WO2013036338A1 - Hermetic small form factor optical device packaging for plastic optical fiber networks - Google Patents

Hermetic small form factor optical device packaging for plastic optical fiber networks Download PDF

Info

Publication number
WO2013036338A1
WO2013036338A1 PCT/US2012/049634 US2012049634W WO2013036338A1 WO 2013036338 A1 WO2013036338 A1 WO 2013036338A1 US 2012049634 W US2012049634 W US 2012049634W WO 2013036338 A1 WO2013036338 A1 WO 2013036338A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
section
enclosure
fiber lead
pcs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2012/049634
Other languages
English (en)
French (fr)
Inventor
Eric Y. Chan
Dennis G. Koshinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to CN201280043536.0A priority Critical patent/CN103782212B/zh
Priority to JP2014529719A priority patent/JP6086914B2/ja
Priority to EP12759291.3A priority patent/EP2753964B1/en
Publication of WO2013036338A1 publication Critical patent/WO2013036338A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present disclosure is generally related to hermetically-sealed optical components for plastic optical fiber networks used in harsh aerospace environment.
  • Plastic optical fiber networking may have lower installation and maintenance costs.
  • plastic optical fibers are lighter than metal wires that would be needed to cam ' an equivalent amount of data, using plastic optical fibers may result in appreciable weight savings.
  • the weight savings may be significant for networks aboard vehicles, such as aircraft, where the weight savings may result in reduced fuel consumption and lower emissions.
  • optical devices such as transmitters, receivers, and transceivers may be hermetically sealed.
  • optical devices may be deployed in locations on the exterior of the aircraft, such as n ear engines or near the landing gear, that may not be pressurized or insulated against the ambient environment. If the optical devices in such locations are not hermetically sealed, condensation, particulates, and other undesired material may form on the optical devices or on exposed ends of the plastic optical fibers.
  • Conventional methods of hermetic sealing optical devices may involve many precise manufacturing steps that are expensive. In addition, certain steps of conventional methods may use processing temperatures that can damage plastic optical fiber.
  • an optical device may be hermetically sealed to one or more optical fiber leads to form a hermetically sealed optical component that can be coupled to end-faces of plastic optical fibers with low insertion loss.
  • the optical fiber leads may include a portion or length of a polymer-clad silica fiber, such as HCS ⁇ fiber, which is a registered trademark of FURUKAWA ELECTRIC NORTH AMERICA, INC.
  • Hermetically sealing the optical device to the one or more optical fiber leads enables use of the h ermetically sealed optical component in potentially harsh en vironments. Production of the hermetically sealed optical components involves relatively few steps, thus, enabling the hermetically sealed optical components to be produced at relatively low cost.
  • a particular enclosure for a hermetically sealed optical component may include a first section that includes a base portion and wall portions to receive an optoelectronic device.
  • the first section includes an open-ended slot in one of the wall portions through which a polymer-clad silica (PCS) optical fiber lead may be received.
  • the PCS optical fiber lead may be guided in place adjacent the optoelectronic device housed in the first section by an alignment body.
  • the PCS optical fiber lead may have a metalized section at a point where the PCS optical fiber lead is received into the open-ended slot in the wall portion of the first section.
  • the PCS optical fiber lead may be aligned to the optoelectronic device and may be mechanically coupled to the first section, such as by epoxy, to secure the PCS optical fiber lead to the first section outside the wall portion of the first section.
  • a second section of the enclosure is instal led over the first section.
  • the second section may be shaped to engage edges of the wall portion of the first section.
  • the second section may include or be coupled to a layer of solder to join the second section to the edges of the wall section and to the metalized portion of the PCS optical fiber lead. Heat may be applied to the second section adjacent to locations where the second section meets the edges of the first section to melt the solder.
  • the second section may be joined to the first section and the PCS optical fiber lead may be soldered in place and sealed to the first section and to the second section of the enclosure.
  • the enclosure housing the optoelectronic device and the PCS optical fiber leads together from an optical component that can be coupled to a plastic optical fiber with low r insertion loss.
  • an apparatus in a particular embodiment, includes an enclosure configured to contain at least one optoelectronic device and to interface the at least one optoelectronic device to a PCS optical fiber lead.
  • the enclosure includes a first section that includes a base portion and a wall portion.
  • the w r all portion is coupled to a perimeter about the base portion.
  • the wall portion defines an open- ended slot in a first edge, which includes an open end that is configured to receive a first portion of the PCS optical fiber lead extending through the wall portion.
  • a second section is configured to sealingly engage the first edge of the wal l portion and the first portion of the PCS optical fiber lead at the open end of the open-ended slot.
  • a method in another particular embodiment, includes, at a first section of an enclosure having a base portion and a wail portion coupled to a perimeter of the base portion, receiving a first portion of a PCS optical fiber lead at an open end of an open-ended slot in a first edge of the wall portion.
  • the first portion of the PCS optical fiber lead is received such that an end of the PCS optical fiber lead is aligned with an optical surface of an optoelectronic device and the first portion of the PCS optical fiber lead extends through the wall, portion.
  • the PCS optical fiber lead is physically secured to the first portion of the enclosure outside the wall portion.
  • the enclosure is hermetically sealed by fixably joining a second section of the enclosure to the first edge of the wail portion and to the first portion of the PCS optical fiber l ead.
  • an enclosure in still another particular embodiment, includes a first section that includes a base portion and a wall portion.
  • the wall portion is coupled to a perimeter about the base portion.
  • the wall portion includes a first open-ended slot configured to receive a first metalized portion of a first PCS optical fiber lead extending through the wall portion.
  • the enclosure also includes a second section.
  • the second section includes a second edge with a preformed solder layer to fixably engage the first edge of the wall portion and the first metalized portion of the first PCS optical fiber lead at the open-ended slot when heat is applied adjacent to the second edge.
  • an apparatus which includes an enclosure configured to contain at least one optoelectronic device and to interface the at least one optoelectronic device to a polymer-clad silica (PCS) optical fiber.
  • the enclosure includes a first section including a base portion and a wall portion coupled to a perimeter about the base portion.
  • the wall portion defines an open-ended slot in a first edge and the open-ended slot includes an open end that is configured to receive a first portion of a PCS opti cal fiber l ead extending through the wall portion.
  • a second section is configured to sealingly engage the first edge of the wall portion and the first portion of the optical fiber lead at the open end of the open-ended slot.
  • the first portion of the PCS optical fiber lead includes a metalized ou ter region.
  • the second section may include a cap portion surrounded by a second wall portion extending to a second edge.
  • the second edge is configured to sealingly engage the first edge of the wall portion and the first portion of the PCS optical fiber lead.
  • the cap portion may include a concave surface and the concave surface is configured to accommodate the at least one optoelectronic device.
  • the present invention may further comprise a preformed solder layer of the second edge and heat applied proximate to the second edge causes the preformed solder layer to flow to seal the second edge to the first edge of the first section and to the first portion of the PCS optical fiber lead.
  • the first section includes a first cable support member extending from the wall portion adjacent to the open-ended slot, wherein the first cable support, member is configured to engage the PCS optical fiber lead outside the wall portion.
  • the second section includes a second cable support member, wherein the second cable support member is configured to engage the PCS optical fiber lead.
  • the present invention may further comprise an adhesive coupling the PCS optical fiber lead to the first cable support member and to the second cable support member.
  • the present invention may further comprise a boot configured to be slidabiy positioned over the first cable support member and the second cable support member.
  • the present invention may further comprise an alignment body coupled to the base portion and configured to guide alignment of the PCS opti cal fiber l ead to an optical surface of the at least one optoelectronic device.
  • the present invention may further comprise a plurality of conductive pins extending through the base portion, wherein the base portion is sealingly engaged with the plurality of conductive pins.
  • a method which includes, at a first section of an enclosure having a base portion and a wall portion coupled to a perimeter of the base portion, receiving a first portion of a polymer-clad silica (PCS) optical fiber lead at an open end of an open-ended slot in a first edge of the wail portion such that an end of the PCS optical fiber lead is aligned with an optical surface of an optoelectronic device and the first portion of the PCS optical fiber lead extends through the wail portion, physically securing the PCS optical fiber lead to the first portion of the enclosure ou tside the wall portion, and hermetically sealing the enclosure by fixably joining a second section of the enclosure to the first edge of the wall portion and to the first portion of the PCS optical fiber lead.
  • PCS polymer-clad silica
  • the first portion of the PCS optical fiber lead may include a metalized outer region and wherein fixably joining the second section of the enclosure to the first edge of the wall portion and to the first portion of the PCS optical fiber l ead includes soldering the second section to the first edge and to the metalized outer region of the first portion of the PCS optical fiber lead.
  • the present invention may further include positioning a preformed solder layer along the second section and applying heat adjacent to the second section using heated rollers
  • a silica core of the PCS optical fiber lead may extend through the wall portion of the first section and an outer jacket of the PCS optical fiber lead is physically secured to the enclosure outside the wall portion.
  • the present invention may further include physically securing the first portion of the PCS optical fiber lead to a second cable support member extending from the second section of the enclosure.
  • the present invention may further include coupling a boot over the first cable support member, the second cable support member, and the first portion of the PCS optical fiber lead.
  • an enclosure including a first section which includes a base portion and a wall portion coupled to the base portion.
  • the wall portion includes a first open-ended slot configured to receive a metalized portion of a polymer-clad silica (PCS) optical fiber lead that extends through the wall portion.
  • the enclosure also includes a second section which includes a second edge configured to support a preformed solder layer to sealingly engage a first edge of the wall portion and the metalized portion of the PCS optical fiber lead when heat is applied adjacent to the second edge.
  • PCS polymer-clad silica
  • the present invention may further include an alignment block attached to at least one of the base portion and the wall portion using a metai-to-ceramic brazing.
  • the alignment block may be configured to receive an optoelectronic device and a portion of the PCS optical fiber such that an optical surface of the optoelectronic device and an end for the PCS optical fiber lead are aligned .
  • the optoelectronic device may have a TO 18 type packaging.
  • the optoelectronic device may have a ceramic or metal submount type packaging.
  • the alignment block may be formed using a ceramic molding process.
  • FIG. 1 is a si de cross-sectional vi ew of a particul ar embodiment of an enclosure having a first section and a second section configured to receive one or more optoelectronic devices and to be hermetically sealed to one or more optical fiber leads;
  • FIG. 2 is top view of the first section of the enclosure of FIG. 1;
  • FIG. 3 is a bottom view of the second section of the enclosure of FIG. 1 ;
  • FIG. 4 is a side cross-sectional view of the first section of the enclosure of FIG. 1 in which an optoelectronic device and a PCS optical fiber lead are installed;
  • F IG. 5 is a side cross-sectional view of the first section and the second section of the enclosure of FIG. 1 being hermetically sealed in a controlled atmosphere chamber;
  • FIG. 6 is a side cross-sectional view of a completed, hermetically sealed enclosure of FIG. 1 fitted with a cable strain relieve boot to form an hermetically sealed optical component;
  • FIG. 7 is a flow diagram of a particular embodiment of a method of forming a hermetically sealed optical component
  • FIG. 8A is a top view of a particular embodiment of an enclosure body
  • FIG. 8B is several views of a particular embodiment of a fiber alignment block
  • FIG. 8C is several views of a particular embodiment of the fiber alignment block of FIG. 8B within the enclosure body of FIG. 8 A;
  • FIG. 9A is several views of particular embodiments of optoelectronic devices on submouiits;
  • FIG, 9B is a top view of a particular embodiment of the optoelectronic devices of FIG. 9A and interface circuitry within the enclosure body of FIG. 8C;
  • FIG. 10 is a top view of a particular embodiment of an optical fiber lead
  • FIG. 11 is a top view of a particular embodiment of PCS optical fiber leads of FIG. 10 inserted into the enclosure body of FIG. 9B;
  • FIG. 12 is a side cross-sectional view of a particular embodiment of the enclosure body of FIG. 1 1 and an enclosure top;
  • FIG. 13 is a cross-sectional side view of a particular embodiment of the enclosure top of FIG. 12 being sealed to the enclosure body of FIG. 12 by sealing rollers;
  • FIG. 14 is a side cross-sectional view of a particular embodiment of the sealed enclosure body and enclosure lid of FIG. 13;
  • FIG. 15 is a side view of a particular embodiment of the sealed enclosure body and enclosure lid of FIG. 14 with a fiber boot forming a hermetically sealed optical component;
  • FIG. 16A is several views of a particular embodiment of a fiber alignment block for
  • FIG. 16B is a top view of a particular embodiment of the fiber alignment block of FIG. 16A within the enclosure body of FIG. 8 A;
  • FIG. 17A is several views of particular embodiments of optoelectronic devices in TO type package
  • FIG. 17B is a top view of a particular embodiment of the optoelectronic devices of FIG. 17 A and interface circuitry within the enclosure body of FIG. ! 6B;
  • FIG. 18 is a top view of a particular embodiment of the PCS optical fiber leads of FIG. 10 inserted into the enclosure body of FIG. 17B.
  • the hermetically sealed optical components may house one or more optoelectronic devices and may be adapted to be coupled to optical fibers as part of an optical fiber network.
  • the hermetically sealed optical components may be formed using low-cost, high volume manufacturing processes.
  • the hermetically sealed optical components may be particularly well suited for coupling to plastic optical fibers with relatively low insertion losses.
  • an enclosure in a particular embodiment, includes a first section that includes a base portion and wall portions to receive one or more optoelectronic devices.
  • the first section includes one or more open-ended slots in one of the wall portions through which one or more optical fiber leads may be received.
  • An optical fiber lead may be guided into alignment with an optoelectronic device housed in the first section by a high precision alignment body (e.g., a precision molded ceramic block).
  • the optical fiber lead may have a metalized region at a point where the optical fiber lead is received into an open-ended slot in the wail portion of the first section.
  • a portion of the optical fiber lead may be physically coupled to the first section, such as by epoxy or another adhesive, to secure the optical fiber lead to the first section outside the wall portion.
  • the optical fiber lead may include a silica core and a hard polymer cladding.
  • the optical fiber lead may include a portion or length of polymer-clad silica (PCS) fiber.
  • PCS polymer-clad silica
  • the optical fiber lead may be adapted to couple to a plastic optical fiber with relatively low insertion loses.
  • the optical fiber lead may have an outer diameter and numerical aperture that is substantially equal to a standard poly(methyl methacr iate) (PMMA) plastic optical fiber.
  • a second section of the enclosure may be installed over the first section. Th e second section may be shaped to engage edges of the wall portion of the first section.
  • the second section may include or be coupled to a layer of solder to join the second section to the edges of the wall section and to the metalized portion of the optical fiber lead.
  • the metalized portion may be a metalized outer region. Heat may be applied to the second section adjacent to locations where the second section meets the edges of the first section to melt the solder.
  • the second section may be sealed to the first section and the optical fiber lead to form a hermetically sealed optical component.
  • FIG, 1 is a side cross-sectional view of a particular embodiment of an enclosure 100 having a first section 110 and a second section 160 configured to receive one or more optoelectronic devices (not shown in FIG. 1) and to hermetically seal the one or more optoelectronic devices at an end of an optical fiber lead (also not sho wn in FIG. 1 ).
  • the first section includes a base portion 120, A plurality of conductive pins 124 extend through the base portion 120 to enable the optoelectronic devices within the first section 1 10 to be electrically coupled to other devices outside the enclosure 100.
  • the conductive pins 124 are hermetically sealed to the base portion 120,
  • the base portion 120 may be molded around the conductive pins 124 so that the surfaces of the conductive pins 124 are integral with the base portion 120.
  • the enclosure 100 and the conductive pins 124 may be arrange to conform to the Multi-Source Agreement (MSA) Small Form-Factor (SFF) specification.
  • MSA Multi-Source Agreement
  • SFF Small Form-Factor
  • the conductive pins 124 may be arranged in a 2x5 dual-in-line configuration.
  • the enclosure 100 may have physical dimensions that conform to the MSA SFF specification.
  • the enclosure 100 may also include alignments posts 128 as prescribed by the MSA SFF specification.
  • the base portion 120 may be joined with a first wail portion 130 that extends about a perimeter 122 of the base portion 120.
  • the first wall portion 130 of the enclosure 100 includes a first edge 140 that extends around the periphery of the first wall portion 130.
  • the first edge 140 of the first wall portion 130 is configured to be sealed to a second edge 180 of the second section 160, as further described below.
  • the first w r all portion 130 includes a first wall 132 at one end of the base portion 120 and a second wall 134 at an opposite end of the base portion 120.
  • the first wail 132 includes an open-ended slot 142 formed in the first edge 140.
  • the open-ended slot 142 includes an open end 144 that is configured to receive an end of an optical fiber lead (not shown in FIG. 1 ), For example, the optical fiber lead may be received into the open-ended slot 142, in the frame of reference of FIG.
  • the first wall 132 may also include or be coupled to a first cable support member 150 that extends outwardly from the first wall 132.
  • the optical fiber lead may be physically coupled to the first cable support member 150, such as by an adhesive, to hold the optical fiber lead in place while the enclosure 100 is hermetically sealed.
  • the first section 110 of the enclosure 100 also may include or be coupled to a high precision alignment body 156.
  • the high precision alignment body 156 may include a precision molded ceramic el ement that is coupled to one or both of the base portion 120 and the first wall portion 132.
  • the alignment body 156 includes one or more grooves 158 and 159, e.g., one groove for each optical fiber lead that is to be received by the enclosure 100.
  • Each of the grooves 158 or 159 may be configured to align an end of an optical fiber lead with an
  • the optoelectronic device (not shown in FIG. 1) within the enclosure 100 such that the optical fiber leads and optoelectronic devices are properly aligned after the enclosure 100 is hermetically sealed. Additionally, precision molding of the alignment body 156 enables the optoelectronic devices and optical fiber leads to be aligned passively (e.g., by the accurate physical placement of the components inside 110) and no active alignment is needed. In this context, active alignment refers to passing light through an optical fiber lead and moving the optical fiber lead to test whether the optical fiber lead is properly aligned with an optoelectronic device.
  • the second section 160 of the enclosure 100 includes a cap portion 170 surrounded by a second wall portion 172.
  • the cap portion 170 may have a concave inner surface in order to
  • the second wall portion 172 extends to the second edge 180, which is configured to sealingly engage the first edge 140 of the first section 110 and the optical fi ber leads, as further described with reference to FIG. 5.
  • the second edge 180 may include or be coupled to a preformed, solder layer 190 that, fully extends around a perimeter of the second edge 180.
  • the preformed solder layer 190 is configured so that, when heat is applied to the second section 160 adjacent to the second edge 180, the preformed solder layer 190 melts to sealingly engage the second edge 180 of the second section 160 with the first edge 140 of the first section 110 and the optical fiber leads, as further described with reference to FIG. 5.
  • a second cable support member .166 may extend from the second edge 180 of the second section 160 opposite the first cable support member 150 of the first section 110 of the enclosure 100 to support one or more optical fiber leads (not shown in FIG. 1 ).
  • FIG. 2 is a top view of the first section 1 10 of the enclosure 100 of FIG. 1.
  • the base portion 120 supports the conductive pins 124 that permit electrical connection of optoelectronic devices (not shown in FIG. 2) received within the first section 110 with electrical systems or devices outside the enclosure 100.
  • the first section also includes the alignment body 156 which includes one groove for each optical fiber lead.
  • the alignment body 156 includes two grooves 158 and 159 to align two optical fiber leads with optoelectronic devices (not shown in FIG. 2) within the first section 1 10 of the enclosure.
  • the first wall portion 130 of the first section 1 10 extends around the perimeter 122 of the base portion 120.
  • the first wail portion 130 extends to a first edge 140 that surrounds the first section 110 with the exception of open-ended slots 142 and 143 in the first wall 132 of the first wall portion 130.
  • the optical fiber leads and the first edge 140 may form a surface that is joined with the second section 160 (FIG. 1 ) by the preformed solder layer 190.
  • the first cable support member 150 extends outwardly from the first wall 132 of the first wall portion 130 to physically engage and support the optical fiber leads (not shown in FIG. 2).
  • FIG. 3 is a bottom view of the second section 160 of the enclosure of FIG. 1.
  • the second section 160 includes the cap portion 170 that is surrounded by the second wall portion 172.
  • the second wall portion 172 extends to the second edge 180 that will be mated to the first edge 140 of the first section 110 of the enclosure (FIGS. 1 and 2).
  • the preformed solder layer 190 extends around a perimeter of the second edge 180 to enable the second section 160 to sealingly engage the first section 110 of the enclosure 100 (FIG. 1).
  • the second cable support member 166 extends outwardly from the second edge 180 to support one or more optical fiber leads (not shown in FIG. 3).
  • FIG. 4 is a side cross-sectional view of the first section 1 10 of the enclosure 100 of FIG.
  • the optoelectronic device 402 may include a detector, a light-emitting diode (LED), a laser diode or another optical device.
  • the optoelectronic device 402 includes an optical surface 404 from which optical signals are transmitted, received, or both, depending on the nature of the optoelectronic device 402.
  • the optoelectronic device 402 is joined by electrical leads 406 and the interface circuitry 126 to two or more of the conductive pins 124 to enable the optoelectronic device 402 to be electrically connected to systems or devices outside of the enclosure 100 of FIG. 1 once the enclosure 100 is sealed.
  • the optoelectronic device 402 also may be
  • the alignment body 156 may include an opening (as shown in illustrative embodiments of FIGS. 8B, 16A and related figures) into which the optoel ectronic device 402 is position to facilitate alignment of the optical fiber lead 412 with the optical surface 404 of the optoel ectronic device 402.
  • the end 410 of the optical fiber lead 412 extends through the first wall 132 of the first wall portion 130 of the first section 1 10 of the enclosure 100 by passing through the open-ended slot 142 (FIGS. 1 and 2) in the first wal l 132.
  • the end 410 of the optical fiber lead 412 may be received in the groove 158 in the alignment body 156 to align the end 410 of the optical fiber lead 412 with the optical surface 404 of the optoelectronic device 402 while the enclosure 100 is being assembled and sealed.
  • the optical fiber lead 412 may be physically coupled to the first cable support member 150 using an adhesive 420 or another attachment process or device.
  • the adhesive 420 may hold the optical fiber lead 412 in place while other steps are performed to hermetically seal the enclosure 100.
  • the optical fiber lead 412 is a polymer-clad silica fiber having a silica core 418 and a hard polymer cladding 416.
  • the adhesive 420 may secure the polymer cladding 416 or a portion of the silica core 41 8 to the first cable support member 150 and a portion of the si lica core 418 may extend through the first wall 132 of the enclosure 100.
  • the optical fiber lead 412 may include a metalized portion 414 located approximately at a point where the si lica core 418 extends through the first wall 132 of the wall portion 130. The metalized portion 414 may sealingly engage the open-ended slot (not shown in FIG. 4) and the second edge 180 of the second section 160 of the enclosure 100 when the enclosure 100 is hermetically sealed, as described with reference to FIG. 5.
  • FIG. 5 is a side cross-sectional view of the first section 1 10 and the second section 160 of the enclosure 100 of FIG. 1 being hermetically sealed in a controlled atmosphere chamber 510.
  • the controlled atmosphere chamber 510 may be filled with an inert gas (not shown in FIG. 5) so that the enclosure 100 will be fi lled with the inert gas after it is hermetically sealed.
  • the insert gas environment may prevent condensation from forming on the optical surface 404 of the optoelectronic device 402 and/or on the end 410 of the optical fiber lead 412.
  • heated sealing rollers 520 or another heated device may be applied to the second section 160 adjacent to the second edges 180.
  • the heated sealing rollers 520 causes the preformed solder layer 190 on the second edge 180 of the second section 160 of the enclosure 100 to melt.
  • the melted, preformed solder layer 190 joins the second edge 180 of the second section 160 to the first edge 140 of the first section 110 and to the metalized portion 414 of the optical fiber lead 412.
  • the enclosure 100 and the optical fiber lead 412 are hermetically sealed.
  • FIG. 6 is a side cross-sectional view of a completed, hermetically sealed optical component 600 fitted with a cable strain relieve boot 610.
  • the completed, hermetically sealed optical component 600 is sealed when it is removed from the controlled atmosphere chamber 510, with the first section 110, the second section 160, and the optical fiber lead 412 bonded together.
  • adhesive 620 may be added between the optical fiber lead 412 and the second cable support member 166. The adhesive 620 may also fill an area between optical fiber leads when hermetically sealed optical component includes more than one optical fiber lead 412.
  • the cable strain relief boot 610 may be moved into place over the optical fiber lead 412, the first cable support member 150, and the second cable support member 166.
  • the completed, hermetically sealed optical component 600 may be ready for installation and use, e.g., by coupling a second end face of the optical fiber lead 412 to an optical fiber, such as a plastic optical fiber (e.g., a PMMA optical fiber).
  • an optical fiber such as a plastic optical fiber (e.g., a PMMA optical fiber).
  • FIG. 7 is a flow diagram of a particular embodiment of a method of forming a hermetically sealed optical component.
  • a first portion of an optical fiber lead e.g., a portion of a polymer-clad silica fiber
  • the first portion of the optical fiber lead is received and aligned with an optical surface of an optoelectronic device and the first portion of the optical cable extends through the wall portion.
  • the enclosure 100 includes the base portion 120 to which the wall portion 130 is coupled around the perimeter 122 of the base portion 120.
  • the end 410 of the optical fiber lead 412 is received at the open end 144 of the open-ended slot 142 in the first edge 140 of the wall portion 130 at the first wail 132.
  • the end 410 of the optical fiber lead 412 is received in the alignment body 156 so that the end 410 is aligned with the optical surface 404 of the optoelectronic device 402 mounted in the first section 110 of the enclosure 100.
  • the optical fiber lead is physically secured to the first portion of the enclosure outside the perimeter of the wall portion, at 704.
  • the optical fiber lead 412 is secured to the first cable support member 150 of the first section 110 by the adhesive 420 to hold the optical fiber lead 412 in place while the enclosure 100 is hermetically sealed.
  • the enclosure is hermetically sealed by fixably joining a second section of the enclosure to the first edge of the wall portion and to the first portion of the optical fiber lead, at 706.
  • the heated sealing rollers 520 may be applied adjacent to the second edge 180 of the second secti on 160 of the enclosure 100, causing the preformed solder layer 190 on the second edge 180 to bond the second section 160 with both the first edge 140 of the first section 1 10 of the enclosure 100 and to the metalized portion 414 of the optical fiber lead 412.
  • FIGS. 8-15 illustrate formation of a hermetically sealed optical component including first types of optoelectronic device (i.e., a laser diode on a ovar submount and a detector on a ceramic su.bm.ount) and FIGS. 16-18 illustrate formation of a hermetically sealed optical component including second types of optoelectronic device (i.e., a laser and a detector in TO 18 type headers).
  • the first and second types of optoelectronic devices are examples of commercially available optoelectronic devices that have different form factors.
  • Embodiments disclosed herein enable assembly of hermetically sealed optical components using various form factors of optoel ectronic devices, including the first type of optoelectronic device, the second type of optoelectronic device, and potentially other types optoelectronic devices.
  • Each hermetically sealed optical component may have an align block that, is designed for use with a particular form factor of optoelectronic device.
  • Other constituent parts of the hermetically sealed optical components may be unchanged regardless of the form factor of the optoelectronic device or devices used.
  • FIG. 8A is top views of a particular embodiment of an enclosure body 800,
  • the enclosure body 800 may correspond to the first section 110 of the enclosure 100 of FIGS. 1-6.
  • the enclosure body 800 may have two rows of 2x5 dual-in-line pins 824 for wire bonding to electronic components inside the enclosure body 800 (e.g., one or more optoelectronic devices and interface circuitry, as further described below).
  • the pins 824 may be arranged in compliance with the industrial Multi-Source Agreement (MSA) standard.
  • the enclosure body 800 may also include two mechanical package alignment posts 826 that are arranged in compliance with the industrial MSA standard.
  • FIG, 8B is several views of a particular embodiment of a fiber alignment block 850.
  • the fiber alignment block 850 may correspond to a particular embodiment of the alignment body of FIGS. 1 -6.
  • the fiber alignment block 850 is shown from multiple views, including a top view, a side view, a back view (i.e., a view from the right side of the top view in the orientation illustrated of FIG. 8B) and a front view (i.e., a view from the left side of the top view in the orientation illustrated in FIG. 813).
  • the fiber alignment block 850 is formed using a high precision ceramic molding process.
  • the enclosure body 800 includes two U-grooves 828 near a fiber snout 830.
  • the U-grooves 828 may correspond to the open-ended slots 142 and 143 of FIGS. 1-6 and the fiber snout 830 may correspond to the first cable support member 150 of FIGS. 1-6.
  • the two U-grooves 828 are arranged to receive and facilitate alignment of two optical fiber leads (not shown in FIG. 8A).
  • the U-grooves 828 may have a width that corresponds to a diameter of a portion of the optical fiber leads that is to extend into the enclosure body 800.
  • the dimensions and locations of the U-grooves 828 may be configured to accommodate two polymer-clad silica fibers, each with a 1 mm core diameter and a 3 mm diameter with an outer jacket.
  • the enclosure body 800 may include one U-groove for each optical fiber lead.
  • the fiber alignment block 850 may be configured to accommodate one or more optoelectronic devices, such as a detector and a laser (or another light source) mounted on precision submounts.
  • the fiber alignment block 850 may include an opening 852 to receive and align each of the optoelectronic devices.
  • the fiber alignment block 850 may also include a U-groove 854 with substantially the same width and depth as the U-grooves 828 of the enclosure body 800.
  • the U-grooves 854 may be sized to receive polymer-clad silica fiber with a I mm core diameter.
  • the openings 852 and the U-grooves 854 of the fiber alignment block 850 may be arranged such that when an optoelectronic device is positioned in one of the openings 852 and an optical fiber lead is positioned in the U-grooves 854 and 828, an end-face of the optical fiber lead is aligned with an optical surface of the optoelectronic device,
  • FIG. 8C is several views of a particular embodiment of the fiber alignment block 850 of FIG. 8B within the enclosure body 800 of FIG. 8A. Specifically, FIG. 8C shows a top view and a front view (from an end nearest the fiber snout 830) of the enclosure body 800 and fiber alignment block 850.
  • the fiber alignment block 850 may be attached permanently to the enclosure body 800 (e.g., using high temperature blazing or another ceramic to metal bonding process).
  • the U-grooves 828 of the enclosure body 800 wall, and the U- grooves 854 of the fiber alignment block 850 may be precise!)' aligned for placement of optical fiber leads in a later processing step.
  • FIG. 9 A is several views of particular embodiments of optoelectronic devices 900 and 950.
  • the optoelectronic devi ces 900 and 950 may be of the same type or may be different.
  • a first optoelectronic device 900 may include an optical detector to receive signals and a second optoelectronic device 950 may include a light source to generate and send light signals.
  • Each of the optoelectronic devices 900 and 950 may include an optical surface, such, as a first optical surface 902 of the first optoelectronic device 900 and a second optical surface 952 of the second optoelectronic device 950.
  • the first optical surface 902 may be arranged to detect light output from the optical fiber lead and the second optical surface 952 may be a light emitting surface of a laser or other light source to be coupled to the optical fiber lead.
  • the optoelectronic devices 900 and 950 may each include a mounting surface, such as first mounting surface 904 of the first optoelectronic device 900 and a second mounting surface 954 of the second optoelectronic device 900.
  • the optoelectronic devices 900 and 950 may be commercial off-the-shelf components. Accordingly, the mounting surfaces 904, 954 may have various configurations depending on which component is used. To illustrate, the mounting surfaces 904, 954 may formed of ceramic, a metal (e.g., ovar), another material, or a combination thereof. In some embodiments, one or more of the mounting surfaces 904, 954 may include a submount.
  • the submount of a particular optoelectronic device may be configured to adjust a height 908 of the optical surface of the particular optoelectronic device to align with the optical center of an optical fiber lead within a U-groove 854 of the fiber alignment block 850.
  • a submount for a detector e.g., the first optoelectronic device 900
  • the submount for a transmitter e.g., the second optoelectronic device 950
  • FIG. 9B is a top view of a particular embodiment of the optoelectronic devices of FIG.
  • the mounting surfaces 904, 954 of the optoelectronic devices 900, 950 have been mounted to an interior surface of the enclosure body 800.
  • the optoelectronic devices 900, 950 are mounted within the openings 852 of the fiber alignment block 850.
  • Each of the openings 852 has a width that corresponds to a width 906, 956 of the optoelectronic device 900, 950 to be mounted within the opening 852.
  • the openings 852 guide installation of the optoelectronic devices 900, 950 in a manner that aligns each optical surface 902, 952 with a corresponding U-groove 854 of the fiber alignment block 850.
  • the optoelectronic devices 900, 950 can be mounted on respective submounts in a manner that easily and precisely aligns them with the U-grooves 854 of the fiber alignment block 850 and the U-grooves 828 of the enclosure body 800.
  • the optoelectronic devices 900, 950 are mounted to the enclosure body 800, the optoelectronic devices 900, 950 are attached (e.g., wire bonded) to interface circuit 910.
  • the pins 824 connect the interface circuitry 910 to an external system (not shown) which inputs an electrical signal to drive the light source 950 and/or receives an electrical signal converted from the detector 900.
  • FIG. 10 is a top view of a particular embodiment of an optical fiber lead 1000.
  • the optical fiber lead 1000 may correspond to the optical fiber lead 412 of FIGS. 4- 6.
  • the optical fiber lead 1000 may be a portion of a polymer-clad silica (PCS) optical fiber with a silica core 1018 and a polymer cladding with an outer jacket 1016. A portion of the silica core 1018 may be exposed.
  • the optical fiber lead 1000 may also include a metalized portion 1014 over the exposed portion of the silica core 1018.
  • FIG. 1 1 is a top view of a particular embodiment of a pair of optical fiber leads 1000 of FIG. 10 inserted into the enclosure body 800 of FIG . 9B.
  • Each of the optical fiber leads 1000 is placed into a corresponding U-groove of the fiber alignment block 850 and a correspond U-groove of the enclosure body 800.
  • the metalized portion 1014 of each of the optical fiber leads 1000 may be fully embedded in the corresponding U-grooves of the fiber alignment block 850 and the enclosure body 800.
  • the polymer cladding with the outer jacket 1016 of each of the optical fiber leads 1000 may be coupl ed to the fiber snout 830 of the enclosure body 800 using a quick cure adhesive 1102.
  • the adhesive 1102 holds the optical fiber leads 1000 in place (e.g., inside the U- grooves) during subsequent manufacturing process steps.
  • the optical fiber leads 1000 are automatically aligned to optical surfaces of the optoelectronic devices 900, 950 without using the active fiber alignment processes.
  • the optical fiber leads 1000 may have a core diameter of about 1 mm (i.e., the diameter of the silica core 1018).
  • the polymer cladding with the outer jacket 1016 may have an outer diameter of about 3 mm.
  • the location and length of the metalized portion 1014 may he designed to match the U- groove of the enclosure body 800 and the U-groove of the fiber alignment block 850.
  • the metalized portion 1014 may include gold (Au) and nickel (Ni) layers with thicknesses of about 0.2 micron and 4 micron, respectively.
  • the Au Ni layers facilitate sealing of the optical fiber leads 1000 to the enclosure body 800 in subsequent package hermetic sealing steps.
  • FIG . 12 is a cross-sectional side view of a particular embodiment of the enclosure bod)' 800 of FIG. 11 and an enclosure top 1200.
  • the enclosure top 1200 may be sealed to the enclosure body 800.
  • a bottom portion of the enclosure top 1200 may include or be coupled to a layer of solder 1202 for package sealing.
  • the solder 1202 may be coated on the bottom portion of enclosure top 1200 as a solder perform.
  • the solder 1202 may be Au/Sn solder to make a high reliability solder joint.
  • the melting temperature of the Au/Sn solder may be about 280 degree €, which is higher than most of the commonly used solder alloys.
  • FIG. 13 is a cross-sectional side view of a particular embodiment of the enclosure top 1200 of FIG. 12 being sealed to the enclosure body 800 of FIG. 12 by sealing rollers 1300. After the enclosure top 1200 is placed on top of the enclosure body 800, a seam sealer may be used to melt the solder 1202.
  • a pair of parallel seam sealing rollers 1300 may be moved along the edges of the enclosure top 1200.
  • the sealing rol lers 1300 may be heated to about 300 degree C as they move along the edges of the enclosure top 1200.
  • the solder 1202 may reflow over the U-grooves and the metalized portion 1014 of the optical fiber leads.
  • the solder 1202 may fill the U-grooves with melted solder.
  • heating stops and the solder 1202 solidifies forming a hermetic seal between the enclosure top 1200, the enclosure body 800 and the optical fiber leads.
  • the seam sealing process may be performed in a controlled environment, such as inside a dry enclosure filled with an inert gas (e.g., nitrogen).
  • hermetically sealed enclosure body may be filled with the inert gas.
  • FIG. 14 is several views of a particular embodiment of the sealed enclosure body 800 and enclosure top 1200 of FIG. 13. After the enclosure body 800 and enclosure top 1200 are henneticallv sealed, additional adhesive (e.g., epoxy) may be back filled inside the fiber snout 830 for fiber strain relieve.
  • additional adhesive e.g., epoxy
  • FIG. 15 is side cross-sectional view of a particular embodiment of the sealed enclosure body 800 and enclosure top 1200 of FIG. 14 with a fiber boot 1500 forming a complete, henneticallv sealed optical component.
  • the fiber boot 1500 may be installed on the fiber snout 830.
  • the fiber boot 1500 may support an outer jacket of the optical fiber lead 1000.
  • the fiber boot 1500 may also protects the optical fiber lead 1000 from bending more than its allowable bend radius.
  • FIGS. 16-18 illustrate embodiments of forming a henneticallv sealed optical component using optoelectronic devices in TO 18 packages (also call TO headers). In the embodiments illustrated in FIGS. 16-18, certain components are similar to components described above with reference to FIGS. 8-15.
  • FIGS. 8-15 are also used in FIGS. 16-18 to denote elements that are the same or similar with minor variations.
  • FIG. 16A is several views of a particular embodiment of a fiber alignment block 1650.
  • fiber alignment block 1650 may correspond to the alignment body 156 of FIGS. 1-6.
  • the fiber alignment block 1650 is shown from multiple views, including a top view, a cross- sectional side view, a back view (i.e., a view from the right side of the top view in the orientation illustrated of FIG. 16A) and a front view (i.e., a view from the left side of the top view in the orientation illustrated in FIG. 16A).
  • the fiber alignment block 1650 is formed using a high precision ceramic molding process.
  • the fiber alignment block 1650 may be adapted to receive optoelectronic devices, e.g., a detector and a laser, in TO 18 packages, at openings 1652.
  • a location and a size of fiber alignment U-grooves 1654 may be substantially the same as the U-grooves 854 of the fiber alignment block 850 of FIG. 8B; however, a front side 1656 of the fiber alignment block 1650 may be taller to accommodate the ⁇ 18 packages and to align the optoelectronic devices with centers of the U-grooves 1654.
  • FIG. 16B is a top views of a particular embodiment of the fiber alignment block 1650 of FIG. 16A within the enclosure body 800 of FIG. 8 A.
  • the fiber alignment block 1650 may be attached permanently to the enclosure body 800 (e.g., using high temperature blazing or another ceramic to metal bonding process).
  • the U-grooves 828 of the enclosure body 800 wall and the U-grooves 1654 of the fiber alignment block 1650 may be precisely aligned for placement of optical fiber leads in a later processing step.
  • FIG. 17A is several views of particular embodiments of optoelectronic devices 1700 and 1750 in TO 18 packaging.
  • the optoelectronic devices 1700 and 1750 may be of the same type or may be of different types.
  • a first optoelectronic device 1700 may include an optical detector to receive signals and a second optoelectronic device 1750 may include a light source to generate and send light signals.
  • Each of the optoelectronic devices 1700 and 1750 may include an optical surface, such as a first optical surface 1704 of the first optoelectronic device 1700 and a second optical surface 1754 of the second optoelectronic device 1750.
  • the first optical surface 1704 may be arranged to detect light of a light based signal and the second optical surface 1754 may be a light emitting surface of a laser or other light source.
  • Each of the optoelectronic devices 1700 and 1750 may include a TO 18 header 1702, 1 752 and leads 1 706, 1756, respectively.
  • the TO 18 headers 1702, 1752 may be received into the fiber alignment block 1650 in alignment with the U-grooves 1654 of the fiber alignment block 1650.
  • the leads 1706, 1756 may be electrically coupled to the pins 824 via the interface circuitry 910 (e.g., via wire bonding).
  • FIG. 18 is a top view of a particular embodiment of the optical fiber leads 1000 of FIG. 10 inserted into the enclosure body of FIG. 17B.
  • the optical fiber leads 1000 With the fiber alignment block 1650 aligning the optoelectronic components 1700, 1750 with the U-grooves of the fiber alignment block 1650 and the enclosure body 800, the optical fiber leads 1000 are automatically aligned with the optoelectronic components 1700, 1750.
  • the optical fiber leads 1000 may be coupled to the enclosure body 800 using an adhesive 1802, which holds the optical fiber leads 1000 in place (e.g., inside the U-grooves) during subsequent manufacturing process steps. The subsequent manufacturing process steps may be performed in the same manner as described with reference to FIGS. 12-15.
  • an enclosure top (sized to accommodate the fiber alignment block 1650) may be placed over the enclosure body 800 and seam sealed to hermetically seal the enclosure body 800, the enclosure top, and the optical fiber leads 1000, Adhesive may be backfilled into the fiber snout of the enclosure body, and a fiber boot may be positioned over the optical fiber leads and the fiber snout.
  • hermetically sealed optical components can be manufactured using processes disclosed herein.
  • the hermetically sealed optical components may be well suited to coupling to PMMA plastic optical fibers since the core and cladding diameters of the optical fiber leads used provide relatively low coupling losses when the hermetically sealed optical components are coupled to PMMA plastic optical fibers.
  • the hermetically sealed optical components may include transmitters, receivers, transceivers or other optical or optoelectronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)
PCT/US2012/049634 2011-09-07 2012-08-03 Hermetic small form factor optical device packaging for plastic optical fiber networks Ceased WO2013036338A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280043536.0A CN103782212B (zh) 2011-09-07 2012-08-03 用于塑料光纤网络的封装的气密小形状系数光学器件
JP2014529719A JP6086914B2 (ja) 2011-09-07 2012-08-03 プラスチック光ファイバネットワークのための密閉したスモールフォームファクタ光デバイスのパッケージング
EP12759291.3A EP2753964B1 (en) 2011-09-07 2012-08-03 Hermetic small form factor optical device packaging for plastic optical fiber networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/227,428 2011-09-07
US13/227,428 US8596886B2 (en) 2011-09-07 2011-09-07 Hermetic small form factor optical device packaging for plastic optical fiber networks

Publications (1)

Publication Number Publication Date
WO2013036338A1 true WO2013036338A1 (en) 2013-03-14

Family

ID=46851580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/049634 Ceased WO2013036338A1 (en) 2011-09-07 2012-08-03 Hermetic small form factor optical device packaging for plastic optical fiber networks

Country Status (5)

Country Link
US (1) US8596886B2 (enExample)
EP (1) EP2753964B1 (enExample)
JP (1) JP6086914B2 (enExample)
CN (1) CN103782212B (enExample)
WO (1) WO2013036338A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230274A (ja) * 2013-05-17 2014-12-08 ザ・ボーイング・カンパニーTheBoeing Company データ通信のためのシステム及び方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014101794B4 (de) * 2014-02-13 2020-02-13 Hanon Systems Vorrichtung zur Expansion von Kältemittel
CN109416446B (zh) * 2016-10-11 2020-09-25 华为技术有限公司 一种光收发组件
US20190278036A1 (en) * 2018-03-07 2019-09-12 Lightwave Logic Inc. Embedded hermetic capsule and method
US11029475B2 (en) * 2019-04-08 2021-06-08 Cisco Technology, Inc. Frame lid for in-package optics
CN113745963A (zh) * 2020-05-29 2021-12-03 方强 防止光纤耦合半导体激光模块壳体产生冷凝水的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872748A2 (en) * 1997-04-18 1998-10-21 Nec Corporation Method for hermetically sealing optical fiber feedthrough and hermetically sealed structure
US20040114884A1 (en) * 2002-12-16 2004-06-17 International Business Machines Corporation Optoelectronic package structure and process for planar passive optical and optoelectronic devices
US20040240804A1 (en) * 2003-06-02 2004-12-02 Amaresh Mahapatra Liquid crystal polymer clad optical fiber and its use in hermetic packaging
US6853787B2 (en) * 2001-09-27 2005-02-08 Alcatel Silica optical fiber with a double polymer cladding

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307934A (en) 1978-05-08 1981-12-29 General Dynamics, Pomona Division Packaged fiber optic modules
JPH04191706A (ja) * 1990-11-27 1992-07-10 Mitsubishi Rayon Co Ltd 光フアイバ及びその製造法
US5212762A (en) * 1990-11-27 1993-05-18 Mitsubishi Rayon Co., Ltd. Plastic-clad silica (PCS) fibers and methods and apparatuses for producing the same
US5202943A (en) 1991-10-04 1993-04-13 International Business Machines Corporation Optoelectronic assembly with alignment member
SE9403574L (sv) * 1994-10-19 1996-04-20 Ericsson Telefon Ab L M Optokomponentkapsel med optiskt gränssnitt
JPH09318849A (ja) * 1996-05-24 1997-12-12 Fujitsu Ltd 光伝送モジュールおよびその製造方法
US5745624A (en) 1996-08-23 1998-04-28 The Boeing Company Automatic alignment and locking method and apparatus for fiber optic module manufacturing
US6056447A (en) * 1998-04-06 2000-05-02 Lucent Technologies, Inc. Covariant optical module
JP2000019360A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 光モジュール
US6888169B2 (en) 2000-09-29 2005-05-03 Optical Communication Products, Inc. High speed optical subassembly with ceramic carrier
DE10112274B4 (de) 2001-03-14 2006-05-24 Finisar Corp.(N.D.Ges.D.Staates Delaware), Sunnyvale Optoelektonisches Sendemodul und Verfahren zu dessen Herstellung
US20030053169A1 (en) 2001-06-07 2003-03-20 The Furukawa Electric Co., Ltd. Optical transmitter, WDM optical transmission device and optical module
US6757308B1 (en) 2002-05-22 2004-06-29 Optical Communication Products, Inc. Hermetically sealed transmitter optical subassembly
JP3947481B2 (ja) * 2003-02-19 2007-07-18 浜松ホトニクス株式会社 光モジュール及びその製造方法
US6900509B2 (en) 2003-09-19 2005-05-31 Agilent Technologies, Inc. Optical receiver package
US7309174B2 (en) 2004-01-22 2007-12-18 Finisar Corporation Integrated optical devices and methods of making same
JP2006066875A (ja) * 2004-07-26 2006-03-09 Fuji Photo Film Co Ltd レーザモジュール
WO2008111218A1 (ja) 2007-03-15 2008-09-18 Ibiden Co., Ltd. 熱電変換装置
US7841781B2 (en) 2007-08-29 2010-11-30 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Methods and apparatuses for providing a hermetic sealing system for an optical transceiver module
JP5216714B2 (ja) * 2009-02-25 2013-06-19 矢崎総業株式会社 1芯双方向光通信モジュール及び1芯双方向光通信コネクタ
JP2010237636A (ja) 2009-03-12 2010-10-21 Toshiba Corp 光リンク装置及びその製造方法
JP2010217323A (ja) * 2009-03-13 2010-09-30 Fujikura Ltd 光結合構造および光送受信モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872748A2 (en) * 1997-04-18 1998-10-21 Nec Corporation Method for hermetically sealing optical fiber feedthrough and hermetically sealed structure
US6853787B2 (en) * 2001-09-27 2005-02-08 Alcatel Silica optical fiber with a double polymer cladding
US20040114884A1 (en) * 2002-12-16 2004-06-17 International Business Machines Corporation Optoelectronic package structure and process for planar passive optical and optoelectronic devices
US20040240804A1 (en) * 2003-06-02 2004-12-02 Amaresh Mahapatra Liquid crystal polymer clad optical fiber and its use in hermetic packaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230274A (ja) * 2013-05-17 2014-12-08 ザ・ボーイング・カンパニーTheBoeing Company データ通信のためのシステム及び方法
US10572423B2 (en) 2013-05-17 2020-02-25 The Boeing Company Systems and methods of data communication
US10949372B2 (en) 2013-05-17 2021-03-16 The Boeing Company Systems and methods for data communication

Also Published As

Publication number Publication date
CN103782212B (zh) 2018-08-07
EP2753964A1 (en) 2014-07-16
CN103782212A (zh) 2014-05-07
EP2753964B1 (en) 2020-10-07
JP6086914B2 (ja) 2017-03-01
US20130058617A1 (en) 2013-03-07
JP2014525609A (ja) 2014-09-29
US8596886B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
US7629537B2 (en) Single layer flex circuit
US9442255B2 (en) Low profile fiber-to-module interface with relaxed alignment tolerances
EP2753964B1 (en) Hermetic small form factor optical device packaging for plastic optical fiber networks
US8079125B2 (en) Manufacturing method of multi-channel optical module
US9151916B2 (en) Compact optical package made with planar structures
US10018794B2 (en) Optical module and manufacturing method thereof
TWI507753B (zh) Lens parts and light modules with their light
WO2013097449A1 (zh) 一种光电子器件的光导纤维的安装固定结构
CN101303439A (zh) 光学组件及其形成方法
US7419311B2 (en) Surface mount optical coupler, method of mounting the same, and method of producing the same
US10451822B2 (en) Optical module manufacturing method, optical module receptacle and optical module
US20040240803A1 (en) Use of chip-on-board technology to mount optical transmitting and detecting devices with a protective covering with multiple optical interface options
EP1722258A1 (en) Optical radiation coupling module
JP2001318283A (ja) 光モジュール
US10928599B2 (en) Optical sub-assembly for a module communicating over optical fiber, with a device for optical coupling aligned in a passive manner
US20100002984A1 (en) Optical waveguide device
US20040136660A1 (en) Assembly for high-speed optical transmitter or receiver
JP5297870B2 (ja) 光モジュールの製造方法
US8787766B1 (en) Chip scale fiber optic transmitter, receiver, transceiver
KR20170129236A (ko) 통합된 광 장치를 가지는 광학적 벤치 하위조립체
JP2013231895A (ja) 光モジュール
US11934022B2 (en) Photoelectric fiber and communication device
JP4744268B2 (ja) 光モジュール
JP2010161204A (ja) 光モジュールおよび光モジュールの製造方法
JP2005292738A (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012759291

Country of ref document: EP