WO2013035782A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013035782A1
WO2013035782A1 PCT/JP2012/072729 JP2012072729W WO2013035782A1 WO 2013035782 A1 WO2013035782 A1 WO 2013035782A1 JP 2012072729 W JP2012072729 W JP 2012072729W WO 2013035782 A1 WO2013035782 A1 WO 2013035782A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
time
voltage
phase
output
Prior art date
Application number
PCT/JP2012/072729
Other languages
English (en)
French (fr)
Inventor
真生 齊藤
孝雅 中村
光治 山本
伊東 淳一
喜也 大沼
Original Assignee
日産自動車株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 国立大学法人長岡技術科学大学 filed Critical 日産自動車株式会社
Priority to CN201280035899.XA priority Critical patent/CN103765748B/zh
Priority to EP12830651.1A priority patent/EP2755313B1/en
Priority to RU2014104106/07A priority patent/RU2558749C1/ru
Priority to US14/342,842 priority patent/US9197137B2/en
Priority to KR1020147004992A priority patent/KR101588147B1/ko
Priority to BR112014000990-2A priority patent/BR112014000990B1/pt
Priority to MX2014000773A priority patent/MX2014000773A/es
Publication of WO2013035782A1 publication Critical patent/WO2013035782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power

Definitions

  • the present invention relates to a power conversion device.
  • control device for controlling a power converter comprising a PWM rectifier that performs AC-DC conversion and an inverter that is connected to the PWM rectifier and performs DC-AC conversion
  • the control device performs two-phase modulation on the inverter.
  • Two-phase modulation means for generating the output voltage command, first compensation amount calculation means for calculating a compensation amount for correcting the output voltage command to compensate for an output voltage error that occurs during two-phase modulation of the inverter, and correction Inverter PWM pattern creation means for creating a PWM pulse for the semiconductor switching element of the inverter based on the subsequent output voltage command, and rectifier PWM pattern creation means for creating a PWM pulse for the semiconductor switching element of the PWM rectifier based on the input current command Switching detecting means for detecting the presence or absence of switching of the PWM rectifier; A voltage magnitude detection means for detecting a maximum phase voltage, an intermediate phase voltage, and a minimum phase voltage from an input voltage of each phase; and a polarity determination means for a load current, and the first compensation amount calculation means includes: Power conversion characterized in that a compensation amount for correcting an output voltage command is calculated using the output of the voltage magnitude detection means, the output of the polarity discrimination means, the output of the switching detection means, the switching frequency and dead time
  • the conventional power converter control device has a problem that the commutation failure itself cannot be prevented only by compensating for the voltage error caused by the commutation.
  • An object of the present invention is to provide a power conversion device that can prevent commutation failure.
  • the present invention includes a switching time calculation unit, and a control signal generation unit that generates a control signal of the switching element based on the first switching time and the second switching time, and the switching time calculation unit includes the phase of each phase.
  • the switching elements of the upper arm circuit of the plurality of pairs of switching elements included in one phase are turned on, the switching elements of the upper arm circuit of the plurality of pairs of switching elements included in the other phase are turned off, and the other A time for turning on at least one switching element of the lower arm circuit of the plurality of pairs of switching elements included in the phase and turning off a switching element of the lower arm circuit of the pairs of the switching elements included in the one phase. Is calculated using the detected voltage detected by the voltage detecting means and the output command value.
  • a second switching time which is a time for turning on the plurality of pairs of switching elements included in the one phase of each phase and turning off the plurality of pairs of switching elements included in the other phase of each phase;
  • the switching operation overlaps between the first time point and the last time point of the second switching time. As a result, commutation failure can be prevented.
  • FIG. 5 is a diagram illustrating a relationship between a basic vector and a voltage vector in the space vector modulation unit of FIG. 4.
  • FIG. 7A is a circuit diagram of the AC power supply 1 and the matrix converter 4 in the charging system of FIG. 1. It is a schematic diagram of the switching pattern table of FIG. FIG. 2 is a diagram for explaining transition of the switching element of FIG.
  • FIG. 1 is a block diagram of a battery system including a power conversion device according to an embodiment of the present invention.
  • the power converter device of this example is applied to a charging device will be described as an example, the present example may be applied to a control device that controls a motor or the like, a vehicle including the motor, or the like.
  • the charging system of this example includes an AC power source 1, an input filter 2, voltage sensors 31 to 33, a matrix converter 4, a high-frequency transformer circuit 5, an output filter 6, and a battery 7.
  • the AC power source 1 is a three-phase AC power source and serves as a power source for the charging system.
  • the input filter 2 is a filter for rectifying AC power input from the AC power source 1 and is configured by an LC circuit including coils 21 to 23 and capacitors 24 to 26.
  • the coils 21 to 23 are connected to each phase between the AC power source 1 and the matrix converter 4.
  • the capacitors 24 to 26 are connected to the coils 21 to 23, respectively, and are connected between the phases.
  • the voltage sensors 31 to 33 are connected between the AC power supply 1 and the matrix converter 4 to detect and detect input voltages (v r , v s , v t ) of each phase from the AC power supply 1 to the matrix converter 4. The voltage is transmitted to the controller 10 described later.
  • the voltage sensor 31 is connected to the intermediate point of the r phase of the matrix converter 4, the voltage sensor 32 is connected to the intermediate point of the s phase of the matrix converter 4, and the voltage sensor 33 is connected to the intermediate point of the t phase of the matrix converter 4. ing.
  • the matrix converter 4 includes a plurality of bidirectionally switchable switching elements S rp , S rn , S sp , S sn , S tp , St n , and converts AC power input from the AC power source 1 to high-frequency AC power. And output to the high-frequency transformer circuit 5.
  • the matrix converter 4 is connected between the input filter 2 and the high frequency transformer circuit 5.
  • the switching element S rp includes a transistor Tr rp1 and a transistor Tr rp2 such as a MOSFET and an IGBT, a diode D rp1 and a diode D rp2 in order to make the element switchable in both directions.
  • the transistors Tr rp1 and Tr rp2 are connected in series in opposite directions, the diode D rp1 and the diode D rp2 are connected in series in opposite directions, and the transistor Tr rp1 and the diode D rp1 are connected in parallel in opposite directions.
  • the transistor Tr rp2 and the diode D rp2 are connected in parallel in opposite directions.
  • Switches S rn, S sp, S sn , S tp, S tn likewise, transistor Tr rn1, Tr RN2 and the diode D rn1, D bridge circuit RN2, transistors Tr sp1, Tr sp2 and diodes D sp1, D sp2 bridge circuit, transistors Tr sn1 , Tr sn2 and diode D sn1 , D sn2 bridge circuit, transistors Tr tp1 , Tr tp2 and diode D tp1 , D tp2 bridge circuit, transistors Tr tn1 , Tr tn2 and diode D tn1 , D tn2 bridge circuit.
  • three pairs of circuits in which two switching elements S rp , S rn , S sp , S sn , S tp , St n are connected in series are connected in parallel to the primary side of the transformer 51, and each pair of switching elements S
  • a three-phase single-phase matrix converter 4 is configured by a bridge circuit in which the rp , S rn , S sp , S sn , S tp , St n are electrically connected to the three-phase output part of the AC power supply 1. ing.
  • the high-frequency transformer circuit 5 includes a transformer 51 and a rectifying bridge circuit 52, and is connected between the matrix converter 4 and the output filter 6.
  • the high frequency transformer circuit 5 is a circuit that converts AC power input from the matrix converter 4 into DC power and supplies the DC power to the battery 7 via the output filter 6.
  • the transformer 51 boosts high-frequency alternating current input from the matrix converter 4 and outputs the boosted voltage to the rectifying bridge circuit 52.
  • the transformer 51 can be small.
  • the rectification bridge circuit 52 is a circuit in which a plurality of diodes are connected in a bridge shape, and converts alternating current on the secondary side of the transformer 51 into direct current.
  • the output filter 6 is composed of an LC circuit including a coil 61 and a capacitor 62, and is connected between the high-frequency transformer circuit 5 and the battery 7.
  • the output filter 6 rectifies the DC power output from the high-frequency transformer circuit 5 and supplies it to the battery 7.
  • the battery 7 is a secondary battery that is charged by the charging system of the present example, and is configured of, for example, a lithium ion battery.
  • the battery 7 is mounted on a vehicle, for example, and serves as a power source for the vehicle.
  • the charging system of this example converts alternating current from the alternating current power source into high frequency alternating current by the matrix converter 4, boosts it by the high frequency transformer circuit 5 and converts it to direct current, and then supplies high voltage direct current to the battery 7. To do.
  • FIG. 2 shows a block diagram of the charging system according to Comparative Example 1
  • FIG. 3 shows a block diagram of the charging system according to Comparative Example 2.
  • a charging system different from the present example for example, as shown in FIG. 2, there is known a system that converts AC power from an AC power source 1 to DC by a rectifier 102 via a transformer 101 and supplies it to a battery 7 via a step-down chopper 103. (Comparative Example 1).
  • the AC power source 1 converts the direct current into a direct current with the PWM rectifier 201, converts the direct current into the alternating current with the inverter circuit 203 on the primary side of the high-frequency transformer circuit 202, and boosts it with the transformer 204.
  • a system is known in which the rectification bridge circuit 205 on the secondary side of the high-frequency transformer circuit 202 converts the direct current into a direct current and supplies it to the battery 7.
  • the circuit configuration may be simple, but there is a problem that the transformer 101 becomes large and a large-capacity electrolytic capacitor needs to be connected between the rectifier 102 and the step-down chopper 103. .
  • a small transformer 204 can be used, but the loss increases due to the large number of conversions, and it is necessary to connect a large-capacity electrolytic capacitor between the PWM rectifier 201 and the high-frequency transformer 202. There was a problem that there was.
  • FIG. 4 is a block diagram of the controller 10.
  • the controller 10 is a controller that switches the switching elements S rp , S rn , S sp , S sn , S tp , St n on and off, and controls the matrix converter 4 by PWM control.
  • the controller 10 includes a coordinate conversion unit 11, a space vector modulation unit 12, a zero vector time calculation unit 13, a switching pattern table 14, and a switching signal generation unit 15.
  • the coordinate conversion unit 11 compares the detection voltages detected by the voltage sensors 31 to 33 and grasps the magnitude relationship, and then applies the detection voltages (v r , v s , v t ) of the fixed coordinate system to three phases and two phases.
  • the voltage (v ⁇ , v ⁇ ) in the stationary coordinate system is calculated, and the voltage (v ⁇ , v ⁇ ) is output to the space vector modulator 12.
  • the space vector modulation unit 12 uses space vector modulation to replace the three-phase voltage waveform with a vector, thereby using the phase angle ( ⁇ ) of the voltage (v ⁇ , v ⁇ ) to output the voltage vector output time (T 1 , T 2 ).
  • the zero vector time calculation unit 13 calculates a zero vector output time (T z ) using a carrier signal such as a triangular wave and the time calculated by the space vector modulation unit 12.
  • the frequency of the carrier signal is set higher than the frequency of the AC power of the AC power supply 1.
  • the switching pattern table 14 is a table in which switching patterns for switching the switching elements S rp , S rn , S sp , S sn , S tp , St n are set in correspondence with the phase angle ( ⁇ ). Storing.
  • the switching signal generator 15 refers to the switching pattern table 14 to extract a switching pattern corresponding to the phase angle ( ⁇ ), and outputs the extracted switching pattern, voltage vector output time (T 1 , T 2 ), and Control signals (D rp , D rn , D sp) for switching on and off the switching elements S rp , S rn , S sp , S sn , S tp , St n using the zero vector output time (T z ). , D sn , D tp , D tn ) are output to a drive circuit (not shown) included in the matrix converter 4.
  • the switching elements S rp , S rn , S sp , S sn , S tp , St n are controlled by pulse signals.
  • the switching element S rp contained in the matrix converter 4, S rn, S sp, S sn, S tp, S tn of the on and off is switched by control of the controller 10, the power is converted.
  • FIG. 5 is a graph showing a switching sequence of the switching elements S rp and S sp .
  • the high level indicates the on state, and the low level indicates the off state.
  • a voltage commutation method is used to switch the switching elements S rp , S rn , S sp , S sn , S tp , St n , and the controller 10 detects the input voltage from the detection voltage (v r , v s , v t ). The commutation is performed by monitoring the magnitude relationship between the two. Assume that the states of the transistors Tr rp1 , Tr rp2 , Tr sp1 , and Tr sp2 transition from the initial state in the order of i, ii, iii, and iv.
  • the voltage commutation method will be described with specific examples. In order to simplify the description, commutation control using only the upper arm circuit will be described.
  • As an initial state it is assumed that the transistors Tr rp1 and Tr rp2 included in the switching element S rp are on and the transistors Tr sp1 and Tr sp2 included in the switching element S sp are off. Then, the voltage of the switching element S rp is higher than the voltage of the switching element S sp state, the case of the commutation from the voltage of the switching element S rp to the voltage of the switching element S sp.
  • the transistor Tr sp1 when the transition is made from the initial state to the state (i), the transistor Tr sp1 is turned on, when the transition is made from the state (i) to the state (ii), the transistor Tr rp1 is turned off, and when the transition is made from the state (ii) to the state (iii), the transistor When Tr sp2 is turned on and the state (iii) is changed to the state (iv), the transistor Tr rp2 is turned off. Thereby, it switches so that the alternating current power supply 1 may not short-circuit, and a commutation failure is suppressed.
  • FIG. 6 is a diagram in which the detection voltages (v r , v s , v t ) are converted into a two-phase ⁇ coordinate system, and the input voltage is observed as a voltage vector in the stationary coordinate system.
  • V a of FIG. 6 represents the basic vectors corresponds to the output command value with the phase angle of the input voltage at the ⁇ coordinate system (theta) in the direction component.
  • the basic vector rotates around the center point shown in FIG. 6 according to the magnitude relationship of the input voltage of each phase.
  • the coordinates are divided into six regions divided by 60 degrees counterclockwise from the ⁇ axis.
  • the axes V 1 to V 6 are assigned to the boundary lines of the respective regions.
  • the area between V 1 and V 2 is “area 1”
  • the area between V 2 and V 3 is “area 2”
  • the area between V 3 and V 4 is “area”. 3 ”
  • the area between V 4 and V 5 is“ area 4 ”
  • the area between V 5 and V 6 is“ area 5 ”
  • the area between V 6 and V 1 is“ area 5 ”.
  • V 7 to V 9 are assigned to the origin.
  • V 1 to V 9 represent vectors of voltages output from the matrix converter 4.
  • a vector of V 1 to V 6 having a magnitude as a vector (non-zero) indicates that a non-zero voltage is output from the matrix converter 4. That is, the vectors V 1 to V 6 correspond to non-zero voltage vectors (hereinafter referred to as “voltage vectors”).
  • the vectors V 7 to V 9 indicate that the output voltage from the matrix converter 4 becomes zero. That is, the vectors of V 7 to V 9 indicate zero voltage vectors (hereinafter referred to as “zero vectors”).
  • the voltage vectors V 1 to V 9 are associated with different switching patterns of the switching elements S rp , S rn , S sp , S sn , S tp , St n , and the input voltage is in which area.
  • a switching pattern for operating the switching elements S rp , S rn , S sp , S sn , S tp , St n is determined depending on whether they belong. The relationship between the voltage vectors V 1 to V 9 and the switching pattern will be described later.
  • the space vector modulation section 12 determines whether the phase angle of the fundamental vector v a (theta), the input voltage at the detection time point belongs to which area.
  • the space vector modulator 12 since the basic vector v a is area 1, the space vector modulator 12, voltage (v ⁇ , v ⁇ ) from the phase angle (theta), it determines that the input voltage belongs to the area 1 To do. Further, for example, the magnitude relationship of the input voltages (v r , v s , v t ) of each phase changes, and the phase angle ( ⁇ ) of the ⁇ axis voltages (v ⁇ , v ⁇ ) transformed by the coordinate transformation unit 11 is changed. When the angle reaches 90 degrees, the space vector modulation unit 12 specifies the area 2 including the phase angle of 90 degrees.
  • the space vector modulation unit 12 calculates the output time of the voltage vector from the area axis component of the basic vector (v a ).
  • the space vector modulator 12 using a V 1 axis and V 2 axis which is the axis of the area 1, component along the V 1 axis ( V a1 ) and a component along the V 2 axis (V a2 ) are calculated.
  • the magnitude of the V 1 axis component (V a1 ) is the output time of the switching pattern corresponding to V 1
  • the magnitude of the V 2 axis component (V a2 ) is the output time of the switching pattern corresponding to V 2. .
  • the output time of the voltage vector (V 1 to V 6 ) is T 1 and T 2
  • the output time of the zero vector (V 7 to V 9 ) is T z .
  • the output time of the first voltage vector of the two voltage vectors is T 1
  • the output time of the voltage vector is T 2 .
  • Each output time (T 1 , T 2 , T z ) is represented by a normalized time corresponding to the carrier period.
  • the space vector modulation unit 12 calculates the output time (T 1 , T 2 ) so that it becomes equal to or less than the predetermined lower limit value.
  • the lower limit value corresponds to a time for securing the output time (T z ), and is set to a time shorter than the half-cycle time of the carrier.
  • Area 1 has a phase angle between 0 and 60 degrees. For example, when the phase angle of the basic vector (v a ) is between 0 and 30 degrees, the magnitude of the V 1 axis component (V a1 ) is larger than the magnitude of the V 2 axis component (V a2 ). Therefore, the output time (T 1 ) of the switching pattern of V 1 is longer than the output time (T 2 ) of the switching pattern of V 2 .
  • Area 4 has a phase angle between 180 degrees and 240 degrees. For example, when the phase angle of the basic vector (v a ) is between 210 degrees and 240 degrees, the magnitude of the V 5 axis component (V a5 ) is larger than the magnitude of the V 4 axis component (V a4 ).
  • the output time (T 2 ) of the switching pattern of V 5 is longer than the output time (T 1 ) of the switching pattern of V 4 .
  • space vector modulator 12 v alpha corresponding to each phase of the detection voltage, and calculates the phase angle (theta) using a v beta, from the basic vector V a with the phase angle (theta) as the direction component
  • the voltage vector output times (T 1 , T 2 ) are calculated and output to the zero vector time calculator 13.
  • the zero vector time calculation unit 13 subtracts the total time of the output time (T 1 ) and the output time (T 2 ) from a half cycle (half cycle) of a predetermined carrier cycle, thereby obtaining a zero vector ( T z ) is calculated. Since the space vector modulation unit 12 calculates the output time (T 1 ) and the output time (T 2 ) so that the total time is equal to or less than a predetermined lower limit time, the zero vector time calculation unit 13 The time of T z ) can be calculated. In this example, in order to change the output power of the matrix converter 4 to an alternating current, a time for outputting a non-zero voltage and a time for a zero voltage are provided periodically with respect to the carrier period.
  • the zero vector output time (T z ) is calculated from the time corresponding to the half cycle of the carrier, from the output time (T 1 ) and the output time (T 2 ). It will be the time after deducting.
  • the zero vector time calculation unit 13 outputs the zero vector time (Tz) and the voltage vector time (T 1 , T 2 ) to the switching signal generation unit 15.
  • the switching signal generation unit 15 uses the switching pattern stored in the switching pattern table 14, the zero vector time (Tz), and the voltage vector time (T 1 , T 2 ) to switch the switching elements S rp , S 2.
  • a switching signal for driving rn , S sp , S sn , S tp , St n is generated.
  • FIG. 7A is a diagram in which a switching pattern is added to the vector diagram of FIG. 6, and FIG. 7B is a simplified circuit diagram of the AC power supply 1 and the matrix converter 4 in the charging system of FIG. FIG.
  • “1” indicates an on state, and “0” indicates an off state.
  • the vectors (V 1 to V 9 ) correspond to the switching patterns of the switching elements S rp , S rn , S sp , S sn , S tp , St n .
  • the switching elements S rp , S tn are turned on and the other switching elements S rn , S sp , S sn , S tp are turned off, and in the voltage vector (V 2 ), the switching elements S sp , S t other switching elements to tn on the S rp, S rn, S sn , S tp off the voltage vector (V 3) in the switching element S rn, other switching elements to turn on S sp S rp, S sn, The S tp and S tn are turned off, the switching elements S rn and S tp are turned on in the voltage vector (V 4 ), the other switching elements S rp , S
  • the switching elements S rp , S sn are turned on.
  • the switching element S rn, S sp S tp to turn off the S tn. That is, in the voltage vector (V 1 to V 6 ), the switching elements S rp , S sp and S tp of the upper arm circuit included in one phase among the phases are turned on, and the switching of the upper arm circuit included in the other phase is turned on.
  • the elements S rp , S sp , S tp are turned off, and at least one switching element S rn , S sn , S tn of the lower arm circuit included in the other phase is turned on and included in the one phase
  • the switching elements S rn , S sn , and S tn of the lower arm circuit are turned off.
  • the output side of the matrix converter 4 Outputs a non-zero voltage.
  • two vectors serving as the boundary between the areas can be used to output waveforms having different voltage levels from the matrix converter 4.
  • a switching pattern is also assigned to the zero vector (V 7 to V 9 ) indicated by the origin.
  • the switching elements S rp , S rn are turned on and the other switching elements S sp , S sn , S tp , St n are turned off, and in the vector (V 8 ), the switching elements S sp , S sn are turned on.
  • the switching elements S rp , S rn , S sp , S sn , S tp , St n included in one phase of each phase are turned on and included in the other phases.
  • the switching elements S rp , S rn , S sp , S sn , S tp , St n are turned off.
  • the output voltage vector (V 1 to V 6 ) and the output time (T 1 , T 2 ) are determined.
  • the zero vector time calculation unit 13 also calculates a zero vector (V 7 to V 9 ) and an output time (T z ). Since the matrix converter 4 is set for the purpose of outputting AC power, the switching elements S rp , S rn , ... Are reversed in the second half cycle with respect to the switching control in the first half cycle of the carrier cycle. By controlling S sp , S sn , S tp , and St n , output power having a polarity opposite to that of the first half cycle can be obtained.
  • the switching pattern table 14 stores a switching pattern corresponding to the area of FIG. Further, the switching signal generation unit 15 calculates each output time of the vectors (V 1 to V 9 ) with respect to the carrier period from the output time (T 1 , T 2 ) of the voltage vector and the output time (T z ) of the zero vector. Calculate to generate a switching signal.
  • FIG. 8 is a schematic diagram showing a table stored in the switching pattern table 14.
  • areas 1 to 6 correspond to areas 1 to 6 shown in FIG. 6, and V 1 to V 9 are vectors (V 1 to V 9 ) and S rp , S rn , S sp , S sn , S tp and S tn correspond to the switching elements S rp , S rn , S sp , S sn , S tp and St n .
  • one period of the carrier is divided into six when it corresponds to the output time (T 1 , T 2 , T z ). The state is changed from state (1) to state (6) in time series.
  • the switching pattern table 14 sequentially outputs two voltage vectors and one zero vector in the first half cycle of the carrier cycle, and in the second half cycle, The switching pattern is set so that two voltage vectors and one zero vector are output in order.
  • FIG. 9 is a circuit diagram in which the circuit diagram of the AC power supply 1 and the matrix converter 4 in the charging system of FIG. 1 is simplified.
  • Each switching element S rp , S in each state (1) to (6) is shown in FIG.
  • the on / off states of rn , S sp , S sn , S tp , St n and the direction of the current flowing through the primary side of the transformer 51 are indicated by arrows.
  • the controller 10 when transitioning between the states such as the state (1) to the state (2) and the state (2) to the state (3), the controller 10 is either an upper arm circuit or a lower arm circuit.
  • the switching elements S rp , S rn , S sp , S sn , S tp , S tn of one arm circuit are turned on (turned off to on), and the switching elements S rp , S rn , S of the other arm circuit are turned on.
  • sp , S sn , S tp , and St n are kept on.
  • one switching element S rp , S rn , S sp , S sn , S tp , St n of the switching elements S rp , S rn , S sp , S sn , S tp , St n in the on state. Is turned off, but the other switching elements S rp , S rn , S sp , S sn , S tp , St n are fixed.
  • the switching element S rp of the upper arm circuit, S rn , S sp , S sn , S tp , St n , or the switching elements S rp , S rn , S sp , S sn , S tp , St n of the lower arm circuit are not continuously switched.
  • the switching elements S rp , S rn , S sp , S sn , S tp , St n are alternately switched between the upper arm circuit and the lower arm circuit.
  • FIG. 9 illustrates the switching pattern of area 1, switching control is performed for areas 2 to 6 using a pattern that reduces the number of switching operations under the same conditions as described above.
  • the output current of the matrix converter 4 is positive, and in the states (4) to (6), the output current of the matrix converter 4 is negative.
  • the output of the matrix converter 4 becomes an alternating current by controlling the switching elements S rp , S rn , S sp , S sn , S tp , St n with the switching pattern of the area 1 of the switching pattern table 14.
  • switching control is performed in the pattern shown in FIG. 8 so that the output of the matrix converter 4 becomes alternating current.
  • the switching pattern table 14 stores the switching pattern corresponding to the phase angle ( ⁇ ).
  • FIG. 10 is a graph for explaining the relationship between the carrier and the output time (T 1 , T 2 , T z ).
  • the switching signal generator 15 sets a command value corresponding to the output time (T 1 to T 2 ) while synchronizing with the carrier cycle. Since the controller 10 performs control by PWM control, the length of the output time (T 1 , T 2 , T z ) of the voltage vector and zero vector becomes the command value (voltage value). Also, when setting a command value for the output time (T 1, T 2, T z), the maximum amplitude of the carrier, two voltage vectors and output time for outputting one zero vector (T 1, T 2, T z ) is normalized.
  • the output timing of the voltage vector and the zero vector in the first half cycle of the carrier, among the voltage vectors (V 1 to V 6 ) shown in FIG. Is set so that the zero vector (V 7 to V 9 ) is output after the two voltage vectors are output.
  • the output time of the two voltage vectors (V 1 to V 6 ) is inverted with respect to the first half, and then the zero vector (V 7 to V 9 ) is output.
  • the command value is set.
  • the switching signal generator 15 when the phase angle ( ⁇ ) is between 0 degrees and 30 degrees (area 1), the switching signal generator 15 generates a carrier in the first half of the carrier as shown in FIG.
  • a command value (T 1 ) is provided at a level corresponding to the output time (T 1 ) with respect to the low level, and a level corresponding to the output time (T 2 ) is added based on the command value (T 1 ).
  • a command value (T 2 ) is provided.
  • the switching signal generator 15 provides a command value (T 2 ) when the level corresponding to the output time (T 2 ) is lowered with respect to the high level of the carrier, and the command value When the level corresponding to the output time (T 1 ) is lowered with reference to (T 2 ), the command value (T 1 ) is provided.
  • the switching signal generation unit 15 compares the set command value with the carrier to determine the output timing of the voltage vector and the zero vector. Further, as described above, when command values are set for the output times (T 1 , T 2 , T z ) and compared with the carrier, it is separated into six states for one cycle of the carrier. The six states correspond to the states (1) to (6) shown in FIG. That is, the switching signal generation unit 15 determines the output timing of the switching pattern stored in the switching carrier table by comparing the output time (T 1 , T 2 , T z ) with the carrier.
  • the switching signal generation unit 15 sets the switching pattern corresponding to the phase angle ( ⁇ ) to the switching pattern table. 14, switching signals are generated so that the switching elements S rp , S rn , S sp , S sn , S tp , St n are driven at the output timing according to the extracted pattern, and each switching element S rp , S rn , S sp , S sn , S tp , and St n .
  • the switching pattern of area 1 in FIG. 8 is used, and the output time (T 1 ) starts from the peak of the carrier valley.
  • the switching control for outputting the voltage vector (V 1 ) is performed, the switching control for outputting the voltage vector (V 2 ) is performed during the subsequent output time (T 2 ), and the subsequent output time (T 2 ).
  • switching control for outputting a zero vector (V 8 ) is performed.
  • switching control for outputting the voltage vector (V 5 ) is performed during the output time (T 2 ) starting from the peak of the carrier peak, and the subsequent output time ( Switching control for outputting the voltage vector (V 4 ) is performed during T 1 ), and switching control for outputting the zero vector (V 7 ) is performed during the subsequent output time (T z ).
  • FIG. 11 is a time characteristic of the output voltage waveform is longer than the output time (T 1) is the output time (T 2)
  • FIG. 12 is output time (T 2) is output time (T 1) long when the output voltage from the The time characteristics of the waveform are shown.
  • the phase angle ( ⁇ ) is 0 degree to 30 degrees
  • the output time (T 1 ) is longer than the output time (T 2 )
  • the voltage waveform output from the matrix converter 4 is as shown in FIG. Transition to.
  • the phase angle ( ⁇ ) is 30 to 60 degrees
  • the output time (T 2 ) is longer than the output time (T 1 )
  • the voltage waveform output from the matrix converter 4 is as shown in FIG. It changes as follows.
  • this example uses the output time (T 1 , T 2 ) for outputting the voltage vector and the output time (T z ) for outputting the zero vector, so that the switching elements S rp , S rn , S sp , S sn , S tp , and Stn are controlled to make the output time (T z ) included in the first half cycle of the carrier equal to the output time (T z ) included in the first half cycle of the carrier.
  • the detected voltage of the intermediate voltage of each phase is set as a command value (v u * , v v * , v w * ).
  • An inverter device (Comparative Example 3) that controls the switching element by comparing with a triangular wave carrier is known.
  • FIG. 13 shows the waveforms of the carrier and command values (v u * , v v * , v w * ) and the output voltage of the inverter circuit. As shown in FIG.
  • Comparative Example 3 uses a theoretical formula that controls the level of the output voltage when the carrier exceeds the command value, and the theoretical formula is inverted at the peak and valley of the carrier. It is controlled as follows. That is, in the comparative example, the level of the output voltage is set by comparing the detection voltage with the carrier, and control for outputting alternating current is performed. Therefore, the zero voltage period ( ⁇ 1, ⁇ 1 in FIG. Is equivalent). Since one zero voltage period ( ⁇ 1 in FIG. 13) is shortened, the switching operation interval is shortened at the first time point and the last time point of the zero voltage period, and commutation failure occurs. Further, in the comparative example, since the zero voltage period is not defined as the predetermined period with respect to the carrier cycle, there is a problem that the control of the time for outputting the zero voltage becomes complicated.
  • the zero vector output time (T z ) is ensured with respect to the carrier period, the switching operation interval at the first time point and the last time point of the zero voltage period is prevented from being shortened, Commutation failure can be prevented. That is, as shown in FIG. 14, since the zero vector output period is evenly allocated for each half cycle of the carrier, the zero vector output time (T z ) is not extremely shortened, and commutation failure is prevented. Can be prevented.
  • the number of short pulses applied when controlling the switching elements S rp , S rn , S sp , S sn , S tp , St n can be reduced, and it is possible to prevent a load from being concentrated on the elements. it can.
  • FIG. 14 is a graph for explaining the relationship between the carrier and the output time (T 1 , T 2 , T z ) and the time characteristic of the output voltage of the matrix converter 4 in this example.
  • the output time (T z ) is set to a time obtained by subtracting the output time (T 1 , T 2 ) from the time corresponding to the half cycle of the carrier.
  • this example shows an output time (T 1 ) for turning on one of the switching elements included in the upper arm circuit and turning on one of the switching elements included in the lower arm circuit,
  • the switching elements are controlled by an output time (T 2 ) in which the other switching elements included in the arm circuit are turned on and the other switching elements included in the lower arm circuit are turned on.
  • the output time (T 1 ) is set as the time before the output time (T 2 ), and in the second half cycle of the carrier, the output time (T 1 ) is set as the output time ( T 2) the time after. This makes it possible to equalize the zero vector output time on the positive side and the negative side of the output voltage of the matrix converter 4.
  • the output time (T 1 , T 2 , T z ) is calculated from the voltage converted by the coordinate conversion unit 13, and the switching pattern corresponding to the phase of the converted voltage is referred to the switching pattern table 14.
  • the switching elements (S rp , S rn , S sp , S sn , S tp , St n ) are controlled. Thereby, the output time (T z ) of the zero vector is ensured, and commutation failure can be prevented.
  • the output time (T 1 , T 2 ) of two voltage vectors is first arranged starting from the peak of the valley of the carrier, and then the output time of the zero vector ( T z ) has been placed, but it is not necessarily in this order.
  • the half of the output time (T z ) of the zero vector is arranged starting from the peak of the carrier valley with respect to the half cycle of the carrier, and then the output of two voltage vectors Times (T 1 , T 2 ) may be arranged, and finally half the remaining output time (T z ) may be arranged.
  • the output time (T 1 , T 2 ) and the output time (T z ) are assigned in correspondence with the half cycle of the carrier, but it is not always necessary to set the half cycle of the carrier. It may be short or long. Further, the predetermined lower limit time in the space vector modulation unit 12 is not necessarily set to a time shorter than a half cycle of the carrier, and may be a time shorter than a time corresponding to a part of the carrier cycle.
  • the output time to output two voltages vector (V 1 ⁇ V 6) ( T 1, T 2) was controlled, not necessarily two voltage vectors (V 1 ⁇ V 6 ) is not necessary, and may be one voltage vector (V 1 to V 6 ) or three voltage vectors (V 1 to V 6 ).
  • the switching pattern shown in FIG. 8 is merely an example, and the voltage vector and zero vector patterns may be interchanged, and other switching patterns may be used to output the voltage vector and zero vector.
  • the matrix converter 4 corresponds to the “conversion circuit” of the present invention
  • the voltage sensors 31 to 33 are the “voltage detection means”
  • the controller 10 is the “control means”
  • the space vector modulation unit 12 and the zero vector time calculation unit 13.
  • the switching signal generator 15 is the “control signal generator”
  • the output time (T 1 , T 2 ) is the “first switching time”
  • the output time (T z ) is “the first time”.
  • the switching pattern table 14 corresponds to “table”
  • the coordinate conversion unit 11 corresponds to “coordinate conversion means”.

Abstract

 双方向にスイッチング可能な複数対のスイッチング素子を各相に接続し、入力された交流電力を交流電力に変換する変換回路を備え、前記各相のうち一の相に含まれる前記複数対のスイッチング素子の上アーム回路のスイッチング素子をオンに、他の相の前記上アーム回路のスイッチング素子をオフにし、かつ、前記他の相の下アーム回路の少なくとも一つのスイッチング素子をオンに、前記一の相の下アーム回路のスイッチング素子をオフにする時間である第1スイッチング時間を算出し、前記各相の前記一の相のスイッチング素子をオンに、前記各相の他の相のスイッチング素子をオフにする時間である第2スイッチング時間を算出し、前記第2スイッチング時間は、前記変換回路から出力される交流電力の1周期のうち、前半の半周期に含まれる前記第2スイッチング時間と後半の半周期に含まれる前記第2スイッチング時間が等しい。

Description

電力変換装置
 本発明は、電力変換装置に関するものである。
 交流-直流変換を行うPWM整流器と、このPWM整流器に接続されて直流-交流変換を行うインバータと、からなる電力変換器を制御する制御装置において、前記制御装置は、インバータを二相変調するための出力電圧指令を生成する二相変調手段と、インバータの二相変調時に発生する出力電圧誤差を補償するために出力電圧指令を補正する補償量を演算する第1の補償量演算手段と、補正後の出力電圧指令に基づいてインバータの半導体スイッチング素子に対するPWMパルスを作成するインバータPWMパターン作成手段と、入力電流指令に基づいてPWM整流器の半導体スイッチング素子に対するPWMパルスを作成する整流器PWMパターン作成手段と、PWM整流器のスイッチングの有無を検出するスイッチング検出手段と、各相の入力電圧から最大相の電圧、中間相の電圧、最小相の電圧を検出する電圧大小検出手段と、負荷電流の極性判別手段と、を備え、第1の補償量演算手段は、前記電圧大小検出手段の出力、前記極性判別手段の出力、前記スイッチング検出手段の出力、インバータのスイッチング周波数及びデッドタイムを用いて、出力電圧指令を補正する補償量を演算することを特徴とする電力変換器の制御装置が知られている(特許文献1)。
 しかしながら、従来の電力変換器の制御装置では、転流により生じた電圧誤差を補償するだけで、転流失敗自体を防ぐことはできない、という問題があった。
特開2006-20384号公報
 本発明は、転流失敗を防止することができる電力変換装置を提供することを目的とする。
 本発明は、スイッチング時間算出部と、第1スイッチング時間及び第2スイッチング時間に基づいて、スイッチング素子の制御信号を生成する制御信号生成部を有し、前記スイッチング時間算出部は、各相のうち一の相に含まれる複数対のスイッチング素子の上アーム回路のスイッチング素子をオンに、他の相に含まれる前記複数対のスイッチング素子の前記上アーム回路のスイッチング素子をオフにし、かつ、前記他の相に含まれる前記複数対のスイッチング素子の下アーム回路の少なくとも一つのスイッチング素子をオンに、前記一の相に含まれる前記複数対のスイッチング素子の下アーム回路のスイッチング素子をオフにする時間である第1スイッチング時間を、電圧検出手段により検出された検出電圧と出力指令値を用いて算出し、前記各相の前記一の相に含まれる前記複数対のスイッチング素子をオンに、前記各相の他の相に含まれる前記複数対のスイッチング素子をオフにする時間である第2スイッチング時間を、キャリアと前記第1スイッチング時間とを用いて算出し、変換回路から出力される交流電力の1周期のうち、前半の半周期に含まれる第2スイッチング時間と後半の半周期に含まれる第2スイッチング時間とを等しくすることによって上記目的を達成する。
 本発明によれば、当該前半の半周期及び当該後半の半周期に第2スイッチング時間が均等に割り振られるので、第2スイッチング時間の最初の時点と最後の時点との間におけるスイッチング動作の重複が避けられ、その結果、転流失敗を防ぐことができる。
本発明の実施形態に係る電力変換装置を含む充電システムのブロック図である。 比較例1に係る充電システムのブロック図である。 比較例2に係る充電システムのブロック図である。 図1の電力変換装置を制御するコントローラのブロック図である。 図1のr相のスイッチング素子のスイッチングシーケンスを示すグラフである。 図4の空間ベクトル変調部における、基本ベクトルと電圧ベクトルとの関係を示す図である。 (a)図6のベクトル図にスイッチングパターンを付け加えた図(b)図1の充電システムのうち、交流電源1及びマトリクスコンバータ4の回路図である。 図4のスイッチングパターンテーブルの概要図である。 エリア1における、図1のスイッチング素子の遷移を説明するための図である。 図4のコントローラにおける、キャリアと出力時間との関係を示すグラフである。 図1のマトリクスコンバータの出力電圧波形を示すグラフである。 図1のマトリクスコンバータの出力電圧波形を示すグラフである。 比較例3のインバータ装置における、キャリアと指令値との関係、及び、出力電圧波形を示すグラフである。 図4のコントローラにおける、キャリアと出力時間との関係及び出力電圧波形を示すグラフである。 本発明の変形例の電力変換装置に係る、キャリアと出力時間との関係及び出力電圧波形を示すグラフである。
 以下、本発明の実施形態を図面に基づいて説明する。 
《第1実施形態》
 図1は、本発明の実施形態に係る電力変換装置を含むバッテリシステムのブロック図である。以下、本例の電力変換装置を充電装置に適用した場合を例として説明するが、本例は、モータ等を制御する制御装置やモータを含む車両等に適用してもよい。
 本例の充電システムは、交流電源1と、入力フィルタ2と、電圧センサ31~33と、マトリクスコンバータ4と、高周波トランス回路5と、出力フィルタ6と、バッテリ7とを備えている。
 交流電源1は、三相交流電源であって、充電システムの電力源となる。入力フィルタ2は、交流電源1から入力される交流電力を整流するためのフィルタであって、コイル21~23とコンデンサ24~26とのLC回路により構成されている。コイル21~23は、交流電源1とマトリクスコンバータ4との間で、各相にそれぞれ接続されている。コンデンサ24~26は、コイル21~23にそれぞれ接続され、各相間に接続されている。
 電圧センサ31~33は、交流電源1とマトリクスコンバータ4との間に接続され、交流電源1からマトリクスコンバータ4への各相の入力電圧(vr、vs、vt)を検出し、検出電圧を後述するコントローラ10に送信する。電圧センサ31はマトリクスコンバータ4のr相の中間点に接続され、電圧センサ32はマトリクスコンバータ4のs相の中間点に接続され、電圧センサ33はマトリクスコンバータ4のt相の中間点に接続されている。
 マトリクスコンバータ4は、複数の双方向にスイッチング可能なスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを有し、交流電源1から入力される交流電力を高周波の交流電力に変換し、高周波トランス回路5に出力する。マトリクスコンバータ4は、入力フィルタ2と高周波トランス回路5との間に接続されている。スイッチング素子Srpは双方向にスイッチング可能な素子とするために、MOSFETやIGBTなどのトランジスタTrrp1及びトランジスタTrrp2と、ダイオードDrp1及びダイオードDrp2を有している。トランジスタTrrp1及びトランジスタTrrp2は互いに逆方向で直列に接続され、ダイオードDrp1及びダイオードDrp2は互いに逆方向で直列に接続され、トランジスタTrrp1及びダイオードDrp1は互いに逆方向で並列に接続され、トランジスタTrrp2及びダイオードDrp2は互いに逆方向で並列に接続されている。他のスイッチング素子Srn、Ssp、Ssn、Stp、Stnも同様に、トランジスタTrrn1、Trrn2とダイオードDrn1、Drn2のブリッジ回路、トランジスタTrsp1、Trsp2とダイオードDsp1、Dsp2のブリッジ回路、トランジスタTrsn1、Trsn2とダイオードDsn1、Dsn2のブリッジ回路、トランジスタTrtp1、Trtp2とダイオードDtp1、Dtp2のブリッジ回路、トランジスタTrtn1、Trtn2とダイオードDtn1、Dtn2のブリッジ回路により構成されている。
 すなわち、2つのスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを直列に接続した3対の回路がトランス51の一次側に並列に接続され、各対のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stn間と交流電源1の三相出力部とがそれぞれ電気的に接続されたブリッジ回路により、三相単相のマトリクスコンバータ4が構成されている。
 高周波トランス回路5は、トランス51と整流ブリッジ回路52とを有し、マトリクスコンバータ4と出力フィルタ6との間に接続されている。高周波トランス回路5は、マトリクスコンバータ4から入力される交流電力を直流電力に変換して、出力フィルタ6を介してバッテリ7に供給する回路である。トランス51は、マトリクスコンバータ4から入力される高周波の交流を昇圧し整流ブリッジ回路52に出力する。なお、マトリクスコンバータ4から出力される交流は高周波であるため、トランス51は小型のものを用いることができる。整流ブリッジ回路52は、複数のダイオードをブリッジ状に接続した回路であって、トランス51の二次側の交流を直流に変換する。
 出力フィルタ6は、コイル61及びコンデンサ62によるLC回路で構成され、高周波トランス回路5とバッテリ7との間に接続されている。出力フィルタ6は、高周波トランス回路5から出力される直流電力を整流し、バッテリ7に供給する。バッテリ7は、本例の充電システムにより充電される二次電池であって、例えばリチウムイオン電池等で構成されている。バッテリ7は、例えば車両に搭載され、車両の動力源となる。
 これにより、本例の充電システムは、交流電源からの交流をマトリクスコンバータ4で高周波の交流に変換し、高周波トランス回路5で昇圧し直流に変換した上で、バッテリ7に高圧の直流電力を供給する。
 ここで、本例の電力変換装置を用いた、図1に示す充電システムの特徴を、下記の比較例1及び2と対比しつつ説明する。図2は比較例1に係る充電システムのブロック図を示し、図3は比較例2に係る充電システムのブロック図を示す。本例とは異なる充電システムとして、例えば図2に示すように、交流電源1からトランス101を介して整流器102で直流に変換し、降圧チョッパ103を介してバッテリ7に供給するシステムが知られている(比較例1)。また、本例とは異なる他の充電システムとして、交流電源1からPWM整流器201で直流に変換し、高周波トランス回路202の一次側のインバータ回路203で直流を交流に変換して、トランス204で昇圧し、高周波トランス回路202の二次側の整流ブリッジ回路205で直流に変換し、バッテリ7に供給するシステムが知られている。
 比較例1では回路構成は簡単なものでよいが、トランス101が大型になる、及び、整流器102と降圧チョッパ103との間に大容量の電解コンデンサを接続する必要がある、という問題があった。また比較例2では、トランス204は小型のものを使用できるが、変換回数が多いため損失が大きくなる、及び、PWM整流器201と高周波トランス202との間に大容量の電解コンデンサを接続する必要がある、という問題があった。
 本例では、上記のようにマトリクスコンバータ4を用いることで、電力変換による損失を減少し、トランス51の一次側に大容量の電解コンデンサを必要とせず、またトランス51の小型化を実現することができる。
 次に、図4を用いて、本例の電力変換装置に含まれるマトリクスコンバータ4を制御するコントローラ10について説明する。図4はコントローラ10のブロック図である。コントローラ10は、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのオン及びオフを切り換え、マトリクスコンバータ4をPWM制御で制御するコントローラである。コントローラ10は、座標変換部11と、空間ベクトル変調部12と、ゼロベクトル時間算出部13とスイッチングパターンテーブル14とスイッチング信号生成部15とを有している。
 座標変換部11は、電圧センサ31~33で検出された検出電圧を比較し、大小関係を把握した上で、固定座標系の検出電圧(vr、vs、vt)を3相2相変換し、静止座標系の電圧(vα、vβ)を算出して、電圧(vα、vβ)を空間ベクトル変調部12に出力する。空間ベクトル変調部12は、空間ベクトル変調を利用して三相の電圧波形をベクトルに置き換えることで、電圧(vα、vβ)の位相角(θ)用いて、電圧ベクトルの出力時間(T1、T2)を算出する。
 ゼロベクトル時間算出部13は、三角波等のキャリア信号と、空間ベクトル変調部12により算出された時間とを用いて、ゼロベクトルの出力時間(Tz)を算出する。キャリア信号の周波数は、交流電源1の交流電力の周波数より高い周波数が設定されている。スイッチングパターンテーブル14は、予め設定されている、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnをスイッチングするためのスイッチングパターンを位相角(θ)と対応させてテーブルとして格納している。
 スイッチング信号生成部15は、スイッチングパターンテーブル14を参照して、位相角(θ)と対応するスイッチングパターンを抽出し、抽出されたスイッチングパターンと、電圧ベクトルの出力時間(T1、T2)及びゼロベクトルの出力時間(Tz)とを用いて、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのオン及びオフを切り換える制御信号(Drp、Drn、Dsp、Dsn、Dtp、Dtn)を、マトリクスコンバータ4に含まれる駆動回路(図示しない)に出力する。スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnはパルス信号で制御される。これにより、マトリクスコンバータ4に含まれるスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのオン及びオフがコントローラ10の制御で切り換えられて、電力が変換される。
 次に、図5を用いて、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnの切り換え制御について説明する。図5は、スイッチング素子Srp、Sspのスイッチングのシーケンスを示すグラフである。図5において、ハイレベルがオン状態を、ローレベルがオフ状態を示している。スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnの切り換えには電圧転流方式が用いられ、コントローラ10は、検出電圧(vr、vs、vt)から入力電圧の大小関係を監視して転流を行う。トランジスタTrrp1、Trrp2、Trsp1、Trsp2の状態が、初期状態からi、ii、iii、ivの順で遷移したとする。
 以下、電圧転流方式について具体例を挙げて説明する。説明を簡単にするため、上アーム回路のみでの転流制御について説明する。初期状態として、スイッチング素子Srpに含まれるトランジスタTrrp1、Trrp2がオン状態で、スイッチング素子Sspに含まれるトランジスタTrsp1、Trsp2がオフ状態であるとする。そして、スイッチング素子Srpの電圧がスイッチング素子Sspの電圧より高い状態で、スイッチング素子Srpの電圧からスイッチング素子Sspの電圧へ転流する場合を説明する。
 まず初期状態から状態(i)に遷移するとトランジスタTrsp1をオンにし、状態(i)から状態(ii)に遷移するとトランジスタTrrp1をオフにし、状態(ii)から状態(iii)に遷移するとトランジスタTrsp2をオンにし、状態(iii)から状態(iv)に遷移するとトランジスタTrrp2をオフにする。これにより交流電源1が短絡しないようにスイッチングされ、転流失敗が抑制される。
 次に、図1、図4及び図6~図12を用いて、コントローラ10における制御について説明する。
 座標変換部11により座標変換されて算出された静止座標系の電圧(vα、vβ)が空間ベクトル変調部12に入力されると、空間ベクトル変調部12は、入力された電圧(vα、vβ)から、電圧(vα、vβ)の位相角(θ)を算出する。ここで、電圧(vα、vβ)及び位相角(θ)をベクトルで表示すると、図6のように表される。図6は、検出電圧(vr、vs、vt)を二相のαβ座標系に変換し、入力電圧を静止座標系で電圧ベクトルとして観測した図となる。図6のvaは、基本ベクトルを表しており、αβ座標系での入力電圧の位相角(θ)を方向成分に持つ出力指令値に相当する。基本ベクトルは、各相の入力電圧の大小関係に応じて図6に示す中心点を中心に回転する。
 本例では、静止座標系において、α軸から反時計回りで60度ずつ分けた6つの領域で座標が分けられている。各領域の境界線には、V1~V6の軸が割当てられている。ここで、V1とV2との間の領域を「エリア1」とし、V2とV3との間の領域を「エリア2」とし、V3とV4との間の領域を「エリア3」とし、V4とV5との間の領域を「エリア4」とし、V5とV6との間の領域を「エリア5」とし、V6とV1との間の領域を「エリア6」とする。また原点に対して、V7~V9が割当てられている。V1~V9はマトリクスコンバータ4から出力される電圧のベクトルを表している。ベクトルとして大きさをもつ(ゼロでない)V1~V6のベクトルは、マトリクスコンバータ4からゼロではない電圧が出力されることを示す。すなわち、V1~V6のベクトルは、ゼロではない電圧ベクトル(以下、「電圧ベクトル」と称す。)に相当する。一方、V7~V9のベクトルは、マトリクスコンバータ4からの出力電圧がゼロになることを示す。すなわち、V7~V9のベクトルは、電圧ゼロのベクトル(以下、「ゼロベクトル」と称す。)を示す。
 また本例において、電圧ベクトルV1~V9は、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのそれぞれ異なるスイッチングパターンと対応させており、入力電圧がどのエリアに属するかに応じて、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを動作させるスイッチングパターンが決まる。なお、電圧ベクトルV1~V9とスイッチングパターンとの関係については後述する。
 そして、空間ベクトル変調部12は、基本ベクトルvaの位相角(θ)から、検出時点での入力電圧が、どのエリアに属しているかを判定する。図6の例では、基本ベクトルvaがエリア1内になるため、空間ベクトル変調部12は、電圧(vα、vβ)の位相角(θ)から、入力電圧がエリア1に属すると判断する。また例えば、各相の入力電圧(vr、vs、vt)の大小関係が変わり、座標変換部11により座標変換されたαβ軸電圧(vα、vβ)の位相角(θ)が90度になった場合には、空間ベクトル変調部12は、位相角90度を含むエリア2を特定する。
 空間ベクトル変調部12は、エリアが特定されると、基本ベクトル(va)のエリア軸成分から、電圧ベクトルの出力時間を算出する。図6の例では、基本ベクトル(va)はエリア1に属するため、空間ベクトル変調部12は、エリア1の軸であるV1軸及びV2軸を用いて、V1軸に沿う成分(Va1)とV2軸に沿う成分(Va2)とを算出する。そして、V1軸成分の大きさ(Va1)がV1と対応するスイッチングパターンの出力時間となり、V2軸成分の大きさ(Va2)がV2と対応するスイッチングパターンの出力時間となる。ここで、電圧ベクトル(V1~V6)の出力時間をT1、T2とし、ゼロベクトル(V7~V9)の出力時間をTzとする。なお、後述するように、本例は、キャリアの前半の半周期に対して、2つの電圧ベクトルを出力するため、当該2つの電圧ベクトルのうち、最初の電圧ベクトルの出力時間をT1、次の電圧ベクトルの出力時間をT2とする。
 各出力時間(T1、T2、Tz)は、キャリアの周期と対応して正規化した時間で表されるが、後述するように、本例ではキャリアの半周期あたり、ゼロベクトル(V7~V9)の出力時間(Tz)を確保するために、出力時間(T1、T2)に対して制限をかけており、2つの電圧ベクトルを出力する出力時間(T1、T2)が所定の下限値以下になるように、空間ベクトル変調部12は、出力時間(T1、T2)を算出する。なお、当該下限値は、出力時間(Tz)を確保するための時間に相当し、キャリアの半周期の時間より短い時間が設定される。
 エリア1は位相角0度から60度の間を領域としている。例えば、基本ベクトル(va)の位相角が0度から30度の間にある場合には、V1軸成分の大きさ(Va1)がV2軸成分の大きさ(Va2)より大きくなるため、V1のスイッチングパターンの出力時間(T1)の方が、V2のスイッチングパターンの出力時間(T2)の方より長くなる。エリア4は位相角180度から240度の間を領域としている。例えば、基本ベクトル(va)の位相角が210度から240度の間にある場合には、V5軸成分の大きさ(Va5)がV4軸成分の大きさ(Va4)より大きくなるため、V5のスイッチングパターンの出力時間(T2)の方が、V4のスイッチングパターンの出力時間(T1)の方より長くなる。これにより空間ベクトル変調部12は、各相の検出電圧に相当するvα、vβを用いて位相角(θ)を算出し、当該位相角(θ)を方向成分として持つ基本ベクトルVaから、電圧ベクトルの出力時間(T1、T2)を算出し、ゼロベクトル時間算出部13に出力する。
 ゼロベクトル時間算出部13は、予め決まっているキャリアの周期の半分の周期(半周期)から、出力時間(T1)及び出力時間(T2)の合計時間を減算することで、ゼロベクトル(Tz)の時間を算出する。空間ベクトル変調部12は、当該合計時間が所定の下限時間以下になるように出力時間(T1)及び出力時間(T2)を算出しているため、ゼロベクトル時間算出部13はゼロベクトル(Tz)の時間を算出することができる。本例では、マトリクスコンバータ4の出力電力を交流にするために、キャリア周期に対して、ゼロでない電圧を出力する時間と、ゼロの電圧の時間とを周期的に設ける。またキャリアの周期は出力電圧の周期と対応しているため、ゼロベクトルの出力時間(Tz)は、キャリアの半周期に相当する時間から、出力時間(T1)及び出力時間(T2)を差し引いた時間となる。ゼロベクトル時間算出部13は、ゼロベクトルの時間(Tz)及び電圧ベクトルの時間(T1、T2)をスイッチング信号生成部15に出力する。
 スイッチング信号生成部15は、スイッチングパターンテーブル14に格納されているスイッチングパターンと、ゼロベクトルの時間(Tz)及び電圧ベクトルの時間(T1、T2)とを用いて、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを駆動させるためのスイッチング信号を生成する。
 スイッチングパターンテーブル14及びスイッチング信号生成部15の制御内容を詳述する前に、ベクトル(V1~V9)及び位相角(θ)とスイッチングパターンとの関係について、図7を用いて説明する。図7(a)は図6のベクトル図に対して、スイッチングパターンを付け加えた図であり、(b)は図1の充電システムのうち、交流電源1及びマトリクスコンバータ4の回路図を簡略化させた回路図である。なお図7(a)の「1」はオン状態を、「0」はオフ状態を示している。
 図7に示すように、ベクトル(V1~V9)は、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのスイッチングパターンと対応している。電圧ベクトル(V1)では、スイッチング素子Srp、Stnをオンに他のスイッチング素子Srn、Ssp、Ssn、Stpをオフにし、電圧ベクトル(V2)ではスイッチング素子Ssp、Stnをオンに他のスイッチング素子Srp、Srn、Ssn、Stpをオフにし、電圧ベクトル(V3)ではスイッチング素子Srn、Sspをオンに他のスイッチング素子Srp、Ssn、Stp、Stnをオフにし、電圧ベクトル(V4)ではスイッチング素子Srn、Stpをオンに他のスイッチング素子Srp、Ssp、Ssn、Stnをオフにし、電圧ベクトル(V5)ではスイッチング素子Ssn、Stpをオンに他のスイッチング素子Srp、Srn、Ssp、Stnをオフにし、電圧ベクトル(V6)ではスイッチング素子Srp、Ssnをオンに他のスイッチング素子Srn、Ssp、Stp、Stnをオフにする。すなわち、電圧ベクトル(V1~V6)では、各相のうち一相に含まれる上アーム回路のスイッチング素子Srp、Ssp、Stpをオンに他の相に含まれる上アーム回路のスイッチング素子Srp、Ssp、Stpをオフにし、かつ、当該他の相に含まれる下アーム回路の少なくとも一つのスイッチング素子Srn、Ssn、Stnをオンにし、当該一の相に含まれる下アーム回路のスイッチング素子Srn、Ssn、Stnをオフにする。
 そして、電圧ベクトル(V1~V6)と対応するスイッチングパターンで、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御した場合には、マトリクスコンバータ4の出力側にはゼロではない電圧が出力される。またエリアに応じて、エリアの境界となる2つのベクトルを用いることで、異なる電圧レベルの波形をマトリクスコンバータ4から出力させることができる。
 また、図6及び図7に示すベクトル図において、原点で示されるゼロベクトル(V7~V9)にもスイッチングパターンが割り当てられている。ベクトル(V7)ではスイッチング素子Srp、Srnをオンに他のスイッチング素子Ssp、Ssn、Stp、Stnをオフにし、ベクトル(V8)ではスイッチング素子Ssp、Ssnをオンに他のスイッチング素子Srp、Srn、Stp、Stnをオフにし、ベクトル(V9)ではスイッチング素子Stp、Stnをオンに他のスイッチング素子Srp、Srn、Ssp、Ssn、をオフにする。すなわち、ゼロベクトル(V7~V9)では、各相の一の相に含まれるスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnをオンに、他の相に含まれるスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnをオフにする。
 そして、ゼロベクトル(V7~V9)と対応するスイッチングパターンで、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御した場合には、マトリクスコンバータ4の出力はゼロになる。
 上述した通り、位相角(θ)よりエリアが特定されると、出力される電圧ベクトル(V1~V6)と出力時間(T1、T2)が決まる。またゼロベクトル時間算出部13によりゼロベクトル(V7~V9)と出力時間(Tz)も算出される。そして、マトリクスコンバータ4は交流電力の出力を目的として設定されているため、キャリアの周期の前半の半周期におけるスイッチング制御に対して、後半の半周期では反転させてスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御することで、前半の半周期と逆の極性の出力電力を得ることができる。そこで、本例において、スイッチングパターンテーブル14は、図6のエリアと対応させたスイッチングパターンを格納している。またスイッチング信号生成部15は、電圧ベクトルの出力時間(T1、T2)とゼロベクトルの出力時間(Tz)から、キャリア周期に対する、ベクトル(V1~V9)のそれぞれの出力時間を算出して、スイッチング信号を生成する。
 次に、スイッチングパターンテーブル14に格納されているテーブルについて、図8を用いて説明する。図8は、スイッチングパターンテーブル14に格納されるテーブルを示す概要図である。図8において、エリア1~6は図6で示すエリア1~6に相当し、V1~V9はベクトル(V1~V9)に、Srp、Srn、Ssp、Ssn、Stp、Stnはスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnに相当する。また図8の状態(1)~(6)について、キャリアの1周期は、出力時間(T1、T2、Tz)と対応させると6つに分けられるため、キャリアの谷の頂点部分から時系列で状態(1)から状態(6)としている。
 スイッチングパターンテーブル14には、マトリクスコンバータ4の出力を交流にするために、キャリアの周期のうち前半の半周期で、2つの電圧ベクトルと1つのゼロベクトルを順に出力し、後半の半周期で、2つの電圧ベクトルと1つのゼロベクトルを順に出力するよう、スイッチングパターンが設定されている。
 例えば基本ベクトル(va)がエリア1に属する場合には、キャリアの1周期あたり、電圧ベクトル(V1)、電圧ベクトル(V2)、ゼロベクトル(V8)、電圧ベクトル(V5)、電圧ベクトル(V4)、ゼロベクトル(V7)の順でスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御する。エリア1におけるスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stn制御の推移を図9に示す。図9は、図1の充電システムのうち、交流電源1及びマトリクスコンバータ4の回路図を簡略化させた回路図であり、各状態(1)~(6)における、各スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのオン・オフ状態と、トランス51の1次側に流れる電流の向きを矢印で示している。
 図9に示すように、状態(1)から状態(2)、状態(2)から状態(3)等、各状態間を遷移する場合に、コントローラ10は、上アーム回路または下アーム回路のいずれか一方のアーム回路のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnをターンオンにし(オフからオンにする)、他方のアーム回路のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのオン状態を維持する。言い換えると、オン状態であるスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのうち、一方のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnはターンオフするが、他方のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnの状態を固定する。
 また、状態(1)、(2)、(3)または状態(3)、(4)、(5)等、各状態を連続して遷移する場合には、上アーム回路のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stn、または、下アーム回路のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを連続して切り換えない。言い換えると、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを上アーム回路と下アーム回路との間で、交互に切り換える。
 これにより、本例は、各状態(1)~(6)を遷移する際のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnのスイッチング回数を減らして、転流ミスを抑制している。なお、図9はエリア1のスイッチングパターンを説明したが、エリア2~6についても、上記と同様な条件で、スイッチング回数を減らすパターンにより、スイッチング制御を行う。
 図9に示すように、状態(1)~(3)ではマトリクスコンバータ4の出力電流がプラスになり、状態(4)~(6)ではマトリクスコンバータ4の出力電流がマイナスになっている。これにより、スイッチングパターンテーブル14のエリア1のスイッチングパターンでスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御することで、マトリクスコンバータ4の出力が交流になる。なお、エリア2からエリア6についても、同様に、マトリクスコンバータ4の出力が交流になるように、図8に示すパターンでスイッチング制御が行われる。
 そして、エリア1~6は位相角に応じて分類されるため、スイッチングパターンテーブル14は、位相角(θ)と対応するスイッチングパターンを格納していることになる。
 次に、スイッチング信号生成部15の制御について、図10を用いて、説明する。図10はキャリアと出力時間(T1、T2、Tz)との関係を説明するためのグラフである。まず、スイッチング信号生成部15は、キャリアの周期と同期を取りつつ、出力時間(T1~T2)に相当する指令値を設定する。コントローラ10はPWM制御で制御を行うため、電圧ベクトル及びゼロベクトルの出力時間(T1、T2、Tz)の長さが指令値(電圧値)となる。また、出力時間(T1、T2、Tz)に対する指令値を設定する際、キャリアの最大振幅が、2つの電圧ベクトルと1つのゼロベクトルを出力する出力時間(T1、T2、Tz)になるよう正規化している。また、電圧ベクトル及びゼロベクトルの出力タイミングについて、キャリアの前半の半周期では、図6に示す電圧ベクトル(V1~V6)のうち、各エリア1~6において、より時計回り側の電圧ベクトルが最初に出力されるよう指令値が設定され、二つの電圧ベクトルが出力された後に、ゼロベクトル(V7~V9)が出力されるよう設定される。一方、キャリアの後半の半周期では、2つの電圧ベクトル(V1~V6)の出力時間を前半と反転させて出力し、その後に、ゼロベクトル(V7~V9)が出力されるよう指令値が設定される。
 具体例として、位相角(θ)が0度~30度(エリア1)の間にある場合には、スイッチング信号生成部15は、図10に示すように、キャリアの前半の半周期では、キャリアのローレベルに対して出力時間(T1)に相当するレベルに指令値(T1)を設け、指令値(T1)を基準として出力時間(T2)に相当するレベルを加算した上で指令値(T2)を設ける。一方、キャリアの後半の半周期では、スイッチング信号生成部15は、キャリアのハイレベルに対して出力時間(T2)に相当するレベルを下げたところに指令値(T2)を設け、指令値(T2)を基準として出力時間(T1)に相当するレベルを下げたところ指令値(T1)を設ける。
 そして、スイッチング信号生成部15は、設定された指令値とキャリアとを比較することで、電圧ベクトル及びゼロベクトルの出力タイミングが決定する。また、上記のように、出力時間(T1、T2、Tz)に対して指令値を設定し、キャリアと比較させると、キャリアの1周期に対して6つの状態に分離されるが、当該6つの状態は図8に示す状態(1)~(6)に対応している。すなわち、スイッチング信号生成部15は、出力時間(T1、T2、Tz)とキャリアとを比較することで、スイッチングキャリアテーブルに格納したスイッチングパターンの出力タイミングを決定する。
 スイッチング信号生成部15は、キャリアと出力時間(T1~T2、Tz)との比較で、図10に示す出力タイミングを決定すると、位相角(θ)に応じたスイッチングパターンをスイッチングパターンテーブル14から抽出し、抽出したパターンにより当該出力タイミングで、スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnが駆動されるよう、スイッチング信号を生成し、各スイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnに出力する。
 具体的には、位相角(θ)が0度~30度である場合には、図8のエリア1のスイッチングパターンが用いられ、キャリアの谷の頂点を起点として出力時間(T1)の間は、電圧ベクトル(V1)を出力するスイッチング制御が行われ、その後の出力時間(T2)の間は、電圧ベクトル(V2)を出力するスイッチング制御が行われ、その後の出力時間(Tz)の間は、ゼロベクトル(V8)を出力するスイッチング制御が行われる。そして、キャリアの後半の半周期に遷り、キャリアの山の頂点を起点として出力時間(T2)の間は、電圧ベクトル(V5)を出力するスイッチング制御が行われ、その後の出力時間(T1)の間は、電圧ベクトル(V4)を出力するスイッチング制御が行われ、その後の出力時間(Tz)の間は、ゼロベクトル(V7)を出力するスイッチング制御が行われる。
 マトリクスコンバータ4の出力電圧波形を図11及び図12を用いて説明する。図11は出力時間(T1)が出力時間(T2)より長い場合の出力電圧波形の時間特性を、図12は出力時間(T2)が出力時間(T1)より長い場合の出力電圧波形の時間特性を示す。位相角(θ)が0度~30度である場合には、出力時間(T1)が出力時間(T2)より長くなり、マトリクスコンバータ4から出力される電圧波形は、図11のように推移する。また、位相角(θ)が30度~60度である場合には、出力時間(T2)が出力時間(T1)より長くなり、マトリクスコンバータ4から出力される電圧波形は、図12のように推移する。
 上記のように、本例は、電圧ベクトルを出力する出力時間(T1、T2)とゼロベクトルを出力する出力時間(Tz)とを用いてスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御し、キャリアの前半の半周期に含まれる出力時間(Tz)と、キャリアの前半の半周期に含まれる出力時間(Tz)とを等しくする。これにより、ゼロベクトルの出力時間(Tz)を設けることで、ゼロベクトルの出力時間(Tz)の最初の時点におけるスイッチング動作と、出力時間(Tz)の最後の時点におけるスイッチング動作との間隔が確保されるので、当該最初の時点と当該最後の時点との間におけるスイッチング動作の重複が避けられ、転流失敗を防ぐことができる。
 ところで、本例とは異なり、複数のスイッチング素子のブリッジ回路で形成される三相インバータ回路において、各相の中間電圧の検出電圧を指令値(vu *、vv *、vw *)とし、三角波キャリアと比較することで、当該スイッチング素子を制御するインバータ装置(比較例3)が知られている。図13は、キャリア及び指令値(vu *、vv *、vw *)の波形と、インバータ回路の出力電圧の波形である。なお、図13に示すように、比較例3は、キャリアが指令値を越えた時に出力電圧のレベルを制御する理論式を用いており、キャリアの山及び谷を境に当該理論式を反転させるよう制御している。すなわち、比較例では、検出電圧とキャリアとの比較で出力電圧のレベルを設定し、交流を出力する制御を行っているため、キャリアの周期に対して、ゼロ電圧期間(図13のα1、β1に相当)が偏ってしまう。そして、一方のゼロ電圧期間(図13のα1)が短くなってしまうため、ゼロ電圧期間の最初の時点及び最後の時点における、スイッチング動作の間隔が短くなるため、転流失敗が発生する。また比較例では、キャリアの周期に対して、ゼロ電圧期間を所定期間として規定していないため、ゼロ電圧を出力するための時間の制御が煩雑になるという問題もある。
 本例では、キャリアの周期に対してゼロベクトルの出力時間(Tz)を確保しているため、ゼロ電圧期間の最初の時点及び最後の時点における、スイッチング動作の間隔が短くなることを防ぎ、転流失敗を防止することができる。すなわち、図14に示すように、キャリアの半周期毎に、ゼロベクトルの出力期間が均等に割り振られるため、ゼロベクトルの出力時間(Tz)が極端に短くなることがなくなり、転流失敗を防ぐことができる。またスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを制御する際のショートパルスを打つ回数も軽減することができ、素子に集中して負荷がかかることも防ぐことができる。さらに、本例は、PWM制御の際のスイッチング信号のデューティやスイッチングパターンを自由に設定することができる。なお、図14は本例における、キャリアと出力時間(T1、T2、Tz)との関係を説明するためのグラフ、及び、マトリクスコンバータ4の出力電圧の時間特性を示すグラフである。
 また本例において、出力時間(Tz)を、キャリアの半周期に相当する時間から出力時間(T1、T2)分を差し引いた時間に設定する。これにより、ゼロベクトルの出力時間(Tz)を設けることで、ゼロベクトルの出力時間(Tz)の最初の時点におけるスイッチング動作と、出力時間(Tz)の最後の時点におけるスイッチング動作との間隔が確保されるので、当該最初の時点と当該最後の時点との間におけるスイッチング動作の重複が避けられ、転流失敗を防ぐことができる。
 また本例は、上アーム回路に含まれるスイッチング素子のうち一のスイッチング素子をオンに、下アーム回路に含まれるスイッチング素子のうち一のスイッチング素子をオンにする出力時間(T1)と、上アーム回路に含まれるスイッチング素子のうち他のスイッチング素子をオンに、下アーム回路に含まれるスイッチング素子のうち他のスイッチング素子をオンにする出力時間(T2)で、スイッチング素子を制御する。これにより、ゼロベクトルの出力時間が確保されるので、当該最初の時点と当該最後の時点との間におけるスイッチング動作の重複が避けられ、転流失敗を防ぐことができる。
 また本例は、キャリアの前半の半周期では、出力時間(T1)を出力時間(T2)の前の時間とし、キャリアの後半の半周期では、出力時間(T1)を出力時間(T2)の後の時間とする。これにより、マトリクスコンバータ4の出力電圧のプラス側とマイナス側とで、ゼロベクトルの出力時間の均一化を図ることができる。
 また本例は、座標変換部13により変換された電圧から出力時間(T1、T2、Tz)を算出し、スイッチングパターンテーブル14を参照し、変換された電圧の位相と対応するスイッチングパターンで、スイッチング素子(Srp、Srn、Ssp、Ssn、Stp、Stn)を制御する。これにより、ゼロベクトルの出力時間(Tz)が確保されるので、転流失敗を防ぐことができる。
 なお本例では、キャリアの半周期に対して、キャリアの谷の頂点を起点とし、2つの電圧ベクトルの出力時間(T1、T2)を最初に配置し、次にゼロベクトルの出力時間(Tz)を配置したが、必ずしも、この順番にする必要はない。例えば図15に示すように、キャリアの半周期に対して、キャリアの谷の頂点を起点とし、ゼロベクトルの出力時間(Tz)の半分の時間を配列し、次に2つの電圧ベクトルの出力時間(T1、T2)を配列し、最後に残りの出力時間(Tz)の半分の時間を配列してもよい。また本例は、キャリアの半周期と対応させて、出力時間(T1、T2)及び出力時間(Tz)を割当てたが、必ずしもキャリアの半周期にする必要はなく、当該半周期より短くてもよく、長くてもよい。また、空間ベクトル変調部12における所定の下限時間は、必ずしもキャリアの半周期より短い時間にする必要はなく、キャリアの周期の一部に対応する時間より短い時間であればよい。
 また本例は、キャリアの半周期あたりに、2つの電圧ベクトル(V1~V6)を出力するよう出力時間(T1、T2)を制御したが、必ずしも2つの電圧ベクトル(V1~V6)である必要はなく、1つの電圧ベクトル(V1~V6)でもよく、3つの電圧ベクトル(V1~V6)であってもよい。また、図8に示すスイッチングパターンは一例に過ぎず、それぞれの電圧ベクトル及びゼロベクトルのパターンを入れ替えてもよく、また電圧ベクトル及びゼロベクトルを出力するために他のスイッチングパターンを用いてもよい。
 上記マトリクスコンバータ4が本発明の「変換回路」に相当し、電圧センサ31~33が「電圧検出手段」に、コントローラ10が「制御手段」に、空間ベクトル変調部12及びゼロベクトル時間算出部13が「スイッチング時間算出部」に、スイッチング信号生成部15が「制御信号生成部」に、出力時間(T1、T2)が「第1スイッチング時間」に、出力時間(Tz)が「第2スイッチング時間」に、スイッチングパターンテーブル14が「テーブル」に、座標変換部11が「座標変換手段」に相当する。

Claims (5)

  1.  双方向にスイッチング可能な複数対のスイッチング素子を各相に接続し、入力された交流電力を交流電力に変換する変換回路と、
     前記変換回路への入力電圧を検出する電圧検出手段と、
     前記スイッチング素子のオン及びオフを切り換え、前記変換回路を制御する制御手段と、を備え、
     前記制御手段は、
     前記各相のうち一の相に含まれる前記複数対のスイッチング素子の上アーム回路のスイッチング素子をオンに、他の相に含まれる前記複数対のスイッチング素子の前記上アーム回路のスイッチング素子をオフにし、かつ、前記他の相に含まれる前記複数対のスイッチング素子の下アーム回路の少なくとも一つのスイッチング素子をオンに、前記一の相に含まれる前記複数対のスイッチング素子の下アーム回路のスイッチング素子をオフにする時間である第1スイッチング時間を、前記電圧検出手段により検出された検出電圧と出力指令値を用いて算出し、前記各相の前記一の相に含まれる前記複数対のスイッチング素子をオンに、前記各相の他の相に含まれる前記複数対のスイッチング素子をオフにする時間である第2スイッチング時間を、キャリアと前記第1スイッチング時間とを用いて算出するスイッチング時間算出部と、
     前記第1スイッチング時間及び前記第2スイッチング時間を用いて、前記スイッチング素子のオン及びオフを切り換える制御信号を生成する制御信号生成部とを有し、
     前記第2スイッチング時間は、前記変換回路から出力される交流電力の1周期のうち、前半の半周期に含まれる前記第2スイッチング時間と後半の半周期に含まれる前記第2スイッチング時間が等しい電力変換装置。
  2.  前記第2スイッチング時間は、キャリアの半周期に相当する時間から前記第1スイッチング時間を差し引いた時間である請求項1記載の電力変換装置。
  3.  前記第1スイッチング時間は、
     前記上アーム回路に含まれる前記スイッチング素子のうち一のスイッチング素子をオンに、前記下アーム回路に含まれる前記スイッチング素子のうち一のスイッチング素子をオンにする第3スイッチング時間と、
     前記上アーム回路に含まれる前記スイッチング素子、または前記下アーム回路に含まれる前記スイッチング素子のうち、少なくとも何れか一方のアーム回路の前記一のスイッチング素子をオフにすると共に、前記一方のアーム回路のうち他のスイッチング素子をオンにする第4スイッチング時間とを含む請求項1又は2記載の電力変換装置。
  4.  前記前半の半周期に含まれる前記第3スイッチング時間は前記第4スイッチング時間の前の時間であり、
     前記後半の半周期に含まれる前記第3スイッチング時間は前記第4スイッチング時間の後の時間である請求項3に記載の電力変換装置。
  5.  前記制御手段は、
     前記電圧検出手段により検出された検出電圧を回転座標変換する座標変換部と、
     位相角と前記スイッチング素子のスイッチングパターンとの関係を示すテーブルとをさらに有し、
     前記スイッチング時間算出部は、前記座標変換部により変換された回転座標系の電圧から得られた位相と前記出力指令値に基づいて第1スイッチング時間を算出し、
    前記制御信号生成部は、前記回転座標系の電圧の前記位相角に対応する前記スイッチングパターンで前記スイッチング素子のオン及びオフを切り換える前記制御信号を生成する請求項1から4のいずれか一項に記載の電力変換装置。
PCT/JP2012/072729 2011-09-06 2012-09-06 電力変換装置 WO2013035782A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280035899.XA CN103765748B (zh) 2011-09-06 2012-09-06 电力变换装置
EP12830651.1A EP2755313B1 (en) 2011-09-06 2012-09-06 Power conversion device
RU2014104106/07A RU2558749C1 (ru) 2011-09-06 2012-09-06 Устройство преобразования мощности
US14/342,842 US9197137B2 (en) 2011-09-06 2012-09-06 Power conversion device
KR1020147004992A KR101588147B1 (ko) 2011-09-06 2012-09-06 전력 변환 장치
BR112014000990-2A BR112014000990B1 (pt) 2011-09-06 2012-09-06 Dispositivo de conversão de energia elétrica
MX2014000773A MX2014000773A (es) 2011-09-06 2012-09-06 Dispositivo de conversion de energia.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194163 2011-09-06
JP2011194163A JP5377603B2 (ja) 2011-09-06 2011-09-06 電力変換装置

Publications (1)

Publication Number Publication Date
WO2013035782A1 true WO2013035782A1 (ja) 2013-03-14

Family

ID=47832222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072729 WO2013035782A1 (ja) 2011-09-06 2012-09-06 電力変換装置

Country Status (9)

Country Link
US (1) US9197137B2 (ja)
EP (1) EP2755313B1 (ja)
JP (1) JP5377603B2 (ja)
KR (1) KR101588147B1 (ja)
CN (1) CN103765748B (ja)
BR (1) BR112014000990B1 (ja)
MX (1) MX2014000773A (ja)
RU (1) RU2558749C1 (ja)
WO (1) WO2013035782A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011665A4 (en) * 2013-06-20 2017-04-26 Kraftpowercon India Private Limited Ac/ac converter for conversion between three phase and single phase power supplies
CN107870883A (zh) * 2016-09-27 2018-04-03 恩智浦有限公司 未附接c型usb双重作用端口的占空比随机化

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377604B2 (ja) * 2011-09-06 2013-12-25 日産自動車株式会社 電力変換装置
JP5437334B2 (ja) * 2011-09-06 2014-03-12 日産自動車株式会社 電力変換装置
EP2993774A1 (de) * 2014-09-05 2016-03-09 AEG Power Solutions GmbH Umrichterstufe zum Umrichten von Mehrphasenwechselstrom in Einphasenwechselstrom und umgekehrt und Verfahren zum Betreiben dieser Umrichterstufe
JP6477893B2 (ja) * 2015-08-28 2019-03-06 株式会社村田製作所 Dc−dcコンバータ
US20180043790A1 (en) * 2016-08-15 2018-02-15 Hamilton Sundstrand Corporation Active rectifier topology
US10498274B2 (en) 2016-11-10 2019-12-03 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
US11043880B2 (en) 2016-11-10 2021-06-22 Hamilton Sunstrand Corporation Electric power generating system with a synchronous generator
WO2018183595A1 (en) * 2017-03-31 2018-10-04 Murata Manufacturing Co., Ltd. Apparatus and method of operating matrix converter-based rectifier when one phase is disconnected or is short-circuited
WO2019213673A1 (en) * 2018-05-01 2019-11-07 Murata Manufacturing Co., Ltd. Buck matrix-type rectifier with boost switch, and operation thereof during one-phase loss

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131368A (ja) * 1988-11-02 1990-05-21 Nippon Telegr & Teleph Corp <Ntt> 直流電源装置
JPH077944A (ja) * 1993-06-17 1995-01-10 Kobe Steel Ltd 電力変換装置の制御方法
JPH08107672A (ja) * 1994-10-04 1996-04-23 Sawafuji Electric Co Ltd 三相/二相変換回路
JP2000299984A (ja) * 1999-04-13 2000-10-24 Yaskawa Electric Corp 三相/単相pwmサイクロコンバータの制御装置
JP2001298953A (ja) * 2000-04-13 2001-10-26 Fuji Electric Co Ltd 電力変換装置
JP2003528562A (ja) * 2000-03-18 2003-09-24 オールストム 改良された電力サブステーション
JP2006020384A (ja) 2004-06-30 2006-01-19 Fuji Electric Holdings Co Ltd 電力変換器の制御装置
JP2006246673A (ja) * 2005-03-07 2006-09-14 Nagaoka Univ Of Technology 絶縁形直接電力変換器の制御装置
JP2010263702A (ja) * 2009-05-07 2010-11-18 Denki Kogyo Co Ltd 三相単相直接電力変換器回路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519311A (en) * 1984-01-19 1996-05-21 Don Widmayer & Associates, Inc. Control of AC power to inductive loads
DE19634905A1 (de) * 1996-08-29 1998-03-05 Abb Patent Gmbh Gleichrichterschaltung
US6330170B1 (en) 1999-08-27 2001-12-11 Virginia Tech Intellectual Properties, Inc. Soft-switched quasi-single-stage (QSS) bi-directional inverter/charger
US6459606B1 (en) 2001-09-27 2002-10-01 York International Corporation Control system and method for four-quadrant switches in three-phase PWM AC voltage regulators
US6462974B1 (en) * 2001-09-27 2002-10-08 York International Corporation Space vector modulation-based control method and apparatus for three-phase pulse width modulated AC voltage regulators
RU2265947C2 (ru) * 2002-07-09 2005-12-10 Новоуральский государственный технологический институт Устройство и способ управления обратимым преобразователем энергии переменного тока в энергию переменного тока
GB0506442D0 (en) * 2005-03-30 2005-05-04 Przybyla Jan AC-DC converters
KR100949639B1 (ko) * 2005-04-27 2010-03-26 가부시키가이샤 야스카와덴키 전력 변환 장치와 전력 변환 방법
JP4029904B2 (ja) * 2006-04-28 2008-01-09 ダイキン工業株式会社 マトリックスコンバータおよびマトリックスコンバータの制御方法
CN102751898B (zh) * 2006-08-10 2015-10-21 伊顿工业公司 环形转换器以及运行方法
US8169179B2 (en) 2006-08-22 2012-05-01 Regents Of The University Of Minnesota Open-ended control circuit for electrical apparatus
JP4995919B2 (ja) * 2006-10-18 2012-08-08 アーベーベー・リサーチ・リミテッド 多数の切換え電圧レベルを切り換えるコンバータ回路
WO2008108147A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki 電力変換装置
JP4957303B2 (ja) * 2007-03-14 2012-06-20 株式会社明電舎 交流−交流直接変換装置の空間ベクトル変調方法
RU2349019C1 (ru) * 2008-03-11 2009-03-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Трехфазный преобразователь частоты с естественной коммутацией
US8446743B2 (en) * 2009-07-10 2013-05-21 Regents Of The University Of Minnesota Soft switching power electronic transformer
JP5282731B2 (ja) * 2009-12-22 2013-09-04 株式会社安川電機 電力変換装置
RU2414043C1 (ru) 2010-03-26 2011-03-10 Георгий Маркович Мустафа Бестрансформаторный преобразователь частоты для регулируемого средневольтного электропривода
CN101951168B (zh) 2010-09-16 2013-02-06 上海交通大学 高压转低压交流变换器
CN102075109A (zh) * 2010-12-14 2011-05-25 北京理工大学 高频隔离式三相周波变换器型双向变流器及其控制方法
JP5377604B2 (ja) * 2011-09-06 2013-12-25 日産自動車株式会社 電力変換装置
JP5437334B2 (ja) * 2011-09-06 2014-03-12 日産自動車株式会社 電力変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131368A (ja) * 1988-11-02 1990-05-21 Nippon Telegr & Teleph Corp <Ntt> 直流電源装置
JPH077944A (ja) * 1993-06-17 1995-01-10 Kobe Steel Ltd 電力変換装置の制御方法
JPH08107672A (ja) * 1994-10-04 1996-04-23 Sawafuji Electric Co Ltd 三相/二相変換回路
JP2000299984A (ja) * 1999-04-13 2000-10-24 Yaskawa Electric Corp 三相/単相pwmサイクロコンバータの制御装置
JP2003528562A (ja) * 2000-03-18 2003-09-24 オールストム 改良された電力サブステーション
JP2001298953A (ja) * 2000-04-13 2001-10-26 Fuji Electric Co Ltd 電力変換装置
JP2006020384A (ja) 2004-06-30 2006-01-19 Fuji Electric Holdings Co Ltd 電力変換器の制御装置
JP2006246673A (ja) * 2005-03-07 2006-09-14 Nagaoka Univ Of Technology 絶縁形直接電力変換器の制御装置
JP2010263702A (ja) * 2009-05-07 2010-11-18 Denki Kogyo Co Ltd 三相単相直接電力変換器回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIYA ONUMA ET AL.: "50kVA, 125A Sanso Tanso Matrix Converter o Tekiyo shita Koshuha Link AC-DC Converter no Jikki Kensho", HEISEI 23 NEN NATIONAL CONVENTION RECORD, I.E.E. JAPAN, vol. 1-80, 6 September 2011 (2011-09-06), pages 1-403 - 1-406, XP055136826 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011665A4 (en) * 2013-06-20 2017-04-26 Kraftpowercon India Private Limited Ac/ac converter for conversion between three phase and single phase power supplies
CN107870883A (zh) * 2016-09-27 2018-04-03 恩智浦有限公司 未附接c型usb双重作用端口的占空比随机化
CN107870883B (zh) * 2016-09-27 2023-07-07 恩智浦有限公司 通用串行总线usb电路及其连接的方法

Also Published As

Publication number Publication date
US20140226382A1 (en) 2014-08-14
EP2755313A1 (en) 2014-07-16
US9197137B2 (en) 2015-11-24
KR101588147B1 (ko) 2016-01-22
JP5377603B2 (ja) 2013-12-25
EP2755313B1 (en) 2018-11-14
BR112014000990B1 (pt) 2021-07-13
MX2014000773A (es) 2014-05-01
KR20140042916A (ko) 2014-04-07
JP2013055866A (ja) 2013-03-21
RU2558749C1 (ru) 2015-08-10
CN103765748B (zh) 2016-05-04
BR112014000990A2 (pt) 2017-02-21
EP2755313A4 (en) 2015-10-07
CN103765748A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5377604B2 (ja) 電力変換装置
WO2013035782A1 (ja) 電力変換装置
JP5437334B2 (ja) 電力変換装置
JP2013055868A5 (ja)
JP2013055866A5 (ja)
JP2013055864A5 (ja)
US9882466B2 (en) Power conversion device including an AC/DC converter and a DC/DC converter
US20070217236A1 (en) Apparatus and method for supplying dc power source
WO2017122241A1 (ja) 電力変換システム及び電力変換装置
JP4365376B2 (ja) 電力変換装置
JP2022080081A (ja) スイッチング電源装置、その制御装置及び制御方法
JP2003018851A (ja) 直接周波数変換回路の制御方法
JP2013162538A (ja) 電力変換装置
WO2013161565A1 (ja) 電力変換装置
JP2009106056A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280035899.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000773

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012830651

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147004992

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14342842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014104106

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014000990

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014000990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140115