WO2013036064A2 - 세포질 원액에서의 단백질 농도 측정 방법 - Google Patents
세포질 원액에서의 단백질 농도 측정 방법 Download PDFInfo
- Publication number
- WO2013036064A2 WO2013036064A2 PCT/KR2012/007214 KR2012007214W WO2013036064A2 WO 2013036064 A2 WO2013036064 A2 WO 2013036064A2 KR 2012007214 W KR2012007214 W KR 2012007214W WO 2013036064 A2 WO2013036064 A2 WO 2013036064A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- antibody
- measured
- concentration
- cell solution
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
Definitions
- the present invention relates to a method for measuring protein concentration in a cytoplasmic stock solution, and more particularly, it can be applied to all kinds of proteins, and is calculated based on data measured at a single molecule level, thereby measuring a high reliability protein concentration.
- the present invention relates to a method for measuring protein concentration in a cytoplasmic stock solution.
- Measuring the concentration of a specific protein desired by an analyst in a human cell is a very useful method for detecting or predicting the conversion to cancer cells according to genetic variation in the cell.
- the object of the present invention is not only applicable to all kinds of proteins, but also calculated on the basis of the data measured at the single molecule level, so that the method of measuring protein concentration in a cell solution which makes it possible to measure high reliability protein concentration. In providing.
- Protein concentration measurement method in a cell solution according to the present invention for achieving the above object, (a) a binding molecular sieve is combined with a reference protein having a marker in the protein to be measured and a biomolecular sieve coupled to the protein to be measured Inducing the production of; (b) mixing a reference protein having a marker and a cell solution containing the measurement target protein to the measurement target protein; (c) mixing the mixed cell solution and an antibody bound to the protein to be measured to induce the production of a binding antibody to which the antibody and the reference protein are bound; And (d) the concentration of the target protein in the cell solution containing the target protein based on the number of binding antibodies generated in step (a) and the number of binding antibodies generated in step (c). Calculating.
- the marker is characterized in that the fluorescent protein.
- the step (d), the number of the binding antibody is characterized in that for measuring the fluorescent signal of a specific wavelength generated by the fluorescent protein using an optical device for generating a near field.
- a method for measuring protein concentration in a cell solution that can be applied to all kinds of proteins as well as calculated based on data measured at the single molecule level, thereby making it possible to measure protein concentrations of high reliability.
- FIG. 1 is a flowchart illustrating a method of measuring protein concentration in a cell solution according to an embodiment of the present invention.
- FIG. 2 is a view for explaining the principle of the protein concentration measurement method in a cell solution according to an embodiment of the present invention.
- FIG. 1 is a flowchart illustrating a method for measuring protein concentration in a cell solution according to an embodiment of the present invention.
- the analyzer undergoes a genetic engineering process in the cell state, the fluorescent protein is present in the protein to be measured in the cell To be expressed (S110).
- the fluorescent protein may be attached or linked to the protein to be measured by a physicochemical method.
- the protein to be measured in which the fluorescent protein is expressed in step S110 is referred to as a reference protein.
- the analyst injects a reference protein having a concentration higher than that of the antibody in a test tube while injecting an antibody that binds the protein to be measured into the test tube (S120).
- the concentration of the antibody and the concentration of the reference protein may be preferably in a ratio of 1: 5 to 1:10.
- DNA, RNA, and measurement may be used for the antibody binding to the protein to be measured.
- Biomolecular sieves that bind to proteins such as liposomes with specific components that bind to the protein of interest may be used.
- the antibody was supplied to the substrate which is a quartz slide coated with polyethyleneglycol (PEG) coated with the mixed solution in the tube. Attached to the substrate as in (S130).
- PEG polyethyleneglycol
- the analyst then performs surface observation of the substrate using a total reflection microscope, an optical device that generates near-fields, so that the analyst can measure the wavelengths caused by the fluorescent protein (i.e. by measuring the individual monomolecular signals generated from the fluorescent protein).
- the number of binding antibodies (binding molecular sieves) bound to the reference protein expressing the fluorescent protein is measured (S140).
- the analyst records the number of binding antibodies measured in step S140 described above as a reference binding number.
- the analyst repeats the above-described step S110 to manufacture the reference protein again, and mixes the mixed cell solution of the prepared protein and the cell solution of the specific cell containing the target protein to be measured by the analyzer. To prepare a solution (S150).
- the cell solution of a specific cell may be a cytoplasmic solution of a specific cell, a cell stock solution, a diluted cytoplasmic stock solution, or a diluted cell stock solution, and the specific cells used to prepare the mixed cell solution may be used in cancer cell tissues of cancer patients. It could be the extracted cells.
- the reference protein introduced in the preparation of the cell solution mixed in step S150 described above should be added at the same concentration as the reference protein introduced into the test tube in step S120 described above.
- the analyst puts the mixed cell solution prepared in step S150 into the test tube and mixes the antibody with the same antibody as the antibody in step S120 described above, the antibody binding to the protein to be measured, in the same concentration. (S160).
- the reaction process of the antibody and the reference protein in vitro is performed at the same time as before, for 20-30 minutes to induce binding of the antibody and the reference protein or binding of the antibody and the protein to be measured included in the specific cell (S170). ).
- the reference protein in which the fluorescent protein is expressed and the protein to be measured in which the fluorescent protein is not expressed are competitively bound to the antibody of a constant concentration. Therefore, the higher the concentration in the specific cell of the protein to be measured is measured. Interfering with the binding of the reference protein and the antibody of the target protein is increased, the number of antibodies that bind to the reference protein will be reduced.
- the analyst After reacting in vitro, the analyst supplied the mixed solution in the test tube to the substrate, thereby attaching the antibody to the substrate as in step S130 described above (S180).
- the analyst then performs a surface observation of the substrate using a total reflection microscope to determine the number of binding antibodies bound to the reference protein expressing the fluorescent protein among the antibodies attached to the substrate from the wavelength change by the fluorescent protein ( S190).
- the analyst records the number of binding antibodies measured in step S190 described above as the number of measurement binding.
- the reference protein expressed in the step S140 which is the number of binding of the reference protein expressing the fluorescent protein with no antibody, is measured through the concentration (X ') of the reference protein in step S120 described above.
- the analyst Based on the number of measurement bindings (r), which is the number of binding of an antibody with a reference protein present in a particular cell in competition with the protein of interest, the analyst can calculate the concentration (X) in the specific cell of the protein to be measured. It becomes (S195).
- the antibody since the antibody is provided with two light chains, even if a reference protein is bound to only one of the two light chains, the antibody may be analyzed using a total reflection microscope of the analyzer at step S190. It is calculated as the measurement coupling number r at the time of performing the surface observation of the substrate.
- the antibody is measured only when both of the two light chains included in the antibody are bound to the protein to be measured in a specific cell, respectively, in step S190, when the analyst performs surface observation of the substrate using a total reflection microscope. It is not counted as the coupling number r.
- Equation 1 the probability value P at which the protein to be measured to be present in each specific cell is bound to both light chains provided in the antibody is expressed as Equation 1 below.
- X ' is the concentration of the reference protein in step S120
- X is the concentration in a specific cell of the protein to be measured.
- Equation 2 which is the ratio of the reference coupling number R and the measurement coupling number r, may be expressed by Equation 2 below.
- Equation 3 is calculated.
- Equation 3 R is the reference bond number described above, r is the measurement bond number, X 'is the concentration of the reference protein in step S120, X is the concentration in the specific cell of the protein to be measured. R and r are measured by the analyst in steps S140 and S190 described above, respectively.
- the concentration (X) in the specific cell of the protein to be measured is calculated by substituting the X 'value, the R value, and the r value in the above formula (1).
- two light chains may be separated using an enzyme so that the antibody has only one light chain, and in this case, the antibody to be measured in the specific cell is bound to the antibody.
- the probability value P will be expressed as Equation 4 below.
- Equation 2 which is the ratio of the reference coupling number R and the measurement coupling number r, may be expressed as in Equation 2, Equation 5 and Equation 2 below are calculated. do.
- the concentration (X) in a specific cell of the protein to be measured is calculated using an antibody having a single light chain, X ', R, and By substituting the r value, the concentration (X) in the specific cell of the protein to be measured is calculated.
- the present invention not only can be applied to all kinds of proteins, but also provides a method for measuring protein concentration in cytoplasmic stock solution, which is calculated based on data measured at the single molecule level, thereby making it possible to measure high reliability protein concentrations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
세포 용액에서의 단백질 농도 측정 방법이 개시된다. 본 발명은, 기준 단백질과 측정 대상 단백질과 결합되는 항체가 결합된 결합 항체의 생성을 유도하고, 기준 단백질과 측정 대상 단백질이 포함된 세포 용액을 혼합하며, 항체와 기준 단백질이 결합된 결합 항체의 생성을 유도하고, 측정 대상 단백질의 농도를 계산하는 과정을 통해 구현된다. 본 발명에 따르면, 모든 종류의 단백질에 적용될 수 있을 뿐만 아니라, 단일 분자 수준에서 측정된 데이터에 기초하여 산출되어, 높은 신뢰도의 단백질 농도를 측정가능하게 하는 세포 용액에서의 단백질 농도 측정 방법이 제공된다.
Description
본 발명은 세포질 원액에서의 단백질 농도 측정 방법에 관한 것으로, 더욱 상세하게는 모든 종류의 단백질에 적용될 수 있을 뿐만 아니라, 단일 분자 수준에서 측정된 데이터에 기초하여 산출되어, 높은 신뢰도의 단백질 농도를 측정가능하게 하는 세포질 원액에서의 단백질 농도 측정 방법에 관한 것이다.
인체의 세포 내에서의 분석자가 원하는 특정 단백질의 농도를 측정하는 것은 해당 세포에서의 유전적 변이에 따른 암 세포로의 전환 등을 감지하거나 예측함에 있어서 매우 유용한 방법이다.
그러나, 종래 기술에 따른 단백질의 농도 측정 방법들은 개별적인 단백질에서만 적용되는 일반화될 수 없는 방법에 불과하거나, 그 구체적 측정 방법에 있어서도 특정 단백질에 대한 단일 분자 수준에서 측정된 데이터에 기초하여 농도를 측정하는 것이 아니었던 관계로 측정된 농도의 정확성을 신뢰할 수 없다는 문제가 있었다.
따라서, 본 발명의 목적은, 모든 종류의 단백질에 적용될 수 있을 뿐만 아니라, 단일 분자 수준에서 측정된 데이터에 기초하여 산출되어, 높은 신뢰도의 단백질 농도를 측정가능하게 하는 세포 용액에서의 단백질 농도 측정 방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명에 따른 세포 용액에서의 단백질 농도 측정 방법은, (a) 측정 대상 단백질에 표지자가 구비된 기준 단백질과 상기 측정 대상 단백질과 결합되는 생체 분자체가 결합된 결합 분자체의 생성을 유도하는 단계; (b) 측정 대상 단백질에 표지자가 구비된 기준 단백질과 측정 대상 단백질이 포함된 세포 용액을 혼합하는 단계; (c) 상기 혼합된 세포 용액과 상기 측정 대상 단백질과 결합되는 항체를 혼합하여 상기 항체와 상기 기준 단백질이 결합된 결합 항체의 생성을 유도하는 단계; 및 (d) 상기 (a) 단계에서 생성된 결합 항체의 개수와 상기 (c) 단계에서 생성된 결합 항체의 개수에 기초하여 상기 측정 대상 단백질이 포함된 세포 용액에서의 상기 측정 대상 단백질의 농도를 계산하는 단계를 포함한다.
바람직하게는, 상기 표지자는 형광 단백질인 것을 특징으로 한다.
또한, 상기 (d) 단계에서, 상기 결합 항체의 개수는 상기 형광 단백질에 의해 발생하는 특정 파장의 형광 신호를 근접장을 발생시키는 광학장치를 이용하여 측정하는 것을 특징으로 한다.
본 발명에 따르면, 모든 종류의 단백질에 적용될 수 있을 뿐만 아니라, 단일 분자 수준에서 측정된 데이터에 기초하여 산출되어, 높은 신뢰도의 단백질 농도를 측정가능하게 하는 세포 용액에서의 단백질 농도 측정 방법이 제공된다.
도 1은 본 발명의 일 실시예에 따른 세포 용액에서의 단백질 농도 측정 방법을 설명하는 절차 흐름도, 및
도 2는 본 발명의 일 실시예에 따른 세포 용액에서의 단백질 농도 측정 방법의 원리를 설명하는 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 세포 용액에서의 단백질 농도 측정 방법을 설명하는 절차 흐름도이다. 도 1을 참조하여, 본 발명의 일 실시예에 따른 세포 용액에서의 단백질 농도 측정 방법을 설명하면, 먼저, 분석자는 세포 상태에서 유전자 조작 과정을 거쳐 해당 세포 내에 존재하는 측정 대상 단백질에 형광 단백질이 발현되도록 한다(S110).
한편, 본 발명을 실시함에 있어서는, 형광 단백질을 물리 화학적인 방법에 의해서 측정 대상 단백질에 부착 또는 연결시킬 수도 있을 것이다. 본 발명에서는 전술한 S110 단계에서의 형광 단백질이 발현된 측정 대상 단백질을 기준 단백질이라고 한다.
본 발명을 실시함에 있어서 측정 대상 단백질에는 형광 단백질 중 m-Cherry 단백질이 발현되도록 함이 바람직할 것이다.
그 다음, 분석자는 측정 대상 단백질과 결합하는 항체를 시험관에 투입한 상태에서 항체의 농도보다 높은 농도의 기준 단백질을 시험관에 투입하여 항체와 기준 단백질의 결합을 유도한다(S120).
본 발명을 실시함에 있어서, 항체의 농도과 기준 단백질의 농도는 1:5 내지 1:10의 비율이 되도록 함이 바람직할 것이며, 또한, 측정 대상 단백질과 결합하는 항체에는, 항체 이외에도 DNA, RNA, 측정 대상 단백질과 결합하는 특정 성분을 갖는 리포좀(liposome) 등의 단백질과 결합하는 생체 분자체가 사용될 수 있을 것이다.
시험관 내에서의 항체와 기준 단백질의 리액팅 과정을 20 내지 30분간 거친 후에 시험관 내의 혼합 용액을 폴리에틸렌 글리콜(polyethyleneglycol:PEG) 코팅처리된 퀄츠 슬라이드(Quartz Slide)인 기판에 공급함으로써, 항체를 도 2에서와 같이 기판에 부착한다(S130).
그 다음, 분석자는 근접장을 발생시키는 광학장치인 전반사 현미경을 이용한 기판의 표면 관찰을 수행함으로써, 분석자는 형광 단백질에 의한 파장 변화로부터(즉, 형광 단백질로부터 발생하는 개개의 단분자 신호를 측정하여) 기판상에 부착된 항체들 중에서 형광 단백질이 발현된 기준 단백질과 결합된 결합 항체(결합 분자체)의 개수를 측정한다(S140).
분석자는 전술한 S140 단계에서 측정한 결합 항체의 개수를 기준 결합수로서 기록하여 둔다.
한편, 분석자는 전술한 S110 단계를 반복하여 기준 단백질을 다시 제조하며, 다시 제조된 기준 단백질과 분석자가 그 농도를 측정하려고 하는 측정 대상 단백질이 포함되어 있는 특정 세포의 세포 용액을 혼합하여 혼합된 세포 용액을 제조한다(S150).
여기서, 특정 세포의 세포 용액은 특정 세포의 세포질 원액, 세포 원액, 희석된 세포질 원액, 또는 희석된 세포 원액이 될 수 있을 것이며, 혼합 세포 용액을 제조함에 사용되는 특정 세포는 암환자의 암세포 조직에서 추출한 세포가 될 수 있을 것이다.
한편, 전술한 S150 단계에서 혼합된 세포 용액을 제조함에 있어서 투입되는 기준 단백질은 전술한 S120 단계에서 시험관에 투입된 기준 단백질과 동일한 농도로 투입되어야 한다.
그 다음 분석자는 측정 대상 단백질과 결합하는 항체인 전술한 S120 단계에서의 항체와 동일한 항체를 동일한 농도로 시험관에 투입한 상태에서 전술한 S150 단계에서 제조된 혼합 세포 용액을 시험관에 투입하여 항체와 혼합한다(S160).
시험관 내에서의 항체와 기준 단백질의 리액팅 과정을 이전과 동일한 시간으로서, 20 내지 30분간 거침으로써 항체와 기준 단백질의 결합 또는 항체와 특정 세포에 포함되어 있는 측정 대상 단백질의 결합을 유도한다(S170).
이 경우에 형광 단백질이 발현되어 있는 기준 단백질과 형광 단백질이 발현되어 있지 않은 측정 대상 단백질은 일정한 농도의 항체과 경쟁적으로 결합을 하게 되며, 그에 따라 측정 대상 단백질의 특정 세포 내에서의 농도가 높을수록 측정 대상 단백질의 기준 단백질과 항체의 결합을 방해하는 정도가 높아지게 되어, 기준 단백질과 결합하는 항체의 개수가 줄어들게 될 것이다.
시험관 내에서의 리액팅 과정 후에 분석자는 시험관 내의 혼합 용액을 기판에 공급함으로써, 전술한 S130 단계에서와 같이 항체를 기판에 부착시킨(S180).
그 다음, 분석자는 전반사 현미경을 이용한 기판의 표면 관찰을 수행함으로써, 형광 단백질에 의한 파장 변화로부터 기판상에 부착된 항체들 중에서 형광 단백질이 발현된 기준 단백질과 결합된 결합 항체의 개수를 측정한다(S190).
분석자는 전술한 S190 단계에서 측정한 결합 항체의 개수를 측정 결합수로서 기록하여 둔다.
즉, 형광 단백질이 발현된 기준 단백질이 아무런 경쟁이 없는 상태에서 항체와 결합한 수인 전술한 S140 단계에서의 기준 결합수(R), 전술한 S120 단계에서의 기준 단백질의 농도(X')를 통해 측정한 와 기준 단백질이 특정 세포 내에 존재하는 측정 대상 단백질과 경쟁하는 상태에서 항체와 결합한 수인 측정 결합수(r)에 기초하여, 분석자는 측정 대상 단백질의 특정 세포 내에서의 농도(X)를 계산할 수 있게 된다(S195).
구체적으로, 일반적으로 항체에는 두 개의 라이트 체인(light chain)이 구비되어 있는 관계로, 두 개의 라이트 체인 중 어느 하나에만 기준 단백질이 결합되더라도, 해당 항체는 전술한 S190 단계에서 분석자의 전반사 현미경을 이용한 기판의 표면 관찰 수행시에 측정 결합수(r)로 계산된다.
즉, 항체에 구비된 두 개의 라이트 체인 모두에 각각 특정 세포 내에 존재하는 측정 대상 단백질이 결합된 경우에만 해당 항체는 전술한 S190 단계에서 분석자는 전반사 현미경을 이용하여 기판의 표면 관찰을 수행시에 측정 결합수(r)로 계산되지 않게 된다.
여기서, 항체에 구비된 두 개의 라이트 체인 모두에 각각 특정 세포 내에 존재하는 측정 대상 단백질이 결합될 확률값(P)는 하기의 수학식 1로서 표현된다.
상기 수학식 1에서 X'은 S120 단계에서의 기준 단백질의 농도, X는 측정 대상 단백질의 특정 세포 내에서의 농도가 된다. X'은 단백질의 농도를 측정하는 다양한 방법에 의해 측정될 수 있다.
한편, 상술한 기준 결합수(R)와 측정 결합수(r)의 비율인 "r/R"은 하기의 수학식 2와 같이 나타낼 수 있다.
상기 수학식 1과 수학식 2를 연립하면 하기의 수학식 3이 산출된다.
상기 수학식 3에서 R은 상술한 기준 결합수, r은 측정 결합수, X'은 S120 단계에서의 기준 단백질의 농도, X는 측정 대상 단백질의 특정 세포 내에서의 농도가 된다. R과 r은 전술한 S140 단계 및 S190 단계에서 각각 분석자에 의해 측정된다.
즉, 상기 수학식 1에 X'값, R값, 및 r값을 대입함으로써, 측정 대상 단백질의 특정 세포 내에서의 농도(X)가 산출된다.
한편, 본 발명을 실시함에 있어서는, 효소를 이용하여 두 개의 라이트 체인을 분리하여 항체가 하나의 라이트 체인만을 구비하도록 할 수 있을 것이며, 이 경우에는 항체에 특정 세포 내에 존재하는 측정 대상 단백질이 결합될 확률값(P)는 하기의 수학식 4로서 표현될 것이다.
기준 결합수(R)와 측정 결합수(r)의 비율인 "r/R"은 상기의 수학식 2와 같이 나타낼 수 있으므로, 수학식 4와 수학식 2를 연립하면 하기의 수학식 5가 산출된다.
즉, 라이트 체인이 각각 분리되어 단일의 라이트 체인을 구비하는 항체를 이용하여 측정 대상 단백질의 특정 세포 내에서의 농도(X)를 산출하는 경우에는 상기 수학식 5에 X'값, R값, 및 r값을 대입함으로써, 측정 대상 단백질의 특정 세포 내에서의 농도(X)를 산출하게 된다.
이상에서는 본 발명의 바람직한 실시예 및 응용예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예 및 응용예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
본 발명은 모든 종류의 단백질에 적용될 수 있을 뿐만 아니라, 단일 분자 수준에서 측정된 데이터에 기초하여 산출되어, 높은 신뢰도의 단백질 농도를 측정가능하게 하는 세포질 원액에서의 단백질 농도 측정 방법을 제공한다.
Claims (3)
- (a) 측정 대상 단백질에 표지자가 구비된 기준 단백질과 상기 측정 대상 단백질과 결합되는 생체 분자체가 결합된 결합 분자체의 생성을 유도하는 단계;(b) 측정 대상 단백질에 표지자가 구비된 기준 단백질과 측정 대상 단백질이 포함된 세포 용액을 혼합하는 단계;(c) 상기 혼합된 세포 용액과 상기 측정 대상 단백질과 결합되는 항체를 혼합하여 상기 항체와 상기 기준 단백질이 결합된 결합 항체의 생성을 유도하는 단계; 및(d) 상기 (a) 단계에서 생성된 결합 항체의 개수와 상기 (c) 단계에서 생성된 결합 항체의 개수에 기초하여 상기 측정 대상 단백질이 포함된 세포 용액에서의 상기 측정 대상 단백질의 농도를 계산하는 단계를 포함하는 세포 용액에서의 단백질 농도 측정 방법.
- 제1항에 있어서,상기 표지자는 형광 단백질인 것인 세포 용액에서의 단백질 농도 측정 방법.
- 제2항에 있어서,상기 (d) 단계에서,상기 결합 항체의 개수는 상기 형광 단백질에 의해 발생하는 특정 파장의 형광 신호를 근접장을 발생시키는 광학장치를 이용하여 측정하는 것인 세포 용액에서의 단백질 농도 측정 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0090850 | 2011-09-07 | ||
KR1020110090850A KR101191793B1 (ko) | 2011-09-07 | 2011-09-07 | 세포질 원액에서의 단백질 농도 측정 방법 |
KR1020110100756A KR101187726B1 (ko) | 2011-10-04 | 2011-10-04 | 세포 용액에서의 단백질 농도 측정 방법 |
KR10-2011-0100756 | 2011-10-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013036064A2 true WO2013036064A2 (ko) | 2013-03-14 |
WO2013036064A3 WO2013036064A3 (ko) | 2013-05-10 |
Family
ID=47832722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/007214 WO2013036064A2 (ko) | 2011-09-07 | 2012-09-07 | 세포질 원액에서의 단백질 농도 측정 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013036064A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10845359B2 (en) | 2014-06-03 | 2020-11-24 | Korea Advanced Institute Of Science And Technology | Method for analyzing activation state of signaling pathway and method for selecting personalized medicine using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005069788A (ja) * | 2003-08-22 | 2005-03-17 | Sumitomo Bakelite Co Ltd | リン酸化蛋白質の検出方法 |
KR20080004782A (ko) * | 2006-07-06 | 2008-01-10 | 충북대학교 산학협력단 | 나노 바이오칩 검사 방법 |
KR20090035112A (ko) * | 2007-10-05 | 2009-04-09 | 충북대학교 산학협력단 | 단백질 마이크로어레이 칩을 이용한 우유 품질 검사 방법 |
KR100908641B1 (ko) * | 2007-03-20 | 2009-07-21 | 강원대학교산학협력단 | 칩 기술을 기반으로 하는 경쟁적 상호작용을 이용한 비표지혈액 단백질의 분석방법 |
-
2012
- 2012-09-07 WO PCT/KR2012/007214 patent/WO2013036064A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005069788A (ja) * | 2003-08-22 | 2005-03-17 | Sumitomo Bakelite Co Ltd | リン酸化蛋白質の検出方法 |
KR20080004782A (ko) * | 2006-07-06 | 2008-01-10 | 충북대학교 산학협력단 | 나노 바이오칩 검사 방법 |
KR100908641B1 (ko) * | 2007-03-20 | 2009-07-21 | 강원대학교산학협력단 | 칩 기술을 기반으로 하는 경쟁적 상호작용을 이용한 비표지혈액 단백질의 분석방법 |
KR20090035112A (ko) * | 2007-10-05 | 2009-04-09 | 충북대학교 산학협력단 | 단백질 마이크로어레이 칩을 이용한 우유 품질 검사 방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10845359B2 (en) | 2014-06-03 | 2020-11-24 | Korea Advanced Institute Of Science And Technology | Method for analyzing activation state of signaling pathway and method for selecting personalized medicine using same |
Also Published As
Publication number | Publication date |
---|---|
WO2013036064A3 (ko) | 2013-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4137818A1 (en) | Use of divalent metals for enhancement of fluorescent signals | |
CN101495867A (zh) | 聚合物骨架元素标签 | |
US9964544B2 (en) | Method and apparatus for analyzing protein-protein interaction on single-molecule level within the cellular environment | |
CN103045720B (zh) | 检测病源细胞的靶向性分子及其应用 | |
CN109142710B (zh) | 一种快速灵敏检测河豚毒素ttx的方法 | |
CN110331199B (zh) | 用于检测cldn18.2基因表达的分子探针及检测方法 | |
CN107449759A (zh) | 一种汞离子高效检测方法及探针分子和试剂盒 | |
CN105348343A (zh) | 发色团修饰的脱氧核苷亚磷酰胺单体化合物及其制备方法和应用 | |
WO2013165065A1 (ko) | 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 장치 | |
CN102965378B (zh) | 一种糖化血红蛋白的核酸适体及其制备方法 | |
CN110484602A (zh) | 一种单分子计数检测基因组中dna损伤的荧光化学传感器、方法和应用 | |
CN105884806A (zh) | 荧光探针的制备方法及基于荧光探针的土霉素检测方法 | |
WO2013036064A2 (ko) | 세포질 원액에서의 단백질 농도 측정 방법 | |
CN109799350A (zh) | 蛋白热稳定测量结合双向稳定同位素标记蛋白组学筛选药物靶标的方法及应用 | |
CN107462721B (zh) | 细胞角蛋白19片段的板式化学发光法检测试剂盒及制备方法 | |
KR101191793B1 (ko) | 세포질 원액에서의 단백질 농도 측정 방법 | |
KR101187726B1 (ko) | 세포 용액에서의 단백질 농도 측정 방법 | |
CN108486281A (zh) | 用于检测htlv-ⅰ和htlv-ⅱ的特异性引物和探针及荧光定量pcr检测试剂盒 | |
CN114942223A (zh) | 循环肿瘤细胞的比率式检测试剂盒及其制备方法和应用 | |
EP1556682A2 (en) | IP sb 3 /sb PROTEIN BINDING ASSAY | |
CA3185265A1 (en) | Polymers and conjugates comprising the same | |
CN103958683A (zh) | 与肾上腺皮质刺激激素结合的分子及其应用 | |
WO2023191500A1 (ko) | 위양성 신호가 제거된 항원 검출방법 및 키트 | |
US20140100362A1 (en) | Process for Preparing Phosphate Compound Bearing Isotope | |
US20090090628A1 (en) | Nucleic acid derivatives and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12829564 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12829564 Country of ref document: EP Kind code of ref document: A2 |