WO2013037192A1 - 一种自激推挽式变换器 - Google Patents

一种自激推挽式变换器 Download PDF

Info

Publication number
WO2013037192A1
WO2013037192A1 PCT/CN2012/070345 CN2012070345W WO2013037192A1 WO 2013037192 A1 WO2013037192 A1 WO 2013037192A1 CN 2012070345 W CN2012070345 W CN 2012070345W WO 2013037192 A1 WO2013037192 A1 WO 2013037192A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
push
self
pull
thermistor
Prior art date
Application number
PCT/CN2012/070345
Other languages
English (en)
French (fr)
Inventor
刘伟
王保均
高晶
郭国文
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2013037192A1 publication Critical patent/WO2013037192A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3382Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement in a push-pull circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to a DC-DC or DC-AC converter, and more particularly to a self-excited push-pull converter for use in the industrial control and lighting industries. Background technique
  • the existing self-excited push-pull converter the circuit structure is derived from the self-excited oscillation push-pull transistor single-transform DC converter invented by GH Royer in 1955, which is also the beginning of realizing the high-frequency switching control circuit;
  • the self-excited push-pull dual transformer circuit invented by Jen Sen (somewhere translated as "Jingsen") in 1957 is called the self-oscillating Jensen circuit; these two circuits are collectively called self-excited pushes. Pull converter.
  • Self-excited push-pull converters are described in Electronic Engineering Press, Principles and Designs of Switching Power Supplies, pages 67 to 70, ISBN ISBN 7-121-00211-6.
  • the main form of the circuit is the well-known Royer circuit and the self-oscillating Jensen circuit.
  • the circuit shown in Figure 1 is a common application of a self-excitation push-pull converter.
  • the circuit structure is a Royer circuit.
  • the capacitor C1 connected in parallel with the bias resistor R1 can be omitted in many cases.
  • the circuit shown in Figure 2 is self-excited.
  • Another common application of the pull-up converter is that the circuit structure is a Jensen circuit, in which the capacitor C1 in parallel with the bias resistor R1 can be omitted in many cases.
  • the resistor R1 and the capacitor C1 in the circuit form a start-up circuit.
  • C1 can be omitted.
  • the elimination of the capacitor C1 reduces the base of the push-pull switch transistor of the capacitor C1 in Fig. 1 and Fig. 2 at startup. Extreme to the impact of the emitter.
  • the two ends of the bias resistor R1 are respectively connected to the voltage input terminal and the center taps of the feedback windings NBI and NB2 which provide positive feedback for the bases of the two push-pull transistors TR1 and TR2; the start-up circuit has various forms, as shown in FIG. 3-1.
  • Figure 3-2 and Figure 3-3 can be used as the start circuit of the Royer circuit or Jensen circuit.
  • FIGS. 1 to 2 and the circuit shown in FIGS. 3-1 to 3-5 are used as the self-excitation push-pull converter of the start-up circuit, wherein the terminal A1 of FIG. 3-1 to FIG. 3-5 is connected to The transformer feedback winding is centered on the tap;
  • the resistor R1 is an upper bias resistor connected in the loop from the active supply end of the power supply to the base of the push-pull transistor, and provides an initial starting base current for the push-pull transistor when the circuit is powered up, and In normal operation, a partial base current is supplied to the push-pull transistor in turn;
  • a resistor R2 is a lower bias resistor connected to the push-pull three-pole In the DC loop of the base and emitter of the tube, the current supplied by the upper bias resistor is shunted.
  • the startup circuit shown in Figure 3-1 to Figure 3-5 is combined with the Royer circuit and the Jensen circuit body to obtain a variety of circuit forms, but its working principle is similar.
  • the name of the self-oscillating Jensen circuit was called the double-converter push-pull inverter circuit, which was described on pages 70 to 72 of the Power Conversion Technology of the People's Posts and Telecommunications Press.
  • the ISBN number of the book is 7_ 1 15_04229 -2/TN ⁇ 353.
  • the circuit used in this book is shown in Figure 2-40 on page 71 of the book, and its starting circuit is the same as that of Figures 3-5. They have the common disadvantages of:
  • the Royer circuit uses the core saturation characteristic to perform push-pull oscillation.
  • the bias resistor R1 and the capacitor C 1 are connected in parallel through the windings NBI and NB2.
  • the base and emitter of the transistors TR1 and TR2 provide forward bias and generate base current.
  • the two transistors TR1 and TR2 start to conduct. Since the characteristics of the two transistors are not exactly the same, one of the transistors will be piloted. Assume that the transistor TR2 is turned on first, and the collector current IC2 is generated. The voltage of the corresponding winding of the coil NP2 is up and down.
  • the winding of the base coil NB2 also has an induced voltage that is positive and negative.
  • the voltage increases the base current of the transistor TR2, which is a positive feedback process, so that the transistor TR2 is quickly turned on; accordingly, the voltage of the NBI winding of the corresponding transistor TR1 is up and down, and this voltage is reduced.
  • the base current of the transistor TR1 is reduced, and the transistor TR1 is quickly turned off completely.
  • the collector current of the tube increases sharply, the rate of increase is much larger than the increase of the base current, the transistor of the transistor TR2 is out of saturation, and the voltage drop UCE of the collector to the emitter of the transistor of the transistor TR2 increases, correspondingly, the winding of the transformer NP2
  • the voltage is reduced by the same value, and the voltage induced by the winding of the coil NB2 is reduced.
  • FIG. 4 is a typical DC amplification factor and collector current relationship, and temperature relationship.
  • Figure 4 is from Changjiang Technology. In the manual, the triodes produced by other companies have similar patterns.
  • the DC amplification factor is about 310 at a high temperature of 100 ° C.
  • the DC amplification factor is about 225.
  • the DC amplification factor is only about 105. It is measured at a low temperature of -40 °C, and its magnification is about 128.
  • the resistance R1 is taken larger.
  • the no-load power consumption of the circuit of Figure 1 is small, which is beneficial to improve the conversion efficiency of the circuit.
  • the circuit is placed at a low temperature of -40 ° C, due to the triode
  • the peak value of the collector current is small, and when the circuit is powered up, it cannot enter the self-excited push-pull oscillation, so that the circuit is often directly burned.
  • FIG. 5-1 shows a part of the circuit of FIG. 1.
  • the circuit of FIG. 5-1 is optimized as shown in FIG. 5-2 without affecting the connection relationship. Painting.
  • the base-to-emitter stage of a triode can be equivalent to a diode.
  • the circuit of Figure 5-2 can be equivalent to the circuit of Figure 5-3, where the diode DTRI is equivalent to the base of the transistor TR1 to The emitter stage, wherein the diode DTR2 is equivalent to the base to the emitter stage of the transistor TR2.
  • the circuit of Figure 5-4 is further optimized to the circuit of Figure 5-5. It can be seen that the diode DTRI of the base-to-emitter stage of the triode, the diode DTR2 and the feedback winding NBI, and the feedback winding NBI constitute a full-wave rectifying circuit 51, in the above In the conversion, the same name ends of the feedback winding NBI and the feedback winding NB2 are strictly maintained in accordance with the same as in FIG. 5-1. It can be seen that in the full-wave rectifying circuit 51, the feedback windings are again transformed together in FIG. 5-5. Its new "center tap" became the ground.
  • the capacitor Cv is the output capacitance of the input voltage Vin, well-known theory.
  • the various power sources can be regarded as a capacitor with a large capacity, and the AC internal resistance is zero.
  • the capacitance Cv is the internal capacitance and output capacitance of the input voltage Vin, and the capacity is extremely large, which is much larger than the capacitance Cl in Figure 5-6.
  • Capacitor C1 can be equivalent to being connected between resistor R1 and the anode connection point of the diode and ground, as shown in Figure 5-7.
  • FIG. 5-1 shows the final equivalent circuit of FIG. 5-1.
  • the capacitor C1 is actually the filter capacitor of the full-wave rectification circuit 51. Since the output waveform of the self-excited push-pull converter is a square wave, the capacitor C1 does not even
  • the output voltage of the full-wave rectifying circuit 51 is also close to the smoothing direct current.
  • the current flowing through the resistor R1 is connected by the current flowing through the diode DTR1 and the current flowing through the diode DTR2.
  • the current flowing through the diode DTRI is present, the current flowing through the diode DTR2 is zero.
  • the following is a set of data.
  • the voltage at point A1 in Figure 5-7 is 5V, if the feedback winding NBI and The feedback voltage of the feedback winding NB2 is IV, and the voltage drop of the diode DTRI is 0.7 V. In fact, this voltage is the voltage drop from the base of the push-pull transistor to the emitter stage. Then, the voltage of the A2 point in FIG. 5-7 is -0. 3V, if A3 is +1V and A4 is -1V at this moment, then diode DTR2 is conducting, and diode DTRI is turned off due to reverse bias.
  • the push-pull transistor Since the push-pull transistor is turned on, it is approximately considered that the current flowing through the resistor R1 is equal to the current flowing into the push-pull transistor when it is turned on.
  • the current flowing into the push-pull transistor not only includes the current flowing through the resistor R1, but also includes the powerful current provided by the feedback winding to obtain a strong current. Drive capability. This is not the case.
  • the traditional theory is not correct at this point, and it has also led to the long-term unavoidable exploration and improvement of the upper bias resistor R1.
  • the general solution is to select a smaller resistance R1 at a low temperature of -40 °C to ensure that the circuit can start normally at -40 ° C and enter the self-excited push-pull oscillation.
  • the no-load loss of the circuit can not be ignored.
  • the amplification factor of the push-pull transistor rises to a large value, which often causes the conversion efficiency of the circuit to decrease.
  • the secondary side of transformer B1 is replaced by the circuit shown in Figure 6.
  • the design goals are: input DC 5V, output DC 5V, output current 200mA, ie output power 1W.
  • the parameters of the circuit are as follows, capacitor C is a luF capacitor, capacitor C1 is 0. luF capacitor, transistors TR1 and TR2 are at a magnification of 200
  • the switching transistor triode F ⁇ T491 has a collector maximum operating current of 1A; the secondary side output of the transformer adopts the circuit structure of FIG. 6, and FIG. 6 is a well-known full-wave rectifying circuit in which the diode D51 and the diode D52 are common Transistor BAV74, due to the high operating frequency, the filter capacitor is 3.
  • the number of turns of the primary winding NPI and NP2 of the transformer B1 is 20 ⁇
  • the number of turns of the feedback coil NBI and NB2 is 3 ⁇ , respectively.
  • the number of turns of the secondary windings Nsi and NS2 is 23 ⁇
  • the core has a common ferrite toroidal core of 5 mm in outer diameter and a cross-sectional area of 1.5 mm 2 , which is commonly called a magnetic ring.
  • the circuit performance parameters of Fig. 1 are measured.
  • the conversion efficiency of the circuit is tested by the circuit of Fig. 7.
  • the test is performed using the wiring mode of Fig. 7, and RL is a precision adjustable resistance load, which can be effectively reduced. Small measurement error.
  • Both ammeters and voltmeters use the MASTECH® brand MY65 4-digit half-digital multimeter's 200 mA and 20 volt or 200 volts, using four and more than one multimeter.
  • the MY65 4-digit digital multimeter has an internal resistance of 10. 0 ⁇ ⁇ and a 200 mA current path of 1. 00 ⁇ . When the current exceeds 200mA, two ammeters are placed in the 200mA range for parallel measurement, and the current readings of the two meters are added, which is the measured value. Parallel measurement of ammeters is a mature technology in existing electronic engineering.
  • the VI voltage meter head is the working voltage Vin, that is, the input voltage; the A1 current meter head is the input current I in, which is the working current; the V2 voltage meter head is the output voltage Vout, and the A2 current meter head is the output current lout; then the conversion efficiency can be formulated (1) Calculated.
  • Can or can't start can't start, start (-40°C)
  • the circuit can output a normal working voltage, and the load resistor
  • the resistance R1 takes 3. 0 ⁇ ⁇ , better efficiency can be obtained, see Table 2, but at low temperature, if the user is working at full load, or working at a large output current, that is, greater than 101 mA, The circuit cannot be started normally and normal functions cannot be achieved. It can be seen from Table 3 that the resistance R1 is 1. 0 ⁇ ⁇ is ideal, but it can be seen in Table 2, and at 85 ° C, the conversion efficiency is reduced to 66.3% compared with 25 ° C, down 6. 7%, this is caused by an increase in no-load loss at high temperatures.
  • the resistance R1 is taken as 0.5 ⁇ ⁇ , the low-temperature startup performance can be improved, but since the no-load loss is large, the conversion efficiency of the circuit is reduced; the resistance R1 is taken larger, the conversion efficiency is increased, but the load carrying capacity is poor. At the same time, the starting performance at low temperatures is degraded, and it does not even work. That is, the value of R1 in the startup circuit cannot balance the conversion efficiency and the load capacity.
  • a thermistor is used in series between the emitter of the push-pull transistor and the ground.
  • the thermistor is stated in paragraph 6 of page 1 of its manual.
  • the function of Rt2 is as follows: this ensures that the transistors VI and V2 of the push-pull oscillation circuit are not damaged. In fact, the thermistor Rt2 reduces the conversion efficiency of the circuit and likewise does not solve the above-mentioned drawbacks of the prior art. Summary of the invention
  • the technical problem to be solved by the present invention is: that the self-excited push-pull converter has good low-temperature starting performance, and the no-load power consumption at high temperature does not increase when compared with low temperature, and the conversion efficiency of the circuit is no longer high at high temperature. Down, the conversion efficiency is maintained equal to or improved at low temperatures, allowing the self-excited push-pull converter to take into account both conversion efficiency and no-load power consumption over the full range of operating temperatures.
  • the present invention provides a self-excitation push-pull converter, including a starting circuit, wherein: at least one bias resistor in the starting circuit is a thermistor, and the starting circuit is at a low temperature.
  • the starting circuit can provide a normal base for the base of the push-pull switch transistor at normal temperature.
  • Base current the starting circuit can provide a base current of a base current value smaller than a normal temperature when the base of the push-pull transistor is at a high temperature.
  • the first technical implementation of the startup circuit is: a thermistor with a positive temperature coefficient for supplying a current to the base of the push-pull switch transistor;
  • the thermistor resistance value increases linearly with increasing temperature
  • the positive temperature coefficient thermistor is a semiconductor silicon single crystal, which is also called a silicon thermistor; more preferably, the thermistor is a semiconductor silicon single with a linear increase in resistance value with increasing temperature. crystal.
  • the second technical implementation of the startup circuit is: a thermistor with a negative temperature coefficient of a lower bias resistor of a base of the push-pull switch transistor and a split current of the emitter;
  • the resistance value of the negative temperature coefficient thermistor decreases linearly with increasing temperature.
  • the above two startup circuit technology implementations are used in combination to obtain a third technical implementation, that is, a thermistor with a positive temperature coefficient for supplying a current to the base of the push-pull switch transistor;
  • the thermistor of the negative temperature coefficient of the lower bias resistor of the base of the push-pull switch transistor and the split current of the emitter is a negative temperature coefficient.
  • the working principle of the invention is that after the upper bias resistor adopts a thermistor with a positive temperature coefficient, at a low temperature, the thermistor of the positive temperature coefficient has a small resistance value, and can provide a large base current, making up for the push-pull.
  • the self-excited push-pull converter caused by the decrease of the amplification factor of the triode at low temperature has poor power-on startup and poor carrying capacity. In this way, the self-excited push-pull converter can achieve good starting performance and good load carrying capacity at low temperatures.
  • the thermistor of the positive temperature coefficient is the same as the resistance of the ordinary resistor.
  • the working condition of the self-excited push-pull converter can be the same as that of the ordinary resistor.
  • the resistance of the positive temperature coefficient is increased, the current supplied is reduced, and the self-excited push-pull converter of the push-pull transistor is increased. The efficiency is declining. In this way, the self-excited push-pull converter can achieve good no-load operating current and good conversion efficiency at high temperatures.
  • the principle of a thermistor using a negative temperature coefficient is as follows: After the lower bias resistor uses a thermistor with a negative temperature coefficient, the resistance of the negative temperature coefficient thermistor increases at a low temperature, and the push-pull triode can be reduced. The shunt of the base and the emitter, that is, the base current of the push-pull transistor is increased, which compensates for the poor start-up of the self-excitation push-pull converter caused by the decrease of the amplification factor of the push-pull transistor at low temperature, and the poor carrying capacity. In this way, the self-excited push-pull converter can achieve good starting performance and good load carrying capacity at low temperatures.
  • the thermistor of the negative temperature coefficient is the same as the normal resistance, and the self-excited push-pull converter can achieve the same performance as the ordinary resistor.
  • the resistance of the thermistor with a negative temperature coefficient is reduced, and the shunt of the base and emitter of the push-pull transistor is increased, that is, the base current of the push-pull transistor is reduced, thereby making up for the push-pull.
  • the self-excited push-pull converter of the triode with high amplification at high temperature has a large no-load operating current and a low conversion efficiency. In this way, the self-excited push-pull converter can achieve good no-load operating current and good conversion efficiency at high temperatures.
  • the thermistor and the thermistor or common resistor can be connected in parallel, in series, and mixed.
  • the invention has the advantages that after using the above technical solution, based on the above working principle, the self-excitation push-pull converter of the invention has lower temperature starting performance at different ambient temperatures than the existing self-excitation push-pull converter. There is a significant improvement in no-load operating current, no-load loss, and conversion efficiency.
  • the beneficial effects are illustrated by a set of actual test data.
  • Figure 1 is a schematic diagram of a common application circuit of Royer in a self-excited push-pull converter
  • Figure 2 is a common application schematic diagram of the famous Jensen circuit of the self-excitation push-pull converter
  • Figure 3-1 to Figure 3-5 are five different circuit structures of the common startup circuit in the self-excitation push-pull converter; It is a typical DC amplification factor and collector current relationship and temperature relationship diagram of the triode
  • Figure 5-1 is a schematic diagram of the startup circuit part of Figure 1;
  • Figure 5-2 is an equivalent schematic diagram of the circuit shown in Figure 5-1;
  • Figure 5-3 is an equivalent schematic diagram of the circuit shown in Figure 5-2;
  • Figure 5-4 is a schematic diagram of the equivalent conversion of the circuit shown in Figure 5-3;
  • Figure 5-5 shows the optimized equivalent schematic diagram of the circuit shown in Figure 5-4;
  • Figure 5-6 is an equivalent schematic diagram of the circuit shown in Figure 5-5;
  • Figure 5-7 is an equivalent schematic diagram of the circuit shown in Figure 5-6;
  • Figure 6 is a well-known full-wave rectifier circuit
  • Figure 7 is a general test schematic diagram of the present invention.
  • Figure 8 is a schematic diagram of a first embodiment of the present invention.
  • FIG. 9 is a characteristic diagram of a thermistor 2. 0 ⁇ ⁇ used in the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a second embodiment of the present invention.
  • Figure 11 is a schematic diagram of a third embodiment of the present invention.
  • Figure 12 is a schematic diagram of a fourth embodiment of the present invention.
  • Figure 13 is a schematic diagram of a fifth embodiment of the present invention.
  • FIGS 14-1 through 14-9 illustrate different embodiments of the startup circuit of the present invention. detailed description
  • FIG. 8 is a first embodiment, as shown in FIG. 8, the difference from FIG. 1 is that: the thermistor RT1 with a positive temperature coefficient is used instead of the original resistor R1, and the main body of the circuit is a self-excitation push-pull conversion.
  • the secondary side of the transformer B1 is replaced by the circuit shown in Figure 6.
  • the input DC is 5V
  • the output DC is 5V
  • the output current is 200mA, that is, the output power is 1W.
  • the parameters of the circuit are other than the thermistor RT1, and other circuit parameters corresponding to Tables 1 to 4 of the background art. That is: Capacitor C is a luF capacitor, and capacitor C1 is 0.
  • triode TR1 and TR2 are switching diodes FMMT491 with a magnification of about 200 times, and the maximum operating current of the collector is 1A;
  • Thermistor RT1 uses a positive temperature coefficient thermistor.
  • LPTC linear thermistor
  • LPTC is the abbreviation of Linear Positive Temperature Coefficient, which has a resistance of 2. 0 ⁇ ⁇ at 25 °C. See Figure 9, Figure 8 for the circuit of the embodiment. After using the rectifier circuit of Figure 6, the test circuit still uses the test circuit shown in Figure 7. The specific test methods and equipment use the methods and equipment described in the background.
  • FIG. 10 is a second embodiment. As shown in the figure, in the startup circuit, the upper bias resistor is divided into a common resistor, and the lower bias resistor RT2 is a thermistor with a negative temperature coefficient.
  • the working principle of the circuit is:
  • the resistor RT2 uses a thermistor with a negative temperature coefficient
  • the resistance of the negative temperature coefficient thermistor RT2 increases at a low temperature, which can reduce the shunt of the base and emitter of the push-pull transistor, that is, the push-pull transistor.
  • the base current is thus increased, which makes up for the poor start-up of the self-excitation push-pull converter caused by the decrease of the amplification factor of the push-pull transistor at low temperature, and the poor carrying capacity, so that the self-excitation push-pull converter can be made Good start-up performance and good load carrying capacity at low temperatures.
  • the negative temperature coefficient thermistor RT2 has the same resistance as the ordinary resistor.
  • the self-excited push-pull converter works the same way as a normal resistor.
  • the resistance of the thermistor RT2 with a negative temperature coefficient is reduced, and the shunt of the base and emitter of the push-pull transistor is increased, that is, the base current of the push-pull transistor is reduced, thereby making up for the push.
  • the self-excited push-pull converter caused by the rise of the amplification of the triode at a high temperature has a large no-load operating current and a low conversion efficiency. In this way, the self-excited push-pull converter can achieve good no-load operating current and good conversion efficiency at high temperatures.
  • FIG. 11 is a third embodiment. As shown in FIG. 11, the circuit structure simplifies the winding method of the feedback winding of the transformer B1.
  • the upper bias resistor uses a positive temperature series thermistor, and its working principle is in the technical solution. There are detailed instructions, basically the same, and will not be repeated here.
  • the upper bias resistor uses two positive temperature series thermistors RTla and the thermistor RTlb, and the working principle thereof is in the technical solution. There are detailed instructions, basically the same, and will not be repeated here.
  • Fig. 13 is a fifth embodiment.
  • the main body of the circuit is a JenSen circuit in a self-excitation push-pull converter
  • the bias resistor is a thermistor RT1 of a positive temperature series, and the object of the present invention can also be achieved.
  • Terminal A1 in Figure 14-1 to Figure 14-9 is connected to the center tap of the transformer feedback winding; the thermistor RT1 is the upper bias resistor, which is the positive temperature series thermistor; the thermistor RT2 is the lower bias
  • the resistor is a thermistor of the negative temperature series; the thermistor RT1 is connected in the DC loop of the power supply effective supply terminal to the push-pull transistor, and provides an initial startup base current for the push-pull transistor when the circuit is powered up, and In normal operation, a partial base current is supplied to the push-pull transistor in turn; a resistor RT2 is a lower bias resistor connected in the DC loop of the base and emitter stages of the push-pull transistor, and is biased upward The current supplied by the resistor acts as a shunt.
  • the starting circuit of Figure 14-1 to Figure 14-9 is combined with

Abstract

一种自激推挽式变换器,包括启动电路,该启动电路中至少一只偏置电阻为热敏电阻(RT1)。该启动电路在低温时,为推挽开关三极管(TR1, TR2)的基极提供较常温的基极电流值大的基极电流;该启动电路在高温时,能为该推挽开关三极管(TR1, TR2)的基极提供较常温的基极电流值小的基极电流。该自激推挽式变换器具有良好的低温启动性能,高温时空载功耗对比低温时不再增大,在高温下电路的变换效率不再下降,变换效率维持和低温时相等或有所提高,让自激推挽式变换器在全范围工作温度内兼顾变换效率和空载功耗。

Description

一种自激推挽式变换器 技术领域
本发明涉及一种 DC-DC或 DC-AC变换器,特别涉及一种应用于工业控制与照 明行业的自激推挽式变换器。 背景技术
现有的自激推挽式变换器, 电路结构来自 1955年美国罗耶 (G. H. Royer)发 明的自激振荡推挽晶体管单变压器直流变换器,这也是实现高频转换控制电路的 开端; 部分电路来自 1957年美国查赛 (Jen Sen, 有的地方译作 "井森")发明 的自激式推挽双变压器电路, 后被称为自振荡 Jensen电路; 这两种电路, 后人 统称为自激推挽式变换器。 自激推挽式变换器在电子工业出版社的《开关电源的 原理与设计》 第 67页至 70页有描述, 该书 ISBN号 7-121-00211-6。 电路的主 要形式为上述著名的 Royer电路和自振荡 Jensen电路。
图 1示出的电路为自激推挽式变换器常见应用, 电路结构为 Royer电路, 其 中与偏置电阻 R1并联的电容 C1在很多场合可以省去;图 2示出的电路为自激推 挽式变换器另一种常见应用, 电路结构为 Jensen电路, 其中与偏置电阻 R1 并 联的电容 C1在很多场合可以省去。
电路中的电阻 R1和电容 C1组成启动电路, 在较高的电源电压输入时, C1 可以省去; 省去电容 C1降低了图 1、 图 2中电容 C1在开机时对推挽开关三极管 的基极至发射极的冲击。 偏置电阻 R1的两端分别与电压输入端以及为两个推挽 晶体管 TR1、 TR2基极提供正反馈的反馈绕组 NBI和 NB2的中心抽头连接; 启动电 路有多种形式, 如图 3-1、 图 3-2、 图 3-3都可以成为 Royer电路或 Jensen电路 的启动电路。
上述的图 1至图 2, 以及使用图 3-1至图 3-5示出的电路作为启动电路的自 激推挽式变换器, 其中, 图 3-1至图 3-5端子 A1连接到变压器反馈绕组中心抽 头上; 电阻 R1为上偏置电阻, 连接在电源有效供电端至推挽三极管基极的回路 中,在电路上电时,为推挽三极管提供初始的启动基极电流, 以及在正常工作时, 向推挽三极管轮流提供部分基极电流; 电阻 R2为下偏置电阻, 连接在推挽三极 管的基极与发射极的直流回路中, 对上偏置电阻提供的电流起到分流作用。 图 3- 1至图 3-5等启动电路与 Royer电路和 Jensen电路主体组合起来, 可以得到 很多种电路形式, 但其工作原理大同小异。 在早期的文献中, 自振荡 Jensen电 路的名称叫双变换器推挽逆变电路, 在人民邮电出版社的 《电源变换技术》 第 70页至 72页有描述, 该书 ISBN号为 7_ 1 15_04229-2/TN · 353。在该书中使用的 电路见该书的 71页图 2-40,其启动电路和图 3-5的相同。它们有共同的缺点为:
1、 低温启动性能差。
2、 高温时空载功耗大, 在高温下电路的变换效率下降。
3、 启动电路中 R1取值不好兼顾变换效率和带载能力。
以下为产生上述缺点的详细论述:
以 Royer电路为例, Royer电路工作原理为: 参见图 1, Royer电路是利用 磁心饱和特性进行推挽振荡,接通电源瞬间, 偏置电阻 R1和电容 C 1并联回路通 过线圈 NBI和 NB2绕组为三极管 TR1和 TR2的基极、 发射极提供了正向偏压并产 生基极电流, 两只三极管 TR1和 TR2开始导通, 由于两个三极管特性不可能完全 一样, 因此, 其中一只三极管会先导通, 假设三极管 TR2先导通, 产生集电极电 流 IC2 , 其对应的线圈 NP2绕组的电压为上正下负, 根据同名端关系, 其基极线 圈 NB2绕组也出现上正下负的感应电压,这个电压增大了三极管 TR2的基极电流, 这是一个正反馈的过程, 因而很快使三极管 TR2饱和导通; 相应地, 三极管 TR1 对应的线圈 NBI绕组的电压为上正下负,这个电压减小了三极管 TR1的基极电流, 三极管 TR1很快完全截止。
三极管 TR2对应的线圈 NP2绕组里的电流, 以及这个电流产生的磁感应强度 随时间线性增加, 但磁感应强度增加到变压器 B磁心的饱和点 Bm时, 线圈的电 感量迅速减小, 从而使三极管 TR2开关管的集电极电流急剧增加, 增加的速率远 大于基极电流的增加,三极管 TR2开关管脱离饱和, 三极管 TR2开关管的集电极 到发射极的压降 UCE增大, 相应地, 变压器 NP2绕组上的电压就减小同一数值, 线圈 NB2绕组感应的电压减小, 结果使三极管 TR2开关管基极电压也降低, 造成 三极管 TR2开关管向截止方向变化, 此时, 变压器线圈上的电压将反向, 使另一 只三极管 TR1导通, 此后, 重复进行这一过程, 形成推挽振荡。 上述工作原理为公知理论, 其特点为: 利用磁心饱和特性进行推挽振荡, 变 压器输出波形为近似方波, 电路的变换效率较高。
另一个与 Royer电路相似的结构,就是开关驱动功能与主功率变压器脱离的 电路,如图 2所示。这个电路就是著名的自振荡 Jensen电路, 中文常音译为 "井 森" 电路, 电路的自振荡频率和驱动功能, 改由磁饱和的变压器 B2来实现, 因 此, 主功率变压器 B1能工作在不饱和状态, 其工作原理大同小异。
在低温下, 三极管 TR1和三极管 TR2的放大倍数都减小, 以 FMMT491为例, 参见图 4, 图 4为典型的直流放大倍数与集电极电流关系以及温度关系图, 图 4 来自长电科技技术手册上,其它公司生产的三极管都有类似的图形,由图 4可知, 在 100mA的集电极电流下, 在 100°C高温下, 其直流放大倍数约为 310, 在 25°C 常温下, 其直流放大倍数约为 225, 在 -55°C低温下, 其直流放大倍数仅为 105 左右, 实测其在 -40°C低温下,其放大倍数为 128左右。
这就给电路的设计带来麻烦, 电阻 R1取大了, 图 1电路的空载功耗小, 有 利提高电路的变换效率, 但这时, 把电路放入 -40°C低温下, 由于三极管放大倍 数下降, 其集电极电流峰值较小, 电路在上电时, 无法进入自激式推挽振荡中, 从而经常直接烧毁电路。
为了说明上偏置电阻 R1的作用, 图 5-1示出了图 1的部分电路; 为了方便 对原理进行述, 在不影响连接关系的前提下, 图 5-1电路优化为图 5-2的画法。
公知的理论可知, 三极管的基极至发射级可以等效为一只二极管, 那么, 图 5-2电路可以等效为图 5-3的电路, 其中二极管 DTRI等效于三极管 TR1的基极至 发射级, 其中二极管 DTR2等效于三极管 TR2的基极至发射级。
由于反馈绕组 NBI和二极管 DTRI串联, 串联电路的器件互换位置而不影响原 电路工作原理是公知技术, 互换时注意有极性器件的方向, 那么图 5-3电路可以 等效为图 5-4的电路。
把图 5-4电路进一步优化成图 5-5电路, 可以看到, 三极管的基极至发射级 的二极管 DTRI、 二极管 DTR2和反馈绕组 NBI、 反馈绕组 NBI组成全波整流电路 51, 在上述的变换中, 反馈绕组 NBI、 反馈绕组 NB2的同名端严格保持和图 5-1中的 一致, 可以看到, 在图 5-5中, 全波整流电路 51中, 反馈绕组再次被变换到一 起, 其新的 "中心抽头"成了接地端。 对图 5-5电路进行优化,在不影响连接关系的前提下, 用电池符号取代了原 输入电压 Vin, 得到图 5-6的电路, 其中, 电容 Cv为输入电压 Vin的输出电容, 公知理论把各种电源可以看成一个容量极大的电容器, 其交流内阻为零, 电容 Cv就是输入电压 Vin的内电容、输出电容, 容量极大, 远大于图 5-6中电容 Cl, 由此, 电容 C1可以等效于接在电阻 R1和二极管的阳极连接点上和接地端之间, 如图 5-7所示。
图 5-7示出了图 5-1最终的等效电路,电容 C1事实上是全波整流电路 51的 滤波电容, 由于自激推挽式变换器输出波形为方波, 所以电容 C1即使不存在, 全波整流电路 51的输出电压也接近平滑直流电, 从图 5-7的电路可以看出, 流 过电阻 R1的电流, 是由流过二极管 DTR1的电流和流过二极管 DTR2的电流轮流接 续完成的, 流过二极管 DTRI的电流存在时, 流过二极管 DTR2的电流为零, 下面 以一组数据说明, 设 Vin为 5V, 那么图 5-7中 A1点电压为 5V, 若反馈绕组 NBI 和反馈绕组 NB2的反馈电压为 IV, 二极管 DTRI的压降为 0. 7V, 事实上这个电压 为推挽三极管基极到发射级的压降, 那么, 那么图 5-7中 A2点电压为 -0. 3V, 若 此刻 A3点为 +1V、 A4点为 -1V, 那么二极管 DTR2正向导通, 而二极管 DTRI因为反 偏而截止。 由于推挽三极管是轮流导通, 所以, 近似地认为, 流过电阻 R1的电 流等于流入推挽三极管在导通时的电流。而传统的理论认为, 自激推挽式变换器 一旦正常工作, 流入推挽三极管在导通时的电流不仅包括流过电阻 R1的电流, 还包括反馈绕组提供的强大的电流, 以获得极强的驱动能力。 事实并非如此, 通 过上述分析, 可以看到, 传统的理论在这一点上并不正确, 也导致了长期以来, 无人对上偏置电阻 R1进行探索、 改进的重要原因。
一般的解决方法, 是在 -40°C低温下, 选取较小的阻值的电阻 Rl, 以确保在 -40°C低温下电路可以正常启动, 进入自激式推挽振荡中, 但这时当电路在常温 或高温下工作时, 电路的空载损耗不容忽视, 如在 85°C高温下, 这时推挽三极 管的放大倍数升到较大数值, 常引起电路的变换效率下降, 下面以一组实测的数 据说明:
使用图 1的电路, 变压器 B1的副边换为图 6所示电路, 设计目标为: 输入 直流 5V, 输出直流 5V, 输出电流 200mA, 即输出功率 1W。 电路的参数如下, 电 容 C为 luF电容, 电容 C1为 0. luF电容, 三极管 TR1和 TR2为放大倍数在 200 倍左右的开关三极管 F匪 T491, 其集电极最大工作电流为 1A; 变压器的副边输出 采用图 6的电路结构, 图 6为公知的全波整流电路, 其中, 二极管 D51和二极管 D52为共阴三极管 BAV74, 由于工作频率高, 滤波电容为 3. 3uF的无极性电容, 其中, 变压器 B1原边线圈 NPI和 NP2的圈数分别为 20匝, 反馈线圈 NBI和 NB2的 圈数分别为 3匝, 副边线圈 Nsi和 NS2的圈数分别为 23匝, 磁心采用外直径 5毫 米, 横截面积 1. 5平方毫米的常见铁氧体环形磁心, 俗称磁环。
当电阻 R1取不同数值时, 测量图 1电路性能参数, 其中, 电路的变换效率 采用图 7的电路测试, 测试时都采用图 7的接线方式, RL为精密可调电阻负载, 可以有效地减小测量误差。 电流表和电压表均使用 MASTECH®品牌的 MY65型 4位 半数字万用表的 200mA档和 20V档或 200V档, 同时使用了四块及四块以上的万 用表。
MY65型 4位半数字万用表其测电压时, 内阻为 10. 0Μ Ω, 200mA电流档的内 阻为 1. 00 Ω。 当电流超过 200mA时, 采用了两块电流表都置于 200mA档并联测 量, 把两块表的电流读数相加, 即为测量值。 电流表并联测量是现有电子工程的 成熟技术。
VI电压表头为工作电压 Vin, 即输入电压; A1电流表头为输入电流 I in, 即 为工作电流; V2电压表头为输出电压 Vout, A2电流表头为输出电流 lout ; 那么 变换效率可以用公式(1)计算得出。
Vout X lout
χ 100% 公式(1)
Vin x Iin
图 7中, 负载电阻 RL为断开状态时, 电流表 A2读数为 0mA, 这时电流表 A1 的读数即为空载工作电流; 测试时使用了小型超低温试验箱, 其型号为 MC-711 , 其温度范围为 -60°C至 15CTC ; 测试记录的数据如表一所示:
表一 电阻 R1的取值 0. 5Κ Ω 1. 0 Κ Ω 1. 5Κ Ω 2. 0Κ Ω 3. 0Κ Ω
-40°C下, 空载工
30. 9 23. 7 20. 3 19. 0 15. 7 作电流(mA)
25 °C下, 空载工
36. 5 24. 6 18. 7 15. 9 13. 3 作电流(mA) 85 °C下, 空载工
51. 4 34. 8 26. 2 22. 3 18. 5 作电流(mA)
在 -40 °C下,当电阻 R1取值达 1. 5Κ Ω及以上时,在低温时, 电路的空载工作 电流反而有所增大, 这是因为在低温下, 推挽三极管 TR1和 TR2放大倍数降低, 引起三极管不能进入深度饱和, 在推挽三极管轮流饱和导通时, 在过渡期内, 能 量损失大引起。
对上偏置电阻采用不同电阻值下的变换效率进行了测试,记录如下表二, 输 出电流均调节在 100mA, 计算方法采用了公式(1)。
Figure imgf000008_0001
对比每一个电阻 R1不同的取值, 都会发现, 在低温下, 效率降低, 这是由 于上述的原因引起: 在低温下, 推挽三极管 TR1和 TR2放大倍数降低, 引起三极 管不能进入深度饱和, 在推挽三极管轮流饱和导通时, 在过渡期内, 能量损失大 弓 I起; 另一方面, 推挽三极管 TR1和 TR2放大倍数降低, 其饱和压降大也引起能 量损失, 从而引起效率降低。 而在高温下, 由于推挽三极管 TR1和 TR2放大倍数 升高, 本身引起了电路的空载工作电流增大, 空载工作电流增大, 就会引起变换 效率降低。
在表二中, 当电阻 R1取值 3. 0Κ Ω 时, 在 25 °C下, 变换效率达较大值, 高 达 77. 1%。 而在 85 °C, 变换效率却降低至 74. 1%,下跌了 3%。 这种情况在电阻 R1 取值 0. 5Κ Ω 时,更为明显, 下跌达 10. 5%.
在图 7中,若把负载电阻 RL调节至 25 Ω,就会发现,当电阻 R1取大了以后, 电路无法在低温下正常启动, 即输入电源加电后, 图 1的变换器不能正常输出 5V电压, 电路处于停振、 或衰减振荡状态下, 这是因为在低温下, 推挽三极管 放大倍数降低, 较重的负载使得电路无法进入自激振荡中, 如表三所示: 电阻 Rl的取值 0. 5Κ Ω 1. 0 Κ Ω 1. 5Κ Ω 2. 0Κ Ω 3. 0Κ Ω 低温启动是否能 3秒后可
可以 可以 不能启动 不能启动 启动(-40°C) 以
这时, 若是电路在空载时上电, 电路可以输出正常的工作电压, 把负载电阻
RL连接上输出端, 并逐步调节负载电阻 RL, 使得输出电流逐步增加, 测试在低 温下, 电路的最大带载能力, 当电流加到某一定数值时, 电路会停振或进入反复 起振状态, 但输出电压会大幅跌落, 记录下这个电流值, 如表四所示:
表四
Figure imgf000009_0001
可以看到, 尽管电阻 R1取值 3. 0Κ Ω 时, 可以获得较好的效率, 参见表二, 但在低温时, 若用户满载工作, 或工作在较大的输出电流下, 即大于 101mA, 电 路即无法正常启动, 不能实现正常的功能。 通过表三可以看到, 电阻 R1取值 1. 0Κ Ω 比较理想, 但观察表二, 可以看到, 而在 85°C, 变换效率对比 25°C降低 至 66. 3%,下跌了 6. 7%,这是因为在高温时空载损耗增大引起的。 电阻 R1若取为 0. 5Κ Ω , 可以改善低温启动性能, 但由于空载损耗大了, 电路的变换效率却降低 了; 电阻 R1取大了, 变换效率升上去了, 但带载能力差了, 同时在低温时的启 动性能下降了, 甚至不能工作。 即启动电路中 R1取值不能兼顾变换效率和带载 能力。
设计在其它电压值的自激推挽式变换器,包括 Jensen电路都存在这类缺点。 在英国公开号为 GB1473582专利中,在其对应 FIG. 5图中, 使用了可调电阻
26取代了下偏置电阻, 并没有解决上述现有技术的缺点, 在其对应 FIG. 6图中, 使用了极为复杂的电路, 也不能解决上述现有技术的缺点。
在中国公开号为 CN 2353050的专利中, 采用热敏电阻串入电源供电中, 也 不能解决上述现有技术的缺点。
在中国公开号为 CN 2324631的专利中, 在权利要求 3中, 采用热敏电阻串 入推挽三极管的发射极与地之间。在其说明书第 1页第 6段中陈述了该热敏电阻 Rt2的作用为:这样可以保证推挽式振荡电路的三极管 VI、 V2不致损坏。事实上, 该热敏电阻 Rt2降低了电路的变换效率, 同样也不能解决上述现有技术的缺点。 发明内容
有鉴如此,本发明要解决的技术问题是: 使自激推挽式变换器具有良好的低 温启动性能, 高温时空载功耗对比低温时不再增大, 在高温下电路的变换效率不 再下降,变换效率维持和低温时相等或有所提高, 让自激推挽式变换器在全范围 工作温度内兼顾变换效率和空载功耗。
为解决上述技术问题, 本发明提供一种自激推挽式变换器, 包括启动电路, 其特征是: 所述启动电路中至少一只偏置电阻为热敏电阻, 所述的启动电路在低 温时, 能为推挽开关三极管的基极提供较常温时的基极电流值大的基极电流; 所 述的启动电路在常温时, 能为所述的推挽开关三极管的基极提供正常的基极电 流; 所述的启动电路在高温时, 能为所述的推挽开关三极管的基极提供较常温时 的基极电流值小的基极电流。
优选地,所述的启动电路第一种技术实现方案为: 为推挽开关三极管基极提 供电流的上偏置电阻为正温度系数的热敏电阻;
更优地, 所述的热敏电阻电阻值随温度增加呈线性上升;
更优地, 所述的正温度系数的热敏电阻为半导体硅单晶, 又称硅热敏电阻; 更优地, 所述的热敏电阻为电阻值随温度增加呈线性上升的半导体硅单晶。 优选地, 所述的启动电路第二种技术实现方案为: 为推挽开关三极管基极、 发射极分流电流的下偏置电阻为负温度系数的热敏电阻;
更优地, 所述的负温度系数的热敏电阻的电阻值随温度增加呈线性下降。 优选地,将上述两种启动电路技术实现方案结合起来使用, 得到第三种技术 实现方案, 即, 为推挽开关三极管基极提供电流的上偏置电阻为正温度系数的热 敏电阻; 同时, 为推挽开关三极管基极、发射极分流电流的下偏置电阻为负温度 系数的热敏电阻。
本发明的工作原理是,上偏置电阻采用正温度系数的热敏电阻后,在低温时, 正温度系数的热敏电阻阻值较小, 可以提供较大的基极电流, 弥补了推挽三极管 在低温下放大倍数下降引发的自激推挽式变换器上电启动不良、带载能力差, 这 样, 可以使得自激推挽式变换器在低温时, 获得良好的启动性能以及很好的带载 能力。
在常温时, 正温度系数的热敏电阻和普通电阻阻值相同, 自激推挽式变换器 的工作状况和使用普通电阻一样, 可以获得相同的性能。
而在高温下, 由于正温度系数的热敏电阻阻值增大, 提供的电流减少, 弥补 了推挽三极管在高温下放大倍数上升引发的自激推挽式变换器空载工作电流大、 变换效率下降。 这样, 可以使得自激推挽式变换器在高温时, 获得良好的空载工 作电流以及很好的变换效率。
使用负温度系数的热敏电阻的原理为: 下偏置电阻采用负温度系数的热敏 电阻后, 在低温时, 负温度系数的热敏电阻的阻值增大, 可以减小对推挽三极管 基极、发射极的分流, 即推挽三极管的基极电流因此而增大, 弥补了推挽三极管 在低温下放大倍数下降引发的自激推挽式变换器上电启动不良、带载能力差, 这 样, 可以使得自激推挽式变换器在低温时, 获得良好的启动性能以及很好的带载 能力。
在常温时, 负温度系数的热敏电阻和普通电阻阻值相同, 自激推挽式变换器 的工作状况和使用普通电阻一样, 可以获得相同的性能。
而在高温下, 由于负温度系数的热敏电阻的阻值减小, 增加了对推挽三极管 基极、发射极的分流, 即推挽三极管的基极电流因此而减小, 弥补了推挽三极管 在高温下放大倍数上升引发的自激推挽式变换器空载工作电流大、 变换效率下 降。 这样, 可以使得自激推挽式变换器在高温时, 获得良好的空载工作电流以及 很好的变换效率。
把两种方案结合起来使用, 可以获得同样的效果。
为了防止出现过补偿或欠补偿,可以对热敏电阻和热敏电阻或普通电阻进行 并联、 串联、 混联。
本发明的优点在于使用上述技术方案后,基于上述的工作原理, 本发明的自 激推挽式变换器和现有的自激推挽式变换器相比,在不同环境温度下, 低温启动 性能、 空载工作电流、 空载损耗、 变换效率都有显著改进。 下面将在具体实施方 式中, 结合实施例一, 以一组实际测试数据说明有益效果。 附图说明
下面结合附图和具体实施例对本发明作进一步的详细说明。
图 1为自激推挽式变换器中 Royer常见应用电路原理图;
图 2为自激推挽式变换器著名的 Jensen电路的常见应用原理图; 图 3-1至图 3-5为自激推挽式变换器中常见启动电路的五种不同电路结构; 图 4为三极管典型的直流放大倍数与集电极电流关系以及温度关系图; 图 5-1 为图 1中启动电路部分的原理图;
图 5-2 为图 5-1所示电路的等效原理图;
图 5-3 为图 5-2所示电路的等效原理图;
图 5-4 为图 5-3所示电路的等效变换原理图;
图 5-5 为图 5-4所示电路的优化后等效原理图;
图 5-6 为图 5-5所示电路的等效原理图;
图 5-7 为图 5-6所示电路的等效原理图;
图 6 为公知的全波整流电路;
图 7 为本发明中通用的测试原理图;
图 8 为本发明第一实施例原理图;
图 9 为本发明第一实施例中采用的热敏电阻 2. 0Κ Ω变化特性图; 图 10 为本发明第二实施例原理图;
图 11 为本发明第三实施例原理图;
图 12 为本发明第四实施例原理图;
图 13 为本发明第五实施例原理图;
图 14-1至图 14-9为本发明启动电路的不同的实施方式。 具体实施方式
图 8为第一实施例, 如图 8所示, 较背景技术图 1中的不同处在于: 采用正 温度系数的热敏电阻 RT1替代了原电阻 Rl, 电路的主体为自激推挽式变换器, 变压器 B1的副边换为图 6所示电路,输入直流 5V,输出直流 5V,输出电流 200mA, 即输出功率 1W。 电路的参数除热敏电阻 RT1以外,其它完全同背景技术中表一至表四对应的 电路参数。 即为: 电容 C为 luF电容, 电容 C1为 0. luF电容, 三极管 TR1和 TR2 为放大倍数在 200倍左右的开关三极管 FMMT491 , 其集电极最大工作电流为 1A; 变压器的副边输出采用图 6的电路结构,其中, 二极管 D51和二极管 D52为共阴 三极管 BAV74, 滤波电容为 3. 3uF的无极性电容; 其中, 变压器 B1原边线圈 NPI 和 NP2的圈数分别为 20匝, 反馈线圈 NBI和 NB2的圈数分别为 3匝,副边线圈 Nsi 和 NS2的圈数分别为 23匝, 磁心采用外直径 5毫米, 横截面积 1. 5平方毫米的 常见铁氧体环形磁心。
热敏电阻 RT1采用正温度系数的热敏电阻, 这里使用的是线性热敏电阻, 简 称为 LPTC, LPTC是 Linear Positive Temperature Coefficient 的縮写, 其在 25°C下的阻值为 2. 0Κ Ω。其变化特性参见图 9, 图 8实施例电路使用图 6的整流 电路后, 测试电路仍采用图 7所示的测试电路, 具体测试方法、 设备采用背景技 术中介绍的方法、 设备。
实现第一实施例的电路的有益效果的相关工作原理,在技术方案中有详细说 明, 这里不再赘述。 表五
Figure imgf000013_0001
对比表一, 可以看到, 空载工作电流不再随温度上升而上升了, 低温时的空 载电流工作上升了, 有利于获得良好的低温启动性能。 为了说明这一问题, 测试 了三种温度下的变换效率, 如表六所示:
表六 电阻 R1的取值 LPTC 2. 0 ΚΩ -40°C下, 变换效率 (%) 70. 9
25°C下, 变换效率 (%) 73. 8
85°C下, 变换效率 (%) 74. 1 对比表二, 可以看到, 变换效率不再随温度上升而下降了, 反而有所上升。 同样测试了在 -40°C温度下的启动性能, 如表七所示:
表七
Figure imgf000014_0001
对比表三, 使用普通电阻时, 电阻 R1取值 2. 0Κ Ω不能在低温下启动, 而使 用本发明的电路可以正常启动。 同样测试了在 -40°C温度下的最大输出电流, 如 表八所示:
表八
Figure imgf000014_0002
对比表四发现,在 -40°C低温下, 使用 LPTC2. 0K Q 的热敏电阻的效果可以和 使用普通电阻 1. 0Κ Ω 时媲美,这是由于 LPTC2. 0Κ Ω 的热敏电阻在 _40°C低温下, 阻值已下降至 990 Ω所带来的有益效果。
用表五至表八的数据与表一至表四的数据进行对比, 可以看到, 除电阻 R1 以外,在同等电路参数下, 本发明的自激推挽式变换器和现有的自激推挽式变换 器相比, 在不同温度下, 低温启动性能、 空载工作电流、 空载损耗、 变换效率都 有显著改进。
其它有益效果一: 上述的电路, 使用 LPTC2. 0K Q热敏电阻并适当在电路中 靠近推挽三极管, 可以改善电路在高温下的工作状况, 实测背景技术中的电路, 在 140°C高温下, 满载工作不到 1分钟即烧毁, 而本发明的电路在 155°C下, 满 载工作 120分钟仍正常工作, 这也得益于正温度系数的热敏电阻在高温下, 阻值 升高带来的益处。 图 10为第二实施例, 如图所示, 在启动电路中, 上偏置电阻分采用普通电 阻, 下偏置电阻 RT2使用负温度系数的热敏电阻,电路的工作原理为: 下偏置电 阻 RT2采用负温度系数的热敏电阻后,在低温时, 负温度系数的热敏电阻 RT2的 阻值增大, 可以减小对推挽三极管基极、发射极的分流, 即推挽三极管的基极电 流因此而增大,弥补了推挽三极管在低温下放大倍数下降引发的自激推挽式变换 器上电启动不良、 带载能力差, 这样, 可以使得自激推挽式变换器在低温时, 获 得良好的启动性能以及很好的带载能力。
在常温时, 负温度系数的热敏电阻 RT2和普通电阻阻值相同, 自激推挽式变 换器的工作状况和使用普通电阻一样, 可以获得相同的性能。
而在高温下, 由于负温度系数的热敏电阻 RT2的阻值减小, 增加了对推挽三 极管基极、发射极的分流, 即推挽三极管的基极电流因此而减小, 弥补了推挽三 极管在高温下放大倍数上升引发的自激推挽式变换器空载工作电流大、变换效率 下降。 这样, 可以使得自激推挽式变换器在高温时, 获得良好的空载工作电流以 及很好的变换效率。
图 11为第三实施例, 如图 11所示, 电路结构简化了变压器 B1的反馈绕组 的绕制方法而已, 上偏置电阻采用正温度系列的热敏电阻, 其工作原理, 在技术 方案中有详细说明, 基本上相同, 这里不再赘述。
图 12为第四实施例, 如图 12所示, 在图 11的基础上, 上偏置电阻采用两 只正温度系列的热敏电阻 RTla和热敏电阻 RTlb, 其工作原理, 在技术方案中有 详细说明, 基本上相同, 这里不再赘述。
图 13为第五实施例, 如图所示, 电路的主体为自激推挽式变换器中 JenSen 电路, 偏置电阻采用正温度系列的热敏电阻 RT1,同样可以实现本发明的目的。
图 14-1至图 14-9示出的 9种启动电路, 应用于自激推挽式变换器中, 都可 以实现本发明的目的。 图 14-1至图 14-9中的端子 A1连接到变压器反馈绕组中 心抽头上; 热敏电阻 RT1均为上偏置电阻, 为正温度系列的热敏电阻; 热敏电阻 RT2均为下偏置电阻, 为负温度系列的热敏电阻; 热敏电阻 RT1连接在电源有效 供电端至推挽三极管的直流回路中,在电路上电时, 为推挽三极管提供初始的启 动基极电流, 以及在正常工作时, 向推挽三极管轮流提供部分基极电流; 电阻 RT2为下偏置电阻, 连接在推挽三极管的基极与发射级的直流回路中, 对上偏置 电阻提供的电流起到分流作用。 图 14-1至图 14-9等启动电路与 Royer电路和 Jensen电路主体组合起来, 可以得到很多种电路形式, 但其工作原理大同小异, 这里不再赘述。
以上仅是本发明的优选实施方式, 应当指出的是, 上述优选实施方式不应视 为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于 本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内, 还可以做出 若干改进和润饰, 也应视为本发明的保护范围。 如用 PNP 型三极管代替 NPN 型三极管, 而把电源输入电压极性反过来。

Claims

权利要求
1、 一种自激推挽式变换器, 包括启动电路, 其特征在于: 所述启动电路中至少 一只偏置电阻为热敏电阻,所述的启动电路在低温时, 为推挽开关三极管的基极 提供较常温的基极电流值大的基极电流; 所述的启动电路在高温时, 能为所述的 推挽开关三极管的基极提供较常温的基极电流值小的基极电流。
2、 根据权利要求 1所述的自激推挽式变换器, 其特征在于: 所述启动电路中上 偏置电阻为一正温度系数的热敏电阻。
3、 根据权利要求 2所述的自激推挽式变换器, 其特征在于: 所述的正温度系 数的热敏电阻的电阻值随温度增加呈线性上升。
4、 根据权利要求 2或 3所述的自激推挽式变换器, 其特征在于: 所述的正温 度系数的热敏电阻为半导体硅单晶。
5、 根据权利要求 1所述的自激推挽式变换器, 其特征在于: 所述启动电路中下 偏置电阻为负温度系数的热敏电阻。
6、 根据权利要求 5所述的自激推挽式变换器, 其特征在于: 所述的负温度系 数的热敏电阻的电阻值随温度增加呈线性下降。
7、 根据权利要求 5或 6所述的自激推挽式变换器, 其特征在于: 所述的自激 推挽式变换器中上偏置电阻为一正温度系数的热敏电阻。
8、 根据权利要求 7所述的自激推挽式变换器, 其特征在于: 所述的正温度系 数的热敏电阻的电阻值随温度增加呈线性上升。
9、 根据权利要求 7所述的自激推挽式变换器, 其特征在于: 所述的正温度系 数的热敏电阻为半导体硅单晶。
10、 根据权利要求 7所述的自激推挽式变换器, 其特征在于: 所述的正温度 系数的热敏电阻为电阻值随温度增加呈线性上升的半导体硅单晶。
PCT/CN2012/070345 2011-09-14 2012-01-13 一种自激推挽式变换器 WO2013037192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110272261.5A CN102315778B (zh) 2011-09-14 2011-09-14 一种自激推挽式变换器
CN201110272261.5 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013037192A1 true WO2013037192A1 (zh) 2013-03-21

Family

ID=45428654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070345 WO2013037192A1 (zh) 2011-09-14 2012-01-13 一种自激推挽式变换器

Country Status (2)

Country Link
CN (1) CN102315778B (zh)
WO (1) WO2013037192A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053417A1 (en) * 2017-09-12 2019-03-21 Murata Manufacturing Co., Ltd. SIMPLE STABILIZATION OF A HALF-DECK CONVERTER ON ITS OPERATING TEMPERATURES

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315778B (zh) * 2011-09-14 2014-06-25 广州金升阳科技有限公司 一种自激推挽式变换器
CN103546042B (zh) * 2013-10-08 2017-01-18 吴锡科 一种全桥自激变换器
CN104539166B (zh) * 2014-12-16 2017-08-29 广州金升阳科技有限公司 一种用于自激推挽式变换器的偏置电路
CN105871217B (zh) * 2016-05-05 2019-09-27 洛阳中重自动化工程有限责任公司 一种用于igbt驱动装置的推挽式隔离电源及方法
CN106849684A (zh) * 2017-02-08 2017-06-13 广州致远电子股份有限公司 一种自激推挽变换器
CN107171659B (zh) * 2017-05-08 2020-10-20 深圳陆巡科技有限公司 半导体开关器件及电力变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162359A (ja) * 1984-08-31 1986-03-31 Fujitsu Denso Ltd 自励型スイツチング電源装置
CN2636497Y (zh) * 2003-08-11 2004-08-25 广州金升阳科技有限公司 自激推挽式变换器
EP1701594A1 (en) * 2005-03-09 2006-09-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Overload protection arrangement for electronic converters, for instance for halogen lamps
CN102315778A (zh) * 2011-09-14 2012-01-11 广州金升阳科技有限公司 一种自激推挽式变换器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327308C3 (de) * 1973-05-29 1979-08-30 Vereinigte Flugtechnische Werkefokker Gmbh, 2800 Bremen Schaltungsanordnung zur Erzeugung einer stabilisierten Gleichspannung
US4734828A (en) * 1987-04-27 1988-03-29 Vargo Frank J High frequency-high voltage power converter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162359A (ja) * 1984-08-31 1986-03-31 Fujitsu Denso Ltd 自励型スイツチング電源装置
CN2636497Y (zh) * 2003-08-11 2004-08-25 广州金升阳科技有限公司 自激推挽式变换器
EP1701594A1 (en) * 2005-03-09 2006-09-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Overload protection arrangement for electronic converters, for instance for halogen lamps
CN102315778A (zh) * 2011-09-14 2012-01-11 广州金升阳科技有限公司 一种自激推挽式变换器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053417A1 (en) * 2017-09-12 2019-03-21 Murata Manufacturing Co., Ltd. SIMPLE STABILIZATION OF A HALF-DECK CONVERTER ON ITS OPERATING TEMPERATURES
GB2566678A (en) * 2017-09-12 2019-03-27 Murata Manufacturing Co Simple stabilization of half-bridge converter over its operating temperatures
GB2566678B (en) * 2017-09-12 2020-05-13 Murata Manufacturing Co Simple stabilization of half-bridge converter over its operating temperatures
US11133748B2 (en) 2017-09-12 2021-09-28 Murata Manufacturing Co., Ltd. Simple stabilization of half-bridge converter over its operating temperatures

Also Published As

Publication number Publication date
CN102315778A (zh) 2012-01-11
CN102315778B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013037192A1 (zh) 一种自激推挽式变换器
CN106505865B (zh) 一种不对称半桥反激变换器及其驱动控制方法
WO2013010385A1 (zh) 一种自激推挽式变换器
JP5088386B2 (ja) スイッチング電源装置
US7405955B2 (en) Switching power supply unit and voltage converting method
WO2013026267A1 (zh) 一种自激推挽式变换器
KR20130117876A (ko) 자가 여자 푸시 풀 타입 컨버터
CN108365765A (zh) 一种多路输出单端反激式开关电源
JP4371212B2 (ja) Dc/dcコンバータ
WO2013091323A1 (zh) 一种自激推挽式变换器
CN106686826B (zh) Led照明电源电路
JP2001190072A (ja) スイッチング電源
WO2020143275A1 (zh) 一种改进型反激变换器
CN108768178B (zh) 一种宽电压输入的llc谐振半桥电路
JP2007104881A (ja) スイッチング電源装置
TWI745981B (zh) 具諧振能量回收自給驅動設計之電源供應器
TWI259645B (en) Power apparatus
CN206195640U (zh) 一种电源适配器电路
JP4203297B2 (ja) スイッチング電源
Jing et al. Design of a flyback high-efficiency switching power supply
CN209389940U (zh) 用于llc谐振变换器的恒流控制电路
JP3528816B2 (ja) スイッチング電源回路
JP2003230274A (ja) スイッチング電源回路
JP2000134926A (ja) スイッチング電源回路
JP2001119943A (ja) スイッチング電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831986

Country of ref document: EP

Kind code of ref document: A1