WO2013040758A1 - 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 - Google Patents
膀胱移行细胞癌易感性的相关基因及其预测方法和系统 Download PDFInfo
- Publication number
- WO2013040758A1 WO2013040758A1 PCT/CN2011/079905 CN2011079905W WO2013040758A1 WO 2013040758 A1 WO2013040758 A1 WO 2013040758A1 CN 2011079905 W CN2011079905 W CN 2011079905W WO 2013040758 A1 WO2013040758 A1 WO 2013040758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- genome
- single cell
- subject
- sequencing
- cell carcinoma
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the invention relates to the field of biomedicine. Specifically, it relates to a bladder transitional cell carcinoma susceptibility-related gene and a method and system for predicting the same. More specifically, the present invention relates to a group of methods for isolating predicted genomic DNA of bladder transitional cell carcinoma, predicting susceptibility of bladder transitional cell carcinoma, and predicting susceptibility of bladder transitional cell carcinoma. Background technique
- bladder cancer refers to a variety of malignant tumors from the bladder of the urinary organ, that is, abnormal cells in which the bladder is proliferated and unregulated.
- Bladder cancer has the highest incidence of urinary tumors in China. Its tissue type is mainly transitional cell carcinoma (TCC), accounting for about 90%; followed by squamous cell carcinoma (SCO), accounting for 5%.
- TCC transitional cell carcinoma
- SCO squamous cell carcinoma
- the most important risk factor for bladder cancer It is from the influence of genes.
- smoking, long-term exposure to certain dyes (including aniline components, such as textile factory employees may be exposed), gasoline or other chemicals also have a higher risk.
- the present invention aims to solve at least one of the technical problems existing in the prior art.
- the present invention has been completed based on the following findings of the inventors:
- the inventors performed single cell sequencing of bladder transitional cell carcinoma cells and verified in a large number of samples of the same cancer species, and found that combinations of mutations of certain specific genes and bladder migration The incidence of cell cancer is closely related.
- the isolated genes comprise the nucleotide sequences shown in SEQ ID NOs: 1-10, respectively.
- the genes consisting of the nucleotide sequences shown in SEQ ID NO: 1-10 correspond to mutations of the human genes ASTN1, ATM, TMBIM4, HECTD1, IGDCC3/PU C, COL6A3, DHX57, NIPBL, CFTR, and KIAA1958, respectively. body.
- the invention proposes the use of the above isolated gene.
- the use of the above-described set of isolated genes for predicting susceptibility of a subject to bladder transitional cell carcinoma can be predicted by means of the above-described set of isolated genes.
- the invention provides a method of predicting susceptibility of a subject to bladder transitional cell carcinoma.
- the method comprises the steps of: extracting a single cell from the subject; analyzing the genome of the single cell to obtain genomic information of the single cell; and genomic information based on the single cell
- a set of isolated genes as described above is included, and the subject is judged to be susceptible to bladder transitional cell carcinoma.
- the present invention also provides a system for predicting the susceptibility of a subject to bladder transitional cell carcinoma.
- the system comprises: a single cell separation device for separating single cells from a sample of a subject; a genome amplification device, the genome amplification device and the single cell separation device Connected, and for amplifying a genome from the single cell; a genome sequencing device, the genome sequencing device being coupled to the genome amplification device, and for sequencing the single cell genome to obtain the single cell Genomic information; a comparison device, wherein the comparison device is connected to the genome sequencing device, wherein the comparison device prestores control sequence information, wherein the control sequence information is a sequence of the separated genes described above Information, the comparing device is configured to compare the genomic information of the single cell with the control sequence information, so as to include a set of isolated genes according to the above, based on the genomic information of the single cell, The subject is susceptible to bladder transitional cell carcinoma.
- a method of predicting susceptibility of a bladder transitional cell carcinoma of a subject according to an embodiment of the present invention can be effectively carried out, thereby effectively predicting whether a subject is susceptible to bladder transitional cell carcinoma. Therefore, preventive measures can be taken in a targeted manner to avoid the occurrence of related cancers.
- the present invention also provides a kit for predicting susceptibility of a subject to bladder transitional cell carcinoma, the kit comprising a set of separations suitable for detecting the foregoing, in accordance with an embodiment of the present invention.
- the reagents of the gene are provided.
- FIG. 2 shows a schematic diagram of a system for predicting susceptibility of a subject to bladder transitional cell carcinoma in accordance with an embodiment of the present invention.
- the present invention has been completed based on the following findings of the inventors:
- the inventors have single-cell sequencing of bladder transitional cell carcinoma cells and have been verified in a large number of cancer samples, and found that a combination of mutations of certain specific genes and the bladder
- the incidence of transitional cell carcinoma is closely related.
- the development of bladder cancer is a very complicated process.
- To study the molecular genetic basis of bladder cancer it is hoped that it can provide a routine method for routine detection, clinical diagnosis, personalized treatment, and disease tracking.
- the differences in individual patients and the intersection of biomolecular events at different stages of development have brought great difficulties to this work. It is obviously impossible and unscientific to use a single molecular genetic change to diagnose the disease.
- the inventors applied modern molecular biology techniques (whole genome amplification technology, exon capture technology, sequencing technology, etc.) to analyze the gene sequences of the sample of the subject, and transferred genes with high somatic mutation rates from a large number of bladders.
- the related genes (or loci) obtained in the sequencing of cell cancer diseases are compared, so that the risk of bladder transitional cell carcinoma disease can be judged.
- One aspect of the invention proposes a set of isolated genes that are highly associated with the pathogenesis of bladder transitional cell carcinoma, which are referred to herein as susceptible genes.
- these isolated genes are each composed of the nucleotide sequence shown by SEQ ID NO: 1-10.
- the term "gene” as used herein shall be understood broadly to mean any particular nucleic acid sequence in the genome which may be an exon region sequence, an intron sequence, or a non-coding sequence. The region as well as the regulatory region and the region where its actual function is not yet known, thus the term “gene” can be used interchangeably with “oligonucleotide” in the present invention.
- a set of isolated genes are respectively composed of a nucleotide sequence represented by SEQ ID NO: 1-10, which correspond to human genes ASTN1, ATM, TMBIM4, HECTD1, IGDCC3/PU, respectively.
- C COL6A3, DHX57, NIPBL, CFTR, and mutants of KIAA1958.
- nucleotide sequences shown in SEQ ID NO: 1-10 are identical to human normal ASTN1, ATM, TMBIM4, HECTD1, IGDCC3/PU C, COL6A3, DHX57, NIPBL, CFTR, and KIAA 1958 (for example, compared to the sequence of the latest human genome sequence database Hgl9), there are only mutations at the following sites:
- SEQ ID NO: 1 represents the sequence of 175400153-175400435 on the human genome chromosome 1;
- SEQ ID NO: 2 represents the sequence of 107611607-107611771 on the human genome chromosome 11;
- SEQ ID NO 3 represents the human genome chromosome 12 is the sequence of 64818007-64818213;
- SEQ ID NO 4 is the sequence of 30678849-30678954 on human genome chromosome 14;
- SEQ ID NO 5 is the sequence of 63410803-63411050 on human genome chromosome 15;
- SEQ ID NO 6 Is the sequence of 237913834-237914532 on chromosome 2 of the human genome;
- SEQ ID NO: 7 represents the sequence of 38887205-38887339 on chromosome 2 of the human genome;
- SEQ ID NO: 8 represents the genome of human genome 5
- SEQ ID NO: 9 represents the sequence of 117054812-11
- the mutated gene can be used as a control to detect the single-cell genome of the bladder tissue of the subject, and if it is determined that the single-cell genome of the subject contains the gene of the mutation, the subject can be predicted to have suffered, or In the future, there is a relatively high risk of bladder transitional cell carcinoma.
- prediction should be understood in a broad sense, either by combining other parameters to judge that the subject already has the relevant disease, or by judging that the subject is at high risk for the relevant disease. .
- the subjects who are tested for susceptibility to bladder transitional cell carcinoma should pay special attention to avoiding the factors that induce bladder cancer disease in normal life. Minimize the occurrence of related diseases.
- the inventors found that the ratio of somatic mutations of these genes in human bladder transitional cell carcinoma exceeds 3%.
- ICGC International Association of Cancer Genome
- the present invention proposes the use of the above-described set of isolated genes for predicting the susceptibility of bladder transitional cell carcinoma to a subject.
- the invention provides a method of predicting the susceptibility of a subject to bladder transitional cell carcinoma.
- the method comprises the following steps:
- a single cell source of a subject which can be used for predicting bladder transitional cell carcinoma is not particularly limited.
- the predicted object is a human.
- single cells which can be extracted from human blood, urine, or tissue, preferably, from the bladder tissue of a subject, thereby enabling transitional cell carcinoma of the bladder at an early stage make effective predictions.
- single cells are used, and thus there is no significant trauma to the subject, and single cells can be easily extracted in a known manner. This is a significant difference from the conventional tests that were previously performed after extracting large numbers of biological samples from the subject.
- S200 analyzing the genome of the single cell to obtain genomic information of the single cell.
- the method and apparatus for analyzing the genome of a single cell are not particularly limited.
- the genome of a single cell is divided by the following steps Analysis, obtaining genomic information of the single cell.
- the isolated single cells are first lysed by alkaline lysis, for example by placing a single cell in an alkaline lysate, preferably using an alkaline lysate consisting of the following components:
- the genome of the obtained single cell can be amplified before sequencing.
- the genome of a single cell can be amplified by using Phi29 DNA polymerase.
- Phi29 DNA polymerase The inventors have found that the amplification conditions can effectively amplify the genome of a single cell, thereby improving the efficiency of subsequent sequencing and prediction.
- a specific method can be selected according to the method of genome sequencing to establish a sequencing library of the genome, which can be completed according to the instruction manual of the sequencing technology used, and will not be described herein.
- the sequencing technique that can be employed according to an embodiment of the present invention is not particularly limited.
- the genome of the single cell can be sequenced using at least one selected from the group consisting of Hiseq2000, SOLiD, 454, and single molecule sequencing devices.
- Hiseq2000 Hiseq2000
- SOLiD single molecule sequencing devices.
- single molecule sequencing devices those skilled in the art are aware of the means by which to establish sequencing libraries corresponding to these sequencing techniques and to perform efficient high throughput sequencing.
- the inventors of the present invention have found that based on the high-efficiency and high-precision nature of these second-generation sequencing technologies, efficient and high-precision detection of sample genome information can be realized, and sample genome information can be detected very sensitively, thereby further improving prediction. Sensual efficiency.
- high-throughput means that a large number of nucleic acids can be simultaneously detected by sequencing, and the term “depth” means that a plurality of sites on the genome can be repeatedly detected.
- depth means that a plurality of sites on the genome can be repeatedly detected.
- S300 Determine whether the obtained genomic information of the single cell contains a specific gene, that is, a susceptibility gene described in detail above.
- a specific gene that is, a susceptibility gene described in detail above.
- whether or not a specific gene is contained in the obtained genomic information can be determined by any conventional method, that is, the nucleotide sequence represented by SEQ ID NO: 1-10 discovered by the inventors of the present invention Gene.
- the obtained plurality of sequencing results even a large number of sequencing results, can be compared with the susceptibility genes isolated by the present inventors to determine whether or not the specific gene is present in the sequencing result.
- SOAPsnp software can be used to complete the discovery of related alignments and mutation sites.
- the present invention provides a system for predicting susceptibility of a subject to bladder transitional cell carcinoma.
- the system includes: a single cell separation device 100, a genome amplification device 200, a genome sequencing device 300, and a comparison device 400.
- the single cell extraction device 100 is for separating single cells from a subject sample. Those skilled in the art will appreciate that any known single cell device can be employed as the single cell extraction device 100.
- the following three single cell separation methods and devices can be employed: Microfluidic chip technology, integrating laboratory unit technologies such as sample preparation, reaction, separation, and detection on a micrometer-scale chip, capable of Analyze a large number of biomolecules in a short period of time, accurately obtain a large amount of information in the sample, so as to achieve high sensitivity and rapid detection, low sample consumption, high throughput output and online automatic operation; quantitative technology and sorting technology : A series of important biophysical and biochemical parameters that can be quickly measured, stored, and suspended in a liquid, and the selected cell subpopulations can be sorted according to a preselected parameter range;
- the mouth pipette operation separation technique uses a mouth pipette to suck and discharge the liquid containing the cells in the field of the inverted microscope, and the cells are transferred from one droplet to the other to achieve a stepwise dilution, and finally a single liquid is obtained by sucking and discharging the liquid.
- the genomic amplification device 200 is coupled to the single cell separation device 100, can receive the isolated single cells from the single cell separation device 100, and can amplify the genome from the single cells, so that the genome can be used and used to separate the genome from the single cells. Subsequent genome sequencing and information analysis. It will be understood by those skilled in the art that any known genomic separation device may be employed, for example, a container provided with an alkaline lysate may be used, and a single cell is placed in the lysate for treatment, thereby releasing the genome.
- the genome sequencing device 300 is coupled to the genome amplification device 200 so that the isolated genome can be received from the genome amplification device 200 and sequenced.
- the genome sequencing device 300 can include any of the components required for conventional sequencing, such as library construction components and sequencing instruments.
- One of skill in the art can determine the specific components included in the genome sequencing device 300 based on the sequencing platform selected.
- Single-cell genomic information can be obtained by sequencing the obtained genome.
- the genome sequencing device 300 comprises at least one selected from the group consisting of a Hiseq2000, SOLiD, 454 device. Its advantages, as described in detail above, in This will not be repeated here.
- the alignment device 400 is coupled to the genome sequencing device 300, and pre-stored control sequence information in the alignment device 400, the control sequence information corresponding to the sequence of a set of susceptibility genes described above.
- corresponding means that by comparing the sequencing result with the control sequence information, after the corresponding data processing, it can be deduced whether the corresponding susceptibility gene mutation site exists in the sequencing result, corresponding
- the meaning may be the same as the sequence of the susceptibility gene, or the sequence of the mutation site of the susceptibility gene, or even the sequence of the susceptibility gene sequence can be obtained by a known finite number of operations.
- whether or not the subject is susceptible to bladder transitional cell carcinoma can be predicted by judging whether or not the corresponding mutation site of the susceptible gene is included in the result of the genome sequencing.
- the present invention provides a kit for predicting susceptibility of a subject to bladder transitional cell carcinoma.
- the kit comprises reagents suitable for detecting a set of isolated genes (genes comprising SEQ ID NOS: 1-10) according to embodiments of the invention.
- the type of the reagent suitable for application to the present invention is not particularly limited.
- a probe capable of specifically binding to a mutation site of each of a group of genes isolated by the present invention may be employed.
- the type of the probe is not particularly limited and may be an antibody, an oligonucleotide which can be complementary to a specific sequence on the gene, and the specific sequence mentioned herein contains a mutation site.
- Example 1 Collection of bladder cancer samples and acquisition of individual cancer cells
- the tumor sample was transitional cell bladder cancer, according to the classification method of the World Health Organization in 2004, which was the stage of bladder cancer ( ⁇ 2 ⁇ . ⁇ 0 ).
- the size of the parenchymal tumor sample was 1-2 mm 3 .
- the sample was stored in dry ice at -80 ° C immediately after excision and transported to the study site, and then quickly thawed in a 37 ° C water bath until the ice cube disappeared completely.
- the sample was chopped using a scalpel, and type I and type IV collagenase were added to digest the tissue. After digestion, a filter was used to remove macroscopic tissue that was visible to the naked eye to obtain a cell suspension.
- the cell suspension was washed repeatedly with PBS buffer containing no Ca 2+ and Mg 2+ ions and finally resuspended in 50 liters of PBS solution.
- the kit utilizes a thermophilic DNA polymerase (hereinafter referred to as Phi29 enzyme) cloned from Bacillus subtilis Bacillus suMlis ”) phage phi29 and a six-base random oligonucleotide primer for exonuclease for isothermal DNA amplification. Because the Phi29 enzyme has the property of strand displacement, the whole genome amplification method is called multiple displacement amplification (hereinafter referred to as MDA). MDA technology uses random primers to anneal template DNA at multiple sites, Phi29 DNA polymerase Replication is initiated simultaneously at multiple sites in the DNA.
- Phi29 enzyme thermophilic DNA polymerase
- MDA multiple displacement amplification
- the amplification system of the cell genome was incubated at a constant temperature of 30 ° C for 16 hours, and then the temperature was raised to 65 ° C for 10 minutes to terminate the reaction.
- Quant-iTTM assays contain high-sensitivity fluorescent dyes that specifically bind to DNA duplexes and avoid the measurement of interference concentrations of proteins, single-stranded nucleic acids, etc. in the reaction system. Only samples with a concentration of 30 ng/ ⁇ l will be selected for subsequent housekeeping gene testing to estimate the coverage of the amplification.
- the high-abundance housekeeping gene distributed on 10 chromosomes was used as the target product, and the upstream and downstream primers were designed for the conserved sequence in the gene, and the WGA product was used as the starting template to initiate the PCR reaction.
- the housekeeping gene primers on the relevant chromosomes are shown in the following table. If there are 8 or more target bands present on the electropherogram, it indicates that most of the genome of the cell is amplified. Only samples that have been tested by both concentration detection and housekeeping gene PCR will be scheduled for subsequent whole genome and whole exon building and sequencing.
- the exon capture process consists of: the DNA sample is immediately broken into a short fragment of about 500 bp, and the DNA fragment is repaired and a pair of linkers are attached to each end of each fragment; the DNA fragment is hybridized to Sureselect.
- the fragment of the exon region is enriched; the enriched DNA fragment is eluted and subjected to LM-PCR detection.
- Pair-end strategy For the use of Hiseq2000 sequencing, since the linker used for sequence capture is different from the sequencing adaptor (adaptor), we choose to capture The exon fragment was repaired at the end, re-fragmented after self-ligation, and A was added after end-repair, and the heseq2000 sequencing was used to construct a library for sequencing. We sequenced each captured library separately to ensure that each sample contained at least 30X coverage. After sequencing, we finally captured an average of 38 Mb of human genome per cell, covering 1.22% of the human genome, in line with the CCDS exon, indicating that exon regions in the DNA were amplified in each library.
- the original down data fastq. file is processed through preliminary processing. After removing the pollution data, low quality data and adaptor, input SOAP software for sequence assembly.
- the depth and coverage in the sequencing data can be compared to the reference sequence, and the resulting sequences are arranged separately according to the chromosome.
- the data is uniquely valued, that is, a sequence that can only match the unique position to the reference sequence is obtained, and a chr*.soap file is obtained.
- the genotype information of the relevant locus was obtained from the somatic mutation through the *.hcsmCDS file, and the chr*.genotype file was obtained, which can be used to predict the driver gene. From the chr*. genotype, a site in which a SNP mutation causes a non-synonymous mutation can also be found, and the number of cells in which a mutation occurs is counted, and the site of these mutations is subjected to KEGG annotation, or GO analysis.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
提供了一组分离的基因、预测对象膀胱移行细胞癌易感性的方法、预测对象膀胱移行细胞癌易感性的系统和试剂盒,其中该分离的一组基因分别包含SEQ ID NO:1—10所示的核苷酸序列。借助这些分离的基因,能够有效地预测对象膀胱移行细胞癌易感性。
Description
膀胱移行细胞癌易感性的相关基因及其预测方法和系统 技术领域
本发明涉及生物医学领域。 具体而言, 涉及膀胱移行细胞癌易感性相关 基因及其预测方法和系统。 更具体地, 本发明涉及一组分离预测对象膀胱移 行细胞癌的基因组 DNA、 预测对象膀胱移行细胞癌易感性的方法、 预测对象 膀胱移行细胞癌易感性的系统。 背景技术
肿瘤是一种与基因突变密切相关的疾病, 因此很多科学家都希望能够借 助人类基因计划 ( Human Genome Project ) 的开展来促进肿瘤研究的发展。 其中, 膀胱癌泛指各种出自蓄尿器官膀胱的恶性肿瘤, 也就是膀胱存在大 量增殖而不受管制的异常细胞。 膀胱癌在中国其发病率和死亡率均占泌尿 系肿瘤的首位。 其组织病例类型以移行上皮细胞癌(transitional cell carcinoma,筒称 TCC)为主, 约占 90% ; 其次为鳞状细胞癌 ( squamous cellcarcinoma, SCO , 占 5%。 罹患膀胱癌最主要的危险因子是来自基因 的影响, 另外吸烟、 长期接触某种染料(含苯胺(aniline )成份者, 如纺织 厂员工就可能接触到) 、 汽油或其他化学物质者也有较高的风险。
然而, 目前针对膀胱移行细胞癌易感性的预测还有待改进。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
本发明是基于发明人的下列发现而完成的: 发明人通过对膀胱移行细胞 癌细胞进行单细胞测序, 并在大量同癌种样本进行验证, 发现某些特定的基 因的突变的组合与膀胱移行细胞癌的发病有着密切关系。
为此, 本发明的一个方面提出了一组分离的基因, 这些基因与膀胱移行细 胞癌的发病具有高关联性。 根据本发明的实施例, 这些分离的基因分别包含 SEQ ID NO: 1-10所示的核苷酸序列。 具体地, SEQ ID NO: 1-10所示的核苷 酸序列构成的基因, 分别对应人基因 ASTN1、 ATM, TMBIM4、 HECTD1、 IGDCC3/PU C, COL6A3、 DHX57、 NIPBL、 CFTR、 以及 KIAA1958的突变 体。 借助这些分离的基因作为参照, 能够有效地预测对象是否易感膀胱移行细 胞癌。
根据本发明的一个方面, 本发明提出了上述分离的基因的用途。 根据本发 明的实施例,提供了上述一组分离的基因在预测对象膀胱移行细胞癌易感性的 用途。 由此, 可以借助上述一组分离的基因, 能够预测对象膀胱移行细胞癌的 易感性。
根据本发明的另一个方面, 本发明提供了一种预测对象膀胱移行细胞癌易 感性的方法。 根据本发明的实施例, 该方法包括下列步骤: 从所述对象提取单 细胞; 对所述单细胞的基因组进行分析, 以便获得所述单细胞的基因组信息; 以及基于所述单细胞的基因组信息中包含上面所述的一组分离的基因, 判断所 述对象对于膀胱移行细胞癌是易感性的。 通过将对象的单细胞基因组进行分 析, 可以得知对象的细胞中的上述基因是否发生了特定的突变, 从而可以预测 对象对于膀胱移行细胞癌是否易感。 借助根据本发明的实施例的方法, 能够有 效地预测对象是否易感膀胱移行细胞癌。由此,可以有针对性地采取预防措施, 避免相关癌症的发生。
根据本发明的又一个方面, 本发明还提供了一种预测对象膀胱移行细胞癌 易感性的系统。 根据本发明的实施例, 该系统包括: 单细胞分离装置, 所述单 细胞提取装置用于从对象样品中分离单细胞; 基因组扩增装置, 所述基因组扩 增装置与所述单细胞分离装置相连, 并且用于从所述单细胞扩增基因组; 基因 组测序装置, 所述基因组测序装置与所述基因组扩增装置相连, 并且用于对所 述单细胞基因组进行测序, 以便获得所述单细胞的基因组信息; 比对装置, 所 述比对装置与所述基因组测序装置相连, 所述比对装置内预存有对照序列信 息, 所述对照序列信息为上面所述的一组分离的基因的序列信息, 所述对比装 置用于将所述单细胞的基因组信息与所述对照序列信息进行比对, 以便基于所 述单细胞的基因组信息中包含根据上面所述的一组分离的基因, 判断所述对象 对于膀胱移行细胞癌是易感性的。 借助根据本发明实施例的该系统, 能够有效 地实施根据本发明实施例的预测对象膀胱移行细胞癌易感性的方法,从而有效 地预测对象是否易感膀胱移行细胞癌。 由此, 可以有针对性地采取预防措施, 避免相关癌症的发生。
根据本发明的又一方面, 本发明还提出了一种用于预测对象膀胱移行细胞 癌易感性的试剂盒, 根据本发明的实施例, 该试剂盒含有适于检测前面所述的 一组分离的基因的试剂。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的 描述中变得明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述 中将变得明显和容易理解, 其中: 方法的流程示意图; 以及
图 2显示了根据本发明实施例的预测对象膀胱移行细胞癌易感性的系统的 示意图。
具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中 自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能 的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
本发明是基于发明人的下列发现而完成的: 发明人通过对膀胱移行细胞 癌细胞进行单细胞测序, 并在大量同癌种样本中进行验证, 发现某些特定 的基因的突变的组合与膀胱移行细胞癌的发病有着密切关系。 膀胱癌的发生 发展是一个十分复杂的过程。 研究膀胱癌的分子遗传学基础, 是希望它能给平 常检测、 临床诊断、 个性化针对治疗、 愈后病情追踪等方面提供筒便可行的方 法。 但病人个体的差异性、 不同发展阶段相关生物分子事件发生的交叉性等, 都给这项工作带来极大的困难。运用单个分子遗传学的变化来诊断该病显然是 不可能而且不科学的。 发明人应用现代分子生物学技术(全基因组扩增技术、 外显子捕获技术、 测序技术等)对受检者样本的基因序列进行分析, 将其中体 细胞突变率高的基因与从大量膀胱移行细胞癌疾病测序中得到的相关基因(或 基因位点)进行比较, 从而可以对受检者罹患膀胱移行细胞癌疾病的风险作出 判断。
易感基因
本发明的一个方面提出了一组分离的基因, 这些基因与膀胱移行细胞癌的 发病具有高关联性,在本文中将这些基因称为易感基因。根据本发明的实施例, 这些分离的基因分别由 SEQ ID NO: 1-10所示的核苷酸序列构成。在本文中所 使用的术语 "基因"应作广义理解, 其是指在基因组中的任何一段特定的核酸 序列, 其可以是外显子区序列, 也可以是内含子序列, 也可以是非编码区以及 调控区域和目前还不知道其实际功能的区域, 因而在本发明中术语 "基因" 可 以与 "寡核苷酸" 互换使用。
具体地,根据本发明实施例的一组分离的基因分别由 SEQ ID NO: 1-10所 示的核苷酸序列构成的基因, 其分别对应人基因 ASTN1、 ATM, TMBIM4、 HECTD1、 IGDCC3/PU C, COL6A3、 DHX57、 NIPBL、 CFTR、 以及 KIAA1958 的突变体。 通过生物信息学比对可知, SEQ ID NO: 1-10所示的核苷酸序列 与人类正常 ASTN1、 ATM, TMBIM4、 HECTD1、 IGDCC3/PU C, COL6A3、 DHX57、 NIPBL、 CFTR、 以及 KIAA 1958 (例如, 可以参照最新人类基因组序 列数据库 Hgl9 ) 的序列相比, 均仅有以下位点的突变:
表 1
SEQ ID 基因名 基因 ID 突变位点 置换情况
NO:
1 ASTN1 ENSG00000152092 染色体 1 , 第 G/T, S69突
175400230位 变为终止密 码子
2 ATM ENSG00000149311 染色体 11 ,第 G/C, D140H
107611693位
3 TMBIM4 ENSG00000155957 染色体 12,第 G/A, S247L
64818125位
4 HECTD1 ENSG00000092148 染色体 14,第 G/C
30678890位
5 IGDCC3/PU C ENSG00000174498 染色体 15,第 G/A, R428C
63410917位
6 COL6A3 ENSG00000163359 染色体 2, 第 C/G ,
237914310位 R2663T
7 DHX57 ENSG00000163214 染色体 2, 第 G/A, Q1272
38887207位 突变为终止 密码子
8 NIPBL ENSG00000164190 染色体 5, 第 G/A ,
37036306位 D1127N
9 CFTR ENSG00000001626 染色体 7, 第 C/T, S1178L
117054876位
10 KIAA1958 ENSG00000165185 染色体 9, 第 C/T, S184L
114376732位
关于上述基因的详细描述, 本领域技术人员可以根据基因 ID, 登录 Ensembl 数据库获得。 在此不再赘述。 发明人惊奇地发现, 上述突变基因无论在单细胞 测序结果或者在大量癌症样本的基因组测序结果中均存在。 为此, 申请人从基 因组中分离了这些突变基因的序列, 即分别为 SEQ ID NO: 1-10所示核苷酸序 列构成的基因。 其中, SEQ ID NO : 1 表示的是人类基因组染色体 1 上 175400153-175400435的序列; SEQ ID NO: 2表示的是人类基因组染色体 11 上 107611607-107611771的序列; SEQ ID NO 3表示的是人类基因组染色体 12上 64818007-64818213的序列; SEQ ID NO 4表示的是人类基因组染色体 14上 30678849-30678954的序列; SEQ ID NO 5表示的是人类基因组染色体 15上 63410803-63411050的序列; SEQ ID NO 6表示的是人类基因组染色体 2上 237913834-237914532的序列; SEQ ID NO: 7表示的是人类基因组染色体 2上 38887205-38887339的序列; SEQ ID NO: 8表示的是人类基因组染色体 5
上 37036232-37036429的序列; SEQ ID NO: 9表示的是人类基因组染色体 7 上 117054812-117055060的序列; 以及 SEQ ID NO: 10表示的是人类基因组染 色体 9上 114376182-114377352。
可以将这些突变的基因作为对照, 将受检者的膀胱组织单细胞基因组进行检 测, 如果确定受检者的单细胞基因组中包含了这些突变的基因, 则可以预测该 受检者已经罹患, 或者在将来有比较高的风险罹患膀胱移行细胞癌。 需要说明 的是, 这里所使用的术语 "预测", 应做广义理解, 既可以是通过结合其他参 数判断受检者已经患有相关疾病,也可以是判断受检者对于相关疾病是高风险 的。 发明人发现, 如果受检者携带上述易感基因, 则他面临的膀胱移行细胞癌 的风险要比其他人大得多。 所以, 通过借助上述易感基因检测实现相关癌症的 易感预测, 测出膀胱移行细胞癌易感性的受检者, 在平时的生活中, 就应该格 外注意避免那些诱发膀胱癌疾病的因素, 从而最大限度地避免相关疾病的发 生。
根据本发明的实施例,发明人发现这些基因在人膀胱移行细胞癌中的体细 胞突变比率超过了 3%。 根据国际癌症基因组协会(ICGC )的定义, 若一个基 因在 3%的癌症样品中发生了体细胞突变, 即可表明该基因与该癌种的发生、 发育有相当高的关联性。 发明人发现, 可以利用这些基因用于对对象膀胱移行 细胞癌易感性进行预测, 为此, 本发明提出了上述一组分离的基因在预测对象 膀胱移行细胞癌易感性的用途。通过将上述一组分离的基因用于预测膀胱移行 细胞癌易感性, 可以显著提高预测膀胱移行细胞癌易感性的效率。 预测对象膀胱移行细胞癌易感性的方法
根据本发明的另一个方面, 本发明提供了一种预测对象膀胱移行细胞癌易 感性的方法。 根据本发明的实施例, 参考图 1 , 该方法包括下列步骤:
S100: 从所述对象提取单细胞。 根据本发明的实施例, 可以用于预测膀胱 移行细胞癌的对象的单细胞来源不受特别限制。 根据本发明的一些示例, 所预 测的对象是人。 由此, 可以通过提取人的单细胞对人是否易感膀胱移行细胞癌 做出有效地判断。 根据本发明的一些具体示例, 可以从人的血液、 尿液、 或者 组织中提取的,优选,从受检者的膀胱组织中提取的单细胞, 由此能够在早期即 可对膀胱移行细胞癌做出有效地预测。 另外, 基于根据本发明实施例的预测方 法, 采用的是单细胞, 因而对受检者没有任何显著的创伤, 可以容易地以已知 的方法提取单细胞。 这与之前需要从受检者体内提取大量生物样本之后进行分 析的常规检验有着显著的区别。
S200: 对所述单细胞的基因组进行分析, 以便获得所述单细胞的基因组信 息。 根据本发明的实施例, 对单细胞的基因组进行分析的方法和设备不受特别 限制。 根据本发明的一些实施例, 通过采用下列步骤对单细胞的基因组进行分
析, 获得该单细胞的基因组信息。
具体地, 首先通过碱性裂解对所分离的单细胞进行裂解, 例如通过将单细 胞置于碱性裂解液中, 优选地, 采用由下面成分组成的碱性裂解液: 称取
0.02244克 KOH和 101 升的 1M DTT溶液, 加入到 2毫升的去核酸污染水 中,振荡混匀即成 ALB碱性裂解液。 随后于超净工作台内使用 0.2微米孔径的 滤器过滤溶液, 4°C保存可供一周内使用。单细胞采集后转移至 1.5微升的 ALB 溶液中, 以 65 °C孵育 10分钟即可裂解细胞。 发明人发现, 通过采用上述碱性 裂解液能够有效地裂解单细胞, 并且释放出该单细胞的基因组, 从而提高后续 对单细胞基因组进行扩增、 测序的效率, 进而提高预测方法的效率。 接下来, 根据本发明的实施例, 在获得单细胞的基因组之后, 为了能够更有效地对单细 胞的基因组进行测序检验, 可以在进行测序之前, 对所获得的单细胞的基因组 进行扩增。 根据本发明的具体示例, 可以通过采用 Phi29 DNA聚合酶, 对单细 胞的基因组进行扩增。 发明人发现, 利用该扩增条件能够有效地对单细胞的基 因组进行扩增, 进而能够提高后续测序和预测的效率。 在对基因组进行扩增之 后, 可以根据基因组测序的方法选定特定的方法建立基因组的测序文库, 这可 以根据所采用的测序技术的使用说明书来完成, 在此不再赘述。 根据本发明的 实施例, 可以采用的测序技术不受特别限制。 根据本发明的一些示例, 可以采 用选自 Hiseq2000、 SOLiD、 454、 和单分子测序装置的至少一种对所述单细胞 的基因组进行测序。 由此, 本领域技术人员知道采用何种手段建立与这些测序 技术相应的测序文库, 并进行有效的高通量测序。 本发明的发明人发现基于这 些第二代测序技术的高效、高精度的性质,可以实现对样本基因组信息的高效、 高精度检测, 能够非常灵敏地对样本基因组信息进行检测, 从而进一步提高预 测易感性的效率。 这里所使用的术语 "高通量" 是指可以同时对大量的核酸进 行测序检测, 术语 "深度" 是指可以对基因组上某一位点进行重复多次检测, 当然, 本领域技术人员能够预见的是, 未来可以采用其他更先进的测序技术。 在将经过扩增的单细胞基因组进行建库和测序之后, 可以得到多个测序数据, 这些测序数据构成了所提取单细胞的基因组信息。 接下来, 可以通过对所得到 的基因组信息进行分析来预测膀胱移行细胞癌的易感性。
S300: 确定所获得的单细胞的基因组信息中是否包含有特定的基因, 即前 面所详细描述的易感基因。 根据本发明的实施例, 可以任何常规的方法确定所 得到的基因组信息中是否含有特定的基因,即本发明的发明人所发现的由 SEQ ID NO: 1-10所示的核苷酸序列构成的基因。 根据本发明的具体示例, 可以将 所得到的多个测序结果, 甚至大量测序结果与本发明人所分离的易感基因进行 比对, 来确定在测序结果中特定基因是否存在所述突变。 例如, 可以采用 SOAPsnp软件完成相关比对和突变位点的发现。
S400: 基于 S300步骤中所确定的结果, 来判断对象是否对于相关的癌症
具有易感性, 即是否易感膀胱移行细胞癌。 当通过比对, 确认在测序结果中相 关易感基因发生所述突变时, 可以预测该对象易感膀胱移行细胞癌。 由此, 通 过借助根据本发明实施例的预测方法, 可以有效地通过借助上述易感基因检测 实现相关癌症的易感预测, 测出膀胱移行细胞癌易感性的受检者, 在平时的生 活中, 就应该格外注意避免那些诱发膀胱癌疾病的因素, 从而最大限度地避免 相关疾病的发生。
预测对象膀胱移行细胞癌易感性的系统
根据本发明又一方面, 本发明提供了一种预测对象膀胱移行细胞癌易感性 的系统。 参考图 2, 该系统包括: 单细胞分离装置 100、 基因组扩增装置 200、 基因组测序装置 300以及比对装置 400。
单细胞提取装置 100用于从对象样品中分离单细胞。本领域技术人员可以 理解, 可以采用任何已知的单细胞设备作为单细胞提取装置 100。
根据本发明的实施例, 可以采用下列三种单细胞分离方法和设备: 微流控芯片技术, 把样品制备、 反应、 分离、 检测等实验室单元技术集成 在一块微米尺度的芯片上, 能够在短时间内分析大量的生物分子, 准确获取样 品中的大量信息, 从而达到高灵敏快速检测、 样品消耗量少、 高通量输出以及 可在线自动化操作的目的; 定量分 ί斤和分选的技术:、可以快速测量、 存 、 悬浮在液体中的分散细胞 的一系列重要的生物物理、 生物化学方面的特征参量, 并可以根据预选的参量 范围把指定的细胞亚群从中分选出来;
口吸管操作分离技术, 在倒置显微镜视野下使用口吸管吸取和排放含有细 胞的液体, 细胞从一个液滴转移到另一个液滴, 达到逐步稀释的目的, 最终实 现一次吸排液体获取单个细胞。
基因组扩增装置 200与单细胞分离装置 100相连, 可以从单细胞分离装置 100接收分离的单细胞, 并且能够从单细胞中扩增基因组, 从而可以将基因组 并且用于从所述单细胞分离基因组后续基因组测序以及信息分析。本领域技术 人员可以理解, 可以采用任何已知的基因组分离设备, 例如可以采用设置有碱 性裂解液的容器,将单细胞置于该裂解液中进行处理,从而可以释放出基因组。
基因组测序装置 300与基因组扩增装置 200相连, 以便可以从基因组扩增 装置 200接收分离的基因组, 并对其进行测序。 根据本发明的具体示例, 基因 组测序装置 300可以包括任何常规的测序所需要的组件, 例如文库构建组件以 及测序仪器。 本领域技术人员可以根据所选用的测序平台, 来确定基因组测序 装置 300所包括的具体组成部件。 通过将所得到基因组进行测序, 可以获得单 细胞的基因组信息。 根据本发明的实施例, 基因组测序装置 300 包括选自 Hiseq2000、 SOLiD、 454装置中至少一种。 其优点, 在前面已经详细描述, 在
此不再赘述。
比对装置 400与基因组测序装置 300相连, 并且在比对装置 400内预存有 对照序列信息, 这些对照序列信息与上面所描述的一组易感基因的序列相对 应。 这里所使用的术语 "对应" 是指, 通过将测序结果与对照序列信息进行比 对, 在通过相应的数据处理后, 可以推导出测序结果中是否存在相应的易感基 因突变位点, 对应的含义既可以是与易感基因的序列相同, 也可以是与易感基 因的突变位点序列相同, 甚至是可以通过已知的有限次运算能够得到易感基因 序列的序列。 因而, 通过判断在基因组测序结果中是否包含易感基因的相应突 变位点, 可以预测对象对于膀胱移行细胞癌是否是易感性的。
试剂盒
根据本发明的又一方面, 本发明提出了一种用于预测对象膀胱移行细胞癌 易感性的试剂盒。 根据本发明的实施例, 该试剂盒含有适于检测根据本发明实 施例的一组分离的基因(包含 SEQ ID NO: 1-10的基因)的试剂。 根据本发明 的实施例, 适于应用于本发明的试剂的类型并不受特别限制。 根据本发明的一 个实施例, 可以采用能够分别与本发明所分离的一组基因的每一种的突变位点 特异性结合的探针。 探针的类型并不受特别限制, 可以是抗体, 可以能够与基 因上一段特定序列互补的寡核苷酸, 这里所提到的特定序列包含突变位点。
为了方便理解, 下面提供具体的实施例, 对本发明的技术方案进行解释, 需要说明的是, 这些实施例仅仅是为了说明目的, 而不以任何方式限制本发明 的范围。 除非特别说明, 实施例中未注明具体条件的, 均为按照常规条件或制 造商建议的条件进行。 下列实施例中, 所用试剂或仪器未注明生产厂商的, 均 为可以通过市购获得的常规产品。
实施例 1 : 膀胱癌样品收集和单个癌细胞获取
经签署病人知情同意书, 一位 57岁的男性病人于北京大学深圳医院施行 外科切除手术取得肿瘤样品。样品经临床医生确定为侵入浅肌型的尿道上皮肿 瘤。 据进一步的样品生理和病理检查发现, 该肿瘤样品是移行细胞膀胱癌, 根 据世界卫生组织 2004年的分类方法, 为膀胱癌阶段 Π (Τ2Ν。Μ0)。
所取的实质瘤样品大小为 l-2mm3, 样品经切除离体后马上置于 -80°C干冰 中保存,运输到研究地点后使用 37°C水浴快速解冻至冰块完全消失。使用手术 刀切碎样品, 加入 I型和 IV型胶原酶消化组织。 消化后使用滤网清除肉眼可 见的成块组织, 得到细胞悬浮液。 用不含 Ca2+和 Mg2+离子的 PBS緩沖液重复 洗涤细胞悬浮液, 最终重悬于 50 升的 PBS溶液中。
在倒置显微镜下,使用口吸管操作系统从膀胱癌细胞悬浮液中分离出单个 细胞。 把玻璃吸管在火焰上加热软化, 施加外力拉成极细的中空管体后连接上 医用橡皮管, 即可制作出分离单个细胞用的口吸管, 操作员可通过控制自身的 吸气和呼气吸排液体。 单细胞分离操作全程在倒置显微镜上操作, 镜下实时观
察细胞的状态和移动。在分离用培养亚中滴加含有 PBS (磷酸盐緩沖液) +BSA (牛血清白蛋白)的液滴( 3微升 ), 随后在任意一液滴中加入 1微升的细胞悬 浮液。先在显微镜下使用口吸管从有细胞悬液的液滴中吸取少量液体(约 0.5- 1 微升), 接着, 将口吸管移动到空白液滴时排出液体, 这样即可得到目标区域 中的细胞, 类似稀释的过程。 如此类推, 从该液滴中吸取少量细胞到另一个空 白液滴中, 逐步稀释含有目的细胞的液体, 最终实现在一个液滴中得到单个细 胞。 单个细胞被转移到含有预冷碱性细胞裂解液 ALB溶液的 PCR管中, 在热 循环仪上以 65 °C孵育 lOmin, 细胞裂解, 基因组被释放到裂解液中。 收集同样 体积的未分离过细胞的 PBS+BSA液滴作为扩增反应的阴性对照。 实施例 2: 全基因组扩增以及测序
全基因组扩增通过使用 Giagen公司的 REPLI-g Mini Kit来实现。该试剂盒 利用从枯草芽孢杆菌 Bacillus suMlis ")噬菌体 phi29中克隆出的嗜温 DNA聚 合酶(以下筒称 Phi29 酶) 和抗外切酶的六碱基随机寡核苷酸引物进行等温 DNA扩增。 由于 Phi29酶具有链置换的特性,所以该全基因组扩增方法称作多 重置换扩增 (以下筒称 MDA )。 MDA技术是利用随机引物在多个位点与模板 DNA退火, Phi29 DNA聚合酶在 DNA的多个位点同时起始复制。它沿着 DNA 模板合成 DNA , 同时取代模板的互补链, 被置换的互补链又成为新的模板来 进行扩增 。 根据试剂盒的操作规程, 包含细胞基因组的扩增体系在 30°C恒温 条件下孵育 16个小时, 再升温至 65 °C 10分钟终止反应。
MDA 完成后使用 Invitrogen Life Science 公司的 QubitTM Quantitation Platform试剂盒测量全基因组扩增后的样品浓度, 以测试 MDA是否成功。 试 剂盒 Quant-iT™ assays含有高敏感性荧光染料,能够特定结合到 DNA双链中, 避免反应体系中蛋白质、单链核酸等杂质干扰浓度的测定。只有浓度达到 30ng/ 微升的样品才会被选择进行后续的管家基因检测, 预估扩增的覆盖度。
随后以分布在 10条染色体上的高丰度管家基因作为目标产物, 针对基因 中的保守序列设计上下游引物, WGA产物作起始模板引发 PCR反应。 相关染 色体上的管家基因引物如下表。 若有 8条或以上目的条带在电泳图上有呈现, 则表明该细胞的大部分基因组得到扩增。 只有同时通过浓度检测和管家基因 PCR检测的样品才会被安排后续的全基因组和全外显子建库、 上机测序。
染色 基因编码 基因全名 引物序列
体
1 PRDX6 过氧化物氧还酶 6 5' CTTGCTTCACTCCATCAGA 3'
5' CATCATCGGAAAACAGAC 3'
2 RPL37a 核糖体蛋白 L37a 5' AGTTTAGGTCAGCCTCTTAG 3'
5' GGACTTTACCGTGACAGC 3'
4 ADD1 内 ^: 蛋 白 TACCAGCCTGACTAGGTACAG
( Adducin ) 1 (α)
GTCCTCCCAAGTCGGTGT 3'
13 ARHGEF7 Rho 鸟嘌呤核苷酸 AGTAGCCTTTCTCGTTTG 3'
交换因子 (GEF) 7 CACCACCTCCCTCCAATAGT 3'
14 EIF2B2 真核细胞翻译启动 GCACCTTCCTACATCTAC 3'
因子 2B, 亚基 2β, TAAGAGGCTCCAAAATCAAC 39kDa
16 PSMD7 蛋白酶体 16S 亚 AAAGTCGCCACAGGCAAGC 3' 基, 非 ATP酶, 7 CGTAGCACCACAGCAAG 3'
17 PSMB6 蛋白酶体亚基 β型 GGGTATGATGGTAAGGCAGTC
6
AGGATTCAGGCGGGTGGT 3'
18 MC2R 黑皮质素 2受体 TGCCAAGTGCCAGAATAG 3'
CTCAGAACTGGCTTGTTAGAT
19 BCAT2 支链氨基转移酶 >' GGAATCAGAGCCCACGAGT 3'
( Branched chain >' TATCCTTGACCGCACGAC 3' aminotransgerase )2
21 ΑΤΡ50 ATP 合成酶, H+ >' GCACCACCAAGCCCTAAC 3' 转运, 线粒体 F1复 >' TCTCCGCGATGGACACTC 3' 合物, 0亚基
备注: 在上表中所列出的 20条引物, 自上而下, 分别对应序列表中 SEQ ID NO: 11-30 所示的核苷酸序列。
接下来,通过 Agilent商业化的 SureSelect人全外显子 50Mb序列捕获试剂 盒捕获人类基因组外显子序列。 然后, 再结合 Hiseq2000高通量测序技术, 直 接解读人类外显子信息。 目前 SureSelect产品可用于在单个试管中捕获从小于 200 Kb 到大于 50 Mb 大小范围内的靶向序列,几乎覆盖了所有人类外显子区 域, 相对于传统的 PCR方法该方法极大的提高了对于人类基因组中外显子区 域的研究效率, 并显著降低了研究成本。
外显子捕获过程包括: DNA样品被随即打断成 500bp左右的短片段序列, DNA 片段末端修复后将一对接头 (linker )连接在每个片段的两端; 将 DNA 片段杂交到 Sureselect人全外显子 50Mb序列捕获试剂中, 将外显子区域的片 段富集; 将富集到的 DNA片段洗脱下来并进行 LM-PCR检测。
文库构建选择 Pair-end策略, 对于使用 Hiseq2000测序而言, 由于序列捕 获所用的连接物 (linker ) 不同于测序用接头 (adaptor ), 所以我们选择将捕获
的外显子片段末端修复、 自连后再片段化, 末端修复后加 A, 加 Hiseq2000测 序用接头建库测序。 我们将每一个捕获后的文库单独进行测序, 确保每一个样 品含有至少 30X的覆盖度。经过测序我们最终每个细胞平均捕获了 38Mb的人 类基因组, 覆盖人类基因组 1.22%的区域, 符合 CCDS外显子, 表明在每个文 库中都扩增到了 DNA中的外显子区域。
实施例 3: 确定易感基因
构建的外显子文库测序工作完成后, 原始的下机数据 fastq.文件通过初步 处理, 在去除污染数据、 低质量数据和 adaptor后, 输入 SOAP软件进行序列 组装。
经过 SOAP处理后,可以得到测序数据中能够比对到参考序列上的深度和 覆盖度、 并将所得序列按照染色体分别排布。 在去除前期 PCR 实验和后期桥 式束状扩增产生的重复序列后, 对数据取唯一值, 即保留只能比对到参考序列 的唯一位置的某条序列, 得到 chr*.soap文件。
对该文件运行 SOAPsnp软件来辨别出各个样品与参考序列在相对应位点 上的突变位点, 得到 chr*.cns文件。 随后设定过滤参数值分别是 q值>20, 测 序深度 >=6X, P值 >0.05 , 被去除的重复序列 <2条, 对 ens文件进行以上过滤 后得到 chr*genotype文件。 在 genotype文件中, 若位点跟参考序列具有相同的 碱基型, 则将位点的基因型定义为 missing, 将发生 missing事件 >30%的位点 删除, 得到高置信度体细胞突变结果, 定义为 *.hcsm。 将 *.hcsm位于 CDS编 码序列区域上的位点保留, 得到 *.hcsmCDS。
通过 *.hcsmCDS文件同时从体细胞突变中得到相关位点的基因型信息,得 到 chr*.genotype文件, ^据这可以实现 driver基因的预测。 从 chr*. genotype 中亦可发现 SNP突变导致非同义突变的位点, 统计出发生某个突变的细胞数, 并对这些突变的位点进行 KEGG注释, 或者是 GO分析。
最后通过对单细胞的突变率结果和 88例膀胱癌分析结果整合, 我们得到 突变率在两者中都达到 3%的突变基因, 即前面表 1 中所列出的基因, 在此不 再赘述。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性 实施例"、 "示例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例 或示例描述的具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例 或示例中。 在本说明书中, 对上述术语的示意性表述不一定指的是相同的实施 例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在任何的一个或 多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理 解: 在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由权利要求及其等同物限定。
Claims
1、 一组分离的基因, 所述分离的基因分别包含 SEQ ID NO: 1-10所示的 核苷酸序列。
2、 权利要求 1 所述的一组分离的基因在预测对象膀胱移行细胞癌易感性 的用途。
3、 一种预测对象膀胱移行细胞癌易感性的方法, 其特征在于, 包括下列 步骤:
从所述对象提取单细胞;
对所述单细胞的基因组进行分析, 以便获得所述单细胞的基因组信息; 以 及
基于所述单细胞的基因组信息中包含根据权利要求 1所述的一组分离的基 因, 判断所述对象对于膀胱移行细胞癌是易感性的。
4、 根据权利要求 1所述的方法, 其特征在于, 所述对象是人。
5、 根据权利要求 4所述的方法, 其特征在于, 所述单细胞是从人的血液、 尿液、 或者组织中提取的。
6、 根据权利要求 3所述的方法, 其特征在于, 对所述单细胞的基因组进 行分析进一步包括:
通过碱裂解从所述单细胞提取基因组, 以便获得所述单细胞的基因组; 利用 Phi29 DNA聚合酶, 对所述单细胞的基因组进行扩增;
将经过扩增的所述单细胞的基因组进行建库和测序, 以便获得多个测序数 据, 所述多个测序数据构成所述单细胞的基因组信息。
7、根据权利要求 6所述的方法,其特征在于,利用选自 Hiseq2000、 SOLiD、 454、 和单分子测序装置的至少一种对所述单细胞的基因组进行测序。
8、 根据权利要求 6所述的方法, 其特征在于, 进一步包括:
将所述多个测序数据与权利要求 1 所述的一组分离的基因进行比对, 以便 确定所述单细胞的基因组信息中是否包含根据权利要求 1所述的一组分离的基 因的突变体。
9、 一种预测对象膀胱移行细胞癌易感性的系统, 其特征在于, 包括: 单细胞分离装置, 所述单细胞提取装置用于从对象样品中分离单细胞; 基因组分离装置, 所述基因组分离装置与所述单细胞分离装置相连, 并且 用于从所述单细胞分离基因组;
基因组测序装置, 所述基因组测序装置与所述基因组分离装置相连, 并且 用于对所述分离的基因组进行测序, 以便获得所述单细胞的基因组信息; 以及 比对装置, 所述比对装置与所述基因组测序装置相连, 所述比对装置内预 存有对照序列信息, 所述对照序列信息为权利要求 1所述的一组分离的基因的 序列信息, 所述对比装置用于将所述单细胞的基因组信息与所述对照序列信息 进行比对, 以 于所述单细胞的基因组信息中包含根据权利要求 1所述的一 组分离的基因, 判断所述对象对于膀胱移行细胞癌是易感性的。
10、 根据权利要求 9所述的系统, 其特征在于, 进一步包括:
输出装置, 所述输出装置与所述比对装置相连, 以便输出预测结果。
11、 根据权利要求 8所述的系统, 其特征在于,
所述基因组测序装置包括选自 HISEQ2000、 SOLiD、 454、 和单分子测序 装置的至少一种。
12、 一种用于预测对象膀胱移行细胞癌易感性的试剂盒, 其特征在于, 含 有:
适于检测权利要求 1所述的一组分离的基因的试剂。
13、 根据权利要求 12所述的试剂盒, 其特征在于, 所述试剂为探针。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/079905 WO2013040758A1 (zh) | 2011-09-20 | 2011-09-20 | 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 |
CN201180073558.7A CN103827313B (zh) | 2011-09-20 | 2011-09-20 | 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/079905 WO2013040758A1 (zh) | 2011-09-20 | 2011-09-20 | 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013040758A1 true WO2013040758A1 (zh) | 2013-03-28 |
Family
ID=47913756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/079905 WO2013040758A1 (zh) | 2011-09-20 | 2011-09-20 | 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103827313B (zh) |
WO (1) | WO2013040758A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101300491A (zh) * | 2005-10-11 | 2008-11-05 | 雷波瑞特瑞尔斯萨瓦特股份公司 | 检测膀胱移行细胞癌的非侵入性体外方法 |
CN101730848A (zh) * | 2007-03-20 | 2010-06-09 | 因达斯生物有限公司 | 膀胱癌诊断和/或预后方法 |
CN102137937A (zh) * | 2008-07-09 | 2011-07-27 | 解码遗传学私营有限责任公司 | 作为用于膀胱癌风险评估、诊断、预后和治疗的标志的遗传变型 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1128884C (zh) * | 1993-09-27 | 2003-11-26 | 阿奇发展公司 | 有效进行核酸测序的方法和组合物 |
-
2011
- 2011-09-20 CN CN201180073558.7A patent/CN103827313B/zh active Active
- 2011-09-20 WO PCT/CN2011/079905 patent/WO2013040758A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101300491A (zh) * | 2005-10-11 | 2008-11-05 | 雷波瑞特瑞尔斯萨瓦特股份公司 | 检测膀胱移行细胞癌的非侵入性体外方法 |
CN101730848A (zh) * | 2007-03-20 | 2010-06-09 | 因达斯生物有限公司 | 膀胱癌诊断和/或预后方法 |
CN102137937A (zh) * | 2008-07-09 | 2011-07-27 | 解码遗传学私营有限责任公司 | 作为用于膀胱癌风险评估、诊断、预后和治疗的标志的遗传变型 |
Also Published As
Publication number | Publication date |
---|---|
CN103827313B (zh) | 2016-06-29 |
CN103827313A (zh) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020174678A (ja) | 非侵襲的出生前診断に有用な母体試料由来の胎児核酸のメチル化に基づく富化のためのプロセスおよび組成物 | |
KR102398465B1 (ko) | 종양의 심층 서열분석 프로파일링 | |
US11180812B2 (en) | Use of DNA in circulating exosomes as a diagnostic marker for metastatic disease | |
CN105586408B (zh) | 一种癌症筛检的方法 | |
CN101679971A (zh) | 青光眼恶化风险的判定方法 | |
CN110079594B (zh) | 基于dna和rna基因突变检测的高通量方法 | |
WO2016192252A1 (zh) | 系统性红斑狼疮生物标志物及其诊断试剂盒 | |
CN113724862B (zh) | 一种结直肠癌生物标志物及其筛选方法和应用 | |
CN108374047B (zh) | 一种基于高通量测序技术检测膀胱癌的试剂盒 | |
CN113999901B (zh) | 心肌特异性甲基化标记物 | |
CN111748628A (zh) | 一种用于检测甲状腺癌预后相关基因变异的引物及试剂盒 | |
JP2016538872A (ja) | ゲノムの完全性及び/又は確定的制限酵素部位全ゲノム増幅によって得られたdna配列のライブラリの質を判定する方法及びキット | |
KR20170124728A (ko) | 인간과 마우스 관련 유전자 오염진단 시약, 이를 포함하는 분석 키트 및 오염 분석방법 | |
US20140335529A1 (en) | Method of tumor screening | |
EP3625370A1 (en) | Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer | |
CN117248030A (zh) | 一种基于单细胞全基因组扩增的pkd1变异分子检测方法和应用 | |
CN112501287B (zh) | 银屑病性关节炎的dna甲基化标记物、诊断试剂及其应用 | |
CN114525344A (zh) | 一种用于检测或辅助检测肿瘤相关基因变异的试剂盒及其应用 | |
CN112662748B (zh) | 用于单细胞dna测序文库质量鉴定的引物对组合、方法和试剂盒 | |
WO2005021743A1 (ja) | 核酸増幅用プライマー及びこれを用いた大腸癌の検査方法 | |
WO2013040758A1 (zh) | 膀胱移行细胞癌易感性的相关基因及其预测方法和系统 | |
JP2012135290A (ja) | 高感度K−ras遺伝子変異解析法による分子標的薬の治療感受性の評価法 | |
CN108949998A (zh) | 预测乳腺癌患者对抗her2治疗药物反应性的基因突变位点及其应用 | |
CN112195280B (zh) | 一种用于检测人乳头瘤病毒hpv39的探针及其试剂盒 | |
WO2024075828A1 (ja) | アルツハイマー病を発症する可能性を判定するためのデータ収集方法及びキット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11872848 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS, R 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11872848 Country of ref document: EP Kind code of ref document: A1 |