WO2015170460A1 - Wireless power supply device and wireless power supply system using same - Google Patents

Wireless power supply device and wireless power supply system using same Download PDF

Info

Publication number
WO2015170460A1
WO2015170460A1 PCT/JP2015/002238 JP2015002238W WO2015170460A1 WO 2015170460 A1 WO2015170460 A1 WO 2015170460A1 JP 2015002238 W JP2015002238 W JP 2015002238W WO 2015170460 A1 WO2015170460 A1 WO 2015170460A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch elements
coil
capacitor
primary
Prior art date
Application number
PCT/JP2015/002238
Other languages
French (fr)
Japanese (ja)
Inventor
田村 秀樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015170460A1 publication Critical patent/WO2015170460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention generally relates to a non-contact power supply device, a non-contact power supply system, and more particularly to a non-contact power supply device that supplies power to a load in a non-contact manner and a non-contact power supply system using the same.
  • a non-contact power supply device that supplies electric power to a moving body in a non-contact manner using electromagnetic induction is known, for example, disclosed in Document 1 (Japanese Patent Application Publication No. 2013-243929).
  • the non-contact power feeding device described in Document 1 includes a power feeding coil (primary side coil) and a power feeding side control unit.
  • the primary side coil supplies electric power to the non-contact power receiving device provided in the electric vehicle by generating a magnetic field.
  • the power supply side control unit controls the start and stop of the power supply of the primary side coil, and controls the magnitude of the power supplied from the primary side coil.
  • the non-contact power receiving device includes a power receiving coil (secondary coil), a rectifier circuit, and a storage battery (load).
  • the secondary coil can receive power from the primary coil by electromagnetic induction. And the electric power which the secondary side coil received by electromagnetic induction is input into a rectifier circuit, is converted into direct current, and is output to a load.
  • the present invention has been made in view of the above points, and a non-contact power feeding device that can feed power with sufficient power feeding efficiency even when the relative positions of the primary side coil and the secondary side coil are shifted, and It aims at providing the non-contact electric power feeding system using it.
  • the contactless power supply device of the present invention includes an inverter circuit, a primary side coil, a capacity adjustment circuit, and a control circuit.
  • the inverter circuit has a plurality of first switch elements, and converts the DC power into AC power by switching on / off of the plurality of first switch elements, and outputs the AC power.
  • the primary coil receives the AC power output from the inverter circuit and generates a magnetic field.
  • the capacitance adjusting circuit is electrically connected between the inverter circuit and the primary side coil, and includes a plurality of second switch elements and a primary side capacitor. In addition, the capacitance adjusting circuit switches a path through the primary side capacitor and a path not through the primary side capacitor by switching on / off of the plurality of second switch elements.
  • the control circuit controls on / off of the plurality of first switch elements and the plurality of second switch elements, respectively.
  • the primary side coil forms a resonance circuit together with the primary side capacitor.
  • the control circuit starts so that the phase of the first drive signal applied to the plurality of first switch elements matches the phase of the second drive signal applied to the plurality of second switch elements.
  • the control circuit controls the second drive signal so that the phase of the second drive signal advances from the phase of the first drive signal after startup.
  • the contactless power supply system of the present invention includes the contactless power supply device and a power receiving device that receives power supplied from the contactless power supply device.
  • the power receiving device includes a secondary coil that generates AC power in response to a magnetic field generated by the primary coil, and a secondary capacitor that forms a resonance circuit together with the secondary coil.
  • FIG. 2A is a waveform diagram of each drive signal in the non-contact power feeding apparatus according to the embodiment.
  • FIG. 2B is a waveform diagram of each drive signal when the phase is shifted in the non-contact power feeding apparatus according to the embodiment.
  • FIG. 4A is a correlation diagram between the switching frequency and the output power when the resonance characteristic shows a bimodal characteristic.
  • FIG. 4B is a correlation diagram between the switching frequency and the output power when the resonance characteristic shows a single peak characteristic.
  • FIG. 11A and FIG. 11B are correlation diagrams of the switching frequency and the output power when the resonance characteristics show a bimodal characteristic.
  • the contactless power supply device 2 of the present embodiment has the following first feature.
  • the non-contact power feeding device 2 includes an inverter circuit 21, a capacity adjustment circuit 22, a control circuit 23, and a primary coil L1, as shown in FIG.
  • the inverter circuit 21 has a plurality of first switch elements S11 to S14.
  • the inverter circuit 21 converts the DC power into AC power and outputs AC power by switching on / off the plurality of first switch elements S11 to S14.
  • the primary coil L1 receives the AC power output from the inverter circuit 21 and generates a magnetic field.
  • the capacity adjustment circuit 22 is electrically connected between the inverter circuit 21 and the primary side coil L1.
  • the capacitance adjusting circuit 22 includes a plurality of second switch elements S21 to S24 and a primary side capacitor C11. The capacitance adjusting circuit 22 switches the path through the primary side capacitor C11 and the path not through the primary side capacitor C11 by switching on / off of the plurality of second switch elements S21 to S24.
  • the control circuit 23 controls on / off of the plurality of first switch elements S11 to S14 and the plurality of second switch elements S21 to S24, respectively.
  • the primary side coil L1 forms a resonance circuit (primary side resonance circuit) together with the primary side capacitor C11.
  • the control circuit 23 starts so that the phases of the first drive signals G11 and G14 (G12 and G13) coincide with the phases of the second drive signals G22 and G23 (G21 and G24).
  • the first drive signals G11 to G14 are signals given to the plurality of first switch elements S11 to S14.
  • the second drive signals G21 to G24 are signals given to the plurality of second switch elements S21 to S24.
  • the control circuit 23 advances the phase of the second drive signals G21, G24 (G22, G23) from the phase of the first drive signals G12, G13 (G11, G14). To control.
  • non-contact power feeding device 2 of the present embodiment may have the following second feature in addition to the first feature.
  • the non-contact power feeding device 2 includes a capacitor C12 connected in series to the capacitance adjusting circuit 22 between the inverter circuit 21 and the primary side coil L1, as shown in FIGS. Prepare.
  • the non-contact power feeding device 2 of the present embodiment may have the following third feature.
  • the capacitor C12 is connected between the capacitance adjusting circuit 22 and the primary coil L1, as shown in FIGS.
  • non-contact power feeding device 2 of the present embodiment may have the following fourth feature in addition to any of the first to third features.
  • the plurality of second switch elements are a first bidirectional switch Q1 and a second bidirectional switch Q2, as shown in FIG.
  • the capacity adjustment circuit 22 connects the first bidirectional switch Q1 in series with the primary side capacitor C11, and connects the second bidirectional switch Q2 in parallel with the series circuit of the primary side capacitor C11 and the first bidirectional switch Q1. Configured.
  • the non-contact power feeding device 2 of the present embodiment may have the following fifth feature.
  • each of the first bidirectional switch Q1 and the second bidirectional switch Q2 is a gallium nitride based semiconductor element.
  • non-contact power feeding system 1 of the present embodiment has the following sixth feature.
  • the non-contact power feeding system 1 includes a non-contact power feeding device 2 having any one of the first to fifth features and a power receiving device 3 as shown in FIG.
  • the power receiving device 3 receives a magnetic field generated by the primary coil L1 and generates a secondary circuit L2 that generates AC power, and a secondary circuit that forms a resonance circuit (secondary resonance circuit) together with the secondary coil L2.
  • Side capacitor C21 receives a magnetic field generated by the primary coil L1 and generates a secondary circuit L2 that generates AC power, and a secondary circuit that forms a resonance circuit (secondary resonance circuit) together with the secondary coil L2.
  • the contactless power supply device 2 of the present embodiment can supply power with sufficient power supply efficiency even when the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
  • non-contact power supply system 1 of the present embodiment can supply power with sufficient power supply efficiency even if the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
  • the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment will be described in detail.
  • the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not deviated from this embodiment.
  • Various changes can be made in accordance with the design or the like as long as they are not.
  • the contactless power supply device 2 and the contactless power supply system 1 of the present embodiment may be configured to supply power to the load 4 in a contactless manner, and the load 4 is not limited to the storage battery 101 of the electric vehicle 100.
  • the contactless power supply system 1 of the present embodiment includes a contactless power supply device 2 and a power reception device 3 as shown in FIG.
  • the non-contact power feeding device 2 includes an inverter circuit 21, a capacity adjustment circuit 22, a control circuit 23, and a primary coil L1.
  • the power receiving device 3 includes a rectifier circuit 31, a secondary coil L2, and a secondary capacitor C21.
  • the non-contact power feeding device 2 is installed on the floor or the ground as shown in FIG.
  • the non-contact power feeding device 2 may be arranged not only on the floor or the ground but also embedded in the floor or the ground, for example.
  • only the primary side coil L1 is arranged at a position where it can face the secondary side coil L2, and other parts, circuits, etc. are arranged away from the primary side coil L1. It may be configured.
  • the power receiving device 3 is installed in the vehicle of the electric vehicle 100 as shown in FIG.
  • the power receiving device 3 is electrically connected to the storage battery 101 of the electric vehicle 100.
  • the storage battery 101 is constituted by, for example, a nickel metal hydride battery, a lithium ion battery, or a high-capacity capacitor.
  • the storage battery 101 is used as a power source for an electric motor included in the electric vehicle 100.
  • the storage battery 101 is used as a power source for electronic devices such as a car navigation system, a car audio, and a power window included in the electric vehicle 100.
  • the non-contact power feeding device 2 will be described.
  • the inverter circuit 21 is a full-bridge inverter composed of four first switch elements S11 to S14 as shown in FIG.
  • each of the first switch elements S11 to S14 is an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • Each of the first switch elements S11 to S14 may be composed of other semiconductor switching elements such as bipolar transistors and IGBTs (Insulated Gate Bipolar Transistors).
  • a series circuit of two first switch elements S11 and S12 and a series circuit of two first switch elements S13 and S14 are connected in parallel.
  • the drains of the first switch elements S11 and S13 are electrically connected to the output terminal on the high potential side of the DC power supply DC1.
  • the sources of the first switch elements S12 and S14 are electrically connected to the output terminal on the low potential side of the DC power supply DC1.
  • a connection point between the source of the first switch element S13 and the drain of the first switch element S14 is the first output terminal of the inverter circuit 21.
  • the connection point between the source of the first switch element S11 and the drain of the first switch element S12 is the second output terminal of the inverter circuit 21.
  • the diodes electrically connected between the drains and sources of the first switch elements S11 to S14 are parasitic diodes of the first switch elements S11 to S14.
  • the inverter circuit 21 operates when the first drive signals G11 to G14 are supplied to the first switch elements S11 to S14, respectively. Specifically, the inverter circuit 21 operates so as to alternately switch the ON period of the first switch elements S11 and S14 and the ON period of the first switch elements S12 and S13 by the first drive signals G11 to G14. (See FIG. 2A). In the ON period of the first switch elements S11 and S14, the inverter circuit 21 outputs a negative voltage. Further, during the ON period of the first switch elements S12 and S13, the inverter circuit 21 outputs a positive voltage. Therefore, the inverter circuit 21 alternately outputs a positive voltage and a negative voltage.
  • the inverter circuit 21 includes a plurality of first switch elements S11 to S14.
  • the inverter circuit 21 converts the DC power supplied from the DC power source DC1 (see FIG. 1) into AC power by switching on / off of the plurality of first switch elements S11 to S14, and converts the AC power into AC power. It is configured to output.
  • the capacity adjustment circuit 22 includes a primary capacitor C11 and four second switch elements S21 to S24.
  • the second switch elements S21 to S24 are n-channel enhancement type MOSFETs.
  • Each of the second switch elements S21 to S24 may be composed of other semiconductor switching elements such as bipolar transistors and IGBTs.
  • a series circuit of two second switch elements S21 and S22 and a series circuit of two second switch elements S23 and S24 are connected in parallel.
  • a connection point between the source of the second switch element S21 and the drain of the second switch element S22 is electrically connected to the first output terminal of the inverter circuit 21.
  • the connection point between the source of the second switch element S23 and the drain of the second switch element S24 is electrically connected to one end of the primary side coil L1.
  • condenser C11 is electrically connected between the connection point of each source of 2nd switch element S21, S23, and the connection point of each drain of 2nd switch element S22, S24.
  • the diodes electrically connected between the drain terminals and the source terminals of the second switch elements S21 to S24 are parasitic diodes of the second switch elements S21 to S24.
  • the capacity adjustment circuit 22 operates when the second drive signals G21 to G24 are supplied to the second switch elements S21 to S24, respectively. Specifically, the capacitance adjustment circuit 22 operates so as to alternately switch the on period of the second switch elements S21, 24 and the on period of the second switch elements S22, S23 by the second drive signals G21 to G24. (See FIG. 2A).
  • a voltage is applied to the primary side capacitor C11 during a period in which the inverter circuit 21 outputs a positive voltage. That is, a path between the input and output of the capacitance adjustment circuit 22 is a path through the primary capacitor C11.
  • the current passes through the parasitic diode of the second switch element S23 and the second switch element S21 during the period in which the inverter circuit 21 outputs a negative voltage. Flows. That is, the path between the input and output of the capacity adjustment circuit 22 is a path that does not pass through the primary side capacitor C11. In other words, between the input and output of the capacitance adjustment circuit 22 is a path that bypasses the input and output.
  • the voltage is applied to the primary capacitor C11 during the period in which the inverter circuit 21 outputs a negative voltage. That is, a path between the input and output of the capacitance adjustment circuit 22 is a path through the primary capacitor C11.
  • the capacity adjustment circuit 22 is electrically connected between the inverter circuit 21 and the primary coil L1, and includes a plurality of second switch elements S21 to S24 and a primary capacitor C11.
  • the capacitance adjusting circuit 22 switches the path through the primary side capacitor C11 and the path not through the primary side capacitor C11 by switching on / off of the plurality of second switch elements S21 to S24. It is configured. In this way, by changing the period in which the primary side capacitor C11 is connected between the input and output and the period in which the primary side capacitor C11 is not connected between the input and output, the capacitance of the capacitance adjusting circuit 22 is changed. The capacity can be adjusted.
  • the control circuit 23 includes a main control circuit 231, a first drive circuit 232, and a second drive circuit 233.
  • the main control circuit 231 is constituted by, for example, a microcomputer (microcomputer).
  • the main control circuit 231 outputs a binary first control signal for switching on / off of each of the first switch elements S11 to S14 of the inverter circuit 21.
  • the main control circuit 231 switches the on / off of the first switch elements S12, S13 and the control signal for switching on / off of the first switch elements S11, S14.
  • the control signal is output as the first control signal.
  • the main control circuit 231 outputs a binary second control signal for switching on / off of each of the second switch elements S21 to S24 of the capacitance adjustment circuit 22.
  • the main control circuit 231 switches the on / off of the second switch elements S22, S23 and the control signal for switching on / off of the second switch elements S21, S24. Are output as the second control signal.
  • the first drive circuit 232 is a driver that amplifies the level of the first control signal output from the main control circuit 231 to a level capable of driving the first switch elements S11 to S14 of the inverter circuit 21.
  • the first control signal amplified by the first drive circuit 232 is input to the gates of the first switch elements S11 to S14 as the first drive signals G11 to G14, respectively. Accordingly, the first switch elements S11 to S14 are switched on / off by the first drive signals G11 to G14, respectively.
  • the second drive circuit 233 is a driver that amplifies the level of the second control signal output from the main control circuit 231 to a level capable of driving the second switch elements S21 to S24 of the capacitance adjustment circuit 22.
  • the second control signal amplified by the second drive circuit 233 is input to the gates of the second switch elements S21 to S24 as the second drive signals G21 to G24, respectively. Accordingly, the second switch elements S21 to S24 are switched on / off by the second drive signals G21 to G24, respectively.
  • control circuit 23 is configured to control ON / OFF of the plurality of first switch elements S11 to S14 and the plurality of second switch elements S21 to S24, respectively.
  • the first drive circuit 232 outputs a voltage based on the circuit ground as the first drive signals G12 and G14.
  • the first drive circuit 232 outputs a voltage based on the sources of the first switch elements S11 and S13 as the first drive signals G11 and G13.
  • the second drive circuit 233 outputs voltages based on the sources of the second switch elements S21 to S24 as the second drive signals G21 to G24.
  • the second drive circuit 233 is applied with a higher voltage than the first drive circuit 232. For this reason, in the non-contact electric power feeder 2 of this embodiment, the 1st drive circuit 232 and the 2nd drive circuit 233 are mutually electrically insulated.
  • the primary coil L1 is electrically connected to a pair of output terminals of the inverter circuit 21 via the capacity adjustment circuit 22.
  • the primary coil L1 generates a magnetic field when an alternating current output from the inverter circuit 21 flows. That is, the primary coil L1 receives the AC power output from the inverter circuit 21 and generates a magnetic field.
  • the primary coil L1 forms a resonance circuit (primary resonance circuit) together with the primary capacitor C11 included in the capacitance adjustment circuit 22.
  • the secondary coil L2 is provided so as to be positioned in the vicinity of the primary coil L1 when the electric vehicle 100 stops at a specified stop position.
  • the secondary coil L2 receives a magnetic field generated by the primary coil L1, an alternating current flows by electromagnetic induction. That is, the secondary coil L2 receives the magnetic field generated by the primary coil L1 and generates AC power.
  • a secondary capacitor C21 is electrically connected to one end of the secondary coil L2. For this reason, the secondary coil L2 forms a resonance circuit (secondary resonance circuit) together with the secondary capacitor C21.
  • the rectifier circuit 31 includes four diodes D1 to D4 and a smoothing capacitor C3 as shown in FIG.
  • Each of the diodes D1 to D4 constitutes a diode bridge.
  • the diode bridge converts the alternating current generated in the secondary coil L2 into a pulsating current and outputs the pulsating current.
  • the smoothing capacitor C3 is electrically connected to a pair of output terminals of the diode bridge.
  • the smoothing capacitor C3 smoothes the pulsating current output from the diode bridge and outputs a direct current. That is, the rectifier circuit 31 rectifies and outputs the AC power generated by the secondary coil L2 to DC power.
  • the DC power output from the rectifier circuit 31 is supplied to the load 4 (here, the storage battery 101).
  • the non-contact power feeding system 1 of the present embodiment power is transmitted from the primary coil L1 to the secondary coil L2 by a resonance method using a magnetic resonance phenomenon. That is, in the non-contact power feeding system 1 of the present embodiment, the output of the non-contact power feeding device 2 is utilized by utilizing the resonance phenomenon caused by the primary side resonance circuit formed by the primary side coil L1 and the primary side capacitor C11. Amplifying power. And in the non-contact electric power feeding system 1 of this embodiment, the magnetic resonance of the secondary side resonance circuit formed by the secondary side coil L2 and the secondary side capacitor C21 and the primary side resonance circuit is used. Thus, the output power of the non-contact power feeding device 2 is efficiently transmitted to the power receiving device 3. Therefore, it is desirable that the resonance characteristics of the primary-side resonance circuit and the secondary-side resonance circuit match each other.
  • the resonance characteristics in the non-contact power feeding system 1 of the present embodiment will be described.
  • the primary side resonance circuit (resonance on the secondary side) Circuit) exhibits so-called bimodal characteristics.
  • this resonance characteristic a “crest” at which the output is maximized at the first resonance frequency fr1, a “valley” at which the output is minimized at the second resonance frequency fr2, and a “mountain” at which the output is maximized at the third resonance frequency fr3. "And appears.
  • Resonance frequencies fr1 to fr3 are expressed by the following equations, where the inductance of the primary side resonance circuit (secondary side resonance circuit) is represented by 'L', the capacitance is represented by 'C', and the mutual inductance is represented by 'M'. It is represented by
  • the primary side resonance circuit (secondary side)
  • the resonance characteristic of the resonance circuit of FIG. a “mountain” where the output becomes maximum at the fourth resonance frequency fr4 appears.
  • the fourth resonance frequency fr4 is represented by the following expression when the inductance of the primary side resonance circuit (secondary side resonance circuit) is represented as ‘L’ and the capacitance is represented as ‘C’.
  • the resonance characteristic of the primary side resonance circuit shows a single peak characteristic.
  • the inverter circuit 21 operates in either the slow phase mode or the fast phase mode according to the correlation between the switching frequency f1 of the inverter circuit 21 and the resonance frequencies fr1 to fr4. Operate in mode.
  • the switching frequency f1 corresponds to the frequency of each of the first drive signals G11 to G14 and the second drive signals G21 to G24.
  • the phase advance mode is an operation mode in which the inverter circuit 21 operates in a state in which the phase of the output current of the inverter circuit 21 is advanced from the output voltage of the inverter circuit 21.
  • the switching operation of the inverter circuit 21 is so-called hard switching. Accordingly, the phase advance mode is not preferable because loss due to switching of each of the first switch elements S11 to S14 may increase or excessive stress may be applied to each of the first switch elements S11 to S14.
  • the slow phase mode is an operation mode in which the inverter circuit 21 operates in a state in which the phase of the current flowing through the primary side coil L1 (that is, the primary side current) is delayed from the phase of the output voltage of the inverter circuit 21. is there.
  • the switching operation of the inverter circuit 21 is so-called soft switching. Therefore, in the slow phase mode, loss due to switching of each of the first switch elements S11 to S14 can be reduced, and excessive stress can be prevented from being applied to each of the first switch elements S11 to S14. . That is, in the non-contact power feeding device 2 of the present embodiment, it is preferable that the inverter circuit 21 operates in the slow phase mode.
  • the inverter circuit 21 When the resonance characteristic shows a bimodal characteristic, as shown in FIG. 4A, when the switching frequency f1 is lower than the first resonance frequency fr1 (f1 ⁇ fr1), the inverter circuit 21 operates in the phase advance mode. As shown in FIG. 4A, when the switching frequency f1 is between the second resonance frequency fr2 and the third resonance frequency fr3 (fr2 ⁇ fr1 ⁇ fr3), the inverter circuit 21 operates in the phase advance mode. On the other hand, as shown in FIG. 4A, when the switching frequency f1 is between the first resonance frequency fr1 and the second resonance frequency fr2 (fr1 ⁇ f1 ⁇ fr2), the inverter circuit 21 operates in the slow phase mode. As shown in FIG. 4A, when the switching frequency f1 is larger than the third resonance frequency fr3 (f1> fr3), the inverter circuit 21 operates in the slow phase mode.
  • the inverter circuit 21 When the resonance characteristic shows a single peak characteristic, as shown in FIG. 4B, when the switching frequency f1 is lower than the fourth resonance frequency fr4 (f1 ⁇ fr4), the inverter circuit 21 operates in the phase advance mode. As shown in FIG. 4B, when the switching frequency f1 is higher than the fourth resonance frequency fr4 (f1> fr4), the inverter circuit 21 operates in the slow phase mode.
  • the control circuit 23 controls the switch elements S11 to S14 of the inverter circuit 21 so that the switching frequency f1 falls between the first resonance frequency fr1 and the second resonance frequency fr2. is doing.
  • This configuration is preferable because the phase of the current flowing through the primary side coil L1 and the phase of the current flowing through the secondary side coil L2 are shifted from each other by nearly 180 degrees, so that unnecessary radiation can be reduced.
  • the relative position of the primary side coil L1 and the secondary side coil L2 may shift
  • the resonance frequencies fr1 to fr4 change, the resonance characteristics also change. Then, the output power of the non-contact power feeding device 2 decreases with the change in the resonance characteristics, and there is a possibility that power cannot be fed with sufficient power feeding efficiency. Further, depending on the change in the resonance characteristics, the switching frequency f1 may enter the phase advance mode region. In this case, if the inverter circuit 21 is operated at the preset switching frequency f1, the inverter circuit 21 operates in the phase advance mode.
  • the output power of the non-contact power feeding device 2 can be changed.
  • a method of changing the switching frequency f1 is not preferable. Further, in the method of changing the switching frequency f1, the inverter circuit 21 may still operate in the phase advance mode.
  • the inventors of the present application simulate that the output power of the non-contact power feeding device 2 changes by changing the phase difference ⁇ without changing the switching frequency f ⁇ b> 1 (experiment).
  • the characteristic when the switching frequency f1 is 93 kHz is indicated by a solid line
  • the characteristic when the switching frequency f1 is 91 kHz is indicated by a broken line.
  • the phase difference ⁇ is the difference between the phase of the first drive signals G11 and G14 and the phase of the second drive signals G22 and G23, or the phase of the first drive signals G12 and G13 and the second phase. This is the difference from the phases of the drive signals G21 and G24. That is, the phase difference ⁇ is a difference between the phases of the first drive signals G11 and G14 (G12 and G13) and the phases of the second drive signals G22 and G23 (G21 and G24).
  • the inventors of the present application have confirmed by simulation (experiment) that the output power of the non-contact power feeding device 2 can be started when the phase difference ⁇ is zero. Yes. Further, as shown in FIG. 5, the inventors of the present application have shown by simulation (experiment) that the operation mode of the inverter circuit 21 (that is, the phase advance mode or the phase delay mode) changes according to the phase difference ⁇ . I'm sure.
  • the control circuit 23 starts so that the first period T1 and the second period T2 coincide as shown in FIG. 2A.
  • the first period T1 is a period in which the inverter circuit 21 outputs a negative AC voltage.
  • the second period T2 is a period during which the capacitance adjustment circuit 22 is switched to a path through the primary capacitor C11.
  • the control circuit 23 performs control so that the timing at which the first drive signals G11 and G14 are output coincides with the timing at which the second drive signals G22 and G23 are output at the time of starting.
  • the control circuit 23 performs control so that the timing for outputting the first drive signals G12 and G13 coincides with the timing for outputting the second drive signals G21 and G24. That is, the control circuit 23 starts so that the phases of the first drive signals G11, G14 (G12, G13) and the phases of the second drive signals G22, G23 (G21, G24) coincide.
  • the inverter circuit 21 starts operating when the first period T1 and the second period T2 coincide, that is, the phase difference ⁇ is zero. Therefore, the output power of the non-contact power feeding device 2 of the present embodiment becomes zero at the start (see FIG. 5).
  • the state where the phase difference ⁇ is zero hits the boundary between the phase of the slow phase mode and the region of the fast phase mode as shown in FIG. 5, so that the inverter circuit 21 can be prevented from operating in the fast phase mode. it can.
  • the control circuit 23 performs control as described above, even if the relative displacement between the primary side coil L1 and the secondary side coil L2 occurs, the inverter circuit 21 is in a state where the phase difference ⁇ is zero. Operate.
  • the control circuit 23 after starting, the phase of the second drive signals G21, G24 (G22, G23) advances from the phase of the first drive signals G12, G13 (G11, G14). To control. Specifically, the control circuit 23 advances the timing for outputting the second drive signals G21, G24 (G22, G23) earlier than the timing for outputting the first drive signals G12, G13 (G11, G14).
  • the phase difference ⁇ becomes smaller than zero, and the output power of the non-contact power feeding device 2 increases (see FIG. 5). Then, when the phase difference ⁇ is smaller than zero, as shown in FIG. 5, it corresponds to the phase of the slow phase mode, so that the inverter circuit 21 operates in the slow phase mode. That is, the control of the control circuit 23 can prevent the inverter circuit 21 from operating in the phase advance mode.
  • the control circuit 23 controls as described above, the phase difference ⁇ becomes smaller than zero even when the relative displacement between the primary coil L1 and the secondary coil L2 occurs, and the inverter circuit 21 operates in the slow phase mode.
  • the control circuit 23 is configured to output the phases of the first drive signals G11 and G14 (G12 and G13) and the second drive signals G22 and G23 (G21 and G24). Start to match the phase. Then, the control circuit 23 performs control so that the phases of the second drive signals G21 and G24 (G22 and G23) are ahead of the phases of the first drive signals G12 and G13 (G11 and G14). For this reason, in the non-contact electric power feeder 2 of this embodiment, even if the relative position of the primary side coil L1 and the secondary side coil L2 shifts, the non-contact electric power feeder 2 does not change the switching frequency f1. Output power can be increased. Therefore, the contactless power supply device 2 of the present embodiment can supply power with sufficient power supply efficiency even if the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
  • the inverter circuit 21 starts operating in a state where the phase difference ⁇ is zero, and the phase difference ⁇ becomes small after starting, so the inverter circuit 21 operates in the phase advance mode. Can be prevented.
  • the same effect can be obtained also in the non-contact power feeding system 1 of the present embodiment using the non-contact power feeding device 2 of the present embodiment.
  • the control circuit 23 may be configured to monitor the amount of change per unit time of the output power of the contactless power supply device 2. In this case, the control circuit 23 determines that the output power has reached a maximum when the amount of change per unit time in the output power is below a predetermined threshold or becomes a negative value. Therefore, in this configuration, it is possible to determine the timing at which the inverter circuit 21 switches from the slow phase mode to the fast phase mode.
  • control circuit 23 may be configured to monitor the phase difference ⁇ 1 between the phase of the output voltage of the inverter circuit 21 and the phase of the current (primary side current) flowing through the primary side coil L1 ( (See FIG. 6). In this configuration, the control circuit 23 monitors whether or not the phase difference ⁇ 1 exceeds a predetermined threshold, so that it is possible to determine the timing at which the operation mode of the inverter circuit 21 is switched from the slow phase mode to the fast phase mode.
  • the contactless power supply device 2 of the present embodiment includes a capacitor C ⁇ b> 12 connected in series to the capacity adjustment circuit 22 between the inverter circuit 21 and the primary coil L ⁇ b> 1. preferable.
  • the voltage applied between the inverter circuit 21 and the primary coil L1 is divided by the primary capacitor C11 and the capacitor C12, the voltage applied to the primary capacitor C11 is Can be small. That is, in this configuration, the voltage applied to the capacitance adjusting circuit 22 can be reduced, so that the breakdown voltage required for each of the second switch elements S21 to S24 can be reduced.
  • the first drive circuit 232 and the second drive circuit 233 are electrically insulated from each other, but the required withstand voltage is the circuit ground and the first output of the inverter circuit 21. It is determined by the voltage V1 between the ends (see FIGS. 8 and 9). As shown in FIG. 9, when the capacitor C12 is connected between the inverter circuit 21 and the capacity adjustment circuit 22, the maximum voltage of the voltage V1 is equal to the power supply voltage of the DC power supply DC1 and the voltage across the capacitor C12. It becomes the voltage which added. In this case, since it is necessary to increase the dielectric strength with respect to the voltage across the capacitor C12, it is difficult to design the insulation between the first drive circuit 232 and the second drive circuit 233.
  • the capacitor C12 is preferably connected between the capacitance adjusting circuit 22 and the primary coil L1.
  • the maximum voltage V1 is the power supply voltage of the DC power supply DC1, so that the required withstand voltage can be reduced as compared with the configuration shown in FIG. That is, this configuration has an advantage that the design of insulation between the first drive circuit 232 and the second drive circuit 233 is easier than the configuration shown in FIG.
  • the non-contact power feeding device 2 further includes a capacitor C13 in the primary-side resonance circuit, but whether or not the capacitor C13 is included is arbitrary.
  • the power receiving device 3 further includes a capacitor C22 in the secondary-side resonance circuit, but whether or not the capacitor C22 is included is arbitrary.
  • the capacitance adjustment circuit 22 is configured by using the four second switch elements S21 to S24, but the capacitance adjustment circuit 22 may have other configurations.
  • the capacity adjustment circuit 22 may be configured by a primary side capacitor C11, a first bidirectional switch Q1, and a second bidirectional switch Q2.
  • the first bidirectional switch Q1 and the second bidirectional switch Q2 are used instead of the plurality of second switch elements S21 to S24.
  • the first bidirectional switch Q1 is composed of a semiconductor element having a double gate structure having two gate terminals GT1 and GT2.
  • the first bidirectional switch Q1 is connected in series with the primary capacitor C11.
  • the second bidirectional switch Q2 is composed of a semiconductor element having a double gate structure having two gate terminals GT3 and GT4.
  • the second bidirectional switch Q2 is connected in parallel with the series circuit of the first bidirectional switch Q1 and the primary side capacitor C11.
  • the first bidirectional switch Q1 when an ON signal is input to the gate terminal GT1 and an OFF signal is input to the gate terminal GT2, the direction from the first output end of the inverter circuit 21 toward one end of the primary coil L1 (first direction) ).
  • the first bidirectional switch Q1 conducts in a direction opposite to the first direction (second direction) when an off signal is input to the gate terminal GT1 and an on signal is input to the gate terminal GT2. Further, the first bidirectional switch Q1 conducts in both the first direction and the second direction when an ON signal is input to each of the gate terminals GT1 and GT2.
  • the first bidirectional switch Q1 becomes non-conductive in both the first direction and the second direction when an off signal is input to each of the gate terminals GT1 and GT2.
  • the second bidirectional switch Q2 conducts in the first direction when an ON signal is input to the gate terminal GT3 and an OFF signal is input to the gate terminal GT4.
  • the second bidirectional switch Q2 conducts in the second direction when an off signal is input to the gate terminal GT3 and an on signal is input to the gate terminal GT4. Further, the second bidirectional switch Q2 conducts in both the first direction and the second direction when an ON signal is input to each of the gate terminals GT3 and GT4.
  • the second bidirectional switch Q2 becomes non-conductive in both the first direction and the second direction when an off signal is input to each of the gate terminals GT3 and GT4.
  • the second drive signal G21 is input to the gate terminal GT1 of the first bidirectional switch Q1, and the second drive signal G22 is input to the gate terminal GT2.
  • the second drive signal G23 is input to the gate terminal GT3 of the second bidirectional switch Q2, and the second drive signal G24 is input to the gate terminal GT4.
  • the capacitance adjustment circuit 22 configured in this way operates in the same manner as the capacitance adjustment circuit 22 having a plurality of second switch elements S21 to S24 as shown in FIG.
  • the first bidirectional switch Q1 and the second bidirectional switch Q2 are preferably gallium nitride (GaN) based semiconductor elements. With this configuration, it is possible to improve the pressure resistance and temperature resistance of each bidirectional switch Q1, Q2.
  • the first bidirectional switch Q1 (second bidirectional switch Q2) may be configured by connecting two series circuits of diodes and IGBTs in parallel so that their polarities are opposite to each other.
  • the first bidirectional switch Q1 (second bidirectional switch Q2) may be configured by connecting an n-channel enhancement type MOSFET and a p-channel enhancement type MOSFET in series.
  • the contactless power supply device 2 and the contactless power supply system 1 of the present embodiment power is supplied from the primary side coil L1 to the secondary side coil L2 by the resonance method, but power is supplied by the electromagnetic induction method. It may be a configuration. In this configuration, since it is not necessary to form a resonance circuit in the power receiving device 3, the secondary side capacitor C21 is not necessary.
  • the primary side coil L1 and the secondary side coil L2 are not limited to solenoid type coils (the conductive wire is spirally wound around the core), but the conductive wire is wound in a spiral shape on a plane.
  • a spiral coil may be used.
  • Spiral type coils have the advantage that unwanted radiation noise is less likely to occur than solenoid type coils.
  • the use of the spiral type coil has an advantage that the range of the switching frequency f1 usable in the inverter circuit 21 is expanded as a result of reducing unnecessary radiation noise.
  • the resonance characteristics in the non-contact power feeding system 1 of the present embodiment change according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, as described above.
  • the resonance characteristic shows a so-called bimodal characteristic in which two maximum values are generated in the output as shown in FIGS. 11A and 11B under certain conditions.
  • this resonance characteristic (bimodal characteristic), as shown in FIG. 11A and FIG. 11B, two “mountains” in which the output is maximized at each of the first resonance frequency fr1 and the third resonance frequency fr3 are generated. Between these two “mountains”, a “valley” in which the output is minimized at the second resonance frequency fr2 occurs.
  • the first resonance frequency fr1, the second resonance frequency fr2, and the third resonance frequency fr3 are in a relationship of fr1 ⁇ fr2 ⁇ fr3.
  • the frequency region lower than the second resonance frequency fr2 is referred to as “low frequency region”
  • the frequency region higher than the second resonance frequency fr2 is referred to as “high frequency region”.
  • a region where the inverter circuit 21 operates in the slow phase mode (hereinafter referred to as a “slow phase region”) is provided for each of the “crest” in the low frequency region and the “crest” in the high frequency region. ) Occurs. Therefore, the inverter circuit 21 can operate in the slow phase mode even when the switching frequency f1 is at any of the two “mountains”.
  • the switching frequency f1 of the inverter circuit 21 is ‘f0’
  • the case where the frequency f0 is in the “mountain” in the low frequency region and the case in the “mountain” of the high frequency region are compared.
  • unnecessary radiation noise becomes smaller when the frequency f0 is in the “mountain” of the low frequency region. That is, in the “mountain” of the high frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 have the same phase.
  • the “mountain” in the low frequency region the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in opposite phases.
  • the inverter circuit 21 operates in the slow phase mode. In addition, unnecessary radiation noise is also reduced.
  • the slow phase region of the “mountain” in the low frequency region changes according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, the inverter circuit 21 is brought into such an uncertain slow phase region. Therefore, it is necessary to control so that the switching frequency f1 is reduced.
  • the switching frequency f1 of the inverter circuit 21 is in the “mountain” slow phase region (higher frequency side than fr3) of the high frequency region, compared to the solenoid type coil. Unwanted radiation noise is greatly reduced.
  • the switching frequency f1 of the inverter circuit 21 is not limited to the “hill” slow-phase region in the low frequency region, and the range of the switching frequency f1 usable in the inverter circuit 21 is expanded. Will be.
  • the slow phase region of the “mountain” in the high frequency region is also an uncertain region, if the switching frequency f1 of the inverter circuit 21 is swept from a sufficiently high frequency to a low frequency side, the switching frequency f1 becomes the high frequency region. Since it passes through the “mountain” slow-phase region, no complicated control is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention addresses the problem of enabling charging with a sufficient power-supply efficiency even when the relative position between a primary coil and a secondary coil is shifted. A wireless power-supply device (2) of the present invention comprises an inverter circuit (21), a capacitance adjustment circuit (22) having a primary side capacitor (C11), a control circuit (23), and a primary side coil (L1). The control circuit (23) starts up so that first drive signals (G11, G14 (G12, G13)) applied to first switching elements (S11 to S14) and second drive signals (G22, G23 (G21, G24)) applied to second switching elements (S21 to S24) match each other in phase. After the start-up, the control circuit (23) performs control so that the phase of the second drive signals (G21, G24 (G22, G23)) advances compared to the phase of the first drive signals (G12, G13 (G11, G14)).

Description

非接触給電装置及びそれを用いた非接触給電システムNon-contact power supply device and non-contact power supply system using the same
 本発明は、一般に非接触給電装置、非接触給電システム、より詳細には負荷に非接触で給電する非接触給電装置及びそれを用いた非接触給電システムに関する。 The present invention generally relates to a non-contact power supply device, a non-contact power supply system, and more particularly to a non-contact power supply device that supplies power to a load in a non-contact manner and a non-contact power supply system using the same.
 従来、移動体へ電磁誘導を利用して非接触で電力を供給する非接触給電装置が知られており、例えば文献1(日本国特許出願公開番号2013-243929)に開示されている。文献1に記載の非接触給電装置は、給電コイル(1次側コイル)と、給電側制御部とを備えている。1次側コイルは、磁界を発生することで、電気自動車に備えられた非接触受電装置に電力を供給する。給電側制御部は、1次側コイルの給電の開始・停止を制御したり、1次側コイルから供給する電力の大きさを制御したりする。 2. Description of the Related Art Conventionally, a non-contact power supply device that supplies electric power to a moving body in a non-contact manner using electromagnetic induction is known, for example, disclosed in Document 1 (Japanese Patent Application Publication No. 2013-243929). The non-contact power feeding device described in Document 1 includes a power feeding coil (primary side coil) and a power feeding side control unit. The primary side coil supplies electric power to the non-contact power receiving device provided in the electric vehicle by generating a magnetic field. The power supply side control unit controls the start and stop of the power supply of the primary side coil, and controls the magnitude of the power supplied from the primary side coil.
 非接触受電装置は、受電コイル(2次側コイル)と、整流回路と、蓄電池(負荷)とを備えている。2次側コイルは、電磁誘導により1次側コイルから電力の受電が可能となっている。そして、電磁誘導により2次側コイルが受電した電力は、整流回路に入力されて直流に変換され、負荷へ出力される。 The non-contact power receiving device includes a power receiving coil (secondary coil), a rectifier circuit, and a storage battery (load). The secondary coil can receive power from the primary coil by electromagnetic induction. And the electric power which the secondary side coil received by electromagnetic induction is input into a rectifier circuit, is converted into direct current, and is output to a load.
 しかしながら、上記従来例では、電気自動車を規定された停車位置からずらして停車した場合、1次側コイルと2次側コイルとの相対的な位置がずれる可能性があった。この場合、1次側コイルと2次側コイルとの結合状態が変化して給電効率が低下する可能性があった。 However, in the above conventional example, when the electric vehicle is stopped by shifting from the specified stop position, the relative positions of the primary side coil and the secondary side coil may be shifted. In this case, there is a possibility that the coupling efficiency between the primary side coil and the secondary side coil changes and the power supply efficiency is lowered.
 本発明は、上記の点に鑑みて為されており、1次側コイルと2次側コイルとの相対的な位置がずれても、十分な給電効率で給電することのできる非接触給電装置及びそれを用いた非接触給電システムを提供することを目的とする。 The present invention has been made in view of the above points, and a non-contact power feeding device that can feed power with sufficient power feeding efficiency even when the relative positions of the primary side coil and the secondary side coil are shifted, and It aims at providing the non-contact electric power feeding system using it.
 本発明の非接触給電装置は、インバータ回路と、1次側コイルと、容量調整回路と、制御回路とを備える。前記インバータ回路は、複数の第1スイッチ素子を有し、前記複数の第1スイッチ素子のオン/オフが切り替えられることで直流電力を交流電力に変換して前記交流電力を出力する。前記1次側コイルは、前記インバータ回路の出力する前記交流電力を受けて磁界を発生する。前記容量調整回路は、前記インバータ回路と前記1次側コイルとの間に電気的に接続されて、複数の第2スイッチ素子と、1次側コンデンサとを有する。また、前記容量調整回路は、前記複数の第2スイッチ素子のオン/オフが切り替えられることで、前記1次側コンデンサを介する経路と、前記1次側コンデンサを介さない経路とを切り替える。前記制御回路は、前記複数の第1スイッチ素子及び前記複数の第2スイッチ素子のオン/オフをそれぞれ制御する。前記1次側コイルは、前記1次側コンデンサと共に共振回路を形成する。前記制御回路は、前記複数の第1スイッチ素子に与える第1駆動信号の位相と、前記複数の第2スイッチ素子に与える第2駆動信号の位相とが一致するように始動する。且つ、前記制御回路は、始動後において、前記第2駆動信号の位相が、前記第1駆動信号の位相よりも進むように制御する。 The contactless power supply device of the present invention includes an inverter circuit, a primary side coil, a capacity adjustment circuit, and a control circuit. The inverter circuit has a plurality of first switch elements, and converts the DC power into AC power by switching on / off of the plurality of first switch elements, and outputs the AC power. The primary coil receives the AC power output from the inverter circuit and generates a magnetic field. The capacitance adjusting circuit is electrically connected between the inverter circuit and the primary side coil, and includes a plurality of second switch elements and a primary side capacitor. In addition, the capacitance adjusting circuit switches a path through the primary side capacitor and a path not through the primary side capacitor by switching on / off of the plurality of second switch elements. The control circuit controls on / off of the plurality of first switch elements and the plurality of second switch elements, respectively. The primary side coil forms a resonance circuit together with the primary side capacitor. The control circuit starts so that the phase of the first drive signal applied to the plurality of first switch elements matches the phase of the second drive signal applied to the plurality of second switch elements. The control circuit controls the second drive signal so that the phase of the second drive signal advances from the phase of the first drive signal after startup.
 本発明の非接触給電システムは、前記非接触給電装置と、前記非接触給電装置から給電される電力を受ける受電装置とを備える。前記受電装置は、前記1次側コイルが発生する磁界を受けて交流電力を発生する2次側コイルと、前記2次側コイルと共に共振回路を形成する2次側コンデンサとを備える。 The contactless power supply system of the present invention includes the contactless power supply device and a power receiving device that receives power supplied from the contactless power supply device. The power receiving device includes a secondary coil that generates AC power in response to a magnetic field generated by the primary coil, and a secondary capacitor that forms a resonance circuit together with the secondary coil.
実施形態に係る非接触給電システム及び非接触給電装置を示す回路概略図である。It is a circuit schematic diagram showing a non-contact power feeding system and a non-contact power feeding apparatus according to an embodiment. 図2Aは、実施形態に係る非接触給電装置における各駆動信号の波形図である。図2Bは、実施形態に係る非接触給電装置において、位相をずらした場合の各駆動信号の波形図である。FIG. 2A is a waveform diagram of each drive signal in the non-contact power feeding apparatus according to the embodiment. FIG. 2B is a waveform diagram of each drive signal when the phase is shifted in the non-contact power feeding apparatus according to the embodiment. 実施形態に係る非接触給電システムの使用例を示す概略図である。It is the schematic which shows the usage example of the non-contact electric power feeding system which concerns on embodiment. 図4Aは、共振特性が双峰特性を示す場合のスイッチング周波数と出力電力との相関図である。図4Bは、共振特性が単峰特性を示す場合のスイッチング周波数と出力電力との相関図である。FIG. 4A is a correlation diagram between the switching frequency and the output power when the resonance characteristic shows a bimodal characteristic. FIG. 4B is a correlation diagram between the switching frequency and the output power when the resonance characteristic shows a single peak characteristic. 実施形態に係る非接触給電装置における、第1駆動信号と第2駆動信号との位相差と、出力電力との相関を示す図である。It is a figure which shows the correlation with the phase difference of a 1st drive signal and a 2nd drive signal, and output electric power in the non-contact electric power supply which concerns on embodiment. 実施形態に係る非接触給電装置における、遅相モードでの動作を示す波形図である。It is a wave form diagram which shows the operation | movement in slow phase mode in the non-contact electric power supply which concerns on embodiment. 実施形態に係る非接触給電装置において、コンデンサを更に追加した場合の回路概略図である。In the non-contact electric power feeder which concerns on embodiment, it is a circuit schematic diagram at the time of further adding a capacitor | condenser. 実施形態に係る非接触給電装置において、追加したコンデンサを容量調整回路の後段に配置した場合の回路概略図である。In the non-contact electric power feeder which concerns on embodiment, it is the circuit schematic diagram at the time of arrange | positioning the added capacitor in the back | latter stage of a capacity | capacitance adjustment circuit. 実施形態に係る非接触給電装置において、追加したコンデンサを容量調整回路の前段に配置した場合の回路概略図である。In the non-contact electric power feeder which concerns on embodiment, it is the circuit schematic diagram at the time of arrange | positioning the added capacitor | condenser in the front | former stage of a capacity | capacitance adjustment circuit. 実施形態に係る非接触給電装置における容量調整回路の他の構成を示す回路概略図である。It is a circuit schematic diagram showing other composition of the capacity adjustment circuit in the non-contact electric power supply concerning an embodiment. 図11A,図11Bは、それぞれ共振特性が双峰特性を示す場合のスイッチング周波数と出力電力との相関図である。FIG. 11A and FIG. 11B are correlation diagrams of the switching frequency and the output power when the resonance characteristics show a bimodal characteristic.
 本実施形態の非接触給電装置2は、以下の第1の特徴を有する。 The contactless power supply device 2 of the present embodiment has the following first feature.
 第1の特徴では、非接触給電装置2は、図1に示すように、インバータ回路21と、容量調整回路22と、制御回路23と、1次側コイルL1とを備えている。インバータ回路21は、複数の第1スイッチ素子S11~S14を有している。インバータ回路21は、複数の第1スイッチ素子S11~S14のオン/オフが切り替えられることで、直流電力を交流電力に変換して交流電力を出力する。 In the first feature, the non-contact power feeding device 2 includes an inverter circuit 21, a capacity adjustment circuit 22, a control circuit 23, and a primary coil L1, as shown in FIG. The inverter circuit 21 has a plurality of first switch elements S11 to S14. The inverter circuit 21 converts the DC power into AC power and outputs AC power by switching on / off the plurality of first switch elements S11 to S14.
 1次側コイルL1は、インバータ回路21の出力する交流電力を受けて磁界を発生する。容量調整回路22は、インバータ回路21と1次側コイルL1との間に電気的に接続される。容量調整回路22は、複数の第2スイッチ素子S21~S24と、1次側コンデンサC11とを有している。容量調整回路22は、複数の第2スイッチ素子S21~S24のオン/オフが切り替えられることで、1次側コンデンサC11を介する経路と、1次側コンデンサC11を介さない経路とを切り替える。 The primary coil L1 receives the AC power output from the inverter circuit 21 and generates a magnetic field. The capacity adjustment circuit 22 is electrically connected between the inverter circuit 21 and the primary side coil L1. The capacitance adjusting circuit 22 includes a plurality of second switch elements S21 to S24 and a primary side capacitor C11. The capacitance adjusting circuit 22 switches the path through the primary side capacitor C11 and the path not through the primary side capacitor C11 by switching on / off of the plurality of second switch elements S21 to S24.
 制御回路23は、複数の第1スイッチ素子S11~S14及び複数の第2スイッチ素子S21~S24のオン/オフをそれぞれ制御する。また、1次側コイルL1は、1次側コンデンサC11と共に共振回路(1次側の共振回路)を形成する。 The control circuit 23 controls on / off of the plurality of first switch elements S11 to S14 and the plurality of second switch elements S21 to S24, respectively. The primary side coil L1 forms a resonance circuit (primary side resonance circuit) together with the primary side capacitor C11.
 制御回路23は、図2Aに示すように、第1駆動信号G11,G14(G12,G13)の位相と、第2駆動信号G22,G23(G21,G24)の位相とが一致するように始動する。第1駆動信号G11~G14は、複数の第1スイッチ素子S11~S14の各々に与えられる信号である。第2駆動信号G21~G24は、複数の第2スイッチ素子S21~S24の各々に与えられる信号である。そして、始動後において、制御回路23は、図2Bに示すように、第2駆動信号G21,G24(G22,G23)の位相が第1駆動信号G12,G13(G11,G14)の位相よりも進むように制御する。 As shown in FIG. 2A, the control circuit 23 starts so that the phases of the first drive signals G11 and G14 (G12 and G13) coincide with the phases of the second drive signals G22 and G23 (G21 and G24). . The first drive signals G11 to G14 are signals given to the plurality of first switch elements S11 to S14. The second drive signals G21 to G24 are signals given to the plurality of second switch elements S21 to S24. After the start-up, as shown in FIG. 2B, the control circuit 23 advances the phase of the second drive signals G21, G24 (G22, G23) from the phase of the first drive signals G12, G13 (G11, G14). To control.
 また、本実施形態の非接触給電装置2は、第1の特徴に加えて、以下の第2の特徴を有していてもよい。 Further, the non-contact power feeding device 2 of the present embodiment may have the following second feature in addition to the first feature.
 第2の特徴では、非接触給電装置2は、図7~図9に示すように、インバータ回路21と1次側コイルL1との間において、容量調整回路22に直列に接続されるコンデンサC12を備える。 In the second feature, the non-contact power feeding device 2 includes a capacitor C12 connected in series to the capacitance adjusting circuit 22 between the inverter circuit 21 and the primary side coil L1, as shown in FIGS. Prepare.
 また、本実施形態の非接触給電装置2は、第2の特徴に加えて、以下の第3の特徴を有していてもよい。 In addition to the second feature, the non-contact power feeding device 2 of the present embodiment may have the following third feature.
 第3の特徴では、コンデンサC12は、図7,図8に示すように、容量調整回路22と1次側コイルL1との間に接続される。 In the third feature, the capacitor C12 is connected between the capacitance adjusting circuit 22 and the primary coil L1, as shown in FIGS.
 また、本実施形態の非接触給電装置2は、第1~第3のいずれかの特徴に加えて、以下の第4の特徴を有していてもよい。 Further, the non-contact power feeding device 2 of the present embodiment may have the following fourth feature in addition to any of the first to third features.
 第4の特徴では、複数の第2スイッチ素子は、図10に示すように、第1双方向スイッチQ1と第2双方向スイッチQ2である。容量調整回路22は、第1双方向スイッチQ1を1次側コンデンサC11と直列に接続し、第2双方向スイッチQ2を1次側コンデンサC11及び第1双方向スイッチQ1の直列回路と並列に接続して構成される。 In the fourth feature, the plurality of second switch elements are a first bidirectional switch Q1 and a second bidirectional switch Q2, as shown in FIG. The capacity adjustment circuit 22 connects the first bidirectional switch Q1 in series with the primary side capacitor C11, and connects the second bidirectional switch Q2 in parallel with the series circuit of the primary side capacitor C11 and the first bidirectional switch Q1. Configured.
 また、本実施形態の非接触給電装置2は、第4の特徴に加えて、以下の第5の特徴を有していてもよい。 In addition to the fourth feature, the non-contact power feeding device 2 of the present embodiment may have the following fifth feature.
 第5の特徴では、第1双方向スイッチQ1及び第2双方向スイッチQ2は、それぞれ窒化ガリウム系半導体素子である。 In the fifth feature, each of the first bidirectional switch Q1 and the second bidirectional switch Q2 is a gallium nitride based semiconductor element.
 また、本実施形態の非接触給電システム1は、以下の第6の特徴を有する。 Further, the non-contact power feeding system 1 of the present embodiment has the following sixth feature.
 第6の特徴では、非接触給電システム1は、図1に示すように、第1~第5のいずれかの特徴を有する非接触給電装置2と、受電装置3とを備えている。受電装置3は、1次側コイルL1が発生する磁界を受けて交流電力を発生する2次側コイルL2と、2次側コイルL2と共に共振回路(2次側の共振回路)を形成する2次側コンデンサC21とを備えている。 In the sixth feature, the non-contact power feeding system 1 includes a non-contact power feeding device 2 having any one of the first to fifth features and a power receiving device 3 as shown in FIG. The power receiving device 3 receives a magnetic field generated by the primary coil L1 and generates a secondary circuit L2 that generates AC power, and a secondary circuit that forms a resonance circuit (secondary resonance circuit) together with the secondary coil L2. Side capacitor C21.
 本実施形態の非接触給電装置2は、1次側コイルL1と2次側コイルL2との相対的な位置がずれても、十分な給電効率で給電することができる。 The contactless power supply device 2 of the present embodiment can supply power with sufficient power supply efficiency even when the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
 また、本実施形態の非接触給電システム1は、1次側コイルL1と2次側コイルL2との相対的な位置がずれても、十分な給電効率で給電することができる。 Further, the non-contact power supply system 1 of the present embodiment can supply power with sufficient power supply efficiency even if the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
 以下、本実施形態の非接触給電装置2及び非接触給電システム1について詳細に説明する。但し、以下に説明する構成は、本発明の一例に過ぎず、本発明は下記の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 Hereinafter, the non-contact power feeding device 2 and the non-contact power feeding system 1 of the present embodiment will be described in detail. However, the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not deviated from this embodiment. Various changes can be made in accordance with the design or the like as long as they are not.
 なお、以下では、図3に示すように、本実施形態の非接触給電装置2及び非接触給電システム1を用いて、電気自動車100の蓄電池101に給電する場合について例示するが、この例に限定する趣旨ではない。すなわち、本実施形態の非接触給電装置2及び非接触給電システム1は、負荷4に非接触で給電する構成であればよく、負荷4は電気自動車100の蓄電池101に限定されない。 In the following, as illustrated in FIG. 3, a case where power is supplied to the storage battery 101 of the electric vehicle 100 using the non-contact power supply device 2 and the non-contact power supply system 1 of the present embodiment is illustrated, but the present invention is limited to this example. It is not the purpose. That is, the contactless power supply device 2 and the contactless power supply system 1 of the present embodiment may be configured to supply power to the load 4 in a contactless manner, and the load 4 is not limited to the storage battery 101 of the electric vehicle 100.
 本実施形態の非接触給電システム1は、図1に示すように、非接触給電装置2と、受電装置3とで構成されている。非接触給電装置2は、図1に示すように、インバータ回路21と、容量調整回路22と、制御回路23と、1次側コイルL1とを備えている。受電装置3は、図1に示すように、整流回路31と、2次側コイルL2と、2次側コンデンサC21とを備えている。 The contactless power supply system 1 of the present embodiment includes a contactless power supply device 2 and a power reception device 3 as shown in FIG. As shown in FIG. 1, the non-contact power feeding device 2 includes an inverter circuit 21, a capacity adjustment circuit 22, a control circuit 23, and a primary coil L1. As shown in FIG. 1, the power receiving device 3 includes a rectifier circuit 31, a secondary coil L2, and a secondary capacitor C21.
 本実施形態の非接触給電システム1において、非接触給電装置2は、図3に示すように、床や地面上に設置されている。なお、非接触給電装置2は、床や地面上のみならず、例えば床や地面に埋め込んで配置されてもよい。また、非接触給電装置2は、1次側コイルL1のみを2次側コイルL2と対向可能な位置に配置し、その他の部品や回路等は1次側コイルL1から離れた場所に配置するように構成されていてもよい。 In the non-contact power feeding system 1 of the present embodiment, the non-contact power feeding device 2 is installed on the floor or the ground as shown in FIG. The non-contact power feeding device 2 may be arranged not only on the floor or the ground but also embedded in the floor or the ground, for example. In the non-contact power feeding device 2, only the primary side coil L1 is arranged at a position where it can face the secondary side coil L2, and other parts, circuits, etc. are arranged away from the primary side coil L1. It may be configured.
 本実施形態の非接触給電システム1において、受電装置3は、図3に示すように、電気自動車100の車両内に設置されている。受電装置3は、電気自動車100の蓄電池101に電気的に接続されている。蓄電池101は、例えばニッケル水素電池やリチウムイオン電池、高容量のコンデンサにより構成されている。蓄電池101は、電気自動車100の備える電動機の電源として用いられる。その他、蓄電池101は、電気自動車100が備えるカーナビゲーションシステムやカーオーディオ、パワーウィンドウなどの電子機器の電源として用いられる。 In the non-contact power feeding system 1 of the present embodiment, the power receiving device 3 is installed in the vehicle of the electric vehicle 100 as shown in FIG. The power receiving device 3 is electrically connected to the storage battery 101 of the electric vehicle 100. The storage battery 101 is constituted by, for example, a nickel metal hydride battery, a lithium ion battery, or a high-capacity capacitor. The storage battery 101 is used as a power source for an electric motor included in the electric vehicle 100. In addition, the storage battery 101 is used as a power source for electronic devices such as a car navigation system, a car audio, and a power window included in the electric vehicle 100.
 先ず、非接触給電装置2について説明する。 First, the non-contact power feeding device 2 will be described.
 インバータ回路21は、図1に示すように、4つの第1スイッチ素子S11~S14で構成されるフルブリッジ・インバータである。本実施形態の非接触給電装置2では、第1スイッチ素子S11~S14は、それぞれnチャネルのエンハンスメント型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。なお、各第1スイッチ素子S11~S14は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等の他の半導体スイッチング素子で構成されていてもよい。 The inverter circuit 21 is a full-bridge inverter composed of four first switch elements S11 to S14 as shown in FIG. In the contactless power supply device 2 of the present embodiment, each of the first switch elements S11 to S14 is an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor). Each of the first switch elements S11 to S14 may be composed of other semiconductor switching elements such as bipolar transistors and IGBTs (Insulated Gate Bipolar Transistors).
 インバータ回路21では、2つの第1スイッチ素子S11,S12の直列回路と、2つの第1スイッチ素子S13,S14の直列回路とが並列に接続されている。第1スイッチ素子S11,S13のドレインは、直流電源DC1の高電位側の出力端に電気的に接続されている。また、第1スイッチ素子S12,S14のソースは、直流電源DC1の低電位側の出力端に電気的に接続されている。そして、第1スイッチ素子S13のソース及び第1スイッチ素子S14のドレインの接続点が、インバータ回路21の第1出力端となっている。また、第1スイッチ素子S11のソース及び第1スイッチ素子S12のドレインの接続点が、インバータ回路21の第2出力端となっている。 In the inverter circuit 21, a series circuit of two first switch elements S11 and S12 and a series circuit of two first switch elements S13 and S14 are connected in parallel. The drains of the first switch elements S11 and S13 are electrically connected to the output terminal on the high potential side of the DC power supply DC1. The sources of the first switch elements S12 and S14 are electrically connected to the output terminal on the low potential side of the DC power supply DC1. A connection point between the source of the first switch element S13 and the drain of the first switch element S14 is the first output terminal of the inverter circuit 21. The connection point between the source of the first switch element S11 and the drain of the first switch element S12 is the second output terminal of the inverter circuit 21.
 なお、図1において、各第1スイッチ素子S11~S14のドレインとソースとの間に電気的に接続されているダイオードは、各第1スイッチ素子S11~S14が有する寄生ダイオードである。 In FIG. 1, the diodes electrically connected between the drains and sources of the first switch elements S11 to S14 are parasitic diodes of the first switch elements S11 to S14.
 インバータ回路21は、第1駆動信号G11~G14がそれぞれ第1スイッチ素子S11~S14に与えられることで動作する。具体的には、インバータ回路21は、第1駆動信号G11~G14により、第1スイッチ素子S11,S14のオン期間と、第1スイッチ素子S12,S13のオン期間とを交互に切り替えるように動作する(図2A参照)。第1スイッチ素子S11,S14のオン期間では、インバータ回路21は、負極性の電圧を出力する。また、第1スイッチ素子S12,S13のオン期間では、インバータ回路21は、正極性の電圧を出力する。したがって、インバータ回路21は、正極性の電圧と負極性の電圧とを交互に出力する。 The inverter circuit 21 operates when the first drive signals G11 to G14 are supplied to the first switch elements S11 to S14, respectively. Specifically, the inverter circuit 21 operates so as to alternately switch the ON period of the first switch elements S11 and S14 and the ON period of the first switch elements S12 and S13 by the first drive signals G11 to G14. (See FIG. 2A). In the ON period of the first switch elements S11 and S14, the inverter circuit 21 outputs a negative voltage. Further, during the ON period of the first switch elements S12 and S13, the inverter circuit 21 outputs a positive voltage. Therefore, the inverter circuit 21 alternately outputs a positive voltage and a negative voltage.
 つまり、インバータ回路21は、複数の第1スイッチ素子S11~S14を有して構成されている。そして、インバータ回路21は、複数の第1スイッチ素子S11~S14のオン/オフが切り替えられることで、直流電源DC1(図1参照)から供給される直流電力を交流電力に変換して交流電力を出力するように構成されている。 That is, the inverter circuit 21 includes a plurality of first switch elements S11 to S14. The inverter circuit 21 converts the DC power supplied from the DC power source DC1 (see FIG. 1) into AC power by switching on / off of the plurality of first switch elements S11 to S14, and converts the AC power into AC power. It is configured to output.
 容量調整回路22は、図1に示すように、1次側コンデンサC11と、4つの第2スイッチ素子S21~S24とで構成されている。本実施形態の非接触給電装置2では、第2スイッチ素子S21~S24は、それぞれnチャネルのエンハンスメント型MOSFETである。なお、各第2スイッチ素子S21~S24は、バイポーラトランジスタやIGBT等の他の半導体スイッチング素子で構成されていてもよい。 As shown in FIG. 1, the capacity adjustment circuit 22 includes a primary capacitor C11 and four second switch elements S21 to S24. In the contactless power supply device 2 of the present embodiment, the second switch elements S21 to S24 are n-channel enhancement type MOSFETs. Each of the second switch elements S21 to S24 may be composed of other semiconductor switching elements such as bipolar transistors and IGBTs.
 容量調整回路22では、2つの第2スイッチ素子S21,S22の直列回路と、2つの第2スイッチ素子S23,S24の直列回路とが並列に接続されている。第2スイッチ素子S21のソース及び第2スイッチ素子S22のドレインの接続点は、インバータ回路21の第1出力端に電気的に接続されている。また、第2スイッチ素子S23のソース及び第2スイッチ素子S24のドレインの接続点は、1次側コイルL1の一端に電気的に接続されている。そして、第2スイッチ素子S21,S23の各ソースの接続点と、第2スイッチ素子S22,S24の各ドレインの接続点との間に、1次側コンデンサC11が電気的に接続されている。 In the capacity adjustment circuit 22, a series circuit of two second switch elements S21 and S22 and a series circuit of two second switch elements S23 and S24 are connected in parallel. A connection point between the source of the second switch element S21 and the drain of the second switch element S22 is electrically connected to the first output terminal of the inverter circuit 21. The connection point between the source of the second switch element S23 and the drain of the second switch element S24 is electrically connected to one end of the primary side coil L1. And the primary side capacitor | condenser C11 is electrically connected between the connection point of each source of 2nd switch element S21, S23, and the connection point of each drain of 2nd switch element S22, S24.
 なお、図1において、各第2スイッチ素子S21~S24のドレイン端子とソース端子との間に電気的に接続されているダイオードは、各第2スイッチ素子S21~S24が有する寄生ダイオードである。 In FIG. 1, the diodes electrically connected between the drain terminals and the source terminals of the second switch elements S21 to S24 are parasitic diodes of the second switch elements S21 to S24.
 容量調整回路22は、第2駆動信号G21~G24がそれぞれ第2スイッチ素子S21~S24に与えられることで動作する。具体的には、容量調整回路22は、第2駆動信号G21~G24により、第2スイッチ素子S21,24のオン期間と、第2スイッチ素子S22,S23のオン期間とを交互に切り替えるように動作する(図2A参照)。 The capacity adjustment circuit 22 operates when the second drive signals G21 to G24 are supplied to the second switch elements S21 to S24, respectively. Specifically, the capacitance adjustment circuit 22 operates so as to alternately switch the on period of the second switch elements S21, 24 and the on period of the second switch elements S22, S23 by the second drive signals G21 to G24. (See FIG. 2A).
 第2スイッチ素子S21,S24のオン期間において、インバータ回路21が正極性の電圧を出力している期間では、1次側コンデンサC11に電圧が印加される。つまり、容量調整回路22の入出力間は、1次側コンデンサC11を介する経路となる。一方、第2スイッチ素子S21,S24のオン期間において、インバータ回路21が負極性の電圧を出力している期間では、第2スイッチ素子S23の寄生ダイオードと第2スイッチ素子S21とを通る経路で電流が流れる。つまり、容量調整回路22の入出力間は、1次側コンデンサC11を介さない経路となる。言い換えれば、容量調整回路22の入出力間は、入出力間をバイパスする経路となる。 In the ON period of the second switch elements S21 and S24, a voltage is applied to the primary side capacitor C11 during a period in which the inverter circuit 21 outputs a positive voltage. That is, a path between the input and output of the capacitance adjustment circuit 22 is a path through the primary capacitor C11. On the other hand, during the ON period of the second switch elements S21 and S24, the current passes through the parasitic diode of the second switch element S23 and the second switch element S21 during the period in which the inverter circuit 21 outputs a negative voltage. Flows. That is, the path between the input and output of the capacity adjustment circuit 22 is a path that does not pass through the primary side capacitor C11. In other words, between the input and output of the capacitance adjustment circuit 22 is a path that bypasses the input and output.
 同様に、第2スイッチ素子S22,S23のオン期間において、インバータ回路21が正極性の電圧を出力している期間では、第2スイッチ素子S22と第2スイッチ素子S24の寄生ダイオードとを通る経路で電流が流れる。つまり、容量調整回路22の入出力間は、1次側コンデンサC11を介さない経路となる。一方、第2スイッチ素子S22,S23のオン期間において、インバータ回路21が負極性の電圧を出力している期間では、1次側コンデンサC11に電圧が印加される。つまり、容量調整回路22の入出力間は、1次側コンデンサC11を介する経路となる。 Similarly, in a period in which the inverter circuit 21 outputs a positive voltage during the ON period of the second switch elements S22 and S23, a path passing through the second switch element S22 and the parasitic diode of the second switch element S24. Current flows. That is, the path between the input and output of the capacity adjustment circuit 22 is a path that does not pass through the primary side capacitor C11. On the other hand, during the ON period of the second switch elements S22 and S23, the voltage is applied to the primary capacitor C11 during the period in which the inverter circuit 21 outputs a negative voltage. That is, a path between the input and output of the capacitance adjustment circuit 22 is a path through the primary capacitor C11.
 つまり、容量調整回路22は、インバータ回路21と1次側コイルL1との間に電気的に接続されて、複数の第2スイッチ素子S21~S24と、1次側コンデンサC11とを有して構成されている。そして、容量調整回路22は、複数の第2スイッチ素子S21~S24のオン/オフが切り替えられることで、1次側コンデンサC11を介する経路と、1次側コンデンサC11を介さない経路とを切り替えるように構成されている。このように、1次側コンデンサC11が入出力間に接続されている期間と、1次側コンデンサC11が入出力間に接続されていない期間とを変化させることで、容量調整回路22の静電容量を調整することができる。 That is, the capacity adjustment circuit 22 is electrically connected between the inverter circuit 21 and the primary coil L1, and includes a plurality of second switch elements S21 to S24 and a primary capacitor C11. Has been. Then, the capacitance adjusting circuit 22 switches the path through the primary side capacitor C11 and the path not through the primary side capacitor C11 by switching on / off of the plurality of second switch elements S21 to S24. It is configured. In this way, by changing the period in which the primary side capacitor C11 is connected between the input and output and the period in which the primary side capacitor C11 is not connected between the input and output, the capacitance of the capacitance adjusting circuit 22 is changed. The capacity can be adjusted.
 制御回路23は、主制御回路231と、第1駆動回路232と、第2駆動回路233とを備えている。主制御回路231は、例えばマイコン(マイクロコンピュータ)で構成されている。主制御回路231は、インバータ回路21の各第1スイッチ素子S11~S14のオン/オフを切り替えるための2値の第1制御信号を出力する。本実施形態の非接触給電装置2では、主制御回路231は、第1スイッチ素子S11,S14のオン/オフを切り替えるための制御信号と、第1スイッチ素子S12,S13のオン/オフを切り替えるため制御信号とを第1制御信号として出力する。 The control circuit 23 includes a main control circuit 231, a first drive circuit 232, and a second drive circuit 233. The main control circuit 231 is constituted by, for example, a microcomputer (microcomputer). The main control circuit 231 outputs a binary first control signal for switching on / off of each of the first switch elements S11 to S14 of the inverter circuit 21. In the contactless power supply device 2 of the present embodiment, the main control circuit 231 switches the on / off of the first switch elements S12, S13 and the control signal for switching on / off of the first switch elements S11, S14. The control signal is output as the first control signal.
 また、主制御回路231は、容量調整回路22の各第2スイッチ素子S21~S24のオン/オフを切り替えるための2値の第2制御信号を出力する。本実施形態の非接触給電装置2では、主制御回路231は、第2スイッチ素子S21,S24のオン/オフを切り替えるための制御信号と、第2スイッチ素子S22,S23のオン/オフを切り替えるための制御信号とを第2制御信号として出力する。 The main control circuit 231 outputs a binary second control signal for switching on / off of each of the second switch elements S21 to S24 of the capacitance adjustment circuit 22. In the non-contact power feeding device 2 of the present embodiment, the main control circuit 231 switches the on / off of the second switch elements S22, S23 and the control signal for switching on / off of the second switch elements S21, S24. Are output as the second control signal.
 第1駆動回路232は、主制御回路231から出力される第1制御信号のレベルを、インバータ回路21の各第1スイッチ素子S11~S14を駆動可能なレベルまで増幅するドライバである。第1駆動回路232により増幅された第1制御信号は、第1駆動信号G11~G14としてそれぞれ第1スイッチ素子S11~S14のゲートに入力される。したがって、第1スイッチ素子S11~S14は、それぞれ第1駆動信号G11~G14によりオン/オフが切り替えられる。 The first drive circuit 232 is a driver that amplifies the level of the first control signal output from the main control circuit 231 to a level capable of driving the first switch elements S11 to S14 of the inverter circuit 21. The first control signal amplified by the first drive circuit 232 is input to the gates of the first switch elements S11 to S14 as the first drive signals G11 to G14, respectively. Accordingly, the first switch elements S11 to S14 are switched on / off by the first drive signals G11 to G14, respectively.
 第2駆動回路233は、主制御回路231から出力される第2制御信号のレベルを、容量調整回路22の各第2スイッチ素子S21~S24を駆動可能なレベルまで増幅するドライバである。第2駆動回路233により増幅された第2制御信号は、第2駆動信号G21~G24としてそれぞれ第2スイッチ素子S21~S24のゲートに入力される。したがって、第2スイッチ素子S21~S24は、それぞれ第2駆動信号G21~G24によりオン/オフが切り替えられる。 The second drive circuit 233 is a driver that amplifies the level of the second control signal output from the main control circuit 231 to a level capable of driving the second switch elements S21 to S24 of the capacitance adjustment circuit 22. The second control signal amplified by the second drive circuit 233 is input to the gates of the second switch elements S21 to S24 as the second drive signals G21 to G24, respectively. Accordingly, the second switch elements S21 to S24 are switched on / off by the second drive signals G21 to G24, respectively.
 つまり、制御回路23は、複数の第1スイッチ素子S11~S14及び複数の第2スイッチ素子S21~S24のオン/オフをそれぞれ制御するように構成されている。 That is, the control circuit 23 is configured to control ON / OFF of the plurality of first switch elements S11 to S14 and the plurality of second switch elements S21 to S24, respectively.
 ここで、第1駆動回路232は、第1駆動信号G12,G14として、回路グランドを基準とした電圧を出力する。また、第1駆動回路232は、第1駆動信号G11,G13として、第1スイッチ素子S11,S13の各々のソースを基準とした電圧を出力する。一方、第2駆動回路233は、第2駆動信号G21~G24として、第2スイッチ素子S21~S24の各々のソースを基準とした電圧を出力する。そして、第2駆動回路233には、第1駆動回路232と比較して高電圧が印加される。このため、本実施形態の非接触給電装置2では、第1駆動回路232と第2駆動回路233とは、互いに電気的に絶縁されている。 Here, the first drive circuit 232 outputs a voltage based on the circuit ground as the first drive signals G12 and G14. The first drive circuit 232 outputs a voltage based on the sources of the first switch elements S11 and S13 as the first drive signals G11 and G13. On the other hand, the second drive circuit 233 outputs voltages based on the sources of the second switch elements S21 to S24 as the second drive signals G21 to G24. The second drive circuit 233 is applied with a higher voltage than the first drive circuit 232. For this reason, in the non-contact electric power feeder 2 of this embodiment, the 1st drive circuit 232 and the 2nd drive circuit 233 are mutually electrically insulated.
 1次側コイルL1は、容量調整回路22を介してインバータ回路21の一対の出力端に電気的に接続されている。1次側コイルL1は、インバータ回路21が出力する交流電流が流れると、磁界を発生する。つまり、1次側コイルL1は、インバータ回路21が出力する交流電力を受けて磁界を発生する。また、1次側コイルL1は、容量調整回路22が有する1次側コンデンサC11と共に共振回路(1次側の共振回路)を形成している。 The primary coil L1 is electrically connected to a pair of output terminals of the inverter circuit 21 via the capacity adjustment circuit 22. The primary coil L1 generates a magnetic field when an alternating current output from the inverter circuit 21 flows. That is, the primary coil L1 receives the AC power output from the inverter circuit 21 and generates a magnetic field. The primary coil L1 forms a resonance circuit (primary resonance circuit) together with the primary capacitor C11 included in the capacitance adjustment circuit 22.
 次に、受電装置3について説明する。 Next, the power receiving device 3 will be described.
 2次側コイルL2は、図3に示すように、電気自動車100が規定の停車位置に停車すると、1次側コイルL1の近傍に位置するように設けられる。2次側コイルL2は、1次側コイルL1が発生する磁界を受けると、電磁誘導により交流電流が流れる。つまり、2次側コイルL2は、1次側コイルL1が発生する磁界を受けて交流電力を発生する。2次側コイルL2の一端には、図1に示すように、2次側コンデンサC21が電気的に接続されている。このため、2次側コイルL2は、2次側コンデンサC21と共に共振回路(2次側の共振回路)を形成している。 As shown in FIG. 3, the secondary coil L2 is provided so as to be positioned in the vicinity of the primary coil L1 when the electric vehicle 100 stops at a specified stop position. When the secondary coil L2 receives a magnetic field generated by the primary coil L1, an alternating current flows by electromagnetic induction. That is, the secondary coil L2 receives the magnetic field generated by the primary coil L1 and generates AC power. As shown in FIG. 1, a secondary capacitor C21 is electrically connected to one end of the secondary coil L2. For this reason, the secondary coil L2 forms a resonance circuit (secondary resonance circuit) together with the secondary capacitor C21.
 整流回路31は、図1に示すように、4つのダイオードD1~D4と、平滑用コンデンサC3とで構成されている。各ダイオードD1~D4は、ダイオードブリッジを構成している。ダイオードブリッジは、2次側コイルL2で発生した交流電流を脈流電流に変換して出力する。また、平滑用コンデンサC3は、ダイオードブリッジの一対の出力端に電気的に接続されている。平滑用コンデンサC3は、ダイオードブリッジから出力される脈流電流を平滑化し、直流電流を出力する。つまり、整流回路31は、2次側コイルL2で発生した交流電力を直流電力に整流して出力する。整流回路31が出力する直流電力は、負荷4(ここでは、蓄電池101)に供給される。 The rectifier circuit 31 includes four diodes D1 to D4 and a smoothing capacitor C3 as shown in FIG. Each of the diodes D1 to D4 constitutes a diode bridge. The diode bridge converts the alternating current generated in the secondary coil L2 into a pulsating current and outputs the pulsating current. The smoothing capacitor C3 is electrically connected to a pair of output terminals of the diode bridge. The smoothing capacitor C3 smoothes the pulsating current output from the diode bridge and outputs a direct current. That is, the rectifier circuit 31 rectifies and outputs the AC power generated by the secondary coil L2 to DC power. The DC power output from the rectifier circuit 31 is supplied to the load 4 (here, the storage battery 101).
 以下、本実施形態の非接触給電システム1における給電方式について説明する。本実施形態の非接触給電システム1では、磁気共鳴現象を利用した共鳴方式により、1次側コイルL1から2次側コイルL2に電力を送電している。すなわち、本実施形態の非接触給電システム1では、1次側コイルL1と1次側コンデンサC11とで形成される1次側の共振回路による共振現象を利用して、非接触給電装置2の出力電力を増幅している。そして、本実施形態の非接触給電システム1では、2次側コイルL2と2次側コンデンサC21とで形成される2次側の共振回路と、1次側の共振回路との磁気共鳴を利用して、非接触給電装置2の出力電力を効率良く受電装置3に伝送している。したがって、1次側の共振回路と、2次側の共振回路とで共振特性が互いに一致するのが望ましい。 Hereinafter, a power feeding method in the contactless power feeding system 1 of the present embodiment will be described. In the non-contact power feeding system 1 of the present embodiment, power is transmitted from the primary coil L1 to the secondary coil L2 by a resonance method using a magnetic resonance phenomenon. That is, in the non-contact power feeding system 1 of the present embodiment, the output of the non-contact power feeding device 2 is utilized by utilizing the resonance phenomenon caused by the primary side resonance circuit formed by the primary side coil L1 and the primary side capacitor C11. Amplifying power. And in the non-contact electric power feeding system 1 of this embodiment, the magnetic resonance of the secondary side resonance circuit formed by the secondary side coil L2 and the secondary side capacitor C21 and the primary side resonance circuit is used. Thus, the output power of the non-contact power feeding device 2 is efficiently transmitted to the power receiving device 3. Therefore, it is desirable that the resonance characteristics of the primary-side resonance circuit and the secondary-side resonance circuit match each other.
 ここで、本実施形態の非接触給電システム1における共振特性について説明する。本実施形態の非接触給電システム1では、1次側コイルL1と2次側コイルL2との結合が密である場合、図4Aに示すように、1次側の共振回路(2次側の共振回路)の共振特性がいわゆる双峰特性を示す。この共振特性では、第1共振周波数fr1で出力が極大となる“山”と、第2共振周波数fr2で出力が極小となる“谷”と、第3共振周波数fr3で出力が極大となる“山”とが現れている。各共振周波数fr1~fr3は、1次側の共振回路(2次側の共振回路)のインダクタンスを‘L’、静電容量を‘C’、相互インダクタンスを‘M’で表すと、それぞれ次式で表される。 Here, the resonance characteristics in the non-contact power feeding system 1 of the present embodiment will be described. In the non-contact power feeding system 1 of the present embodiment, when the coupling between the primary side coil L1 and the secondary side coil L2 is close, as shown in FIG. 4A, the primary side resonance circuit (resonance on the secondary side) Circuit) exhibits so-called bimodal characteristics. In this resonance characteristic, a “crest” at which the output is maximized at the first resonance frequency fr1, a “valley” at which the output is minimized at the second resonance frequency fr2, and a “mountain” at which the output is maximized at the third resonance frequency fr3. "And appears. Resonance frequencies fr1 to fr3 are expressed by the following equations, where the inductance of the primary side resonance circuit (secondary side resonance circuit) is represented by 'L', the capacitance is represented by 'C', and the mutual inductance is represented by 'M'. It is represented by
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、本実施形態の非接触給電システム1では、1次側コイルL1と2次側コイルL2との結合が疎である場合、図4Bに示すように、1次側の共振回路(2次側の共振回路)の共振特性がいわゆる単峰特性を示す。この共振特性では、第4共振周波数fr4で出力が極大となる“山”が現れている。第4共振周波数fr4は、1次側の共振回路(2次側の共振回路)のインダクタンスを‘L’、静電容量を‘C’で表すと、次式で表される。 In the non-contact power feeding system 1 of the present embodiment, when the coupling between the primary side coil L1 and the secondary side coil L2 is sparse, as shown in FIG. 4B, the primary side resonance circuit (secondary side) The resonance characteristic of the resonance circuit of FIG. In this resonance characteristic, a “mountain” where the output becomes maximum at the fourth resonance frequency fr4 appears. The fourth resonance frequency fr4 is represented by the following expression when the inductance of the primary side resonance circuit (secondary side resonance circuit) is represented as ‘L’ and the capacitance is represented as ‘C’.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、受電装置3が2次側コンデンサC21を備えていない場合(すなわち、2次側の共振回路を形成していない場合)も、1次側の共振回路の共振特性が単峰特性を示す。 Even when the power receiving device 3 does not include the secondary side capacitor C21 (that is, when the secondary side resonance circuit is not formed), the resonance characteristic of the primary side resonance circuit shows a single peak characteristic.
 ここで、図4A,図4Bに示すように、インバータ回路21のスイッチング周波数f1と各共振周波数fr1~fr4との相関に応じて、インバータ回路21が遅相モード又は進相モードの何れかの動作モードで動作する。なお、スイッチング周波数f1は、第1駆動信号G11~G14及び第2駆動信号G21~G24のそれぞれの周波数に相当する。 Here, as shown in FIGS. 4A and 4B, the inverter circuit 21 operates in either the slow phase mode or the fast phase mode according to the correlation between the switching frequency f1 of the inverter circuit 21 and the resonance frequencies fr1 to fr4. Operate in mode. The switching frequency f1 corresponds to the frequency of each of the first drive signals G11 to G14 and the second drive signals G21 to G24.
 進相モードは、インバータ回路21の出力電流の位相が、インバータ回路21の出力電圧よりも進んだ状態でインバータ回路21が動作する動作モードである。進相モードでは、インバータ回路21のスイッチング動作がいわゆるハードスイッチングになる。したがって、進相モードでは、各第1スイッチ素子S11~S14のスイッチングによる損失が増大したり、各第1スイッチ素子S11~S14に過大なストレスを与えたりする可能性があるため、好ましくない。 The phase advance mode is an operation mode in which the inverter circuit 21 operates in a state in which the phase of the output current of the inverter circuit 21 is advanced from the output voltage of the inverter circuit 21. In the phase advance mode, the switching operation of the inverter circuit 21 is so-called hard switching. Accordingly, the phase advance mode is not preferable because loss due to switching of each of the first switch elements S11 to S14 may increase or excessive stress may be applied to each of the first switch elements S11 to S14.
 一方、遅相モードは、1次側コイルL1を流れる電流(すなわち、1次側電流)の位相が、インバータ回路21の出力電圧の位相よりも遅れた状態でインバータ回路21が動作する動作モードである。遅相モードでは、インバータ回路21のスイッチング動作がいわゆるソフトスイッチングになる。したがって、遅相モードでは、各第1スイッチ素子S11~S14のスイッチングによる損失を低減することができ、また、各第1スイッチ素子S11~S14に過大なストレスが与えられるのを防止することができる。つまり、本実施形態の非接触給電装置2では、インバータ回路21が遅相モードで動作するのが好ましい。 On the other hand, the slow phase mode is an operation mode in which the inverter circuit 21 operates in a state in which the phase of the current flowing through the primary side coil L1 (that is, the primary side current) is delayed from the phase of the output voltage of the inverter circuit 21. is there. In the slow phase mode, the switching operation of the inverter circuit 21 is so-called soft switching. Therefore, in the slow phase mode, loss due to switching of each of the first switch elements S11 to S14 can be reduced, and excessive stress can be prevented from being applied to each of the first switch elements S11 to S14. . That is, in the non-contact power feeding device 2 of the present embodiment, it is preferable that the inverter circuit 21 operates in the slow phase mode.
 共振特性が双峰特性を示す場合、図4Aに示すように、スイッチング周波数f1が第1共振周波数fr1よりも小さい(f1<fr1)と、インバータ回路21が進相モードで動作する。また、図4Aに示すように、スイッチング周波数f1が第2共振周波数fr2と第3共振周波数fr3との間にある(fr2<fr1<fr3)と、インバータ回路21が進相モードで動作する。一方、図4Aに示すように、スイッチング周波数f1が第1共振周波数fr1と第2共振周波数fr2との間にある(fr1<f1<fr2)と、インバータ回路21が遅相モードで動作する。また、図4Aに示すように、スイッチング周波数f1が第3共振周波数fr3よりも大きい(f1>fr3)と、インバータ回路21が遅相モードで動作する。 When the resonance characteristic shows a bimodal characteristic, as shown in FIG. 4A, when the switching frequency f1 is lower than the first resonance frequency fr1 (f1 <fr1), the inverter circuit 21 operates in the phase advance mode. As shown in FIG. 4A, when the switching frequency f1 is between the second resonance frequency fr2 and the third resonance frequency fr3 (fr2 <fr1 <fr3), the inverter circuit 21 operates in the phase advance mode. On the other hand, as shown in FIG. 4A, when the switching frequency f1 is between the first resonance frequency fr1 and the second resonance frequency fr2 (fr1 <f1 <fr2), the inverter circuit 21 operates in the slow phase mode. As shown in FIG. 4A, when the switching frequency f1 is larger than the third resonance frequency fr3 (f1> fr3), the inverter circuit 21 operates in the slow phase mode.
 共振特性が単峰特性を示す場合、図4Bに示すように、スイッチング周波数f1が第4共振周波数fr4よりも小さい(f1<fr4)と、インバータ回路21が進相モードで動作する。また、図4Bに示すように、スイッチング周波数f1が第4共振周波数fr4よりも大きい(f1>fr4)と、インバータ回路21は遅相モードで動作する。 When the resonance characteristic shows a single peak characteristic, as shown in FIG. 4B, when the switching frequency f1 is lower than the fourth resonance frequency fr4 (f1 <fr4), the inverter circuit 21 operates in the phase advance mode. As shown in FIG. 4B, when the switching frequency f1 is higher than the fourth resonance frequency fr4 (f1> fr4), the inverter circuit 21 operates in the slow phase mode.
 本実施形態の非接触給電装置2では、制御回路23は、スイッチング周波数f1が第1共振周波数fr1と第2共振周波数fr2との間に収まるようにインバータ回路21の各スイッチ素子S11~S14を制御している。この構成では、1次側コイルL1を流れる電流の位相と、2次側コイルL2を流れる電流の位相とが互いに180度近くずれるため、不要輻射を低減することができるので、好ましい。 In the contactless power supply device 2 of the present embodiment, the control circuit 23 controls the switch elements S11 to S14 of the inverter circuit 21 so that the switching frequency f1 falls between the first resonance frequency fr1 and the second resonance frequency fr2. is doing. This configuration is preferable because the phase of the current flowing through the primary side coil L1 and the phase of the current flowing through the secondary side coil L2 are shifted from each other by nearly 180 degrees, so that unnecessary radiation can be reduced.
 ところで、本実施形態の非接触給電システム1では、1次側コイルL1と2次側コイルL2との相対的な位置がずれる場合がある。例えば、電気自動車100の停車位置が予め規定されている停車位置からずれると、1次側コイルL1と2次側コイルL2との相対的な位置がずれる。このように1次側コイルL1と2次側コイルL2との相対的な位置がずれると、1次側コイルL1と2次側コイルL2との結合状態が変化し、相互インダクタンスや、1次側の共振回路(2次側の共振回路)のインダクタンスが変化する可能性がある。 By the way, in the non-contact electric power feeding system 1 of this embodiment, the relative position of the primary side coil L1 and the secondary side coil L2 may shift | deviate. For example, if the stop position of the electric vehicle 100 deviates from a predetermined stop position, the relative positions of the primary coil L1 and the secondary coil L2 are shifted. When the relative positions of the primary side coil L1 and the secondary side coil L2 are shifted in this way, the coupling state between the primary side coil L1 and the secondary side coil L2 changes, and mutual inductance or primary side is changed. There is a possibility that the inductance of the resonance circuit (secondary side resonance circuit) of the first and second resonance circuits changes.
 この場合、各共振周波数fr1~fr4が変化するため、共振特性も変化する。すると、共振特性の変化に伴って非接触給電装置2の出力電力が低下し、十分な給電効率で給電することができない可能性がある。また、共振特性の変化によっては、スイッチング周波数f1が進相モードの領域に入る可能性がある。この場合、予め設定されているスイッチング周波数f1でインバータ回路21を動作させると、インバータ回路21が進相モードで動作してしまう。 In this case, since the resonance frequencies fr1 to fr4 change, the resonance characteristics also change. Then, the output power of the non-contact power feeding device 2 decreases with the change in the resonance characteristics, and there is a possibility that power cannot be fed with sufficient power feeding efficiency. Further, depending on the change in the resonance characteristics, the switching frequency f1 may enter the phase advance mode region. In this case, if the inverter circuit 21 is operated at the preset switching frequency f1, the inverter circuit 21 operates in the phase advance mode.
 スイッチング周波数f1を変化させる方法を用いれば、非接触給電装置2の出力電力を変化させることは可能である。しかしながら、電波法などの法律により、使用可能な周波数帯が規制されているので、スイッチング周波数f1を変化させる方法は好ましくない。また、スイッチング周波数f1を変化させる方法では、依然としてインバータ回路21が進相モードで動作する可能性がある。 If the method of changing the switching frequency f1 is used, the output power of the non-contact power feeding device 2 can be changed. However, since a usable frequency band is regulated by laws such as the Radio Law, a method of changing the switching frequency f1 is not preferable. Further, in the method of changing the switching frequency f1, the inverter circuit 21 may still operate in the phase advance mode.
 ここで、本願の発明者等は、図5に示すように、スイッチング周波数f1を変化させなくとも、位相差θを変化させることで非接触給電装置2の出力電力が変化することをシミュレーション(実験)により確かめている。図5では、スイッチング周波数f1が93kHzの場合の特性を実線で示しており、スイッチング周波数f1が91kHzの場合の特性を破線で示している。なお、位相差θは、図2Bに示すように、第1駆動信号G11,G14の位相と第2駆動信号G22,G23の位相との差、または第1駆動信号G12,G13の位相と第2駆動信号G21,G24の位相との差である。すなわち、位相差θは、第1駆動信号G11,G14(G12,G13)の位相と、第2駆動信号G22,G23(G21,G24)の位相との差である。 Here, as shown in FIG. 5, the inventors of the present application simulate that the output power of the non-contact power feeding device 2 changes by changing the phase difference θ without changing the switching frequency f <b> 1 (experiment). ) In FIG. 5, the characteristic when the switching frequency f1 is 93 kHz is indicated by a solid line, and the characteristic when the switching frequency f1 is 91 kHz is indicated by a broken line. 2B, the phase difference θ is the difference between the phase of the first drive signals G11 and G14 and the phase of the second drive signals G22 and G23, or the phase of the first drive signals G12 and G13 and the second phase. This is the difference from the phases of the drive signals G21 and G24. That is, the phase difference θ is a difference between the phases of the first drive signals G11 and G14 (G12 and G13) and the phases of the second drive signals G22 and G23 (G21 and G24).
 また、本願の発明者等は、図5に示すように、位相差θが零の状態であれば、非接触給電装置2の出力電力が零の状態で始動できることをシミュレーション(実験)により確かめている。更に、本願の発明者等は、図5に示すように、インバータ回路21の動作モード(すなわち、進相モード又は遅相モード)が、位相差θに応じて変化することをシミュレーション(実験)により確かめている。 Further, as shown in FIG. 5, the inventors of the present application have confirmed by simulation (experiment) that the output power of the non-contact power feeding device 2 can be started when the phase difference θ is zero. Yes. Further, as shown in FIG. 5, the inventors of the present application have shown by simulation (experiment) that the operation mode of the inverter circuit 21 (that is, the phase advance mode or the phase delay mode) changes according to the phase difference θ. I'm sure.
 そこで、本実施形態の非接触給電装置2では、制御回路23は、図2Aに示すように、第1期間T1と第2期間T2とが一致するように始動する。第1期間T1は、インバータ回路21が負極性の交流電圧を出力する期間である。また、第2期間T2は、容量調整回路22が1次側コンデンサC11を介する経路に切り替えている期間である。具体的には、制御回路23は、始動時において、第1駆動信号G11,G14を出力するタイミングと、第2駆動信号G22,G23を出力するタイミングとが一致するように制御する。同様に、制御回路23は、始動時において、第1駆動信号G12,G13を出力するタイミングと、第2駆動信号G21,G24を出力するタイミングとが一致するように制御する。つまり、制御回路23は、第1駆動信号G11,G14(G12,G13)の位相と、第2駆動信号G22,G23(G21,G24)の位相とが一致するように始動する。 Therefore, in the non-contact power feeding device 2 of the present embodiment, the control circuit 23 starts so that the first period T1 and the second period T2 coincide as shown in FIG. 2A. The first period T1 is a period in which the inverter circuit 21 outputs a negative AC voltage. The second period T2 is a period during which the capacitance adjustment circuit 22 is switched to a path through the primary capacitor C11. Specifically, the control circuit 23 performs control so that the timing at which the first drive signals G11 and G14 are output coincides with the timing at which the second drive signals G22 and G23 are output at the time of starting. Similarly, at the time of start-up, the control circuit 23 performs control so that the timing for outputting the first drive signals G12 and G13 coincides with the timing for outputting the second drive signals G21 and G24. That is, the control circuit 23 starts so that the phases of the first drive signals G11, G14 (G12, G13) and the phases of the second drive signals G22, G23 (G21, G24) coincide.
 制御回路23の上記の制御により、第1期間T1と第2期間T2とが一致する、すなわち位相差θが零の状態でインバータ回路21が動作を開始する。したがって、本実施形態の非接触給電装置2の出力電力は始動時に零となる(図5参照)。そして、位相差θが零の状態は、図5に示すように遅相モードの領域と進相モードの領域との境界に当たるため、インバータ回路21が進相モードで動作するのを防止することができる。勿論、制御回路23が上記のように制御すれば、1次側コイルL1と2次側コイルL2との相対的な位置ずれが生じた場合でも、位相差θが零の状態でインバータ回路21が動作する。 By the above control of the control circuit 23, the inverter circuit 21 starts operating when the first period T1 and the second period T2 coincide, that is, the phase difference θ is zero. Therefore, the output power of the non-contact power feeding device 2 of the present embodiment becomes zero at the start (see FIG. 5). The state where the phase difference θ is zero hits the boundary between the phase of the slow phase mode and the region of the fast phase mode as shown in FIG. 5, so that the inverter circuit 21 can be prevented from operating in the fast phase mode. it can. Of course, if the control circuit 23 performs control as described above, even if the relative displacement between the primary side coil L1 and the secondary side coil L2 occurs, the inverter circuit 21 is in a state where the phase difference θ is zero. Operate.
 また、制御回路23は、図2Bに示すように、始動後において、第2駆動信号G21,G24(G22,G23)の位相が第1駆動信号G12,G13(G11,G14)の位相よりも進むように制御する。具体的には、制御回路23は、第2駆動信号G21,G24(G22,G23)を出力するタイミングを、第1駆動信号G12,G13(G11,G14)を出力するタイミングよりも早めていく。 Further, as shown in FIG. 2B, the control circuit 23, after starting, the phase of the second drive signals G21, G24 (G22, G23) advances from the phase of the first drive signals G12, G13 (G11, G14). To control. Specifically, the control circuit 23 advances the timing for outputting the second drive signals G21, G24 (G22, G23) earlier than the timing for outputting the first drive signals G12, G13 (G11, G14).
 制御回路23の上記の制御により、位相差θが零よりも小さくなり、非接触給電装置2の出力電力が増大する(図5参照)。そして、位相差θが零よりも小さい状態は、図5に示すように、遅相モードの領域に当たるため、インバータ回路21が遅相モードで動作する。つまり、制御回路23の上記の制御により、インバータ回路21が進相モードで動作するのを防止することができる。勿論、制御回路23が上記のように制御すれば、1次側コイルL1と2次側コイルL2との相対的な位置ずれが生じた場合でも、位相差θが零よりも小さくなり、インバータ回路21が遅相モードで動作する。 By the above control of the control circuit 23, the phase difference θ becomes smaller than zero, and the output power of the non-contact power feeding device 2 increases (see FIG. 5). Then, when the phase difference θ is smaller than zero, as shown in FIG. 5, it corresponds to the phase of the slow phase mode, so that the inverter circuit 21 operates in the slow phase mode. That is, the control of the control circuit 23 can prevent the inverter circuit 21 from operating in the phase advance mode. Of course, if the control circuit 23 controls as described above, the phase difference θ becomes smaller than zero even when the relative displacement between the primary coil L1 and the secondary coil L2 occurs, and the inverter circuit 21 operates in the slow phase mode.
 上述のように、本実施形態の非接触給電装置2では、制御回路23は、第1駆動信号G11,G14(G12,G13)の位相と、第2駆動信号G22,G23(G21,G24)の位相とが一致するように始動する。そして、制御回路23は、第2駆動信号G21,G24(G22,G23)の位相が第1駆動信号G12,G13(G11,G14)の位相よりも進むように制御する。このため、本実施形態の非接触給電装置2では、1次側コイルL1と2次側コイルL2との相対的な位置がずれても、スイッチング周波数f1を変化させることなく、非接触給電装置2の出力電力を増大させることができる。したがって、本実施形態の非接触給電装置2は、1次側コイルL1と2次側コイルL2との相対的な位置がずれても、十分な給電効率で給電することができる。 As described above, in the contactless power supply device 2 of the present embodiment, the control circuit 23 is configured to output the phases of the first drive signals G11 and G14 (G12 and G13) and the second drive signals G22 and G23 (G21 and G24). Start to match the phase. Then, the control circuit 23 performs control so that the phases of the second drive signals G21 and G24 (G22 and G23) are ahead of the phases of the first drive signals G12 and G13 (G11 and G14). For this reason, in the non-contact electric power feeder 2 of this embodiment, even if the relative position of the primary side coil L1 and the secondary side coil L2 shifts, the non-contact electric power feeder 2 does not change the switching frequency f1. Output power can be increased. Therefore, the contactless power supply device 2 of the present embodiment can supply power with sufficient power supply efficiency even if the relative positions of the primary side coil L1 and the secondary side coil L2 shift.
 また、本実施形態の非接触給電装置2では、位相差θが零の状態でインバータ回路21が動作を開始し、始動後に位相差θが小さくなるので、インバータ回路21が進相モードで動作するのを防止することができる。勿論、本実施形態の非接触給電装置2を用いた本実施形態の非接触給電システム1でも、同様の効果を奏することができる。 Further, in the non-contact power feeding device 2 of the present embodiment, the inverter circuit 21 starts operating in a state where the phase difference θ is zero, and the phase difference θ becomes small after starting, so the inverter circuit 21 operates in the phase advance mode. Can be prevented. Of course, the same effect can be obtained also in the non-contact power feeding system 1 of the present embodiment using the non-contact power feeding device 2 of the present embodiment.
 ここで、位相差θを小さくしていくと、インバータ回路21の動作モードが遅相モードから進相モードに切り替わる可能性がある。そこで、本実施形態の非接触給電装置2では、制御回路23は、非接触給電装置2の出力電力の単位時間当たりの変化量を監視するように構成されていてもよい。この場合、制御回路23は、出力電力の単位時間当たりの変化量が所定の閾値を下回るか、或いは負の値となった場合に、出力電力が極大になったと判断する。したがって、この構成では、インバータ回路21が遅相モードから進相モードに切り替わるタイミングを判断することができる。 Here, if the phase difference θ is reduced, the operation mode of the inverter circuit 21 may be switched from the slow phase mode to the fast phase mode. Therefore, in the contactless power supply device 2 of the present embodiment, the control circuit 23 may be configured to monitor the amount of change per unit time of the output power of the contactless power supply device 2. In this case, the control circuit 23 determines that the output power has reached a maximum when the amount of change per unit time in the output power is below a predetermined threshold or becomes a negative value. Therefore, in this configuration, it is possible to determine the timing at which the inverter circuit 21 switches from the slow phase mode to the fast phase mode.
 その他、制御回路23は、インバータ回路21の出力電圧の位相と、1次側コイルL1を流れる電流(1次側電流)の位相との位相差θ1を監視するように構成されていてもよい(図6参照)。この構成では、位相差θ1が所定の閾値を上回るか否かを制御回路23が監視することで、インバータ回路21の動作モードが遅相モードから進相モードに切り替わるタイミングを判断することができる。 In addition, the control circuit 23 may be configured to monitor the phase difference θ1 between the phase of the output voltage of the inverter circuit 21 and the phase of the current (primary side current) flowing through the primary side coil L1 ( (See FIG. 6). In this configuration, the control circuit 23 monitors whether or not the phase difference θ1 exceeds a predetermined threshold, so that it is possible to determine the timing at which the operation mode of the inverter circuit 21 is switched from the slow phase mode to the fast phase mode.
 また、本実施形態の非接触給電装置2は、図7に示すように、インバータ回路21と1次側コイルL1との間において、容量調整回路22に直列に接続されるコンデンサC12を備えるのが好ましい。この構成では、インバータ回路21と1次側コイルL1との間に印加される電圧が、1次側コンデンサC11とコンデンサC12とで分圧されるので、1次側コンデンサC11に印加される電圧を小さくすることができる。つまり、この構成では、容量調整回路22に印加される電圧を小さくすることができるので、各第2スイッチ素子S21~S24に要求される耐圧を小さくすることができる。 In addition, as shown in FIG. 7, the contactless power supply device 2 of the present embodiment includes a capacitor C <b> 12 connected in series to the capacity adjustment circuit 22 between the inverter circuit 21 and the primary coil L <b> 1. preferable. In this configuration, since the voltage applied between the inverter circuit 21 and the primary coil L1 is divided by the primary capacitor C11 and the capacitor C12, the voltage applied to the primary capacitor C11 is Can be small. That is, in this configuration, the voltage applied to the capacitance adjusting circuit 22 can be reduced, so that the breakdown voltage required for each of the second switch elements S21 to S24 can be reduced.
 ここで、既に述べたように、第1駆動回路232と第2駆動回路233とは互いに電気的に絶縁されているが、その要求される絶縁耐圧は、回路グランドとインバータ回路21の第1出力端との間の電圧V1(図8,図9参照)により決定される。そして、図9に示すように、コンデンサC12がインバータ回路21と容量調整回路22との間に接続されている場合、電圧V1の最大電圧は、直流電源DC1の電源電圧に、コンデンサC12の両端電圧を加えた電圧となる。この場合、コンデンサC12の両端電圧の分だけ絶縁耐圧を大きくする必要があるため、第1駆動回路232と第2駆動回路233との間の絶縁の設計が難しい。 Here, as already described, the first drive circuit 232 and the second drive circuit 233 are electrically insulated from each other, but the required withstand voltage is the circuit ground and the first output of the inverter circuit 21. It is determined by the voltage V1 between the ends (see FIGS. 8 and 9). As shown in FIG. 9, when the capacitor C12 is connected between the inverter circuit 21 and the capacity adjustment circuit 22, the maximum voltage of the voltage V1 is equal to the power supply voltage of the DC power supply DC1 and the voltage across the capacitor C12. It becomes the voltage which added. In this case, since it is necessary to increase the dielectric strength with respect to the voltage across the capacitor C12, it is difficult to design the insulation between the first drive circuit 232 and the second drive circuit 233.
 そこで、図8に示すように、コンデンサC12は、容量調整回路22と1次側コイルL1との間に接続されるのが好ましい。この構成では、電圧V1の最大電圧は、直流電源DC1の電源電圧となるので、図9に示す構成と比較して要求される絶縁耐圧を小さくすることができる。つまり、この構成は、図9に示す構成と比較して、第1駆動回路232と第2駆動回路233との間の絶縁の設計が容易になるという利点がある。 Therefore, as shown in FIG. 8, the capacitor C12 is preferably connected between the capacitance adjusting circuit 22 and the primary coil L1. In this configuration, the maximum voltage V1 is the power supply voltage of the DC power supply DC1, so that the required withstand voltage can be reduced as compared with the configuration shown in FIG. That is, this configuration has an advantage that the design of insulation between the first drive circuit 232 and the second drive circuit 233 is easier than the configuration shown in FIG.
 なお、図8,図9に示す構成では、非接触給電装置2は、1次側の共振回路に更にコンデンサC13を備えているが、このコンデンサC13を備えるか否かは任意である。また、図8,図9に示す構成では、受電装置3は、2次側の共振回路に更にコンデンサC22を備えているが、このコンデンサC22を備えるか否かは任意である。 In the configurations shown in FIGS. 8 and 9, the non-contact power feeding device 2 further includes a capacitor C13 in the primary-side resonance circuit, but whether or not the capacitor C13 is included is arbitrary. 8 and 9, the power receiving device 3 further includes a capacitor C22 in the secondary-side resonance circuit, but whether or not the capacitor C22 is included is arbitrary.
 ところで、本実施形態の非接触給電装置2では、4つの第2スイッチ素子S21~S24を用いて容量調整回路22を構成しているが、容量調整回路22は他の構成であってもよい。例えば、容量調整回路22は、図10に示すように、1次側コンデンサC11と、第1双方向スイッチQ1と、第2双方向スイッチQ2とで構成されていてもよい。第1双方向スイッチQ1及び第2双方向スイッチQ2は、複数の第2スイッチ素子S21~S24の代わりに用いられている。 By the way, in the non-contact power feeding device 2 of the present embodiment, the capacitance adjustment circuit 22 is configured by using the four second switch elements S21 to S24, but the capacitance adjustment circuit 22 may have other configurations. For example, as shown in FIG. 10, the capacity adjustment circuit 22 may be configured by a primary side capacitor C11, a first bidirectional switch Q1, and a second bidirectional switch Q2. The first bidirectional switch Q1 and the second bidirectional switch Q2 are used instead of the plurality of second switch elements S21 to S24.
 第1双方向スイッチQ1は、2つのゲート端子GT1,GT2を有するダブルゲート構造の半導体素子で構成されている。また、第1双方向スイッチQ1は、1次側コンデンサC11に直列に接続されている。第2双方向スイッチQ2は、2つのゲート端子GT3,GT4を有するダブルゲート構造の半導体素子で構成されている。また、第2双方向スイッチQ2は、第1双方向スイッチQ1及び1次側コンデンサC11の直列回路と並列に接続されている。 The first bidirectional switch Q1 is composed of a semiconductor element having a double gate structure having two gate terminals GT1 and GT2. The first bidirectional switch Q1 is connected in series with the primary capacitor C11. The second bidirectional switch Q2 is composed of a semiconductor element having a double gate structure having two gate terminals GT3 and GT4. The second bidirectional switch Q2 is connected in parallel with the series circuit of the first bidirectional switch Q1 and the primary side capacitor C11.
 第1双方向スイッチQ1は、ゲート端子GT1にオン信号、ゲート端子GT2にオフ信号が入力されると、インバータ回路21の第1出力端から1次側コイルL1の一端に向かう方向(第1方向)に導通する。また、第1双方向スイッチQ1は、ゲート端子GT1にオフ信号、ゲート端子GT2にオン信号が入力されると、第1方向とは逆方向(第2方向)に導通する。また、第1双方向スイッチQ1は、各ゲート端子GT1,GT2にオン信号が入力されると、第1方向及び第2方向の両方向に導通する。そして、第1双方向スイッチQ1は、各ゲート端子GT1,GT2にオフ信号が入力されると、第1方向及び第2方向の何れにも非導通となる。 In the first bidirectional switch Q1, when an ON signal is input to the gate terminal GT1 and an OFF signal is input to the gate terminal GT2, the direction from the first output end of the inverter circuit 21 toward one end of the primary coil L1 (first direction) ). The first bidirectional switch Q1 conducts in a direction opposite to the first direction (second direction) when an off signal is input to the gate terminal GT1 and an on signal is input to the gate terminal GT2. Further, the first bidirectional switch Q1 conducts in both the first direction and the second direction when an ON signal is input to each of the gate terminals GT1 and GT2. The first bidirectional switch Q1 becomes non-conductive in both the first direction and the second direction when an off signal is input to each of the gate terminals GT1 and GT2.
 第2双方向スイッチQ2は、ゲート端子GT3にオン信号、ゲート端子GT4にオフ信号が入力されると、第1方向に導通する。また、第2双方向スイッチQ2は、ゲート端子GT3にオフ信号、ゲート端子GT4にオン信号が入力されると、第2方向に導通する。また、第2双方向スイッチQ2は、各ゲート端子GT3,GT4にオン信号が入力されると、第1方向及び第2方向の両方向に導通する。そして、第2双方向スイッチQ2は、各ゲート端子GT3,GT4にオフ信号が入力されると、第1方向及び第2方向の何れにも非導通となる。 The second bidirectional switch Q2 conducts in the first direction when an ON signal is input to the gate terminal GT3 and an OFF signal is input to the gate terminal GT4. The second bidirectional switch Q2 conducts in the second direction when an off signal is input to the gate terminal GT3 and an on signal is input to the gate terminal GT4. Further, the second bidirectional switch Q2 conducts in both the first direction and the second direction when an ON signal is input to each of the gate terminals GT3 and GT4. The second bidirectional switch Q2 becomes non-conductive in both the first direction and the second direction when an off signal is input to each of the gate terminals GT3 and GT4.
 第1双方向スイッチQ1のゲート端子GT1には、第2駆動信号G21が入力され、ゲート端子GT2には第2駆動信号G22が入力される。また、第2双方向スイッチQ2のゲート端子GT3には、第2駆動信号G23が入力され、ゲート端子GT4には第2駆動信号G24が入力される。このように構成された容量調整回路22は、図1に示すような複数の第2スイッチ素子S21~S24を有する容量調整回路22と同様に動作する。 The second drive signal G21 is input to the gate terminal GT1 of the first bidirectional switch Q1, and the second drive signal G22 is input to the gate terminal GT2. The second drive signal G23 is input to the gate terminal GT3 of the second bidirectional switch Q2, and the second drive signal G24 is input to the gate terminal GT4. The capacitance adjustment circuit 22 configured in this way operates in the same manner as the capacitance adjustment circuit 22 having a plurality of second switch elements S21 to S24 as shown in FIG.
 また、第1双方向スイッチQ1及び第2双方向スイッチQ2は、それぞれ窒化ガリウム(GaN)系半導体素子であるのが好ましい。この構成では、各双方向スイッチQ1,Q2の耐圧性や、耐温度性を向上することができる。その他、第1双方向スイッチQ1(第2双方向スイッチQ2)は、ダイオード及びIGBTの直列回路を2つ、それぞれ互いに極性が逆になるように並列に接続して構成されていてもよい。また、第1双方向スイッチQ1(第2双方向スイッチQ2)は、nチャネルのエンハンスメント型MOSFETと、pチャネルのエンハンスメント型MOSFETとを直列に接続して構成されていてもよい。 The first bidirectional switch Q1 and the second bidirectional switch Q2 are preferably gallium nitride (GaN) based semiconductor elements. With this configuration, it is possible to improve the pressure resistance and temperature resistance of each bidirectional switch Q1, Q2. In addition, the first bidirectional switch Q1 (second bidirectional switch Q2) may be configured by connecting two series circuits of diodes and IGBTs in parallel so that their polarities are opposite to each other. The first bidirectional switch Q1 (second bidirectional switch Q2) may be configured by connecting an n-channel enhancement type MOSFET and a p-channel enhancement type MOSFET in series.
 なお、本実施形態の非接触給電装置2及び非接触給電システム1では、共鳴方式により1次側コイルL1から2次側コイルL2に電力を供給しているが、電磁誘導方式で電力を供給する構成であってもよい。この構成では、受電装置3において共振回路を形成する必要がないので、二次側コンデンサC21は不要である。 In the contactless power supply device 2 and the contactless power supply system 1 of the present embodiment, power is supplied from the primary side coil L1 to the secondary side coil L2 by the resonance method, but power is supplied by the electromagnetic induction method. It may be a configuration. In this configuration, since it is not necessary to form a resonance circuit in the power receiving device 3, the secondary side capacitor C21 is not necessary.
 ところで、1次側コイルL1および2次側コイルL2は、(コアに対して導線が螺旋状に巻き付けられた)ソレノイド型のコイルに限らず、(平面上において導線が渦巻き状に巻かれた)スパイラル型のコイルであってもよい。スパイラル型のコイルは、ソレノイド型のコイルに比べて、不要輻射ノイズが生じにくい、という利点がある。また、スパイラル型のコイルが用いられることで、不要輻射ノイズが低減される結果、インバータ回路21において使用可能なスイッチング周波数f1の範囲が拡大される、という利点もある。以下、この点について詳述する。 By the way, the primary side coil L1 and the secondary side coil L2 are not limited to solenoid type coils (the conductive wire is spirally wound around the core), but the conductive wire is wound in a spiral shape on a plane. A spiral coil may be used. Spiral type coils have the advantage that unwanted radiation noise is less likely to occur than solenoid type coils. Further, the use of the spiral type coil has an advantage that the range of the switching frequency f1 usable in the inverter circuit 21 is expanded as a result of reducing unnecessary radiation noise. Hereinafter, this point will be described in detail.
 すなわち、本実施形態の非接触給電システム1における共振特性は、上述したように1次側コイルL1と2次側コイルL2との結合係数に応じて変化する。そして、共振特性は、ある条件下では、図11Aおよび図11Bに示すように出力に2つの極大値が生じる、いわゆる双峰特性を示す。この共振特性(双峰特性)においては、図11Aおよび図11Bに示すように、第1共振周波数fr1と第3共振周波数fr3とのそれぞれで出力が極大となる2つの“山”が生じる。これら2つの“山”の間には、第2共振周波数fr2で出力が極小となる“谷”が生じる。ここで、第1共振周波数fr1と第2共振周波数fr2と第3共振周波数fr3とは、fr1<fr2<fr3の関係にある。以下では、第2共振周波数fr2を基準に、第2共振周波数fr2より低い周波数領域を「低周波領域」といい、第2共振周波数fr2より高い周波数領域を「高周波領域」という。 That is, the resonance characteristics in the non-contact power feeding system 1 of the present embodiment change according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, as described above. The resonance characteristic shows a so-called bimodal characteristic in which two maximum values are generated in the output as shown in FIGS. 11A and 11B under certain conditions. In this resonance characteristic (bimodal characteristic), as shown in FIG. 11A and FIG. 11B, two “mountains” in which the output is maximized at each of the first resonance frequency fr1 and the third resonance frequency fr3 are generated. Between these two “mountains”, a “valley” in which the output is minimized at the second resonance frequency fr2 occurs. Here, the first resonance frequency fr1, the second resonance frequency fr2, and the third resonance frequency fr3 are in a relationship of fr1 <fr2 <fr3. Hereinafter, with reference to the second resonance frequency fr2, the frequency region lower than the second resonance frequency fr2 is referred to as “low frequency region”, and the frequency region higher than the second resonance frequency fr2 is referred to as “high frequency region”.
 このような共振特性にあっては、低周波領域の“山”と、高周波領域の“山”とのそれぞれに、インバータ回路21が遅相モードで動作する領域(以下、「遅相領域」という)が生じる。そのため、インバータ回路21は、スイッチング周波数f1が2つの“山”のいずれにある場合でも、遅相モードで動作可能である。 In such a resonance characteristic, a region where the inverter circuit 21 operates in the slow phase mode (hereinafter referred to as a “slow phase region”) is provided for each of the “crest” in the low frequency region and the “crest” in the high frequency region. ) Occurs. Therefore, the inverter circuit 21 can operate in the slow phase mode even when the switching frequency f1 is at any of the two “mountains”.
 ここで、インバータ回路21のスイッチング周波数f1が‘f0’であると仮定し、当該周波数f0が低周波領域の“山”にある場合と、高周波領域の“山”にある場合とを比較する。すると、周波数f0が低周波領域の“山”にある場合の方が、不要輻射ノイズは小さくなる。つまり、高周波領域の“山”においては、1次側コイルL1を流れる電流と、2次側コイルL2を流れる電流とは同位相になる。これに対して、低周波領域の“山”においては、1次側コイルL1を流れる電流と、2次側コイルL2を流れる電流とは逆位相になる。そのため、低周波領域の“山”においては、1次側コイルL1で生じる不要輻射ノイズと、2次側コイルL2で生じる不要輻射ノイズとが、互いに相殺されることになり、本実施形態の非接触給電システム1全体でみれば不要輻射ノイズは低減される。 Here, assuming that the switching frequency f1 of the inverter circuit 21 is ‘f0’, the case where the frequency f0 is in the “mountain” in the low frequency region and the case in the “mountain” of the high frequency region are compared. Then, unnecessary radiation noise becomes smaller when the frequency f0 is in the “mountain” of the low frequency region. That is, in the “mountain” of the high frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 have the same phase. On the other hand, in the “mountain” in the low frequency region, the current flowing through the primary coil L1 and the current flowing through the secondary coil L2 are in opposite phases. Therefore, in the “mountains” in the low frequency region, the unnecessary radiation noise generated in the primary side coil L1 and the unnecessary radiation noise generated in the secondary side coil L2 cancel each other. Unnecessary radiation noise is reduced when viewed from the entire contact power supply system 1.
 したがって、ソレノイド型のコイルが採用される場合でも、インバータ回路21のスイッチング周波数f1が低周波領域の“山”の遅相領域(fr1~fr2)にあれば、インバータ回路21が遅相モードで動作し、かつ不要輻射ノイズも低減されることになる。しかし、低周波領域の“山”の遅相領域は、1次側コイルL1と2次側コイルL2との結合係数に応じて変化するため、このような不確定な遅相領域にインバータ回路21のスイッチング周波数f1を収める制御が必要になる。 Therefore, even when a solenoid type coil is employed, if the switching frequency f1 of the inverter circuit 21 is in the “mountain” slow phase region (fr1 to fr2) of the low frequency region, the inverter circuit 21 operates in the slow phase mode. In addition, unnecessary radiation noise is also reduced. However, since the slow phase region of the “mountain” in the low frequency region changes according to the coupling coefficient between the primary side coil L1 and the secondary side coil L2, the inverter circuit 21 is brought into such an uncertain slow phase region. Therefore, it is necessary to control so that the switching frequency f1 is reduced.
 これに対して、スパイラル型のコイルであれば、たとえインバータ回路21のスイッチング周波数f1が高周波領域の“山”の遅相領域(fr3より高周波側)にあっても、ソレノイド型のコイルに比べれば不要輻射ノイズは大幅に低減される。つまり、スパイラル型のコイルが用いられることで、インバータ回路21のスイッチング周波数f1は低周波領域の“山”の遅相領域に制限されず、インバータ回路21において使用可能なスイッチング周波数f1の範囲が拡大されることになる。なお、高周波領域の“山”の遅相領域も不確定な領域ではあるが、インバータ回路21のスイッチング周波数f1を十分に高い周波数から低周波側にスイープさせれば、スイッチング周波数f1が高周波領域の“山”の遅相領域を通るので、複雑な制御は不要である。 On the other hand, in the case of a spiral type coil, even if the switching frequency f1 of the inverter circuit 21 is in the “mountain” slow phase region (higher frequency side than fr3) of the high frequency region, compared to the solenoid type coil. Unwanted radiation noise is greatly reduced. In other words, by using the spiral type coil, the switching frequency f1 of the inverter circuit 21 is not limited to the “hill” slow-phase region in the low frequency region, and the range of the switching frequency f1 usable in the inverter circuit 21 is expanded. Will be. Although the slow phase region of the “mountain” in the high frequency region is also an uncertain region, if the switching frequency f1 of the inverter circuit 21 is swept from a sufficiently high frequency to a low frequency side, the switching frequency f1 becomes the high frequency region. Since it passes through the “mountain” slow-phase region, no complicated control is required.

Claims (6)

  1.  複数の第1スイッチ素子を有し、前記複数の第1スイッチ素子のオン/オフが切り替えられることで直流電力を交流電力に変換して前記交流電力を出力するインバータ回路と、
     前記インバータ回路の出力する前記交流電力を受けて磁界を発生する1次側コイルと、
     前記インバータ回路と前記1次側コイルとの間に電気的に接続されて、複数の第2スイッチ素子と、1次側コンデンサとを有し、前記複数の第2スイッチ素子のオン/オフが切り替えられることで、前記1次側コンデンサを介する経路と、前記1次側コンデンサを介さない経路とを切り替える容量調整回路と、
     前記複数の第1スイッチ素子及び前記複数の第2スイッチ素子のオン/オフをそれぞれ制御する制御回路とを備え、
     前記1次側コイルは、前記1次側コンデンサと共に共振回路を形成し、
     前記制御回路は、前記複数の第1スイッチ素子に与える第1駆動信号の位相と、前記複数の第2スイッチ素子に与える第2駆動信号の位相とが一致するように始動し、且つ始動後において、前記第2駆動信号の位相が、前記第1駆動信号の位相よりも進むように制御することを特徴とする非接触給電装置。
    An inverter circuit which has a plurality of first switch elements and converts the DC power into AC power by switching on / off of the plurality of first switch elements, and outputs the AC power;
    A primary coil that receives the AC power output from the inverter circuit and generates a magnetic field;
    A plurality of second switch elements and a primary capacitor are electrically connected between the inverter circuit and the primary coil, and the plurality of second switch elements are switched on / off. A capacitance adjusting circuit that switches a path through the primary side capacitor and a path not through the primary side capacitor;
    A control circuit for controlling on / off of each of the plurality of first switch elements and the plurality of second switch elements;
    The primary coil forms a resonance circuit with the primary capacitor,
    The control circuit starts so that the phase of the first drive signal applied to the plurality of first switch elements coincides with the phase of the second drive signal applied to the plurality of second switch elements, and after the start The non-contact power feeding apparatus is controlled so that a phase of the second drive signal is advanced than a phase of the first drive signal.
  2.  前記インバータ回路と前記1次側コイルとの間において、前記容量調整回路に直列に接続されるコンデンサを備えることを特徴とする請求項1記載の非接触給電装置。 The non-contact power feeding device according to claim 1, further comprising a capacitor connected in series with the capacity adjustment circuit between the inverter circuit and the primary coil.
  3.  前記コンデンサは、前記容量調整回路と前記1次側コイルとの間に接続されることを特徴とする請求項2記載の非接触給電装置。 3. The non-contact power feeding device according to claim 2, wherein the capacitor is connected between the capacitance adjusting circuit and the primary coil.
  4.  前記複数の第2スイッチ素子は、第1双方向スイッチと第2双方向スイッチであって、
     前記容量調整回路は、前記第1双方向スイッチを前記1次側コンデンサと直列に接続し、前記第2双方向スイッチを前記1次側コンデンサ及び前記第1双方向スイッチの直列回路と並列に接続して構成されることを特徴とする請求項1乃至3の何れか1項に記載の非接触給電装置。
    The plurality of second switch elements are a first bidirectional switch and a second bidirectional switch,
    The capacitance adjusting circuit connects the first bidirectional switch in series with the primary side capacitor, and connects the second bidirectional switch in parallel with the series circuit of the primary side capacitor and the first bidirectional switch. The non-contact power feeding device according to claim 1, wherein the non-contact power feeding device is configured as described above.
  5.  前記第1双方向スイッチ及び前記第2双方向スイッチは、それぞれ窒化ガリウム系半導体素子であることを特徴とする請求項4記載の非接触給電装置。 The contactless power feeding device according to claim 4, wherein each of the first bidirectional switch and the second bidirectional switch is a gallium nitride based semiconductor element.
  6.  請求項1乃至5の何れか1項に記載の非接触給電装置と、前記非接触給電装置から給電される電力を受ける受電装置とを備え、
     前記受電装置は、
     前記1次側コイルが発生する磁界を受けて交流電力を発生する2次側コイルと、
     前記2次側コイルと共に共振回路を形成する2次側コンデンサとを備えることを特徴とする非接触給電システム。
    A contactless power supply device according to any one of claims 1 to 5, and a power receiving device that receives power supplied from the contactless power supply device,
    The power receiving device is:
    A secondary coil that generates AC power in response to a magnetic field generated by the primary coil;
    A non-contact power feeding system comprising: a secondary side capacitor that forms a resonance circuit together with the secondary side coil.
PCT/JP2015/002238 2014-05-07 2015-04-24 Wireless power supply device and wireless power supply system using same WO2015170460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014096271A JP2017123699A (en) 2014-05-07 2014-05-07 Non-contact power supply device and non-contact power supply system using the same
JP2014-096271 2014-05-07

Publications (1)

Publication Number Publication Date
WO2015170460A1 true WO2015170460A1 (en) 2015-11-12

Family

ID=54392320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002238 WO2015170460A1 (en) 2014-05-07 2015-04-24 Wireless power supply device and wireless power supply system using same

Country Status (2)

Country Link
JP (1) JP2017123699A (en)
WO (1) WO2015170460A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216815A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216816A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216783A (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, non-contact power transmission system, program, and control method for non-contact power supply device
JP2017216817A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216784A (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, non-contact power transmission system, program, and control method for non-contact power supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034447A (en) * 2010-07-28 2012-02-16 Utsunomiya Univ Electric field coupling non-contact power feeding system
WO2012164846A1 (en) * 2011-06-02 2012-12-06 株式会社アドバンテスト Wireless power-receiving device, wireless power-supply device and wireless power-supply system, and automatic-tuning auxiliary circuit
JP2013153627A (en) * 2012-01-26 2013-08-08 Shindengen Electric Mfg Co Ltd Non-contact feeder circuit
JP2014093829A (en) * 2012-11-01 2014-05-19 Panasonic Corp Non-contact power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034447A (en) * 2010-07-28 2012-02-16 Utsunomiya Univ Electric field coupling non-contact power feeding system
WO2012164846A1 (en) * 2011-06-02 2012-12-06 株式会社アドバンテスト Wireless power-receiving device, wireless power-supply device and wireless power-supply system, and automatic-tuning auxiliary circuit
JP2013153627A (en) * 2012-01-26 2013-08-08 Shindengen Electric Mfg Co Ltd Non-contact feeder circuit
JP2014093829A (en) * 2012-11-01 2014-05-19 Panasonic Corp Non-contact power supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216783A (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, non-contact power transmission system, program, and control method for non-contact power supply device
JP2017216784A (en) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, non-contact power transmission system, program, and control method for non-contact power supply device
JP2017216815A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216816A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system
JP2017216817A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Non-contact power supply device, program, control method for non-contact power supply device, and non-contact power transmission system

Also Published As

Publication number Publication date
JP2017123699A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015170460A1 (en) Wireless power supply device and wireless power supply system using same
US10298069B2 (en) Wireless power receiving device and wireless power transmission device
JP6395096B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
US9762084B2 (en) Wireless charging system and method for controlling the same
EP2309620B1 (en) Wireless power feeder and wireless power transmission system
JP6440080B2 (en) Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
EP2899847A1 (en) Power receiving device and contactless power transmission device
JP4894894B2 (en) Wireless power supply apparatus and wireless power transmission system
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
JP6454943B2 (en) Non-contact power supply device and non-contact power supply system using the same
JP4915438B2 (en) Wireless power supply apparatus and wireless power transmission system
JP2016034214A (en) Contactless power supply device and contactless power supply system
JP6675094B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
WO2015182097A1 (en) Contactless power-supplying device and contactless power-supplying system in which same is used
JP6675093B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
JP6369792B2 (en) Non-contact power supply device and non-contact power supply system
JP6501193B2 (en) Non-contact power feeding device and non-contact power feeding system
JP6569987B2 (en) Non-contact power supply device and non-contact power supply system
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
JP6425183B2 (en) Non-contact power feeding device and non-contact power feeding system
JP6685015B2 (en) NON-CONTACT POWER FEEDER, NON-CONTACT POWER TRANSMISSION SYSTEM, PROGRAM, AND METHOD FOR CONTROLLING NON-CONTACT POWER FEED DEVICE
JP6715476B2 (en) Non-contact power supply device, program, control method of non-contact power supply device, and non-contact power transmission system
JP2016034213A (en) Contactless power supply device and contactless power supply system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP