WO2013036034A2 - 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템 - Google Patents

배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템 Download PDF

Info

Publication number
WO2013036034A2
WO2013036034A2 PCT/KR2012/007129 KR2012007129W WO2013036034A2 WO 2013036034 A2 WO2013036034 A2 WO 2013036034A2 KR 2012007129 W KR2012007129 W KR 2012007129W WO 2013036034 A2 WO2013036034 A2 WO 2013036034A2
Authority
WO
WIPO (PCT)
Prior art keywords
bms
slave
identifier
identifiers
initial
Prior art date
Application number
PCT/KR2012/007129
Other languages
English (en)
French (fr)
Other versions
WO2013036034A3 (ko
Inventor
김현진
김주영
고종경
김지훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12829527.6A priority Critical patent/EP2720348B1/en
Priority to PL12829527T priority patent/PL2720348T3/pl
Priority to CN201280032586.9A priority patent/CN103650290B/zh
Priority to JP2014515776A priority patent/JP5743365B2/ja
Publication of WO2013036034A2 publication Critical patent/WO2013036034A2/ko
Publication of WO2013036034A3 publication Critical patent/WO2013036034A3/ko
Priority to US14/097,913 priority patent/US8963507B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4221Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells with battery type recognition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/604Address structures or formats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and system for setting an identifier for each slave in a BMS of a multi-slave structure applied to a battery pack system having a multi-battery structure. More specifically, the digital voltage measurement of battery cells included in a battery module is provided. A method and system are provided for assigning or setting an identifier through a combination of values.
  • the secondary battery having high application characteristics and high electrical density, etc. according to the product range is commonly used in electric vehicles (EVs) or hybrid vehicles (HVs) driven by electric driving sources as well as portable devices. It is applied.
  • the secondary battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of significantly reducing the use of fossil fuels is generated, but also no by-products of energy use are generated.
  • a battery pack applied to the electric vehicle or the like typically includes an assembly including a plurality of unit cells and a plurality of assemblies, and the cell includes a cathode current collector, a separator, an active material, an electrolyte, an aluminum thin film layer, and the like. Including the electrochemical reaction between the components becomes a structure capable of charging and discharging.
  • the battery pack includes power supply control for driving loads such as a motor, measurement of electrical characteristics such as current and voltage, charge / discharge control, voltage equalization control, state of charge (SOC), and the like.
  • Algorithm for the estimation of is applied to include a battery management system (BMS) to monitor and control the state of the secondary battery is additionally configured.
  • BMS battery management system
  • Such a multi-structure battery pack may be implemented in various forms according to circuit logic or PCB configuration.
  • a plurality of slave BMSs and a plurality of slave BMSs each responsible for a plurality of batteries constituting the battery pack may be implemented.
  • a multi-slave structure composed of a master to a main BMS for controlling and controlling a slave BMS is mainly used.
  • the master BMS communicates with the slave BMS to check the current battery state and use the charge / discharge control to collect data for a plurality of batteries in charge of the slave BMS.
  • Individual identifiers (IDs) for each slave BMS node are necessary for data collection or command signal transmission as described above.
  • the identifier information previously set on the circuit is read in hardware or the EEPROM in software.
  • a method of programming and using each slave BMS is adopted.
  • This conventional method requires a number of individual hardware or software driving mechanisms as many as the number of slave BMSs present in the battery pack and needs to be managed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method and system capable of assigning an identifier without prior input of an identifier for a multi-slave BMS or a separate hardware configuration.
  • each slave BMS is managed by itself Generating an initial identifier by combining the digital voltage measurement values of the cells included in the battery pack and transmitting the initial identifier to the master BMS; And (b) reassigning an identifier for each initial identifier received from each slave BMS by the master BMS and transmitting the identifier to each slave BMS.
  • the identifier allocation system generates an initial identifier by combining digital voltage measurement values of cells included in a battery pack managed by the N slave BMSs for transmitting the initial identifier through a communication network. ; And a master BMS reassigning an identifier for each initial identifier received from each slave BMS through the communication network and transmitting the identifier to each slave BMS through the communication network.
  • the identifier may be allocated without prior input of an identifier for the multi-slave BMS or a separate hardware configuration.
  • the battery pack can be configured using the configured slave BMS, further simplifying the production line.
  • the initial identifier is generated by combining the digital voltage measurement values, the probability of occurrence of overlapping initial identifiers is low. Therefore, even if some of the slave BMS is newly replaced or newly assigned slave BMS, the identifiers can be operated so that the identifiers do not overlap, thereby improving adaptability to device expansion or installation and improving product reliability.
  • the operator can skip to check the identifier for the slave BMS one by one can significantly improve the work efficiency for replacement, etc. It is possible to minimize or prevent system errors caused by the system.
  • FIG. 1 is a block diagram illustrating an overall configuration of a battery pack of a multi-slave structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a process of an identifier assignment method according to an embodiment of the present invention.
  • FIG. 3 is an exemplary diagram illustrating a process of generating an initial identifier by combining digital voltage values according to an embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating an overall configuration of a battery pack of a multi-slave structure according to an embodiment of the present invention.
  • a battery pack 10 having a multi-slave structure includes a master BMS 100, a slave BMS 110, a plurality of battery cells 130 included in a slave BMS, and a battery module 120 including the same. Include.
  • the master BMS 100 corresponds to a BMS that performs a function of integrally controlling the plurality of slave BMSs 110, and communicates with each slave BMS 110 to request and receive necessary information through a communication network. Connected.
  • Each of the slave BMSs 110-1, 110-2,..., 110 -N is electrically connected to the battery modules 120-1, 120-2,. Performs a function of controlling the corresponding battery modules 120-1, 120-2, ..., 120-N, that is, one or more battery cells 130-1, 130-2, ..., 130-N. .
  • the control function of the slave BMS 110 may include various electric and electronic control functions applicable at the level of those skilled in the art, including charge / discharge control, smoothing control, switching, electrical characteristic value measurement and monitoring, error indication, on / off control, and the like. Can be.
  • the order of the plurality of slave BMSs 110-1, 110-2,..., 110 -N has a physically sequential position structure. Can be configured.
  • the communication network is a CAN (Controller Area Network) communication network. Since the CAN communication network is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.
  • FIG. 2 is a flowchart illustrating a process of an identifier assignment method according to an embodiment of the present invention.
  • step S200 when it is determined that there is a necessity of newly setting an identifier or checking or confirming or periodically checking schedule, the master BMS 100 of the present invention sends an identifier allocation start signal to the slave BMSs 110-1 and 110. -2, ..., 110-N) through the network.
  • the identifier assignment start signal is a signal for notifying that the process for allocating an identifier is performed to the slave BMSs 110-1, 110-2, ..., 110-N.
  • each of the slave BMSs 110-1, 110-2, ..., 110-N which has received the identifier allocation start signal, has a battery module 120-1, 120-2,
  • the voltages of the battery cells 130-1, 130-2, ..., 130-N in the ..., 120-N) are measured.
  • the measured voltages of the battery cells 130-1, 130-2,..., 130 -N become digital voltage measurement values through analog-to-digital (A / D) conversion.
  • the slave BMSs 110-1, 110-2, ..., 110-N combine the digital voltage measurement values to generate an initial identifier.
  • each slave BMS (110-1, 110-2, ..., 110-N) generates an initial identifier by combining at least one or more bits selected in the lower bit region of the digital voltage measurement value.
  • each slave BMS (110-1, 110-2, ..., 110-N) generates the initial identifier by combining the lowest 1 bit or the lowest 2 bits of the digital voltage measurement.
  • the initial identifier is an identifier that is used temporarily before the identifier is assigned. In this case, since N initial identifiers should not overlap each other, the present invention generates a random number by using an inherent uncertainty of the battery cell 130.
  • a method of generating an initial identifier by the slave BMS 110 will be described with reference to FIG. 3.
  • FIG. 3 is an exemplary diagram illustrating a process of generating an initial identifier by combining digital voltage values according to an embodiment of the present invention.
  • FIG. 3 an example of generating a 29-bits initial identifier of an eCAN communication network using the lowest 2 bits is illustrated.
  • the voltage of the battery cells 130-1, 130-2, ..., 130-N is measured as 3.125 (V), 3.124 (V), 3.123 (V), ..., 3.123 (V)
  • V 3.125
  • V 3.124
  • V 3.123
  • V 3.123
  • V 3.123
  • an initial identifier of 111001 ?? 01 (2) is generated by combining the lowest 2 bits of the digital voltage measurement value.
  • the digital voltage measurement values of the battery cells 130-1, 130-2,..., 130 -N have inherent uncertainties such as voltage flow, measurement noise, and quantization error. At this time, the digital voltage measurement value expressed in binary numbers is given variety by uncertainty. Therefore, when the initial identifiers are generated by combining at least one or more bits selected in the lower bit region of the digital voltage measurement value, N initial identifiers that do not overlap each other may be generated.
  • the selection of the lower bit for generating the initial identifier may take into account the number of battery modules 120 in the battery pack 10, the number of battery cells 130 in the battery module 120, or the overlapping probability of overlapping initial identifiers. Can be set in various ways.
  • the slave BMSs 110-1, 110-2, ..., 110-N transmit the generated initial identifiers to the master BMS 110.
  • the order in which the initial identifiers are transmitted between the slave BMSs 110-1, 110-2, ..., 110-N is set to be transmitted from the order in which the values of the generated initial identifiers are lower.
  • CAN Controller Area Network
  • Slave BMS 110-1, 110-2, ..., 110-N
  • the slave BMS that has stopped transmitting attempts to retransmit the initial identifier.
  • the identifier having the highest initial identifier value is transmitted last.
  • the arbitration of the transmission order according to the identifier value in the communication network is well known to those skilled in the art to which the present invention pertains, and thus a detailed description thereof will be omitted.
  • step S220 the master BMS 100 determines whether N initial identifiers have been received from each slave BMS 110-1, 110-2,..., 110 -N.
  • the master BMS 110 determines whether a predetermined time has elapsed. If the preset time has not elapsed, the initial identifier is kept waiting. However, if N initial identifiers are not received within a preset time, the process returns to step S200 and the master BMS 100 transmits to each slave BMS 110-1, 110-2, ..., 110-N. Resend the ID assignment start signal.
  • the master BMS does not receive N initial identifiers within a preset time. At this time, the master BMS determines that the initial identifiers are duplicated and retransmits the ID allocation start signal to each slave BMS (110-1, 110-2, ..., 110-N).
  • the preset initial identifier reception wait time may be variously set according to the number of slave BMSs 110, the performance of the slave BMSs 110, or the communication speed of the network.
  • step S220 When the master slave 100 receives the N initial identifiers in step S220, the process proceeds to step S240.
  • the master BMS 100 reassigns the identifier for each received initial identifier and transmits the identifier to each slave BMS 110-1, 110-2,..., 110 -N.
  • Each slave BMS (110-1, 110-2, ..., 110-N) stores the received identifier as its own identifier.
  • the master BMS 100 reassigns the identifiers in descending order of the initial identifier values received from each slave BMS (110-1, 110-2, ..., 110-N) to each slave BMS. send.
  • an identifier allocation system according to an aspect of the present invention will be described based on the above-described embodiment. However, repeated descriptions of the configuration (battery cell, battery module and communication network), the initial identifier generation method, the initial identifier transmission order, and the identifier allocation method described in detail above will be omitted.
  • An identifier allocation system includes N slave BMSs 110-1, 110-2,..., 110 -N and a master BMS 100.
  • the slave BMSs 110-1, 110-2, ..., 110-N generate an initial identifier by combining digital voltage measurement values of battery cells included in a battery pack managed by the slave BMS 110-1, 110-2, and the initial identifier. Send it through.
  • each slave BMS (110-1, 110-2, ..., 110-N) is at least one bit selected from the lower bit region of the digital voltage measurement value of the battery cells included in the battery module managed by itself Combine to create an initial identifier.
  • each slave BMS (110-1, 110-2, ..., 110-N) is a combination of the lowest 1 bit or the lowest 2 bits of the digital voltage measurement value of the battery cells included in the battery module managed by itself Create an initial identifier.
  • the slave BMSs 110-1, 110-2, ..., 110-N transmit their initial identifiers to the master BMS in descending order of their values.
  • the master BMS 100 reassigns an identifier for each initial identifier received from each slave BMS 110-1, 110-2,..., 110 -N through a communication network, and then assigns an identifier to each slave BMS through the communication network. send.
  • the master BMS 100 when the master BMS 100 does not receive N initial identifiers from each slave BMS 110-1, 110-2,..., 110 -N within a preset time, the master BMS 100 100 retransmits the initial identifier from each slave BMS (110-1, 110-2, ..., 110-N).
  • the master BMS 100 reassigns the identifiers in descending order of the initial identifier values received from the slave BMSs 110-1, 110-2, ..., 110-N. Send to (110-1, 110-2, ..., 110-N).
  • the communication network is a controller area network (CAN) communication network.
  • CAN controller area network
  • an identifier may be allocated without prior input of an identifier for a multi-slave BMS or a separate hardware configuration. Furthermore, there is no need for further input for identifiers or additional hardware configuration, which improves process productivity through shorter process times and reduced manufacturing costs, and uses a slave BMS configured with the same conditions for battery pack manufacturing.
  • the pack can be configured, further simplifying the production line.
  • the initial identifier is generated by combining digital voltage measurements, so the probability of overlapping initial identifiers is low. Therefore, even if some of the slave BMS is newly replaced or newly assigned slave BMS, the identifiers can be operated so that the identifiers do not overlap, thereby improving adaptability to device expansion or installation and improving product reliability.
  • the operator can skip the task of checking the identifier for the slave BMS one by one, which can significantly improve the work efficiency for replacement, and minimize the system error due to incorrect installation, etc. It can prevent.
  • each configuration of the battery pack 10 of the present invention illustrated in FIG. 1 should be understood as logically divided components rather than physically divided components.
  • each configuration corresponds to a logical component in order to realize the technical idea of the present invention, so that even if each component is integrated or separated, if the function performed by the logical configuration of the present invention can be realized, it is within the scope of the present invention. It should be construed that the components that perform the same or similar functions are to be interpreted as being within the scope of the present invention regardless of whether they correspond in terms of their names.

Abstract

본 발명은 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템을 제공한다. 본 발명에 따른 마스터 BMS가 통신망을 통해 N개(N은 2 이상의 정수)의 슬레이브 BMS들에 대한 식별자를 할당하는 방법에 있어서, (a) 각 슬레이브 BMS가 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성한 후 마스터 BMS로 전송하는 단계; 및 (b) 상기 마스터 BMS가 각 슬레이브 BMS로부터 수신한 초기식별자 별로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송하는 단계;를 포함한다. 본 발명에 따르면 멀티 슬레이브 BMS에 대한 식별자의 사전 입력 또는 별도의 하드웨어 구성 없이도 식별자를 할당할 수 있다.

Description

배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템
본 발명은 멀티 배터리 구조를 가지는 배터리 팩 시스템에 적용되는 멀티 슬레이브 구조의 BMS에서, 각 슬레이브에 식별자를 설정하는 방법 및 시스템에 관한 것으로서, 더욱 구체적으로는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값의 조합을 통하여 식별자를 할당 내지 설정할 수 있는 방법 및 시스템에 관한 것이다.
본 출원은 2011년 09월 05일자로 출원된 대한민국 특허출원 제 10-2011-0089746호에 기초한 우선권을 주장하며, 이들 출원의 명세서 및 도면에 기재된 모든 사항은 본 출원에 원용된다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HV, Hybrid Vehicle) 등에 보편적으로 응용되고 있다. 이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
상기 전기 차량 등에 적용되는 배터리 팩은 통상적으로 단위 셀(cell)이 복수 개 구성되는 어셈블리와 상기 어셈블리가 복수 개로 이루어지는 구성으로 이루어지며, 상기 셀은 양극 집전체, 세퍼레이터, 활물질, 전해액, 알루미늄 박막층 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 충방전이 가능한 구조가 된다.
이러한 기본적 구조에 더하여, 상기 배터리 팩은 모터 등의 구동부하에 대한 전력 공급 제어, 전류, 전압 등의 전기적 특성값 측정, 충방전 제어, 전압의 평활화(equalization) 제어, SOC(State Of Charge) 등의 추정을 위한 알고리즘이 적용되어 이차전지의 상태를 모니터링하고 제어하는 BMS(Battery Management System) 등이 추가적으로 포함되어 구성된다.
한편, 근래 에너지 저장원으로서의 활용을 비롯하여 대용량 구조에 대한 필요성이 높아지면서 복수 개의 배터리가 직렬/병렬 등으로 연결되는 멀티 모듈 구조를 가지는 배터리 팩이 보편적으로 이용되고 있다.
이러한 멀티 구조의 배터리 팩은 회로 로직이나 PCB 구성 등에 따라 다양한 형태로 구현될 수 있는데, 모니터링과 제어의 효율성을 향상시키기 위하여 배터리 팩을 구성하는 복수 개의 배터리를 각각 담당하는 복수 개의 슬레이브 BMS와 복수 개의 슬레이브 BMS를 통합 제어하는 마스터 내지 메인 BMS로 구성되는 멀티 슬레이브 구조가 주로 이용되고 있다.
이와 같은 구조에서 상기 마스터 BMS는 현재 배터리 상태를 체크하고 충방전 제어 등에 활용하기 위하여 슬레이브 BMS와 통신을 수행하여 슬레이브 BMS가 담당하는 복수 개의 배터리에 대한 데이터를 취합하게 된다.
상기와 같은 데이터 취합이나 명령 신호 체계 전달 등을 위하여 각 슬레이브BMS 노드에 대한 개별 식별자(ID)는 반드시 필요한데, 이를 위하여 종래에는 하드웨어적으로 회로 상에 미리 설정된 식별자 정보를 읽어오거나 소프트웨어적으로 EEPROM 등에 슬레이브 BMS 별로 프로그램 하여 이용하는 방법 등이 채용되고 있다.
이러한 종래의 방식은 배터리 팩 내에 존재하는 슬레이브 BMS 개수만큼의 개별적인 하드웨어 또는 소프트웨어 구동 메커니즘이 필요하고 관리되어야 하므로 그 만큼의 리소스를 많이 차지하고 구동 방식이 복잡하다는 문제점을 가진다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 멀티 슬레이브 BMS에 대한 식별자의 사전 입력 또는 별도의 하드웨어 구성 없이도 식별자를 할당할 수 있는 방법 및 시스템을 제공하는 것에 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 마스터 BMS가 통신망을 통해 N개(N은 2 이상의 정수)의 슬레이브 BMS들에 대한 식별자를 할당하는 방법에 있어서, (a) 각 슬레이브 BMS가 자신이 관리하는 배터리 팩에 포함된 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성한 후 마스터 BMS로 전송하는 단계; 및 (b) 상기 마스터 BMS가 각 슬레이브 BMS로부터 수신한 초기식별자 별로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송하는 단계;를 포함한다.
상기 목적을 달성하기 위한 본 발명에 따른 식별자 할당 시스템은 자신이 관리하는 배터리 팩에 포함된 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성하고 상기 초기식별자를 통신망을 통해 전송하는 N개의 슬레이브 BMS; 및 상기 통신망을 통하여 각 슬레이브 BMS로부터 수신된 초기식별자 별로 식별자를 다시 할당한 후 상기 통신망을 통해 각 슬레이브 BMS에게 전송하는 마스터 BMS;를 포함한다.
발명의 일 측면에 따르면, 멀티 슬레이브 BMS에 대한 식별자의 사전 입력 또는 별도의 하드웨어 구성 없이도 식별자를 할당할 수 있다.
본 발명의 다른 측면에 따르면, 식별자의 사전 입력 또는 별도의 하드웨어 구성을 위한 추가적 공정이 필요하지 않아 공정 시간의 단축, 제조 단가의 감소 등을 통한 공정 생산성을 향상 및 배터리 팩 제조 시에도 동일한 조건으로 구성된 슬레이브 BMS를 사용하여 배터리 팩을 구성할 수 있어 생산 라인의 더욱 간소해진다.
본 발명의 또 다른 측면에 따르면, 디지털 전압측정값을 조합하여 초기식별자를 생성하므로 중복되는 초기식별자의 발생 확률이 낮다. 따라서 슬레이브 BMS 중 일부가 신규로 교체되거나 식별자가 이미 부여된 슬레이브 BMS가 새롭게 장착되더라도 식별자가 중첩되지 않도록 운용할 수 있어 장치 확장 내지 설치에 대한 적응성을 높이고 제품의 신뢰성을 향상시킬 수 있다.
본 발명의 또 다른 측면에 따르면, 배터리 팩에서 새로운 슬레이브 BMS를 교체하는 경우에도 작업자가 슬레이브 BMS에 대한 식별자를 일일이 확인하는 작업을 생략할 수 있어 교체 등에 대한 작업 효율성을 상당히 개선할 수 있고 오 장착 등에 의한 시스템 오류를 최소화 내지 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 멀티 슬레이브 구조의 배터리 팩에 대한 전반적인 구성을 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 식별자 할당 방법의 과정을 도시한 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 디지털 전압값을 조합하여 초기식별자를 생성하는 과정을 도시한 예시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
먼저 본 발명의 일 측면에 따른 식별자 할당 방법을 개시한다.
식별자 할당 방법의 개시에 앞서, 본 발명의 일 실시예에 따른 배터리 팩의 구성 요소에 대한 설명부터 한다.
도 1은 본 발명의 일 실시예에 따른 멀티 슬레이브 구조의 배터리 팩에 대한 전반적인 구성을 도시한 블록도이다.
도 1을 참조하면, 멀티 슬레이브 구조의 배터리 팩(10)은 마스터 BMS(100), 슬레이브 BMS(110), 슬레이브 BMS에 포함된 다수의 배터리 셀(130) 및 이들로 이루어진 배터리 모듈(120)을 포함한다.
상기 마스터 BMS(100)는 상기 복수 개 슬레이브 BMS(110)를 통합 제어하는 기능을 수행하는 BMS에 해당하며, 각각의 슬레이브 BMS(110)와 통신을 통하여 필요한 정보를 요청하고 수신할 수 있도록 통신망으로 연결된다.
상기 슬레이브 BMS(110-1, 110-2, ..., 110-N) 각각은 자신이 담당하는 배터리 모듈(120-1, 120-2, ..., 120-N)과 전기적으로 연결되어 해당 배터리 모듈(120-1, 120-2, ..., 120-N) 즉, 하나 이상의 배터리 셀(130-1, 130-2, ..., 130-N)을 제어하는 기능을 수행한다. 상기 슬레이브 BMS(110)의 제어 기능은 충방전 제어, 평활화 제어, 스위칭, 전기적 특성값 측정 및 모니터링, 오류 표지, on/off 제어 등을 포함하여 당업자 수준에서 적용 가능한 다양한 전기 전자적 제어 기능을 포함할 수 있다.
상기 도 1에 도시된 멀티 슬레이브 구조의 배터리 팩(10)에서 상기 복수 개의 슬레이브 BMS(110-1, 110-2, ..., 110-N)의 순서는 물리적으로 순차적인 위치 구조를 가지도록 구성될 수 있다.
바람직하게 통신망은 CAN(Controller Area Network) 통신망이다. CAN 통신망은 본 발명이 속하는 기술분야의 당업자에게 널리 알려진 기술이므로 이에 대한 상세한 설명은 생략한다.
상술한 배터리 팩(10)의 구성 요소 사이에서 식별자를 할당하는 방법을 도 2 및 도 3을 참조하여 설명하도록 하겠다.
도 2는 본 발명의 일 실시예에 따른 식별자 할당 방법의 과정을 도시한 흐름도이다.
먼저 단계 S200에서, 식별자를 새롭게 설정하거나 점검 내지 확인의 필요성이 있다고 판단되는 경우 또는 주기적인 확인 스케줄 등에 의하여 본 발명의 마스터 BMS(100)는 식별자 할당 시작 신호를 상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 통신망을 통해서 전송한다. 이때 식별자 할당 시작 신호는 상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 식별자를 할당하기 위한 프로세스가 진행됨을 알리는 신호이다.
다음으로 단계 S210에서, 상기 식별자 할당 시작 신호를 수신한 슬레이브 BMS(110-1, 110-2, ..., 110-N) 각각은 자신이 담당하는 배터리 모듈(120-1, 120-2, ..., 120-N)내 배터리 셀(130-1, 130-2, ..., 130-N)의 전압을 측정한다. 측정된 배터리 셀(130-1, 130-2, ..., 130-N)의 전압은 A/D(Analog to Digital) 변환을 거쳐 디지털 전압측정값이 된다. 상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 디지털 전압측정값을 조합하여 초기식별자를 생성한다.
바람직하게 상기 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 상기 디지털 전압측정값 중 하위 비트 영역에서 선택된 적어도 하나 이상의 비트를 조합하여 초기식별자를 생성한다.
더 바람직하게 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 상기 디지털 전압측정값 중 최하위 1bit 또는 최하위 2bits를 조합하여 초기식별자를 생성한다.
초기식별자는 식별자가 할당되기 전에 임시로 사용하는 식별자이다. 이때 N개의 초기식별자는 서로 중첩되지 않아야 하므로 본 발명은 배터리 셀(130) 고유의 불확실성을 이용하여 난수를 발생시킨다.
도 3을 참조하여 슬레이브 BMS(110)가 초기식별자를 생성하는 방법을 설명하도록 하겠다.
도 3은 본 발명의 일 실시예에 따른 디지털 전압값을 조합하여 초기식별자를 생성하는 과정을 도시한 예시도이다.
도 3을 참조하면, 최하위 2bits를 사용하여 eCAN 통신망의 29bits 초기식별자를 생성하는 예시를 도시하였다. 배터리 셀(130-1, 130-2, ..., 130-N)의 전압이 3.125(V), 3.124(V), 3.123(V), ..., 3.123(V)으로 측정된 경우, A/D 변환을 거쳐 2진수로 표현하면 1100100011 11 (2), 1100100011 10 (2), 1100100011 01 (2), ..., 1100100011 01 (2)이 된다. 이때 상기 디지털 전압측정값의 최하위 2bits를 조합하여 111001......01 (2)이라는 초기식별자를 생성한다.
배터리 셀(130-1, 130-2, ..., 130-N)의 디지털 전압측정값은 전압의 유동, 측정 잡음 및 양자화 오차 등 불확실성이 내재되어 있다. 이때 2진수로 표현된 디지털 전압측정값은 하위 bit일 수록 불확실성에 의해 다양성이 부여된다. 따라서 디지털 전압측정값의 하위 bit 영역에서 선택된 적어도 하나 이상의 비트를 조합하여 초기식별자를 생성할 경우, 서로 중첩되지 않는 N개의 초기식별자를 생성할 수 있다.
상기 초기식별자를 생성하기 위한 하위 bit의 선택은 배터리 팩(10)내 배터리 모듈(120)의 갯수, 배터리 모듈(120)내 배터리 셀(130)의 갯수 또는 중첩된 초기식별자의 중복확률 등을 고려하여 다양하게 설정할 수 있다.
상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 생성된 초기식별자를 마스터 BMS(110)에 전송한다. 바람직하게 각 슬레이브 BMS(110-1, 110-2, ..., 110-N) 상호간에 초기식별자를 전송하는 순서는 생성된 초기식별자의 값이 낮은 순서부터 전송하는 것으로 설정된다. 일예로 CAN(Controller Area Network)통신의 경우, 2가닥의 꼬인 선으로 구성된 BUS통신망이다. 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 CAN통신망에 동시에 초기식별자를 전송하면서 자신의 식별자값이 다른 식별자에 비해서 높다고 판단되면 전송을 중단한다. 전송을 중단한 슬레이브 BMS는 초기식별자의 재전송을 시도하고, 결과적으로 초기식별자의 값이 가장 높은 식별자는 가장 마지막에 전송이 된다. 이와 같이 통신망에서 식별자값에 따른 전송순서의 중재는 본 발명이 속하는 기술분야의 당업자에거 널리 알려져 있는바 자세한 설명은 생략하도록 한다.
그 다음으로 단계 S220에서, 상기 마스터 BMS(100)는 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 N개의 초기식별자를 수신했는지 여부를 판단하다.
바람직하게 단계 S220에서 N개의 초기식별자를 수신하지 못 한 경우, 상기 마스터 BMS(110)는 미리 설정한 시간이 경과하였는지 여부를 판단한다. 미리 설정한 시간이 경과하지 않은 경우 계속 초기식별자 수신을 대기한다. 그러나 미리 설정한 시간 내에 N개의 초기식별자를 수신하지 못 한 경우, 단계 S200으로 되돌아가서 상기 마스터 BMS(100)가 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 식별자할당 시작 신호를 재 전송한다.
디지털 전압측정값에 내재된 불확실성에 의해 초기식별자가 중복될 확률은 극히 낮지만 중복의 가능성은 있다. 따라서 서로 다른 슬레이브 BMS(110-1, 110-2, ..., 110-N)에서 중복된 초기식별자가 생성된 경우, 마스터 BMS는 미리 설정된 시간내에 N개의 초기식별자를 수신하지 못한다. 이때 마스터 BMS는 초기식별자가 중복된 경우로 판단하여 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 식별자할당 시작 신호를 재 전송한다.
상기 미리 설정된 초기식별자 수신 대기 시간은 슬레이브 BMS(110)의 갯수, 슬레이브 BMS(110)의 성능 또는 네트워크 망의 통신 속도에 따라서 다양하게 설정될 수 있다.
단계 S220에서 마스터 슬레이브(100)가 N개의 초기 식별자를 수신한 경우, 단계 S240으로 넘어간다.
단계 S240에서, 마스터 BMS(100)는 수신한 초기식별자 별로 식별자를 다시 할당한 후 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 전송한다. 그리고 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 수신한 식별자를 자신의 식별자로 저장한다.
바람직하게, 상기 마스터 BMS(100)는 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 수신한 초기식별자 값이 낮은 순으로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송한다.
이하에서는 상술한 실시예에 기초하여 본 발명의 일 측면에 따른 식별자 할당 시스템에 대해서 설명하기로 한다. 단, 앞서 상세하게 설명된 배터리 팩의 구성(배터리 셀, 배터리 모듈 및 통신망), 초기식별자 생성방법, 초기식별자 전송 순서 및 식별자 할당 방법에 대한 반복적인 설명은 생략하기로 한다.
본 발명의 일 측면에 따른 식별자 할당 시스템은 N개(N은 2이상의 정수)의 슬레이브 BMS(110-1, 110-2, ..., 110-N) 및 마스터 BMS(100)를 포함한다.
상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 자신이 관리하는 배터리 팩에 포함된 배터리 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성하고 상기 초기식별자를 통신망을 통해 전송한다.
바람직하게 상기 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값 중 하위 비트 영역에서 선택된 적어도 하나 이상의 비트를 조합하여 초기식별자를 생성한다.
더 바람직하게 상기 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값 중 최하위 1bit 또는 최하위 2bits를 조합하여 초기식별자를 생성한다.
또한 바람직하게 상기 슬레이브 BMS(110-1, 110-2, ..., 110-N)는 초기식별자의 값이 낮은 순으로 상기 마스터 BMS에 자신의 초기식별자를 전송한다.
상기 마스터 BMS(100)는 통신망을 통하여 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 수신된 초기식별자 별로 식별자를 다시 할당한 후 상기 통신망을 통해 각 슬레이브 BMS에게 전송한다.
바람직하게 상기 마스터 BMS(100)은 미리설정한 시간내에 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 N개의 초기식별자를 수신하지 못 한 경우, 상기 마스터 BMS(100)는 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 초기식별자를 재전송 받는다.
또한 바람직하게, 상기 마스터 BMS(100)는 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)로부터 수신한 초기식별자 값이 낮은 순으로 식별자를 다시 할당한 후 각 슬레이브 BMS(110-1, 110-2, ..., 110-N)에게 전송한다.
바람직하게, 상기 통신망은 CAN(Controller Area Network) 통신망이다.
본 발명의 일 측면에 따르면, 멀티 슬레이브 BMS에 대한 식별자의 사전 입력 또는 별도의 하드웨어 구성 없이도 식별자를 할당할 수 있다. 나아가 식별자의 사전 입력 또는 별도의 하드웨어 구성을 위한 추가적 공정이 필요하지 않아 공정 시간의 단축, 제조 단가의 감소 등을 통한 공정 생산성을 향상 및 배터리 팩 제조 시에도 동일한 조건으로 구성된 슬레이브 BMS를 사용하여 배터리 팩을 구성할 수 있어 생산 라인의 더욱 간소해진다. 게다가 디지털 전압측정값을 조합하여 초기식별자를 생성하므로 중복되는 초기식별자의 발생 확률이 낮다. 따라서 슬레이브 BMS 중 일부가 신규로 교체되거나 식별자가 이미 부여된 슬레이브 BMS가 새롭게 장착되더라도 식별자가 중첩되지 않도록 운용할 수 있어 장치 확장 내지 설치에 대한 적응성을 높이고 제품의 신뢰성을 향상시킬 수 있다. 또한, 배터리 팩에서 새로운 슬레이브 BMS를 교체하는 경우에도 작업자가 슬레이브 BMS에 대한 식별자를 일일이 확인하는 작업을 생략할 수 있어 교체 등에 대한 작업 효율성을 상당히 개선할 수 있고 오 장착 등에 의한 시스템 오류를 최소화 내지 방지할 수 있다.
한편, 본 발명을 설명함에 있어, 도 1에 도시된 본 발명의 배터리 팩(10)에 대한 각 구성은 물리적으로 구분되는 구성요소라기보다는 논리적으로 구분되는 구성요소로 이해되어야 한다.
즉, 각각의 구성은 본 발명의 기술사상을 실현하기 위하여 논리적인 구성요소에 해당하므로 각각의 구성요소가 통합 또는 분리되더라도 본 발명의 논리 구성이 수행하는 기능이 실현될 수 있다면 본 발명의 범위 내에 있다고 해석되어야 하며, 동일 또는 유사한 기능을 수행하는 구성요소라면 그 명칭 상의 일치성 여부와는 무관하게 본 발명의 범위 내에 있다고 해석되어야 함은 물론이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (14)

  1. 마스터 BMS가 통신망을 통해 N개(N은 2 이상의 정수)의 슬레이브 BMS들에 대한 식별자를 할당하는 방법에 있어서,
    (a) 각 슬레이브 BMS가 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성한 후 마스터 BMS로 전송하는 단계; 및
    (b) 상기 마스터 BMS가 각 슬레이브 BMS로부터 수신한 초기식별자 별로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송하는 단계;를 포함하는 것을 특징으로 하는 식별자 할당 방법.
  2. 제1항에 있어서,
    상기 (a)단계에서, 각 슬레이브 BMS는 자신이 관리하는 배터리 모듈에 포함된 셀들의 디지털 전압측정값 중 하위 비트 영역에서 선택된 적어도 하나 이상의 비트를 조합하여 초기식별자를 생성하는 것을 특징으로 하는 식별자 할당 방법.
  3. 제2항에 있어서,
    상기 (a)단계에서, 각 슬레이브 BMS는 자신이 관리하는 배터리 모듈에 포함된 셀들의 디지털 전압측정값 중 최하위 1bit 또는 최하위 2bits를 조합하여 초기식별자를 생성하는 것을 특징으로 하는 식별자 할당 방법.
  4. 제1항에 있어서,
    상기 (a)단계에서, 상기 슬레이브 BMS는 초기식별자의 값이 낮은 순으로 상기 마스터 BMS에 자신의 초기식별자를 전송하는 것을 특징으로 하는 식별자 할당 방법.
  5. 제1항에 있어서,
    상기 마스터 BMS가 미리 설정한 시간내에 각 슬레이브 BMS로부터 N개의 초기식별자를 수신하지 못 한 경우, 상기 마스터 BMS가 각 슬레이브 BMS로부터 초기식별자를 재전송 받는 단계를 더 포함하는 식별자 할당 방법.
  6. 제1항에 있어서,
    상기 (b)단계에서, 상기 마스터 BMS가 각 슬레이브 BMS로부터 수신한 초기식별자 값이 낮은 순으로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송하는 것을 특징으로 하는 식별자 할당 방법.
  7. 제1항에 있어서,
    상기 통신망은 CAN(Controller Area Network) 통신망인 것을 특징으로 하는 식별자 할당 방법.
  8. 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값을 조합하여 초기식별자를 생성하고 상기 초기식별자를 통신망을 통해 전송하는 N개의 슬레이브 BMS; 및
    상기 통신망을 통하여 각 슬레이브 BMS로부터 수신된 초기식별자 별로 식별자를 다시 할당한 후 상기 통신망을 통해 각 슬레이브 BMS에게 전송하는 마스터 BMS;를 포함하는 것을 특징으로 하는 식별자 할당 시스템.
  9. 제8항에 있어서,
    각 슬레이브 BMS는 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값 중 하위 비트 영역에서 선택된 적어도 하나 이상의 비트를 조합하여 초기식별자를 생성하는 것을 특징으로 하는 식별자 할당 시스템.
  10. 제9항에 있어서,
    각 슬레이브 BMS는 자신이 관리하는 배터리 모듈에 포함된 배터리 셀들의 디지털 전압측정값 중 최하위 1bit 또는 최하위 2bis를 조합하여 초기식별자를 생성하는 것을 특징으로 하는 식별자 할당 시스템.
  11. 제8항에 있어서,
    상기 슬레이브 BMS는 초기식별자의 값이 낮은 순으로 상기 마스터 BMS에 자신의 초기식별자를 전송하는 것을 특징으로 하는 식별자 할당 시스템.
  12. 제8항에 있어서,
    상기 마스터 BMS가 미리설정한 시간내에 각 슬레이브 BMS로부터 N개의 초기식별자를 수신하지 못 한 경우, 상기 마스터 BMS는 각 슬레이브 BMS로부터 초기식별자를 재전송 받는 것을 특징으로 하는 식별자 할당 시스템.
  13. 제8항에 있어서,
    상기 마스터 BMS는 각 슬레이브 BMS로부터 수신한 초기식별자 값이 낮은 순으로 식별자를 다시 할당한 후 각 슬레이브 BMS에게 전송하는 것을 특징으로 하는 식별자 할당 시스템.
  14. 제8항에 있어서,
    상기 통신망은 CAN(Controller Area Network) 통신망인 것을 특징으로 하는 식별자 할당 시스템.
PCT/KR2012/007129 2011-09-05 2012-09-05 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템 WO2013036034A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12829527.6A EP2720348B1 (en) 2011-09-05 2012-09-05 Method and system for allocating identifiers to multi-slave in battery pack
PL12829527T PL2720348T3 (pl) 2011-09-05 2012-09-05 Sposób i system do przydzielania identyfikatorów do wielu części podrzędnych w zestawie akumulatorów
CN201280032586.9A CN103650290B (zh) 2011-09-05 2012-09-05 用于向电池组的多个从分配标识符的方法和系统
JP2014515776A JP5743365B2 (ja) 2011-09-05 2012-09-05 バッテリーパックのマルチスレーブに対する識別子割り当て方法及びシステム
US14/097,913 US8963507B2 (en) 2011-09-05 2013-12-05 Method and system for allocating identifiers to multi-slave in battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0089746 2011-09-05
KR1020110089746A KR101386080B1 (ko) 2011-09-05 2011-09-05 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/097,913 Continuation US8963507B2 (en) 2011-09-05 2013-12-05 Method and system for allocating identifiers to multi-slave in battery pack

Publications (2)

Publication Number Publication Date
WO2013036034A2 true WO2013036034A2 (ko) 2013-03-14
WO2013036034A3 WO2013036034A3 (ko) 2013-05-02

Family

ID=47832705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007129 WO2013036034A2 (ko) 2011-09-05 2012-09-05 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템

Country Status (7)

Country Link
US (1) US8963507B2 (ko)
EP (1) EP2720348B1 (ko)
JP (1) JP5743365B2 (ko)
KR (1) KR101386080B1 (ko)
CN (1) CN103650290B (ko)
PL (1) PL2720348T3 (ko)
WO (1) WO2013036034A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210178A1 (de) 2014-05-28 2015-12-03 Robert Bosch Gmbh Verfahren zum Starten eines Batteriemanagementsystems
US20220314832A1 (en) * 2020-02-13 2022-10-06 Lg Energy Solution, Ltd. Battery control system, battery pack, electric vehicle, and id setting method for the battery control system

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902133B2 (ja) * 2013-08-30 2016-04-13 プライムアースEvエナジー株式会社 電源装置
KR20150125433A (ko) * 2014-04-30 2015-11-09 삼성전자주식회사 슬레이브 장치의 식별자를 생성하는 방법 및 장치
KR101764472B1 (ko) * 2014-10-17 2017-08-14 주식회사 엘지화학 배터리 관리 항목의 식별 코드 할당 장치, 배터리 관리 항목의 순서화 장치 및 이를 이용한 배터리 관리 방법
CN104600792B (zh) * 2014-12-31 2017-05-03 浙江南都电源动力股份有限公司 一种储能电池管理系统的地址分配方法
KR102056476B1 (ko) * 2015-03-16 2020-01-22 주식회사 뉴파워 프라즈마 전기자동차용 소형 이차 전지 매트릭스 제어장치 및 방법
KR102479719B1 (ko) * 2015-06-04 2022-12-21 삼성에스디아이 주식회사 배터리 제어 시스템 및 방법
CN106300493B (zh) * 2015-06-26 2019-04-19 北京宝沃汽车有限公司 动力电池的管理系统、控制方法及车辆
KR102415123B1 (ko) * 2015-08-13 2022-06-30 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 에너지 저장 시스템
KR102101909B1 (ko) * 2015-11-02 2020-04-17 주식회사 엘지화학 배터리의 id 할당 장치 및 방법
JP6568955B2 (ja) * 2015-12-17 2019-08-28 エルジー・ケム・リミテッド Idの割り当てのためのバッテリモジュール及びセル構成の認識システム
CN108701871B (zh) * 2016-03-15 2021-08-31 株式会社东芝 蓄电池装置、蓄电池装置的控制方法及程序
CN107239047B (zh) * 2016-03-29 2019-09-27 华为技术有限公司 电池管理系统及对电池检测单元的编号方法
KR101924527B1 (ko) * 2016-06-16 2018-12-03 주식회사 엘지화학 에너지 저장 시스템 및 그것의 온도 제어 방법
KR101837840B1 (ko) * 2016-06-23 2018-04-19 엘지전자 주식회사 전압 분배를 이용하여 슬레이브 장치의 식별자를 설정하는 방법 및 이를 구현하는 장치
JP6654518B2 (ja) * 2016-06-30 2020-02-26 株式会社エンビジョンAescエナジーデバイス 情報処理システム、電池モジュール、制御方法、及びプログラム
KR102247391B1 (ko) * 2016-07-25 2021-05-03 삼성에스디아이 주식회사 배터리 시스템
CN106657427B (zh) * 2016-08-12 2022-07-22 上海火亮新能源科技有限公司 一种电池模组地址分配系统及方法
CN107769291A (zh) * 2016-08-23 2018-03-06 重庆无线绿洲通信技术有限公司 一种能源站电池充电的管理方法及系统
KR101945426B1 (ko) 2016-09-13 2019-02-07 주식회사 엘지화학 배터리 통신진단방법
KR102076889B1 (ko) 2017-02-15 2020-02-12 주식회사 엘지화학 셀 모듈 컨트롤러에 대한 고유번호 할당 시스템 및 방법
JP6906326B2 (ja) * 2017-02-23 2021-07-21 株式会社東芝 電池装置および電池装置の制御方法
KR102322291B1 (ko) * 2017-02-23 2021-11-04 주식회사 엘지에너지솔루션 셀 모듈 컨트롤러에 대한 고유번호 할당 시스템 및 방법
KR102101910B1 (ko) 2017-03-28 2020-04-17 주식회사 엘지화학 배터리 모듈의 id 중복 할당 방지방법
JP2018207350A (ja) * 2017-06-06 2018-12-27 株式会社デンソーテン 通信システム、通信装置および通信方法
JP7094670B2 (ja) * 2017-07-03 2022-07-04 矢崎総業株式会社 設定装置及びコンピュータ
KR102155331B1 (ko) 2017-07-06 2020-09-11 주식회사 엘지화학 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
KR102203247B1 (ko) 2017-10-10 2021-01-13 주식회사 엘지화학 무선 배터리 관리 장치 및 이를 포함하는 배터리팩
WO2020045418A1 (ja) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 セル監視回路、及び、管理システム
KR102258814B1 (ko) * 2018-10-04 2021-07-14 주식회사 엘지에너지솔루션 Bms 간 통신 시스템 및 방법
CN111355646B (zh) * 2018-12-20 2021-11-23 太普动力新能源(常熟)股份有限公司 在电池模块中管理多机电通信系统的方法以及装置
KR102405847B1 (ko) * 2019-01-10 2022-06-03 주식회사 엘지에너지솔루션 배터리 관리 장치 및 이를 포함하는 배터리 팩
JP7099339B2 (ja) 2019-01-18 2022-07-12 株式会社デンソー 電池システム
KR20200129717A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 슬레이브 bms의 자동 id 할당 시스템
CN110311824B (zh) * 2019-07-25 2021-12-28 江苏小牛电动科技有限公司 一种电池管理系统can通讯动态组网方法
US11916242B2 (en) * 2019-10-11 2024-02-27 Briggs & Stratton, Llc Commercial flexible battery pack with secondary output control
CN113497745B (zh) * 2020-04-03 2022-11-18 深圳市优贝特科技有限公司 基于Can通讯的BMS组网方法
CN111384455B (zh) * 2020-04-14 2022-04-26 杭州协能科技股份有限公司 Bms多机并联实现系统
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
EP4158718A4 (en) 2020-06-02 2024-03-13 Inventus Power Inc LARGE FORMAT BATTERY MANAGEMENT SYSTEM
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
CN112532759B (zh) * 2020-10-30 2023-03-07 深圳市禾望电气股份有限公司 总线节点标识符的自动配置方法以及总线网络系统
KR20220062887A (ko) * 2020-11-09 2022-05-17 주식회사 엘지에너지솔루션 통신 id 할당 방법 및 그 방법을 제공하는 시스템
US11404885B1 (en) 2021-02-24 2022-08-02 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11411407B1 (en) 2021-02-24 2022-08-09 Inventus Power, Inc. Large-format battery management systems with gateway PCBA

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606242A (en) * 1994-10-04 1997-02-25 Duracell, Inc. Smart battery algorithm for reporting battery parameters to an external device
KR100389890B1 (ko) * 1995-11-27 2003-09-19 삼성전자주식회사 배터리의전압및온도를측정하는장치
JPH11214166A (ja) * 1998-01-27 1999-08-06 Matsushita Electric Works Ltd 照明装置
US6691049B1 (en) * 2000-03-29 2004-02-10 Hewlett-Packard Development Company, L.P. Method and apparatus to detect that the battery gauge is out of calibration
AU2001265724A1 (en) * 2000-06-02 2001-12-11 Astec International Limited Automatic module configuration in a telecommunications power system and battery configuration with a click
JP3581825B2 (ja) * 2000-09-28 2004-10-27 日立ホーム・アンド・ライフ・ソリューション株式会社 蓄電装置
JP2005051507A (ja) * 2003-07-29 2005-02-24 Yaskawa Electric Corp 通信システムおよびそのアドレス設定方法
JP4306512B2 (ja) * 2004-01-13 2009-08-05 株式会社デンソー 通信ネットワークシステム及び通信ネットワークシステムのid設定方法
EP1949522B1 (en) * 2005-10-21 2015-07-22 LG Chemical Co. Ltd Multi-battery pack system, method for controlling the same, and battery pack
JP2008099482A (ja) * 2006-10-13 2008-04-24 Matsushita Electric Ind Co Ltd 組電池ブロックならびに電池パックシステムおよびそのアドレス設定方法
EP2092627B1 (en) * 2006-11-10 2018-05-23 Lithium Balance A/S A battery management system
US8547065B2 (en) * 2007-12-11 2013-10-01 Antonio Trigiani Battery management system
US7962661B2 (en) * 2008-06-30 2011-06-14 Lg Chem, Ltd. System and method for determining a bus address for a controller within a network
KR100995075B1 (ko) * 2008-08-26 2010-11-18 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동 방법
JP2010245860A (ja) * 2009-04-07 2010-10-28 Toyota Industries Corp バスシステム
KR101156342B1 (ko) * 2009-08-03 2012-06-13 삼성에스디아이 주식회사 배터리 id 설정 시스템 및 그 구동 방법
KR101141154B1 (ko) 2009-09-21 2012-07-13 세메스 주식회사 기판 가열 유닛, 이를 포함하는 기판 처리 장치, 그리고 이를 이용한 기판 처리 방법
KR101075352B1 (ko) * 2009-12-24 2011-10-19 삼성에스디아이 주식회사 배터리 다직렬 시스템 및 그 통신 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2720348A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210178A1 (de) 2014-05-28 2015-12-03 Robert Bosch Gmbh Verfahren zum Starten eines Batteriemanagementsystems
US20220314832A1 (en) * 2020-02-13 2022-10-06 Lg Energy Solution, Ltd. Battery control system, battery pack, electric vehicle, and id setting method for the battery control system

Also Published As

Publication number Publication date
KR101386080B1 (ko) 2014-04-17
CN103650290A (zh) 2014-03-19
KR20130026249A (ko) 2013-03-13
WO2013036034A3 (ko) 2013-05-02
EP2720348B1 (en) 2019-01-23
JP5743365B2 (ja) 2015-07-01
CN103650290B (zh) 2016-01-20
PL2720348T3 (pl) 2019-08-30
JP2014527680A (ja) 2014-10-16
US20140091769A1 (en) 2014-04-03
EP2720348A2 (en) 2014-04-16
US8963507B2 (en) 2015-02-24
EP2720348A4 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2013036034A2 (ko) 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템
WO2012050275A1 (ko) 배터리팩의 멀티 슬레이브에 대한 순차적 아이디 설정방법 및 시스템
WO2015034262A1 (ko) 멀티 bms에 대한 통신 식별자 할당 시스템 및 방법
WO2012165858A2 (ko) 전력 저장 장치, 이를 이용한 전력 저장 시스템 및 전력 저장 시스템의 구성 방법
KR101539689B1 (ko) 멀티 bms에 대한 식별자 할당 시스템 및 방법
KR101561885B1 (ko) 멀티 bms에 대한 식별자 할당 시스템 및 방법
KR101156342B1 (ko) 배터리 id 설정 시스템 및 그 구동 방법
WO2012165771A2 (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
WO2016056845A1 (ko) 배터리 관리 모듈의 통신 id 할당 방법 및 시스템
WO2020071682A1 (ko) Bms 간 통신 시스템 및 방법
KR101516370B1 (ko) 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템
WO2018164346A1 (ko) 배터리 셀 전압 데이터 처리 장치 및 방법
WO2016060368A1 (ko) 배터리 관리 항목의 식별 코드 할당 장치, 배터리 관리 항목의 순서화 장치 및 이를 이용한 배터리 관리 방법
WO2021149949A1 (ko) 종단 저항 설정 회로 및 이를 포함하는 배터리 관리 시스템
WO2015057030A1 (ko) 입력 커넥터 및 출력 커넥터의 구분 없이 데이지 체인 통신망을 구성할 수 있는 통신단말기
WO2013047973A1 (ko) 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법
WO2015126225A1 (ko) 주파수 변조를 이용하여 식별자를 설정하는 배터리 관리 유닛 및 방법
WO2022005107A1 (ko) 네트워크 라우팅 장치 및 방법
WO2015060580A1 (ko) 적은 수의 절연소자를 사용하여 2차 보호 신호 및 진단 신호를 전송할 수 있는 배터리 관리 시스템
WO2015060581A1 (ko) 적은 수의 절연소자를 사용하여 2차 보호 신호 및 진단 신호를 전송할 수 있는 배터리 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829527

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014515776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE