr1〜fr3が変化することで、共振特性は、例えば図3Aに示す特性から図3Bに示す特性に変化する。   By the way, in the non-contact power supply device 2 of the present embodiment, when a person gets off from the electric vehicle 100 or unloads a load during power supply to the electric vehicle 100, the load on the electric vehicle 100 is reduced, so that the load of the electric vehicle 100 is reduced. Vehicle height increases. As a result, the gap (interval) between the primary side coil L1 and the secondary side coil L2 becomes large, and the magnetic coupling between the primary side coil L1 and the secondary side coil L2 becomes small (that is, the coupling coefficient becomes small). ). Then, as the frequencies fr1 to fr3 change, the resonance characteristics change, for example, from the characteristics shown in FIG. 3A to the characteristics shown in FIG. 3B.

ここで、動作周波数f1が一定の周波数であると仮定する。この場合、図3Aに示す共振特性では、動作周波数f1が遅相領域(図3A中のP1点)に位置しているのに対して、図3Bに示す共振特性では、動作周波数f1が進相領域(図3B中のP2点)に位置する。つまり、電動車両100への給電中に電動車両100の車高が高くなると、一次側コイルL1と二次側コイルL2との結合係数が小さくなることによって共振特性が変化し、動作周波数f1が進相領域に入る可能性があった。   Here, it is assumed that the operating frequency f1 is a constant frequency. In this case, in the resonance characteristics shown in FIG. 3A, the operating frequency f1 is located in the slow-phase region (P1 point in FIG. 3A), whereas in the resonance characteristics shown in FIG. It is located in the region (point P2 in FIG. 3B). In other words, if the vehicle height of the electric vehicle 100 increases during power feeding to the electric vehicle 100, the coupling characteristic between the primary side coil L1 and the secondary side coil L2 decreases, so that the resonance characteristics change and the operating frequency f1 increases. There was a possibility of entering the phase area.

そこで、本実施形態の非接触給電システム1では、電動車両100の車高が変化することで一次側コイルL1と二次側コイルL2との結合係数が変化した場合でも、インバータ回路21の動作周波数f1が進相領域に入りにくいように、以下の構成を採用している。   Therefore, in the non-contact power feeding system 1 of the present embodiment, even when the coupling coefficient between the primary side coil L1 and the secondary side coil L2 changes due to the change in the height of the electric vehicle 100, the operating frequency of the inverter circuit 21 is changed. The following configuration is adopted so that f1 does not easily enter the phase advance region.

図4Aは、事前に計測した特定の電動車両100の周波数特性を示す図であり、この周波数特性は記憶部25に記憶されている。例えば、インバータ回路21を高周波領域で動作させる場合、制御部22は、第3周波数fr3を基準周波数(第1共振周波数)とし、この基準周波数より制御値Δf1だけ高い周波数をインバータ回路21の動作周波数f1とする。なお、図4Aにおける高周波領域は、第2周波数fr2よりも高い周波数領域である。   FIG. 4A is a diagram illustrating a frequency characteristic of a specific electric vehicle 100 measured in advance, and this frequency characteristic is stored in the storage unit 25. For example, when the inverter circuit 21 is operated in the high frequency region, the control unit 22 sets the third frequency fr3 as a reference frequency (first resonance frequency), and a frequency higher than the reference frequency by the control value Δf1 is an operating frequency of the inverter circuit 21. Let f1. Note that the high frequency region in FIG. 4A is a frequency region higher than the second frequency fr2.

ここで、制御値Δf1は、電動車両100の車高が最も低いときの高周波領域側の第2共振周波数(図3A中の第3周波数fr3)と、電動車両100の車高が最も高いときの高周波領域側の第3共振周波数(図3B中の第3周波数fr3)との差分以上の値である。言い換えれば、制御値Δf1は、電動車両100への積載量が最大のときの高周波領域側の第2共振周波数と、電動車両100への積載量がゼロのときの高周波領域側の第3共振周波数との差分以上の値である。この制御値Δf1は、電動車両100の種類に応じて異なる値であり、上記の第1車高情報及び第2車高情報と関連付けて記憶部25に記憶される。   Here, the control value Δf1 corresponds to the second resonance frequency (the third frequency fr3 in FIG. 3A) when the electric vehicle 100 has the lowest vehicle height and the highest vehicle height of the electric vehicle 100. The value is equal to or greater than the difference from the third resonance frequency on the high frequency region side (the third frequency fr3 in FIG. 3B). In other words, the control value Δf1 is the second resonance frequency on the high frequency region side when the loading amount on the electric vehicle 100 is maximum, and the third resonance frequency on the high frequency region side when the loading amount on the electric vehicle 100 is zero. The value is greater than or equal to the difference. The control value Δf1 is a value that differs depending on the type of the electric vehicle 100, and is stored in the storage unit 25 in association with the first vehicle height information and the second vehicle height information.

次に、本実施形態の非接触給電システム1の動作について説明する。   Next, operation | movement of the non-contact electric power feeding system 1 of this embodiment is demonstrated.

電動車両100が非接触給電装置2に近づくと、非接触給電装置2の一次側通信部24と非接触受電装置3の二次側通信部34とが通信を行う。このとき、二次側通信部34は、車種情報を含む無線信号を一次側通信部24に送信する。一次側通信部24は、二次側通信部34より無線信号を受信すると、無線信号に含まれる車種情報を制御部22に出力する。制御部22は、車種情報に含まれる第1車高情報及び第2車高情報に基づいて、対応する制御値Δf1を記憶部25から読み出す。   When the electric vehicle 100 approaches the non-contact power supply device 2, the primary side communication unit 24 of the non-contact power supply device 2 and the secondary side communication unit 34 of the non-contact power reception device 3 perform communication. At this time, the secondary side communication unit 34 transmits a radio signal including vehicle type information to the primary side communication unit 24. When receiving the radio signal from the secondary side communication unit 34, the primary side communication unit 24 outputs the vehicle type information included in the radio signal to the control unit 22. The control unit 22 reads the corresponding control value Δf1 from the storage unit 25 based on the first vehicle height information and the second vehicle height information included in the vehicle type information.

その後、制御部22は、基準周波数である第3周波数fr3より制御値Δf1だけ高い周波数をインバータ回路21の動作周波数f1とする。これにより、電動車両100への給電中に電動車両100から人が降りたり、荷物を降ろしたりして、一次側コイルL1と二次側コイルL2との結合係数が小さくなった場合でも、インバータ回路21の動作周波数f1を進相領域に入りにくくすることができる。また逆に、電動車両100への給電中に電動車両100に人が乗り込んだり、荷物を積み込んだりした場合でも、同様に、インバータ回路21の動作周波数f1を進相領域に入りにくくすることができる。   Thereafter, the control unit 22 sets the frequency that is higher than the third frequency fr3, which is the reference frequency, by the control value Δf1 as the operating frequency f1 of the inverter circuit 21. As a result, even if a person gets off the electric vehicle 100 or unloads the load during the power supply to the electric vehicle 100 and the coupling coefficient between the primary coil L1 and the secondary coil L2 becomes small, the inverter circuit The operating frequency f1 of 21 can be made difficult to enter the phase advance region. Conversely, even when a person gets into the electric vehicle 100 or loads a load while the electric vehicle 100 is being fed, the operating frequency f1 of the inverter circuit 21 can be made difficult to enter the phase advance region. .

さらに、本実施形態によれば、一次側通信部24と二次側通信部34との通信により第1車高情報及び第2車高情報を非接触受電装置3から非接触給電装置2に伝送するだけで、制御値Δf1を設定することができる。   Further, according to the present embodiment, the first vehicle height information and the second vehicle height information are transmitted from the non-contact power receiving device 3 to the non-contact power feeding device 2 through communication between the primary side communication unit 24 and the secondary side communication unit 34. Only by doing this, the control value Δf1 can be set.

また、インバータ回路21を低周波領域(図4A中の第2周波数fr2よりも低い周波数領域)で動作させる場合も、基準周波数となる第1周波数fr1よりも制御値Δf2だけ高い周波数をインバータ回路21の動作周波数f1とすればよい。ここに、制御値Δf2は、電動車両100の車高が最も低いときの第2共振周波数(図3A中の第1周波数fr1)と、電動車両100の車高が最も高いときの第3共振周波数(図3B中の第1周波数fr1)との差分以上の値である。   In addition, when the inverter circuit 21 is operated in the low frequency region (frequency region lower than the second frequency fr2 in FIG. 4A), the inverter circuit 21 sets a frequency higher than the first frequency fr1 serving as the reference frequency by the control value Δf2. The operating frequency f1 is sufficient. Here, the control value Δf2 is the second resonance frequency when the vehicle height of the electric vehicle 100 is the lowest (first frequency fr1 in FIG. 3A) and the third resonance frequency when the vehicle height of the electric vehicle 100 is the highest. It is a value greater than or equal to the difference from (the first frequency fr1 in FIG. 3B).

さらに、図4Bに示すように、周波数特性が単峰特性(一次側共振部23の出力の極大値が1箇所現れる特性)である場合でも、基準周波数となる第1周波数fr1よりも制御値Δf3だけ高い周波数をインバータ回路21の動作周波数f1とすればよい。ここに、制御値Δf3は、電動車両100の車高が最も低いときの第2共振周波数と、電動車両100の車高が最も高いときの第3共振周波数との差分以上の値である。   Further, as shown in FIG. 4B, even when the frequency characteristic is a single peak characteristic (a characteristic where the maximum value of the output of the primary side resonance unit 23 appears at one location), the control value Δf3 is more than the first frequency fr1 serving as the reference frequency. The higher frequency may be set as the operating frequency f1 of the inverter circuit 21. Here, control value Δf3 is a value equal to or greater than the difference between the second resonance frequency when electric vehicle 100 has the lowest vehicle height and the third resonance frequency when electric vehicle 100 has the highest vehicle height.

そして何れの場合でも、同様に、インバータ回路21の動作周波数f1を進相領域に入りにくくすることができる。   In any case, similarly, the operating frequency f1 of the inverter circuit 21 can be made difficult to enter the phase advance region.

なお、本実施形態では、非接触給電装置2と非接触受電装置3との通信により伝送された車種情報に基づいて、対応する制御値(Δf1、Δf2又はΔf3)を記憶部25から読み出すように構成したが、制御値を求める方法は上記の方法に限定されない。例えば、非接触給電装置2に対してユーザーが車種や車名などを入力し、この入力情報に基づいて対応する制御値を記憶部25から読み出すように構成してもよい。   In the present embodiment, the corresponding control value (Δf1, Δf2, or Δf3) is read from the storage unit 25 based on the vehicle type information transmitted by communication between the contactless power feeding device 2 and the contactless power receiving device 3. Although configured, the method of obtaining the control value is not limited to the above method. For example, the user may input a vehicle type, a vehicle name, or the like to the non-contact power supply device 2 and read a corresponding control value from the storage unit 25 based on this input information.

また、本実施形態では、特定の電動車両100の周波数特性を記憶部25に記憶させており、この周波数特性における共振周波数を基準周波数としている。これに対して、市販されている全ての電動車両100の周波数特性を記憶部25に記憶させ、給電する電動車両100の種類に応じて対応する周波数特性を読み出せるようにしてもよい。これにより、給電する電動車両100の種類に応じて対応する基準周波数を選択できるので、上述の実施形態に比べて、インバータ回路21の動作周波数f1をより正確に制御することができる。   Moreover, in this embodiment, the frequency characteristic of the specific electric vehicle 100 is memorize | stored in the memory | storage part 25, and the resonant frequency in this frequency characteristic is made into the reference frequency. In contrast, the frequency characteristics of all commercially available electric vehicles 100 may be stored in the storage unit 25, and the corresponding frequency characteristics may be read according to the type of the electric vehicle 100 to be fed. Thereby, since the corresponding reference frequency can be selected according to the type of the electric vehicle 100 to be fed, the operating frequency f1 of the inverter circuit 21 can be controlled more accurately than in the above-described embodiment.

さらに、本実施形態では、非接触給電装置2が直流電源20を備えている場合を例に説明したが、非接触給電装置2の外部に直流電源が設けられていてもよい。また、外部から供給される交流電力を直流電力に変換する変換回路を非接触給電装置2が備えていてもよい。   Furthermore, although the case where the non-contact power supply device 2 includes the DC power source 20 has been described as an example in the present embodiment, a DC power source may be provided outside the non-contact power supply device 2. Moreover, the non-contact electric power feeder 2 may be provided with the conversion circuit which converts the alternating current power supplied from the outside into direct current power.

さらに、本実施形態では、一次側コイルL1及び二次側コイルL2としてスパイラル型のコイルを用いたが、コアに対して導線が螺旋状に巻き付けられたソレノイド型のコイルであってもよい。   Further, in the present embodiment, spiral type coils are used as the primary side coil L1 and the secondary side coil L2, but a solenoid type coil in which a conducting wire is spirally wound around the core may be used.

ただし、スパイラル型のコイルの場合、ソレノイド型のコイルに比べて不要輻射ノイズが生じにくいという利点がある。また、スパイラル型のコイルを用いることで不要輻射ノイズが低減される結果、インバータ回路21において使用可能な動作周波数の範囲が拡大されるという利点もある。以下、この点について詳述する。   However, in the case of a spiral type coil, there is an advantage that unnecessary radiation noise is less likely to occur compared to a solenoid type coil. Further, by using the spiral type coil, unnecessary radiation noise is reduced. As a result, there is an advantage that the range of operating frequencies that can be used in the inverter circuit 21 is expanded. Hereinafter, this point will be described in detail.

本実施形態の非接触給電システム1における共振特性は、一次側コイルL1と二次側コイルL2との結合係数に応じて変化し、ある条件下では、図3Aに示すような双峰特性を示す。なお、図3Aに示す例では、第2周波数fr2よりも低い周波数領域が「低周波領域」であり、第2周波数fr2よりも高い周波数領域が「高周波領域」である。   The resonance characteristic in the non-contact power feeding system 1 of the present embodiment changes according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, and shows a bimodal characteristic as shown in FIG. 3A under a certain condition. . In the example shown in FIG. 3A, a frequency region lower than the second frequency fr2 is a “low frequency region”, and a frequency region higher than the second frequency fr2 is a “high frequency region”.

ここで、ソレノイド型のコイルを採用した場合、インバータ回路21の動作周波数f1が低周波領域の“山”にあるときと、高周波領域の“山”にあるときとを比較すると、低周波領域の“山”にあるときの方が、不要輻射ノイズは小さくなる。つまり、高周波領域の“山”においては、一次側コイルL1を流れる電流と、二次側コイルL2を流れる電流とは同位相になる。これに対して、低周波領域の“山”においては、一次側コイルL1を流れる電流と、二次側コイルL2を流れる電流とは逆位相になる。   Here, when the solenoid type coil is employed, when the operating frequency f1 of the inverter circuit 21 is in the “mountain” of the low frequency region and when it is in the “mountain” of the high frequency region, Unwanted radiation noise is smaller when it is on the “mountain”. That is, in the “mountains” in the high frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in phase. On the other hand, in the “mountains” in the low frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in opposite phases.

そのため、低周波領域の“山”においては、一次側コイルL1で生じる不要輻射ノイズと、二次側コイルL2で生じる不要輻射ノイズとが、互いに相殺されることになり、非接触給電システム1全体でみれば不要輻射ノイズは低減される。   Therefore, in the “mountain” in the low frequency region, the unnecessary radiation noise generated in the primary side coil L1 and the unnecessary radiation noise generated in the secondary side coil L2 cancel each other, and the entire non-contact power feeding system 1 If it sees, unnecessary radiation noise will be reduced.

したがって、ソレノイド型のコイルを採用する場合でも、インバータ回路21の動作周波数f1が低周波領域の“山”の遅相領域(fr1<f1<fr2)にあれば、インバータ回路21が遅相モードで動作し、かつ不要輻射ノイズも低減されることになる。しかし、低周波領域の“山”の遅相領域は、一次側コイルL1と二次側コイルL2との結合係数に応じて変化するため、このような不確定な遅相領域にインバータ回路21の動作周波数f1を収める制御が必要になる。   Therefore, even when the solenoid type coil is employed, if the operating frequency f1 of the inverter circuit 21 is in the “mountain” slow phase region (fr1 <f1 <fr2) in the low frequency region, the inverter circuit 21 is in the slow phase mode. It operates and unnecessary radiation noise is also reduced. However, since the slow phase region of the “mountain” in the low frequency region changes according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, the inverter circuit 21 has such an uncertain slow phase region. Control to accommodate the operating frequency f1 is required.

これに対して、スパイラル型のコイルであれば、たとえインバータ回路21の動作周波数f1が高周波領域の“山”の遅相領域(fr3より高周波側)にあっても、ソレノイド型のコイルに比べれば不要輻射ノイズは大幅に低減される。つまり、スパイラル型のコイルが用いられることで、インバータ回路21の動作周波数f1は低周波領域の“山”の遅相領域に制限されず、インバータ回路21において使用可能な動作周波数f1の範囲が拡大されることになる。   On the other hand, in the case of a spiral type coil, even if the operating frequency f1 of the inverter circuit 21 is in the “mountain” slow phase region (higher frequency side than fr3) of the high frequency region, compared to the solenoid type coil. Unwanted radiation noise is greatly reduced. That is, by using the spiral type coil, the operating frequency f1 of the inverter circuit 21 is not limited to the “mountain” slow phase region in the low frequency region, and the range of the operating frequency f1 usable in the inverter circuit 21 is expanded. Will be.

なお、高周波領域の“山”の遅相領域も不確定な領域ではあるが、インバータ回路21の動作周波数f1を十分に高い周波数から低周波側にスイープさせれば動作周波数f1は高周波領域の“山”の遅相領域を通るので、複雑な制御は不要である。   Although the slow phase region of the “mountain” in the high frequency region is an uncertain region, if the operating frequency f1 of the inverter circuit 21 is swept from a sufficiently high frequency to a low frequency side, the operating frequency f1 becomes “ Since it passes through the lagging region of the mountain, complicated control is unnecessary.

以上説明したように、本実施形態の非接触給電装置2は、一次側共振部23と、インバータ回路21と、制御部22とを備える。一次側共振部23は、一次側コイルL1及び一次側コンデンサC1からなる。インバータ回路21は、直流電力を交流電力に変換して一次側共振部23に出力する。制御部22は、インバータ回路21を制御する。一次側共振部23は、二次側コイルL2及び二次側コンデンサC2からなる電動車両100側の二次側共振部31との電磁結合を利用して電動車両100に非接触で給電するように構成される。制御部22は、予め設定した一次側共振部23の第1共振周波数(第1周波数fr1又は第3周波数fr3)より制御値(Δf1、Δf2又はΔf3)だけ高い周波数をインバータ回路21の動作周波数f1とする。制御値は、電動車両100への積載量が最大のときの第2共振周波数と、電動車両100への積載量がゼロのときの第3共振周波数との差分以上である。   As described above, the contactless power supply device 2 of the present embodiment includes the primary side resonance unit 23, the inverter circuit 21, and the control unit 22. The primary side resonance unit 23 includes a primary side coil L1 and a primary side capacitor C1. The inverter circuit 21 converts DC power into AC power and outputs the AC power to the primary side resonance unit 23. The control unit 22 controls the inverter circuit 21. The primary side resonance unit 23 supplies power to the electric vehicle 100 in a non-contact manner by using electromagnetic coupling with the secondary side resonance unit 31 on the electric vehicle 100 side including the secondary side coil L2 and the secondary side capacitor C2. Composed. The control unit 22 sets a frequency higher by a control value (Δf1, Δf2 or Δf3) than the preset first resonance frequency (first frequency fr1 or third frequency fr3) of the primary side resonance unit 23 to the operating frequency f1 of the inverter circuit 21. And The control value is equal to or greater than the difference between the second resonance frequency when the loading amount on the electric vehicle 100 is maximum and the third resonance frequency when the loading amount on the electric vehicle 100 is zero.

本構成によれば、電動車両100への給電中に電動車両100の車高が変化することによって一次側コイルL1と二次側コイルL2との結合係数が変化した場合でも、インバータ回路21の動作周波数f1を進相領域に入りにくくすることができる。   According to this configuration, even when the coupling coefficient between the primary side coil L1 and the secondary side coil L2 changes due to the change in the height of the electric vehicle 100 during power feeding to the electric vehicle 100, the operation of the inverter circuit 21 is performed. The frequency f1 can be made difficult to enter the phase advance region.

また、本実施形態の非接触給電装置2のように、一次側通信部24をさらに備えるのが好ましい。この場合、制御部22は、一次側通信部24と電動車両100側の二次側通信部34との通信により、電動車両100への積載量が最大のときの第1車高情報及び電動車両100への積載量がゼロのときの第2車高情報を取得する。そして、制御部22は、第1車高情報及び第2車高情報に基づいて制御値を設定する。   Moreover, it is preferable to further provide the primary side communication part 24 like the non-contact electric power feeder 2 of this embodiment. In this case, the control unit 22 uses the communication between the primary side communication unit 24 and the secondary side communication unit 34 on the electric vehicle 100 side, so that the first vehicle height information and the electric vehicle when the load amount on the electric vehicle 100 is the maximum. The second vehicle height information when the loading amount to 100 is zero is acquired. And the control part 22 sets a control value based on 1st vehicle height information and 2nd vehicle height information.

本構成によれば、一次側通信部24と二次側通信部34との通信により電動車両100の第1車高情報及び第2車高情報を取得するだけで、制御値を設定することができる。   According to this configuration, the control value can be set only by acquiring the first vehicle height information and the second vehicle height information of the electric vehicle 100 by communication between the primary side communication unit 24 and the secondary side communication unit 34. it can.

本実施形態の非接触給電システム1は、非接触給電装置2と、少なくとも二次側共振部31を有し電動車両100に搭載される非接触受電装置3とを備えている。   The non-contact power feeding system 1 of the present embodiment includes a non-contact power feeding device 2 and a non-contact power receiving device 3 that has at least a secondary side resonance unit 31 and is mounted on the electric vehicle 100.

本構成によれば、非接触給電装置2を用いることによって、一次側コイルL1と二次側コイルL2とのギャップが変化した場合でも、インバータ回路21の動作周波数f1を進相領域に入りにくくすることができる。   According to this configuration, by using the non-contact power feeding device 2, even when the gap between the primary side coil L1 and the secondary side coil L2 changes, the operating frequency f1 of the inverter circuit 21 is made difficult to enter the phase advance region. be able to.

1 非接触給電システム
2 非接触給電装置
3 非接触受電装置
21 インバータ回路
22 制御部
23 一次側共振部
24 一次側通信部
31 二次側共振部
34 二次側通信部
100 電動車両
C1 一次側コンデンサ
C2 二次側コンデンサ
L1 一次側コイル
L2 二次側コイル
f1 動作周波数
fr1 第1周波数(第1共振周波数)
fr3 第3周波数(第1共振周波数)
Δf1、Δf2、Δf3 制御値
DESCRIPTION OF SYMBOLS 1 Non-contact electric power feeding system 2 Non-contact electric power feeder 3 Non-contact electric power receiving apparatus 21 Inverter circuit 22 Control part 23 Primary side resonance part 24 Primary side communication part 31 Secondary side resonance part 34 Secondary side communication part 100 Electric vehicle C1 Primary side capacitor C2 Secondary side capacitor L1 Primary side coil L2 Secondary side coil f1 Operating frequency fr1 First frequency (first resonance frequency)
fr3 Third frequency (first resonance frequency)
Δf1, Δf2, Δf3 Control value

Claims (3)

一次側コイル及び一次側コンデンサからなる一次側共振部と、
直流電力を交流電力に変換して前記一次側共振部に出力するインバータ回路と、
前記インバータ回路を制御する制御部とを備え、
前記一次側共振部は、二次側コイル及び二次側コンデンサからなる電動車両側の二次側共振部との電磁結合を利用して前記電動車両に非接触で給電するように構成され、
前記制御部は、予め設定した前記一次側共振部の第1共振周波数より制御値だけ高い周波数を前記インバータ回路の動作周波数とし、
前記制御値は、前記電動車両への積載量が最大のときの第2共振周波数と、前記電動車両への積載量がゼロのときの第3共振周波数との差分以上であることを特徴とする非接触給電装置。
A primary side resonating unit comprising a primary side coil and a primary side capacitor;
An inverter circuit that converts DC power into AC power and outputs the AC power to the primary-side resonance unit;
A control unit for controlling the inverter circuit,
The primary side resonance unit is configured to supply power to the electric vehicle in a non-contact manner using electromagnetic coupling with a secondary side resonance unit on the electric vehicle side including a secondary side coil and a secondary side capacitor,
The control unit sets a frequency higher than a preset first resonance frequency of the primary side resonance unit by a control value as an operating frequency of the inverter circuit,
The control value is equal to or greater than a difference between a second resonance frequency when the loading amount on the electric vehicle is maximum and a third resonance frequency when the loading amount on the electric vehicle is zero. Non-contact power feeding device.
一次側通信部をさらに備え、
前記制御部は、前記一次側通信部と前記電動車両側の二次側通信部との通信により、前記電動車両への積載量が最大のときの第1車高情報及び前記電動車両への積載量がゼロのときの第2車高情報を取得し、
前記制御部は、前記第1車高情報及び前記第2車高情報に基づいて前記制御値を設定することを特徴とする請求項1記載の非接触給電装置。
A primary side communication unit;
The control unit communicates between the primary side communication unit and the secondary side communication unit on the electric vehicle side, so that the first vehicle height information when the loading amount on the electric vehicle is maximum and the loading on the electric vehicle Obtain the second vehicle height information when the amount is zero,
The contactless power feeding device according to claim 1, wherein the control unit sets the control value based on the first vehicle height information and the second vehicle height information.
請求項1又は2記載の非接触給電装置と、少なくとも前記二次側共振部を有し前記電動車両に搭載される非接触受電装置とを備えたことを特徴とする非接触給電システム。   A non-contact power feeding system comprising: the non-contact power feeding device according to claim 1; and a non-contact power receiving device that has at least the secondary-side resonance unit and is mounted on the electric vehicle.
JP2015061459A 2015-03-24 2015-03-24 Non-contact power supply device and non-contact power supply system using the same Expired - Fee Related JP6454943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061459A JP6454943B2 (en) 2015-03-24 2015-03-24 Non-contact power supply device and non-contact power supply system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061459A JP6454943B2 (en) 2015-03-24 2015-03-24 Non-contact power supply device and non-contact power supply system using the same

Publications (2)

Publication Number Publication Date
JP2016182002A JP2016182002A (en) 2016-10-13
JP6454943B2 true JP6454943B2 (en) 2019-01-23

Family

ID=57132172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061459A Expired - Fee Related JP6454943B2 (en) 2015-03-24 2015-03-24 Non-contact power supply device and non-contact power supply system using the same

Country Status (1)

Country Link
JP (1) JP6454943B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102277826B1 (en) * 2016-08-08 2021-07-15 현대자동차주식회사 Wireless charing control apparatus and method for electric vehicle, and wireless charing apparatus for electric vehicle
JP6277372B2 (en) * 2016-09-16 2018-02-14 株式会社大都技研 Amusement stand
KR102122273B1 (en) 2017-01-30 2020-06-15 닛산 지도우샤 가부시키가이샤 Parking Assistance Method and Parking Assistance Device
CN107482786B (en) * 2017-07-04 2020-04-21 中国科学院电工研究所 Load estimation method of wireless charging system
JP6825707B2 (en) 2017-07-10 2021-02-03 株式会社村田製作所 High frequency power supply

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481091B2 (en) * 2009-04-14 2014-04-23 富士通テン株式会社 Wireless power transmission apparatus and wireless power transmission method
JP5010061B1 (en) * 2011-09-21 2012-08-29 パイオニア株式会社 Non-contact power transmission device, non-contact power reception device, and non-contact power supply system
JP5832317B2 (en) * 2012-01-26 2015-12-16 新電元工業株式会社 Contactless power supply circuit
DE112012006896T5 (en) * 2012-09-13 2015-06-03 Toyota Jidosha Kabushiki Kaisha Contactless power supply system, energy transfer device and vehicle used thereby
JP6083310B2 (en) * 2013-04-15 2017-02-22 日産自動車株式会社 Non-contact power feeding apparatus and control method thereof
CN104377959B (en) * 2013-08-16 2017-04-26 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain

Also Published As

Publication number Publication date
JP2016182002A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
US10336201B2 (en) Contactless power transmission system
JP6454943B2 (en) Non-contact power supply device and non-contact power supply system using the same
US9831681B2 (en) Power reception apparatus and power receiving method
JP6395096B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
WO2012132413A1 (en) Power transmission system
JP6440080B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP6176547B2 (en) Non-contact power feeding device and starting method of non-contact power feeding device
US10218186B2 (en) Power feeding device and non-contact power transmission device
WO2015170460A1 (en) Wireless power supply device and wireless power supply system using same
JP6460373B2 (en) Coil unit and wireless power transmission device
WO2016017143A1 (en) Contactless power-feeding device and contactless power-feeding system using same
JP6675093B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6369792B2 (en) Non-contact power supply device and non-contact power supply system
WO2015182097A1 (en) Contactless power-supplying device and contactless power-supplying system in which same is used
JP6040510B2 (en) Power transmission system
JP6501193B2 (en) Non-contact power feeding device and non-contact power feeding system
JP2021103741A (en) Contactless power supply system
JP6685015B2 (en) NON-CONTACT POWER FEEDER, NON-CONTACT POWER TRANSMISSION SYSTEM, PROGRAM, AND METHOD FOR CONTROLLING NON-CONTACT POWER FEED DEVICE
JP6569987B2 (en) Non-contact power supply device and non-contact power supply system
WO2016147663A1 (en) Wireless power supply device and wireless power supply system
JP6650626B2 (en) Non-contact power supply device and non-contact power supply system
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JPWO2015104768A1 (en) Non-contact power feeding device control method and non-contact power feeding device
US9935500B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R151 Written notification of patent or utility model registration

Ref document number: 6454943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees