WO2013036049A2 - 공초점 형광 현미경 - Google Patents

공초점 형광 현미경 Download PDF

Info

Publication number
WO2013036049A2
WO2013036049A2 PCT/KR2012/007190 KR2012007190W WO2013036049A2 WO 2013036049 A2 WO2013036049 A2 WO 2013036049A2 KR 2012007190 W KR2012007190 W KR 2012007190W WO 2013036049 A2 WO2013036049 A2 WO 2013036049A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens
focal length
circular
cylindrical lens
fluorescence microscope
Prior art date
Application number
PCT/KR2012/007190
Other languages
English (en)
French (fr)
Other versions
WO2013036049A3 (ko
Inventor
홍성철
이진우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US14/342,966 priority Critical patent/US9563046B2/en
Publication of WO2013036049A2 publication Critical patent/WO2013036049A2/ko
Publication of WO2013036049A3 publication Critical patent/WO2013036049A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes

Definitions

  • the present invention relates to a confocal fluorescence microscope (CONFOCAL FLUORESCENCE MICROSCOPE), and more particularly to a confocal fluorescence microscope and a method for observing a single fluorescent molecular signal in real time.
  • CONFOCAL FLUORESCENCE MICROSCOPE CONFOCAL FLUORESCENCE MICROSCOPE
  • Confocal fluorescence microscopy is a technique that can obtain an improved image compared to a conventional fluorescence microscope by removing a background signal coming out of the focal plane of the microscope lens using a pinhole. For this reason, confocal fluorescence microscopy technology has been widely applied in biological research.
  • Linear confocal microscopy uses a cylindrical lens to focus in the form of a line instead of the point of focus of the light source.
  • the time required to acquire an image is drastically reduced because scanning is required only in one axis direction to obtain an image.
  • Rotating disc confocal microscopy allows you to obtain images quickly by dividing the light source into multiple, creating multiple pointed focal points at the same time, drilling holes in the disc, and then rotating the disc. Both of these methods can obtain images close to real time (tens of Hz).
  • total internal reflection Total internal reflection
  • Confocal microscopy unlike total reflection microscopy, can measure fluorescence up to deep within the cell and can also measure signals from single fluorescent molecules.
  • conventional confocal microscopy takes a long time to acquire an image, making it difficult to observe rapid changes in cells.
  • the slow speed makes it difficult to apply to ultra-high resolution imaging technology using the recently developed single fluorescent molecular positioning.
  • the background noise reduction is lower than that of the point confocal method, and the detector used to observe the performance is not commercially available. No single fluorescent molecular signal can be observed.
  • the present invention aims to observe a single fluorescent molecular signal inside a cell or tissue in real time (several tens Hz).
  • the present invention provides a light source unit consisting of at least one short-wavelength laser, a lens unit making a parallel light source into linear light of an appropriate size, a multicolor mirror separating light source and fluorescence by reflecting the light source and transmitting fluorescence, A scanning mirror that irradiates a light source to a large area of the object and scatters fluorescence onto a large-area camera, a microscope unit that irradiates an incident light source to the object, collects and emits fluorescence from the object, and removes and observes the background from the emitted fluorescence signal. It consists of a detector.
  • the light source unit is composed of one or more short-wavelength lasers, each laser is characterized in that by using a dichroic mirror of the corresponding wavelength.
  • the lens unit is characterized by consisting of three circular lenses and three cylindrical lenses.
  • the lens unit may be divided into a first lens unit consisting of three cylindrical lenses and a circular lens before the multicolor mirror, and a second lens unit consisting of two circular lenses after the multicolor mirror.
  • two cylindrical lenses have a curved direction in a horizontal direction and one cylindrical lens has a curved direction in a vertical direction to independently adjust the focus and size of the horizontal and vertical components of the light source. It is characterized by making the light source linear when irradiating the object.
  • the two circular lenses of the second lens unit of the lens unit provides a light source to the microscope unit by adjusting the size and focus of the light source, and serves to provide the fluorescence received from the microscope as a multi-color mirror.
  • the multi-colored mirror is characterized in that the light source reflects and other fluorescent wavelengths are transmitted.
  • the scan mirror scans light to irradiate light on a wide part of the object, and simultaneously scans the fluorescence from other parts of the object so that the fluorescence after the scan mirror passes through the same optical path.
  • first galvano mirror of the scan mirror, the second galvano mirror of the detector and the camera is characterized in that both are synchronized.
  • the microscope unit reflects the light source received from the lens unit to provide the objective lens, and a mirror and a light source that serves to provide the fluorescence received from the objective lens to the lens unit directly to the object and collects the fluorescence emitted therefrom It is characterized in that the configuration.
  • the detection unit includes an electron amplification CCD camera for detecting fluorescence, a second galvano mirror for scanning fluorescence on the camera, a slit for removing fluorescence from the focal plane, and three circular lenses for adjusting the focus of fluorescence. It is characterized by.
  • the slit width of the detection unit is characterized in that 1AU (Airy unit) to minimize the loss of the fluorescence signal to maximize the removal of the background.
  • the present invention constructed and operated as described above uses a large-area electron amplification CCD camera with high sensitivity compared to a conventional linear camera while removing a background generated from an object using a linear confocal microscope method. There is an advantage that the signal can be observed in confocal microscopy.
  • confocal microscopy has the advantage that the signal of a single fluorescent molecule can be observed even in thick objects.
  • confocal microscopy has the advantage of obtaining ultra-high resolution images based on single fluorescence molecular positioning up to deeper areas of cells or tissues.
  • FIG. 1 is a top view of a confocal fluorescence microscope in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view of a light source unit.
  • FIG. 3 is a diagram illustrating an arrangement along a curved direction of a cylindrical lens.
  • FIG. 1 is an overall schematic view of the confocal fluorescence microscope except for the light source unit for observing a single fluorescent molecule according to an embodiment of the present invention
  • Figure 2 is a schematic view of the light source unit
  • Figure 3 is a diagram showing the arrangement along the curved direction of the cylindrical lens.
  • FIG. 3 (a) is a top view of the cross section of the cylindrical lens
  • FIG. 3 (b) is a side view of the cross section of the cylindrical lens.
  • the first digit is shown by the reference numeral
  • the remaining two digits are shown by the three digit reference numerals of FIG.
  • the horizontal components 3 and 303 of the light source are indicated by solid lines
  • the vertical components 4 and 304 of the light source are indicated by dashed lines
  • the fluorescent signal 5 is indicated by dotted lines.
  • the real-time linear confocal fluorescence microscope includes a light source unit 201 consisting of one or more short-wavelength lasers, a lens unit 6 that makes the light source unit 201 linear, and a first unit for providing light to different portions of the object.
  • the large-area CCD camera 40 is used by scanning the fluorescent signal reverse-scanned from the first galvano mirror 21 to the large-area camera by using the second galvano mirror 25 of the detector. It's a technical point.
  • the light source unit 201 is composed of one or more short wavelength lasers and is collimated into one light using an appropriate dichroic mirror for each laser wavelength.
  • the collimated light source passes through the first cylindrical lens 10. At this time, since the curved surface of the first cylindrical lens 10 exists in the horizontal direction, the horizontal component 3 of the light source changes from parallel light to focusing light, and the vertical component 4 maintains parallel light.
  • the light source passing through the first cylindrical lens 10 passes through the second cylindrical lens 11.
  • the curved surface of the second cylindrical lens 11 is perpendicular to the first cylindrical lens 10. That is, since the curved surface of the lens exists in the vertical direction, the horizontal component 3 of the light source is not affected, and the vertical component 4 changes from parallel light to focusing light.
  • the light source passing through the second cylindrical lens 11 passes through the third cylindrical lens 12.
  • the position of the third cylindrical lens 12 is located away from the first cylindrical lens 10 (focal length of the first cylindrical lens + focal length of the third cylindrical lens).
  • the direction of the curved surface of the third cylindrical lens 12 is the same as the first cylindrical lens 10 and perpendicular to the second cylindrical lens 11. That is, since the direction of the lens curved surface is in the horizontal direction, the vertical component 4 of the light source is not affected. Since the position of the third cylindrical lens 12 is separated by the sum of the focal lengths of the first cylindrical lens 10 and the third cylindrical lens 12, the horizontal component 3 of the light source is the third cylindrical lens 12. After that, it becomes parallel light.
  • the focal length of the first cylindrical lens 10 and the third cylindrical lens 12 is 10 times larger than the focal length of the first cylindrical lens 10, preferably 25 mm, respectively. After passing through two lenses, the size of the horizontal component 3 of the light source is increased by 10 times. This increases the length of the line at the linear focal point that occurs when the object is later irradiated to the increased size of the horizontal component.
  • the position of the first circular lens 13 is located away from the second cylindrical lens 11 (focal length of the second cylindrical lens + focal length of the first circular lens).
  • the vertical component 4 of the light source becomes parallel light after passing through the first circular lens 13.
  • the horizontal component 3 of the light source is then changed from parallel light to focusing light.
  • the light source is then reflected in the multicolor mirror 20 and again in the first galvano mirror 21.
  • the multi-color mirror 20 is characterized by reflecting the light of the light source and transmitting fluorescence provided at other wavelengths.
  • the first galvano mirror 21 is located away from the first circular lens 13 by the focal length of the first circular lens 13. Thus, the horizontal component 3 of the light source is brought into focus in the first galvano mirror 21.
  • the light source reflected from the first galvano mirror 21 passes through the second circular lens 14.
  • the second circular lens 14 is positioned away from the first scan mirror by the focal length of the second circular lens 14.
  • the horizontal component 3 of the light source thus becomes parallel light passing through the second circular lens 14.
  • the light source 4 of the vertical component changes from parallel light to focusing light.
  • the focal length of the first circular lens 13 and the second circular lens 14 is equal to the focal length of the third cylindrical lens 12, preferably 250 mm, and the size of the light source does not change.
  • the light source is then reflected at the first planar mirror 22.
  • the diameter of the first planar mirror 22 is designed to reflect all of the horizontal components 3 of the light source, which are ten times larger than two inches.
  • the light reflected by the first planar mirror 22 passes through the third circular lens 15 and then enters into the microscope through the rear of the microscope.
  • the third circular lens 15 is separated from the second circular lens 14 by (the focal length of the second circular lens + the focal length of the third circular lens), and at the same time from the objective lens 19 of the microscope section 2 ( The focal length of the objective lens + the focal length of the third circular lens).
  • the light source passing through the third circular lens 15 changes into focusing light in the horizontal direction and becomes parallel light in the vertical direction.
  • the focal length of the third circular lens 15 is 1.2 times larger than the focal length of the first circular lens 13, and preferably 300 mm, and a long focal length is used to match the distance with the objective lens 19.
  • the light source incident inside the microscope reflects the silver-plated mirror 23 inside the microscope and then passes through the objective lens 19.
  • the silver-plated mirror 23 was specially coated to minimize the loss of light source and fluorescence.
  • the horizontal direction of light passing through the objective lens 19 is parallel light, and the vertical direction is light that focuses. At this time, the vertical focus is the same as that of the objective lens 19. Therefore, the shape of the light source incident on the object becomes linear. (Vertical Focus, Horizontal Parallel Light)
  • Only one-dimensional fluorescence information of the object can be obtained by linearly illuminating the light source irradiated onto the object. Therefore, in order to obtain a two-dimensional fluorescent image by changing the angle of the first galvano mirror 21 to move the light in the vertical direction of the linear light source to obtain the two-dimensional fluorescence information of the object.
  • the fluorescence transmitted to the outside through the silver plating mirror 23 reaches the first galvano mirror 21 via the third circular lens 15 and the second circular lens 14.
  • the fluorescences from different positions of the object pass through different light paths up to the first galvano mirror 21 but are reverse-scanned from the first galvano mirror 21 so that they all pass through the same light path. do.
  • the reverse-scanned fluorescence is transmitted through the multi-color mirror 20 as it is, and changes into light focused through the fourth circular lens 16 of the detector 3. That is, the focal point where the object is observed by the objective lens 19 and the focal point here have the characteristics of confocal.
  • the slit 30 placed at the focal point of fluorescence serves to remove all background signals from outside the focal plane. At this time, if the size of the slit 30 is too large, the ability to remove the background signal is reduced. On the contrary, if the size of the slit 30 is too small, it is difficult to observe a single fluorescent molecule because it removes the fluorescent signal to be observed. Therefore, at this time, the width of the slit 30 is characterized in that the size of 1AU corresponding to one unit of the diffraction limit of the light source irradiated to the object.
  • the fluorescence whose background is removed by the slit 30 is converted into parallel light via the fifth circular lens 17 and then reflected by the second galvano mirror 25.
  • the second galvano mirror 25 is synchronized with the first galvano mirror 21 to change the angle. That is, light is irradiated to different parts of the object by the first galvano mirror 21, and thus, fluorescence emitted from different parts of the object is followed by the second light galvano mirror 25. It is scanned again to fluoresce other parts of the large area camera.
  • the light reflected from the second galvano mirror 25 is focused on the CCD camera 40 via the sixth circular lens 18.
  • the focal lengths of the circular lens and the cylindrical lens of the lens unit 6 and the detection unit 3 can be changed according to the user.
  • the CCD camera 40 is an electronic amplification CCD camera (Back-illuminated, EMCCD) to expose the camera for a specified exposure time to produce a two-dimensional fluorescent image of 512x512 pixels for each exposure time.
  • EMCCD Electronic amplification CCD camera
  • the exposure time of the camera and the scan time of the first galvano mirror 21 and the second galvano mirror 25 are synchronized with each other to minimize the waste of the fluorescence signal and the non-uniformity of the fluorescence signal between the images.
  • an electron amplification CCD camera has a sensitivity enough to observe a single fluorescent molecule, it is a camera that observes a large area at the same time, and its observation speed is slower than that of a conventional linear CCD camera.
  • conventional linear CCD cameras do not have enough sensitivity to observe a single fluorescent molecule.
  • by scanning the fluorescence again using the second galvano mirror 25 and synchronizing it with the exposure time of the camera a large area fluorescence image can be obtained at a time even with a linear confocal microscope, eliminating the disadvantage of the observation speed, 30 Hz The above observation speed is guaranteed.

Abstract

본 발명은 세포나 조직 내부에서 단일 형광 분자 신호를 실시간으로 (수십 Hz 이상) 관측하고자 하는데 그 목적이 있다. 위의 과제를 해결하고자 본 발명은 크게 하나 이상의 단파장 레이저로 이루어진 광원부, 평행광인 광원을 적절한 크기의 선형의 빛으로 만드는 렌즈부, 광원은 반사하고 형광은 투과시킴으로써 광원과 형광을 분리하는 다색거울, 광원을 대상물의 넓은 면적에 조사하고 형광을 대면적 카메라에 뿌려주는 스캔거울, 입사한 광원을 대상물에 조사하고 대상으로부터 나온 형광을 집광하여 다시 내보내는 현미경부, 나온 형광신호로부터 백그라운드를 제거하고 관측하는 검출부로 구성된다.

Description

공초점 형광 현미경
본 발명은 공초점 형광 현미경(CONFOCAL FLUORESCENCE MICROSCOPE)에 관한 것으로, 특히 단일 형광 분자 신호를 실시간으로 관측할 수 있는 공초점 형광 현미경 및 그 관측 방법에 관한 것이다.
공초점 형광 현미경(Confocal fluorescence microscopy)은 핀홀 등을 이용하여 현미경 렌즈의 초점 평면 이외에서 나오는 백그라운드 신호를 제거함으로써 기존의 형광 현미경에 비해 보다 향상된 이미지를 얻을 수 있는 기술이다. 이런 점 때문에 생물학 연구에 공초점 형광 현미경 기술이 많이 응용되고 있다.
일반적인 공초점 형광 현미경 기술은 형광을 보기 위해서 점 형태로 광원의 초점을 맺게 하므로 한 개의 이미지를 얻기 위해서 2축 방향으로의 스캔이 필요하다. 따라서 하나의 이미지를 얻기 위해서 많은 시간이 소요되고 세포 내에서 생물 분자의 빠른 움직임과 상호작용을 관측하기 어렵다는 단점이 있다.
이 단점을 극복하기 위해서 고안된 방법이 선형 공초점 현미경(Line scan confocal microscopy)이나 회전디스크 공초점 현미경(Spinning disk confocal microscopy)이다. 선형 공초점 현미경은 광원의 초점을 점 형태로 맺는 대신 원통형 렌즈를 이용하여 선 형태로 초점을 맺게 한다. 그 결과 이미지를 얻기 위해서 1축 방향으로만 스캔이 필요하기 때문에 이미지를 얻는 데 걸리는 시간이 비약적으로 감소하게 된다. 회전디스크 공초점 현미경은 광원을 여러 개로 나누어 동시에 여러 개의 점형 초점을 만든 후, 디스크에 구멍을 뚫은 후, 이 디스크를 회전하는 방식으로 빠른 시간에 이미지를 얻을 수 있다. 이 두 방식은 모두 실시간에 가깝게(수십 Hz) 이미지를 얻을 수 있다.
최근 들어 관련 기술이 발전함에 따라서 형광 현미경 기술은 단일 형광 분자를 관측할 수 있을 정도로 진보하였다. 단일 형광 분자를 관측하게 되면서 기존에는 관측하기 어려웠던 여러 가지 생명현상을 이해하게 되었고, 최근에 그 응용 범위가 크게 확대되고 있다. 단일 형광 분자는 그 형광 신호가 매우 미약하기 때문에 백그라운드 신호를 최대한 줄여야 관측이 가능하다. 그것을 달성하기 위해서 전반사 형광 현미경(Total internal reflection)방법이 많이 이용되고 있다. 슬라이드와 매질 사이에서 전반사가 일어나게 되면 소멸파(Evanescent wave)가 생겨서 형광 물질을 여기시키고, 이 때 소멸파의 범위는 전반사가 일어난 표면으로부터 200-300nm 정도로 매우 짧기 때문에 전반사가 일어난 부근 이외에서의 백그라운드를 줄일 수 있다. 그렇지만 전반사 형광 현미경은 표면 부근의 극단적으로 짧은 범위의 형광만을 관측할 수 있기 때문에 세포 안에서 일어나는 일들은 관찰할 수 없다.
공초점 현미경 방식은 전반사 현미경 방식과는 다르게 세포 내 깊숙한 부분까지 형광을 측정할 수 있고 단일 형광 분자의 신호도 측정할 수 있다. 그렇지만 일반적인 공초점 현미경은 앞서 밝힌 바와 같이 이미지를 얻기까지 시간이 오래 걸리기 때문에 세포 내의 빠른 변화를 관측하기 어렵다. 특히 느린 속도로 인해서 최근에 발전한 단일 형광 분자 위치 결정을 이용한 초고해상도 이미징 기술에 적용하기 어렵다. 측정 속도를 극복하기 위해 사용되던 선형 공초점 현미경과 회전디스크 공초점 현미경의 경우는 백그라운드 노이즈를 줄이는 정도가 점형 공초점 방식에 비해 떨어지고, 관측하는 데 사용하는 디텍터의 성능이 떨어져서 현재 상용화되어 있는 장비로는 단일 형광 분자 신호의 관측이 불가능하다.
결국 세포나 조직 등의 두꺼운 대상에 대해서 단일 분자 형광을 관찰하기 위해서는 1) 깊은 곳까지 형광을 관측할 수 있는 능력, 2) 수십 Hz 이상의 빠른 측정 속도, 3) 단일 분자 형광을 관찰하기 위한 높은 신호대잡음비와 고성능의 디텍터 의 요소가 필요하다.
위에서 밝힌 것처럼, 본 발명은 세포나 조직 내부에서 단일 형광 분자 신호를 실시간으로 (수십 Hz 이상) 관측하고자 하는데 그 목적이 있다.
위의 과제를 해결하고자 본 발명은 크게 하나 이상의 단파장 레이저로 이루어진 광원부, 평행광인 광원을 적절한 크기의 선형의 빛으로 만드는 렌즈부, 광원은 반사하고 형광은 투과시킴으로써 광원과 형광을 분리하는 다색거울, 광원을 대상물의 넓은 면적에 조사하고 형광을 대면적 카메라에 뿌려주는 스캔거울, 입사한 광원을 대상물에 조사하고 대상으로부터 나온 형광을 집광하여 다시 내보내는 현미경부, 나온 형광신호로부터 백그라운드를 제거하고 관측하는 검출부로 구성된다.
상기 광원부는 하나 이상의 단파장 레이저로 이루어져 있으며, 각각의 레이저는 해당하는 파장의 이색거울을 이용하여 합쳐지는 것을 특징으로 한다.
상기 렌즈부는 3개의 원형렌즈와 3개의 원기둥렌즈로 구성되는 것을 특징으로 한다.
또한 상기 렌즈부는 다색거울 이전의 3개의 원기둥렌즈와 1개의 원형렌즈로 구성되는 제 1렌즈부, 다색거울 이후의 2개의 원형렌즈로 구성되는 제 2렌즈부로 나뉘는 것을 특징으로 한다.
또한 상기 렌즈부의 제 1렌즈부에서 2개의 원기둥렌즈는 곡면의 방향이 수평방향이고 1개의 원기둥렌즈는 곡면의 방향이 수직방향이어서 광원의 수평방향과 수직방향 성분의 초점과 크기를 독립적으로 조절하는 것으로 대상물에 조사할 때 광원을 선형으로 만드는 것을 특징으로 한다.
또한 상기 렌즈부의 제 2렌즈부의 2개의 원형렌즈는 광원의 크기와 초점을 조절하여 현미경부로 광원을 제공하며, 현미경으로부터 전달받은 형광을 다색거울로 제공하는 역할을 하는 것을 특징으로 한다.
상기 다색거울은 광원은 반사시키고 그 이외의 형광 파장은 투과시키는 것을 특징으로 한다.
상기 스캔거울은 광을 스캔하여 대상물의 넓은 부분에 광을 조사하도록 하며, 동시에 대상물의 다른 부분에서 나온 형광을 역스캔하여 스캔거울 이후의 형광은 모두 같은 광로를 지나도록 하는 것을 특징으로 한다.
또한, 상기 스캔거울의 제 1갈바노거울과 상기 검출부의 제 2갈바노거울과 카메라는 모두 동기화되는 것을 특징으로 한다.
상기 현미경부는 렌즈부로부터 전달받은 광원을 반사시켜 대물렌즈에 제공하고, 대물렌즈로부터 전달받은 형광을 렌즈부로 제공하는 역할을 하는 거울과 광원을 대상물에 직접 조사하고 그로부터 나온 형광을 집광하는 대물렌즈로 구성되는 것을 특징으로 한다.
상기 검출부는 형광을 검출하기 위한 전자증폭CCD카메라와 형광을 카메라에 스캔해주는 제 2갈바노거울, 초점평면 이외에서 나온 형광을 제거하기 위한 슬릿, 형광의 초점을 조절해주기 위한 원형 렌즈 3개로 구성되는 것을 특징으로 한다.
또한 상기 검출부의 슬릿 너비는 형광 신호의 손실을 최소로 하면서 백그라운드의 제거를 최대로 하도록 1AU (Airy unit)로 하는 것을 특징으로 한다.
상기와 같이 구성되고 작용하는 본 발명은 선형 공초점 현미경 방식을 이용하여 대상물 이외에서 발생하는 백그라운드를 제거하면서 기존의 선형 카메라에 비해 민감도가 좋은 대면적 전자증폭CCD카메라를 사용함에 따라 단일 형광 분자의 신호를 공초점 현미경방식에서 관찰할 수 있는 이점이 있다.
또한, 역스캔된 형광을 추가적인 제 2갈바노거울을 이용하여 대면적 카메라에 스캔해주는 방식을 이용하여 실시간에 가까운 (수십 Hz) 관측속도를 얻을 수 있는 이점이 있다.
또한, 공초점 현미경방식을 이용함으로써 두꺼운 대상물에서도 단일 형광 분자의 신호를 관찰할 수 있는 장점이 있다.
또한, 공초점 현미경방식을 이용하여 단일 형광 분자 위치 결정에 기반한 초고해상도 이미지를 세포나 조직의 더 깊은 곳까지 얻을 수 있는 장점이 있다.
도 1은 본 발명의 실시예에 따른 공초점 형광 현미경의 전체 개략도(top view)이다.
도 2는 광원부의 개략도이다.
도 3은 원기둥렌즈의 곡면 방향에 따른 배치를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시간 단일 형광 분자 관찰을 위한 공초점 형광 현미경에 대한 바람직한 실시예를 상세히 설명하면 다음과 같다.
도 1은 본 발명의 실시예에 따라 단일 형광 분자 관찰을 위한 공초점 형광 현미경의 광원부를 제외한 전체 개략도, 도 2는 광원부의 개략도, 도 3은 원기둥렌즈의 곡면 방향에 따른 배치를 나타낸 그림이다. 도 3(a)는 원기둥 렌즈의 단면을 위에서 바라본 도면(top view)이며, 도 3(b)는 원기둥렌즈의 단면을 측면에서 바라본 도면(side view)이다. 도 1에서 도시된 구성은, 도면 2 이후에는 첫 번째 자릿수가 도면번호, 나머지 두자리가 도 1의 도면 부호인 세 자리의 도면 부호로 도시된다. 설명의 편의를 위해서, 광원의 수평방향 성분(3, 303)은 실선, 광원의 수직방향 성분(4, 304)은 일점쇄선, 형광 신호(5)는 점선으로 표시하였다.
본 발명에 따른 실시간 선형 공초점 형광 현미경은, 하나 이상의 단파장 레이저로 이루어진 광원부(201)와 광원부(201)를 선형으로 만들어 주는 렌즈부(6), 광을 대상물의 각기 다른 부분에 제공하는 제 1 갈바노 거울(21), 전달받은 광을 대상물에 조사하고 대상물로부터 발생한 형광을 집광하는 현미경부(2), 그리고 형광을 관측하는 검출부(3)로 구성되는 것을 특징으로 한다. 특히 제 1 갈바노 거울(21)에서 역스캔된 형광신호를 검출부의 제 2 갈바노 거울(25)을 이용하여 다시 대면적 카메라에 스캔해주는 방식을 이용해 대면적 CCD 카메라(40)를 사용한 것을 주요 기술적 요지라고 할 수 있다.
광원부(201)는 하나 이상의 단파장 레이저로 이루어져 있으며 각각의 레이저 파장에 맞는 적절한 이색 거울을 이용하여 하나의 광으로 콜리메이션(collimation)된다.
콜리메이션된 광원은 제 1원기둥렌즈(10)를 통과한다. 이 때 제 1 원기둥 렌즈(10)는 곡면이 수평방향으로 존재하므로 광원의 수평방향 성분(3)은 평행광에서 초점을 맺는 빛으로 변하게 되고, 수직방향 성분(4)은 평행광을 유지한다.
제 1 원기둥 렌즈(10)를 통과한 광원은 제 2 원기둥 렌즈(11)를 통과한다. 이 때 제 2 원기둥 렌즈(11)는 곡면의 방향이 제 1 원기둥 렌즈(10)에 대해 수직방향이다. 즉, 렌즈의 곡면이 수직방향으로 존재하므로 광원의 수평방향 성분(3)은 영향을 받지 않고, 수직방향 성분(4)은 평행광에서 초점을 맺는 빛으로 변하게 된다.
제 2 원기둥 렌즈(11)를 통과한 광원은 제 3 원기둥 렌즈(12)를 통과한다. 제 3 원기둥 렌즈(12)의 위치는 제 1 원기둥 렌즈(10)로부터 (제 1 원기둥 렌즈의 초점거리 + 제 3 원기둥 렌즈의 초점거리)만큼 떨어져서 위치한다. 이 때 제 3 원기둥 렌즈(12)의 곡면의 방향은 제 1 원기둥 렌즈(10)와 같고 제 2 원기둥 렌즈(11)와 수직이다. 즉, 렌즈 곡면의 방향이 수평방향으로 존재하므로 광원의 수직방향 성분(4)은 영향을 받지 않는다. 제 3 원기둥 렌즈(12)의 위치가 제 1 원기둥 렌즈(10)와 제 3 원기둥 렌즈(12)의 초점거리의 합만큼 떨어진 곳이므로 광원의 수평방향 성분(3)은 제 3 원기둥 렌즈(12)를 지난 뒤 평행광이 된다.
제 1 원기둥 렌즈(10)와 제 3 원기둥 렌즈(12)의 초점거리는 제 3 원기둥 렌즈(12)의 초점거리가 제 1 원기둥 렌즈(10)의 초점거리보다 10배 큰, 바람직하게는 각각 25mm, 250mm이며, 두 렌즈를 지난 후 광원의 수평방향 성분(3)의 크기는 10배 증가하게 된다. 여기서 증가한 수평방향 성분의 크기를 후에 대상물에 조사될 때 생기는 선형 초점에서 선의 길이를 증가시키는 역할을 한다.
3개의 원기둥 렌즈를 통과한 빛은 제 1 원형 렌즈(13)를 지난다. 제 1 원형렌즈(13)의 위치는 제 2 원기둥 렌즈(11)로부터 (제 2 원기둥 렌즈의 초점거리 + 제 1 원형 렌즈의 초점거리)만큼 떨어진 곳에 위치한다. 따라서 광원의 수직방향 성분(4)은 제 1 원형 렌즈(13)를 지난 뒤 평행광이 된다. 그리고 광원의 수평방향 성분(3)은 평행광에서 초점을 맺는 빛으로 변하게 된다.
그 다음 광원은 다색거울(20)에서 반사되고, 제 1 갈바노 거울(21)에서 다시 반사된다. 다색거울(20)은 광원의 빛을 반사시키고 그 이외의 파장에서 제공되는 형광은 투과시키는 것을 특징으로 한다.
제 1 갈바노 거울(21)은 제 1 원형 렌즈(13)로부터 제 1 원형 렌즈(13)의 초점거리만큼 떨어진 곳에 위치한다. 따라서 광원의 수평방향 성분(3)은 제 1 갈바노 거울(21)에서 초점을 맺게 된다.
제 1 갈바노 거울(21)에서 반사된 광원은 제 2 원형 렌즈(14)를 통과한다. 제 2 원형 렌즈(14)는 제 1 스캔거울로부터 제 2 원형 렌즈(14)의 초점거리만큼 떨어진 곳에 위치한다. 따라서 광원의 수평방향 성분(3)은 제 2 원형 렌즈(14)를 지나면서 평행광이 된다. 수직방향 성분의 광원(4)은 평행광에서 초점을 맺는 빛으로 바뀐다.
제 1 원형 렌즈(13)와 제 2 원형 렌즈(14)의 초점거리는 제 3 원기둥 렌즈(12)의 초점거리와 같고, 바람직하게는 모두 250mm로, 광원의 크기가 변하지 않는다.
그 후 광원은 제 1 평면 거울(22)에서 반사된다. 제 1 평면 거울(22)의 지름은 2인치로 10배로 늘어난 광원의 수평방향의 성분(3)을 모두 반사할 수 있도록 고안되었다.
제 1 평면 거울(22)에서 반사된 빛은 제 3 원형 렌즈(15)를 통과한 후 현미경의 뒤쪽을 통해 현미경 내부로 입사한다. 제 3 원형 렌즈(15)는 제 2 원형 렌즈(14)로부터 (제 2 원형 렌즈의 초점거리 + 제 3 원형 렌즈의 초점거리)만큼 떨어지고, 동시에 현미경부(2)의 대물렌즈(19)로부터 (대물렌즈의 초점거리 + 제 3 원형 렌즈의 초점거리)만큼 떨어진 곳에 존재한다. 제 3 원형 렌즈(15)를 통과한 광원은 수평방향으로는 초점을 맺는 빛으로 변하고 수직방향으로는 평행광이 된다.
제 3원형렌즈(15)의 초점 거리는 제 1 원형 렌즈(13)의 초점거리보다 1.2배 크며, 바람직하게는 300mm로, 대물렌즈(19)와의 거리를 맞출 수 있도록 긴 초점거리를 사용하였다.
현미경 내부로 입사한 광원은 현미경 내부에서 은도금거울(23)에 반사한 후 대물렌즈(19)를 통과한다.
은도금거울(23)은 광원과 형광의 손실을 최소화하기 위해 특수코팅처리되었다.
대물렌즈(19)를 통과한 빛의 수평방향은 평행광, 수직방향은 초점을 맺는 빛이 된다. 이 때 수직방향의 초점은 대물렌즈(19)의 초점과 같다. 따라서 대상물에 입사하는 광원의 모양은 선형이 된다. (수직방향 초점, 수평방향 평행광)
대물렌즈(19)를 통과한 빛은 대상물에 입사하여 대상물이 형광을 내도록 한다. 이 때 대상으로부터 나온 형광은 대물렌즈(19)를 통해서 집광되고, 광원이 입사한 길을 되돌아 나간다.
대상물에 조사된 광원 선형으로, 대상물의 1차원적인 형광정보만을 얻을 수 있다. 그러므로 2차원의 형광 이미지를 얻기 위하여 제 1 갈바노 거울(21)의 각도를 변화시켜 선형 광원의 수직한 방향으로 광을 움직여 대상물의 2차원적인 형광정보를 얻는다.
은도금거울(23)을 통하여 외부로 전달된 형광은 제 3 원형 렌즈(15)와 제 2원형 렌즈(14)를 거쳐 제 1 갈바노 거울(21)에 도달한다. 갈바노 거울의 각도에 따라 대상물의 각기 다른 위치에서 나온 형광들은 제 1 갈바노 거울(21)까지는 모두 다른 광로를 지나지만 제 1 갈바노 거울(21)에서 역스캔되어 이후에는 모두 동일한 광로를 지나게 된다.
역스캔된 형광은 다색거울(20)을 그대로 투과하여 검출부(3)의 제 4 원형 렌즈(16)를 거쳐 초점을 맺는 광으로 변한다. 즉, 대물렌즈(19)에서 대상물을 관찰하는 초점과 여기서의 초점은 공초점의 특징을 가진다.
형광의 초점 위치에 놓여진 슬릿(30)은 초점 평면 이외에서 나온 모든 백그라운드 신호를 제거하는 역할을 한다. 이 때 슬릿(30)의 크기가 너무 크면 백그라운드 신호를 제거하는 능력이 떨어지게 되고 반대로 슬릿(30)의 크기가 너무 작으면 관찰하고자 하는 형광신호까지 제거하기 때문에 단일 형광 분자를 관찰하기 어렵게 된다. 따라서 이 때 슬릿(30)의 너비는 대상물에 조사하는 광원의 회절한계의 1단위에 해당하는 1AU 만큼의 크기로 정해지는 것을 특징으로 한다.
슬릿(30)에 의해 백그라운드가 제거된 형광은 제 5 원형 렌즈(17)를 거쳐 평행광으로 바뀐 후, 제 2 갈바노 거울(25)에서 반사된다. 제 2 갈바노 거울(25)은 제 1 갈바노 거울(21)과 동기화 되어서 각도를 바꾼다. 즉, 제 1 갈바노 거울(21)에 의해서 대상물의 각기 다른 부분에 광이 조사하게 되고, 그에 따라 대상물의 각기 다른 부분에서 나온 형광은 동일한 광로를 따라가서 제 2 갈바노 거울(25)에 의해 다시 스캔되어 대면적 카메라의 다른 부분에 형광을 맺게 된다.
제 2 갈바노 거울(25)에서 반사된 빛은 제 6 원형 렌즈(18)를 거쳐서 CCD카메라(40)에 초점을 맺게 된다.
렌즈부(6)와 검출부(3)의 원형렌즈와 원기둥 렌즈의 초점거리는 사용자에 따라서 변용 가능하다.
CCD카메라(40)는 전자증폭CCD카메라로 (Back-illuminated, EMCCD) 지정된 노출시간동안 카메라를 노출시켜 노출시간마다 512x512 pixel의 2차원 형광이미지를 만들어낸다. 이 때 카메라의 노출시간과 제 1갈바노거울(21), 제 2갈바노거울(25)의 스캔시간은 서로 동기화되어 있어 형광신호의 낭비와 이미지간의 형광신호 불균일을 최소화한다.
전자증폭CCD카메라는 단일 형광 분자를 관측할 정도의 민감성을 보유하고 있으나 대면적을 동시에 관측하는 카메라로 그 관측속도가 기존의 선형 CCD 카메라에 비해 느리다. 그렇지만 기존의 선형 CCD 카메라는 단일 형광 분자를 관측할 수 있을 정도의 민감성을 보유하지 못하였다. 여기서는 제 2 갈바노 거울(25)을 이용해 형광을 다시 스캔하고 그것을 카메라의 노출시간과 동기화시킴으로써 선형 공초점 현미경을 이용하더라도 한번에 대면적 형광 이미지를 얻을 수 있어 관측속도의 불리함을 해소시키고, 30Hz 이상의 관측속도를 보장하고 있다.
이상, 본 발명의 원리와 구동 방법을 설명하고 도시하였지만, 본 발명의 사용법은 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다.
특히, 단일 형광 분자의 신호를 실시간으로 공초점 현미경 방식으로 관찰하는 것은 단순히 관찰의 의미를 넘어서 최근 각광받고 있는 초고해상도 이미징과 (Super-resolution imaging) 시스템 생물학 (Systems biology)에 필수적인 기술을 제공하게 된다. 따라서 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 적절한 수정과 균등물들 활용도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (20)

  1. 단일 형광 분자 관찰을 위한 공초점 형광 현미경에 있어서,
    하나 이상의 단파장 레이저로 이루어지며, 하나 이상의 이색 거울을 포함하여 광을 콜리메이트(collimate)하는 광원부;
    하나 이상의 원기둥 렌즈 및 하나 이상의 원형 렌즈를 포함하여 상기 광원부의 광을 선형으로 만드는 렌즈부;
    각도를 변화시켜 선형의 상기 광과 수직한 방향으로 상기 광을 이동시켜 대상물의 2차원적인 형광정보를 얻게하는 제 1 갈바노 거울;
    상기 광원부와 상기 제 1 갈바노 거울의 사이에 위치하는 다색 거울;
    상기 광을 상기 대상물에 조사하고 상기 대상물로부터 발생한 형광을 집광하는 현미경부; 및
    상기 형광을 관측하는 대면적 카메라 및 슬릿을 포함하는 검출부로 구성되는 것을 특징으로 하는 공초점 형광 현미경.
  2. 청구항 1에서,
    상기 검출부는, 역스캔된 상기 형광을 상기 대면적 카메라에 스캔해주는 제 2 갈바노 거울을 더 포함하는 것을 특징으로 하는 공초점 형광 현미경.
  3. 청구항 2에서,
    상기 검출부의 상기 제 2 갈바노 거울은, 상기 제 1 갈바노 거울과 동기화 되어서 각도를 바꾸는 것을 특징으로 하는 공초점 형광 현미경.
  4. 청구항 2 또는 3에서,
    상기 검출부의 상기 대면적 카메라는, 대면적 CCD 카메라인 것을 특징으로 하는 공초점 형광 현미경.
  5. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 렌즈부는, 셋 이상의 원기둥 렌즈 및 셋 이상의 원형 렌즈를 포함하며, 제 2 원기둥 렌즈의 곡면의 방향은 제 1 원기둥 렌즈의 곡면의 방향에 대해 수직이고, 제 3 원기둥 렌즈의 위치는 상기 제 1 원기둥 렌즈로부터 상기 제 1 원기둥 렌즈의 초점거리와 상기 제 3 원기둥 렌즈의 초점거리의 합만큼 떨어져서 위치하며, 상기 제 3 원기둥 렌즈의 곡면의 방향은 상기 제 1 원기둥 렌즈의 곡면의 방향과 동일한 것을 특징으로 하는 공초점 형광 현미경.
  6. 청구항 5에서,
    상기 제 1 원기둥 렌즈의 초점거리는 상기 제 3 원기둥 렌즈의 초점거리보다 10 배 큰 것을 특징으로 하는 공초점 형광 현미경.
  7. 청구항 6에서,
    상기 제 2 원기둥 렌즈의 초점거리는 상기 제 1 원기둥 렌즈의 초점거리보다 2 배 큰 것을 특징으로 하는 공초점 형광 현미경.
  8. 청구항 7에서,
    상기 제 1 원기둥 렌즈의 초점거리는 25mm, 상기 제 2 원기둥 렌즈의 초점거리는 50mm, 상기 제 3 원기둥 렌즈의 초점거리는 250mm인 것을 특징으로 하는 공초점 형광 현미경.
  9. 청구항 7에서,
    제 1 원형 렌즈는, 상기 제 2 원기둥 렌즈로부터 상기 제 2 원기둥 렌즈의 초점거리와 상기 제 1 원형 렌즈의 초점거리의 합만큼 떨어진 곳에 위치하며, 상기 제 1 갈바노 거울은 상기 제 1 원형 렌즈로부터 상기 제 1 원형 렌즈의 초점거리만큼 떨어진 곳에 위치하며, 제 2 원형 렌즈는 상기 제 1 갈바노 거울로부터 상기 제 2 원형 렌즈의 초점거리만큼 떨어진 곳에 위치하고, 제 3 원형 렌즈는 상기 제 2 원형 렌즈로부터 상기 제 2 원형 렌즈의 초점거리와 상기 제 3 원형 렌즈의 초점거리의 합만큼 떨어진 곳에 위치하는 것을 특징으로 하는 공초점 형광 현미경.
  10. 청구항 9에서,
    상기 제 1 원형 렌즈의 초점거리 및 상기 제 2 원형 렌즈의 초점거리는 상기 제 3 원기둥 렌즈의 초점거리와 동일하며, 상기 제 3 원형 렌즈의 초점거리는 상기 제 1 원형 렌즈의 초점거리보다 1.2 배 큰 것을 특징으로 하는 공초점 형광 현미경.
  11. 청구항 10에서,
    상기 제 3 원형 렌즈의 초점거리는 300mm인 것을 특징으로 하는 공초점 형광 현미경.
  12. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 검출부는, 하나 이상의 렌즈를 포함하는 것을 특징으로 하는 공초점 형광 현미경.
  13. 청구항 12에서,
    상기 검출부는, 셋 이상의 렌즈를 포함하며, 제 4 원형 렌즈와 제 5 원형 렌즈 사이에 상기 슬릿이 위치하며, 상기 제 2 갈바노 거울의 다음에 제 6 원형 렌즈가 위치하는 것을 특징으로 하는 공초점 형광 현미경.
  14. 청구항 13에서,
    상기 제 4 원형 렌즈의 초점거리 및 상기 제 5 원형 렌즈의 초점거리는 상기 제 1 원기둥 렌즈의 초점거리의 4 배이며, 상기 제 6 원형 렌즈의 초점거리는 상기 제 1 원기둥 렌즈의 초점거리의 10 배인 것을 특징으로 하는 공초점 형광 현미경.
  15. 청구항 14에서,
    상기 제 4 원형 렌즈의 초점거리 및 상기 제 5 원형 렌즈의 초점거리는 100mm이며, 상기 제 6 원형 렌즈의 초점거리는 250mm인 것을 특징으로 하는 공초점 형광 현미경.
  16. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 검출부의 상기 슬릿의 너비는, 1 AU인 것을 특징으로 하는 공초점 형광 현미경.
  17. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 검출부의 상기 대면적 카메라의 노출시간은, 상기 제 1 갈바노 거울 및 상기 제 2 갈바노 거울의 스캔시간과 서로 동기화되는 것을 특징으로 하는 공초점 형광 현미경.
  18. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 렌즈부와 상기 현미경부의 사이에, 하나 이상의 평면 거울을 포함하는 것을 특징으로 하는 공초점 형광 현미경.
  19. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 검출부는 하나 이상의 평면 거울을 포함하는 것을 특징으로 하는 공초점 형광 현미경.
  20. 청구항 18에서,
    상기 검출부는 하나 이상의 평면 거울을 포함하는 것을 특징으로 하는 공초점 형광 현미경.
PCT/KR2012/007190 2011-09-06 2012-09-06 공초점 형광 현미경 WO2013036049A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/342,966 US9563046B2 (en) 2011-09-06 2012-09-06 Confocal fluorescence microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0090022 2011-09-06
KR1020110090022A KR101393514B1 (ko) 2011-09-06 2011-09-06 고감도 실시간 공초점 형광 현미경

Publications (2)

Publication Number Publication Date
WO2013036049A2 true WO2013036049A2 (ko) 2013-03-14
WO2013036049A3 WO2013036049A3 (ko) 2013-05-02

Family

ID=47832713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007190 WO2013036049A2 (ko) 2011-09-06 2012-09-06 공초점 형광 현미경

Country Status (3)

Country Link
US (1) US9563046B2 (ko)
KR (1) KR101393514B1 (ko)
WO (1) WO2013036049A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839397A (zh) * 2019-01-23 2019-06-04 中国科学院上海应用物理研究所 同步辐射共聚焦荧光实验装置中共聚焦微元尺寸测量方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3538941A4 (en) 2016-11-10 2020-06-17 The Trustees of Columbia University in the City of New York METHODS FOR FAST IMAGING OF HIGH RESOLUTION LARGE SAMPLES
JP2018169502A (ja) * 2017-03-30 2018-11-01 オリンパス株式会社 顕微鏡装置
CN108051909B (zh) * 2017-11-20 2023-11-21 中国计量大学 一种结合光镊功能的扩展焦深显微成像系统
US11231570B2 (en) 2018-04-30 2022-01-25 University Of Central Florida Research Foundation, Inc. Highly inclined swept tile (HIST) imaging apparatus, methods, and applications
KR102290325B1 (ko) 2019-12-23 2021-08-18 주식회사 리암솔루션 집광렌즈 모듈을 포함하는 형광현미경
CN113866970B (zh) * 2021-09-27 2023-06-20 熵智科技(深圳)有限公司 集成超分辨和共聚焦功能的显微镜系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304701A (ja) * 1996-05-14 1997-11-28 Nikon Corp 共焦点レーザ走査顕微鏡
JP2003029152A (ja) * 2001-07-13 2003-01-29 Olympus Optical Co Ltd 共焦点レーザ走査型顕微鏡
US20090323058A1 (en) * 2006-11-28 2009-12-31 Leica Microsystems Cms Gmbh Laser microscope with a physically separating beam splitter
KR101004800B1 (ko) * 2008-09-19 2011-01-04 고려대학교 산학협력단 공초점 현미경

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587832A (en) * 1993-10-20 1996-12-24 Biophysica Technologies, Inc. Spatially light modulated confocal microscope and method
KR100891699B1 (ko) 2007-04-10 2009-04-03 광주과학기술원 7-아미노-4-((s)-3-(4-플루오로페닐)-2-((r)-3-메틸-2-(5-메틸이소옥사졸-3-카복사미도)부탄아미도)프로판아미도)-7-옥소-2-헵테노에이트 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 바이러스성 질환의 예방 및 치료용 약학적 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304701A (ja) * 1996-05-14 1997-11-28 Nikon Corp 共焦点レーザ走査顕微鏡
JP2003029152A (ja) * 2001-07-13 2003-01-29 Olympus Optical Co Ltd 共焦点レーザ走査型顕微鏡
US20090323058A1 (en) * 2006-11-28 2009-12-31 Leica Microsystems Cms Gmbh Laser microscope with a physically separating beam splitter
KR101004800B1 (ko) * 2008-09-19 2011-01-04 고려대학교 산학협력단 공초점 현미경

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839397A (zh) * 2019-01-23 2019-06-04 中国科学院上海应用物理研究所 同步辐射共聚焦荧光实验装置中共聚焦微元尺寸测量方法

Also Published As

Publication number Publication date
WO2013036049A3 (ko) 2013-05-02
KR101393514B1 (ko) 2014-05-13
US20140218794A1 (en) 2014-08-07
KR20130026702A (ko) 2013-03-14
US9563046B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
US11762182B2 (en) SPIM microscope with a sequential light sheet
WO2013036049A2 (ko) 공초점 형광 현미경
EP1580586B1 (en) Scanning confocal microscope
AU2003238484B2 (en) Microscope with a viewing direction perpendicular to the illumination direction
JP2012237647A (ja) 多焦点共焦点ラマン分光顕微鏡
WO2015088102A1 (ko) 광 전달 매질의 투과 특성을 측정하는 방법 및 이를 이용한 이미지 획득 장치
WO2017104949A1 (ko) 공초점 현미경 및 이를 이용한 영상 처리 방법
US20110226972A1 (en) Reflective Focusing and Transmissive Projection Device
JP5311195B2 (ja) 顕微鏡装置
JP2010091809A (ja) 顕微鏡装置
US9958661B2 (en) Apparatus for structured illumination of a specimen
EP3074807B1 (en) Optical arrangement for imaging a sample
JP2006195390A (ja) レーザ走査型蛍光顕微鏡および検出光学系ユニット
JP4461250B2 (ja) 共焦点像とエバネッセンス照明像情報を取得できる走査顕微鏡
KR20060111142A (ko) 공초점 어레이 검출기를 이용한 마이크로스코프
Sánchez-Ortiga et al. Confocal scanning microscope using a CCD camera as a pinhole-detector system
CN117007567A (zh) 基于五芯光纤主动光操控的数字扫描光片荧光显微成像系统
JP2010145586A (ja) 顕微鏡装置、蛍光キューブ
CN117991487A (zh) 线扫描共聚焦光学成像系统
WO2008126672A1 (ja) 顕微鏡装置と、これに用いられる蛍光キューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830117

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14342966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830117

Country of ref document: EP

Kind code of ref document: A2