WO2013035444A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2013035444A1
WO2013035444A1 PCT/JP2012/068385 JP2012068385W WO2013035444A1 WO 2013035444 A1 WO2013035444 A1 WO 2013035444A1 JP 2012068385 W JP2012068385 W JP 2012068385W WO 2013035444 A1 WO2013035444 A1 WO 2013035444A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
reagent
amount
dispensing
dispensing probe
Prior art date
Application number
PCT/JP2012/068385
Other languages
English (en)
French (fr)
Inventor
高橋 健一
山崎 功夫
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201280039372.4A priority Critical patent/CN103733075B/zh
Priority to US14/238,205 priority patent/US9389240B2/en
Priority to EP12829330.5A priority patent/EP2755038B1/en
Publication of WO2013035444A1 publication Critical patent/WO2013035444A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive

Definitions

  • the present invention relates to an automatic analyzer for measuring the concentration or activity value of a target component in a sample containing multiple components such as blood and urine.
  • An automatic analyzer that analyzes components such as blood and urine includes a reaction cell that holds a reaction liquid obtained by reacting a sample and a reagent, and a sample that dispenses a predetermined amount of sample from a sample container that holds the sample to the reaction cell.
  • a dispensing probe and a reagent dispensing probe that dispenses a predetermined amount of reagent from a reagent container holding the reagent into the reaction cell are provided, and the liquid sample and reagent dispensed in the reaction cell by the reagent dispensing probe are chemically treated.
  • the reaction is performed, and the reaction solution is irradiated with light by a halogen lamp or the like to measure the absorbance and analyze the components of the liquid sample.
  • the dispensing probe detects the liquid level by the liquid level detection function, which is a technique described in Patent Document 1, for example, and immerses the probe tip in the sample or reagent several mm. Stop and aspirate samples and reagents. This ensures that dispensing accuracy is ensured by preventing excessive amounts from being brought into the reaction cell and re-feeding after discharge, and can be easily cleaned by optimizing the area of the sample and reagent adhering to the probe outer wall. Yes.
  • the liquid level height is different if the amount of sample or reagent in the container is different.
  • the stop position of the injection probe differs, and the height of the tip of the dispensing probe during aspiration differs for each sample or reagent.
  • the height of the dispensing probe at the time of sample or reagent aspiration is different, for example, there will be a difference in conditions such as elastic deformation of the fluid and flow path due to pressure, and the dispensing probe immediately before discharging the sample or reagent to the reaction cell The amount of bubbles at the tip is different, resulting in a difference in the discharge amount of the sample and reagent.
  • the amount of sample or reagent is small, and the difference in the discharge amount of the sample or the like increases when the sample or the like is sucked from the bottom of the container and when the sample or reagent is large from the top of the container.
  • the sample dispensing probe tip stop position at the time of standard solution suction during calibration measurement is 50 mm from the bottom of the sample disk
  • the standard solution discharge amount to the reaction cell by the sample dispensing probe is set to 2 micron. Suppose that it was exactly 2.00 microliters per liter.
  • the discharge error amount corresponds to 2% of 2 microliters. If it is -0.04 microliter, the accuracy control value is 6.37 g / liter, which is 98% of the expected value, for example, 6.50 g / liter.
  • a discharge error amount of -0.04 microliters corresponds to 0.8% with respect to 5 microliters, so that the quality control
  • the value is an error of 6.45 g / liter, which is 99.2% of the expected value of 6.50 g / liter.
  • the tip height of the dispensing probe differs depending on the sample or reagent aspiration time, so that no consideration is given to the change in the discharge amount of the sample or reagent. For this reason, there is a problem in terms of reliability of measurement data by giving a difference in measurement results.
  • An object of the present invention is to solve the above problems and to realize an automatic analyzer and a liquid dispensing method capable of improving the dispensing accuracy of a sample or the like regardless of the difference in the suction height of the sample or the like of the dispensing probe. It is.
  • the present invention is configured as follows.
  • FIG. 1 is a schematic configuration diagram of an automatic analyzer to which the present invention is applied. It is a block diagram of a sample dispensing mechanism. It is a principal part block diagram of the internal function of a controller. It is explanatory drawing about the relationship between the sample liquid level in the sample container in the Example of this invention, and the height from a bottom. It is the figure shown about the sample state of the sample dispensing probe front-end
  • FIG. 5 is a flowchart 1 of a sample discharge correction amount calculation function in Embodiment 1 of the present invention. It is a figure which shows the example of a measurement which derived
  • FIG. 1 is a schematic configuration diagram of an automatic analyzer to which the present invention is applied.
  • the automatic analyzer includes a sample disk 12 on which a plurality of sample containers 10 for holding a sample can be mounted, a first reagent disk 41 and a second reagent disk 42 on which a plurality of reagent containers 40 for holding a reagent can be mounted. And a reaction disk 36 in which a plurality of reaction cells 35 are arranged on the circumference.
  • the automatic analyzer also includes a sample dispensing mechanism 15 that dispenses the sample sucked from the sample container 10 into the reaction cell 35, a sample cleaning mechanism 46 that cleans the sample dispensing mechanism 15, and the first reagent disk 41.
  • a first reagent dispensing mechanism 20 that dispenses the reagent aspirated from the reagent container 40 into the reaction cell 35, a first reagent washing mechanism 47 that cleans the first reagent dispensing mechanism 20, and a reagent in the second reagent disk 42
  • the second reagent dispensing mechanism 21 that dispenses the reagent aspirated from the container 40 into the reaction cell 35, the second reagent cleaning mechanism 48 that cleans the second reagent dispensing mechanism 21, and the liquid in the reaction cell 35 are stirred.
  • a stirrer 30 and a reaction cell cleaning mechanism 45 for cleaning the reaction cell 35 are provided.
  • the automatic analyzer controls the operation of the light source 50, the spectroscopic detector 51, the computer 61 connected to the spectroscopic detector 51, and the entire apparatus, which are installed near the outer periphery of the reaction disk 36. And a controller 60 for exchanging data.
  • the sample dispensing mechanism 15 is connected to a quantitative dispensing syringe 25 via a flexible tube 23 and a fixed flow path 24.
  • FIG. 2 is a configuration diagram of the sample dispensing mechanism 15.
  • the sample dispensing mechanism 15 is installed on a dispensing arm 16 that holds a cylindrical sample dispensing probe 17 extending in the vertical direction and a base 34, and moves the dispensing arm 16 in the vertical direction and the rotation direction.
  • a driving mechanism 27 for driving, a motor 28 for moving the driving mechanism 27, a flexible tube 23 connected to the sample dispensing probe 17, and one end of the flexible tube 23 are held and fixed to be connected to the fixed flow path 24.
  • the tool 33 and the support tool 32 which is installed in the base 34 and holds the fixing tool 33 are provided.
  • the liquid level detector 9 is disposed in the sample dispensing mechanism 15.
  • the liquid level detector 9 can detect, for example, a change in capacitance of the dispensing probe 17 and detect that the tip of the dispensing probe 17 is in contact with the liquid level or the like based on a change in capacitance. it can.
  • the first reagent dispensing mechanism 20 and the second reagent dispensing mechanism 21 have the same structure as the dispensing mechanism 15.
  • the automatic analyzer according to the first embodiment of the present invention operates as follows.
  • a sample to be examined such as blood is placed in a sample container 10 and set on a sample disk 12.
  • the type of analysis required for each sample is input to the controller 60.
  • a sample collected by the sample dispensing mechanism 15 is dispensed into a reaction cell 35 arranged on the reaction disk 36, and a certain amount of reagent is dispensed from a reagent container 40 installed on the reagent disk 41 or 42.
  • the liquid is dispensed by the mechanism 20 or 21 and stirred by the stirring device 30.
  • the reaction disk 36 is periodically rotated and stopped, and photometry is performed by the spectroscopic detector 51 at the timing when the reaction cell 35 passes in front of the light source 50. Photometry is repeated during the reaction time of 10 minutes, and then the reaction cell cleaning mechanism 45 discharges and cleans the reaction solution in the reaction cell 35. In the meantime, in another reaction cell 35, operations using different samples and reagents are performed in parallel.
  • the data measured by the spectroscopic detector 51 is calculated by the computer 61, and the concentration of the component corresponding to the type of analysis is calculated and displayed.
  • the computer 61 has a screen display unit.
  • the dispensing arm 16 is lowered by the drive mechanism 27, and the tip of the sample dispensing probe 17 is inserted into the sample in the sample container 10.
  • the liquid level detector 9 detects the sample liquid level position, and the tip of the sample dispensing probe 17 is immersed in the sample for several mm and stopped.
  • the quantitative dispensing syringe 25 is aspirated, and a certain amount of sample is aspirated by the sample dispensing probe 17.
  • the home position of the dispensing probe 17 is higher than the upper ends of the sample container 10 and the reaction container 35, and is a height at which the rotation operation of the dispensing arm 16 is not hindered.
  • the dispensing arm 16 is rotated by the drive mechanism 27 to move the sample dispensing probe 17 to a position on the reaction disk 36.
  • the dispensing arm 16 is lowered by the drive mechanism 27, the tip of the sample dispensing probe 17 is inserted into the reaction cell 35, the quantitative dispensing syringe 25 is discharged, and the sample is discharged from the dispensing probe 17.
  • the sample dispensing probe 17 is raised, and the sample dispensing probe 17 is washed by the sample washing mechanism 46 to prepare for the next analysis.
  • FIG. 3 is a block diagram showing the internal functions of the controller 60, and shows the main part of the first embodiment of the present invention.
  • the controller 60 includes a sample suction probe height calculation unit 60 a to which a pulse signal from the motor 28 is supplied, a memory 60 c storing a calculation formula and the like, and a sample suction probe height calculation unit 60 a.
  • a corrected discharge amount calculating unit 60b Based on the calculated height of the sample dispensing probe 17 and a calculation formula stored in the memory 60c, a corrected discharge amount calculating unit 60b that calculates a corrected discharge amount of the dispensing probe 17 and the corrected discharge amount calculating unit 60b
  • a dispensing syringe operation control unit 60d that controls the operation of the dispensing syringe based on the corrected discharge amount is provided.
  • the controller 60 also controls the operation of other parts such as the sample disk 12 of the automatic analyzer, but the functional blocks for that purpose are not shown in FIG.
  • the sample container 10 has several shapes, such as a test tube type sample container 10a installed on the sample disk bottom 12b and a cup type installed on the upper surface 12a of the sample disk 12. There is a sample container 10b and the like.
  • the sample container 10a is a vacuum blood collection tube, and after direct blood collection and separation into a serum part 18 and a clot part 19 by centrifugation, the sample container 10a is set on the sample disk 12 The sample is sucked by the sample dispensing probe 17.
  • the liquid level position of the sample serum 18 is detected by the function of the liquid level detector 9, and the tip of the sample dispensing probe 17 is immersed in the sample serum 18 for several mm and stopped, and the sample serum 18 is required from that position. Aspirate the amount.
  • the sample liquid level height 37 is positioned at a height corresponding to 30 to 80 mm from the sample disc bottom 12b.
  • condition (2) corresponds to the case where, for example, only the serum after centrifugation is directly put into the test tube type sample container 10a.
  • condition (2) only a necessary amount of sample is put in, so the sample liquid level is small and the relationship is that the height of the sample liquid is located at a height corresponding to 8 to 30 mm from the sample disc bottom 12b.
  • the following condition (3) corresponds to a case where, for example, only a necessary amount of serum after centrifugation is directly placed in a cup-type sample container 10b.
  • the sample amount is small because only a necessary amount can be put.
  • the relationship is located at a height corresponding to 30 to 50 mm.
  • the following condition (4) is when the sample container 10b is installed on the upper surface of the sample container 10a. Such a usage is a method often used when the sample barcode is used, and the sample container 10a is used for reusing the sample barcode for recognizing the sample. Therefore, the sample container 10b is used as the sample container 10.
  • the sample volume is small because only a necessary amount can be put.
  • the sample liquid level height is the sample disk bottom 12b. The relationship is located at a height equivalent to 80 to 100 mm.
  • the height of the sample dispensing probe 17 that stops at the time of sample suction depends on the type of the sample container 10 to be used and the method of operation of the apparatus, even if the amount of the sample is the same. Become a town.
  • the flow paths 23 and 24 between the quantitative dispensing syringe 25 and the sample dispensing probe 17 are filled with system water, and the flow path is set by an electromagnetic valve immediately after suction and immediately before discharge. Is closed. Therefore, when the fixed amount dispensing syringe 25 is driven by a certain amount, the sample is sucked and discharged from the tip of the sample dispensing probe 17 using the system water as a medium. For this reason, in this system, compression of the system water in the flow path and elastic deformation of the flow path member are always caused by pressure.
  • the elastic deformation amount is replaced with an equivalent air volume, and the elastic deformation amount is handled with the calculated air volume amount as the equivalent air amount.
  • Vair1 is the equivalent air amount immediately after sample suction
  • V'air1 is the equivalent air amount immediately before sample discharge
  • ⁇ Vair is the difference between the equivalent air amount immediately before sample discharge and the equivalent air amount immediately after sample suction
  • P0 atmospheric pressure
  • P1 is the pressure immediately after the sample is sucked
  • P'1 is the pressure just before the sample is discharged
  • h0 is the height of the water column that is balanced with the atmospheric pressure
  • h is the height of the tip of the sample dispensing probe 17 immediately after the sample is sucked
  • ⁇ h is the difference between the height of the tip of the sample dispensing probe 17 immediately before sample discharge and the height of the tip
  • the height h of the tip of the sample dispensing probe 17 immediately after sample suction and the sample discharge in the vertical direction starting from the installation height of the quantitative dispensing syringe 25 fixed to the apparatus If the height h ′ of the tip of the immediately preceding sample dispensing probe 17 is the same, ⁇ Vair is 0 according to the above equation (4), and the sample state at the tip of the sample dispensing probe 17 has the same shape.
  • FIG. 6 is a diagram showing an example in which the height of the tip of the sample dispensing probe 17 immediately after sample suction is different from the height of the tip of the sample dispensing probe 17 just before sample discharge.
  • the height h ′ of the tip of the sample dispensing probe 17 at the time of sample discharge is fixed, and the sample dispensing probe 17 is subjected to the liquid level detection function of the liquid level detector 9 to provide a sample container.
  • the difference in the height h of the sample dispensing probe 17 at the time of sample suction due to the difference in the height of the sample liquid level in the sample container 10 The sample discharge amount is different.
  • the equivalent air amount Vair1 in the first embodiment of the present invention is 2.05 microliters
  • the difference ⁇ Vair in the equivalent air amount when the sample liquid level in the sample container 10 is 8 mm from the sample disc bottom 12b.
  • the sample dispensing amount is 1.5 microliters which is a minute amount dispensing
  • 0.019 microliter obtained by the above formula (5) is a difference of about 1.3% in the discharge amount.
  • FIG. 7 is a graph showing the results of the relationship between the actual measurement value (solid line) actually measured for each sample suction height and the calculated value (dashed line). As shown in FIG. 7, the actually measured value and the calculated value are almost the same, and can be used as a correction amount calculation formula.
  • the ⁇ Vair amount calculated from the hardware configuration of the automatic analyzer is constant regardless of the sample discharge amount from the equation (4) (that is, the smaller the sample discharge amount is, the more the influence ratio is). growing).
  • the ⁇ Vair amount can be calculated if the tip height of the sample dispensing probe 17 at the time of sample suction can be detected, and the determined result is driven when the sample is discharged to the reaction cell 35. If corrected as an amount, accurate and reliable measurement data can be provided.
  • the reference of the sample suction height of the dispensing probe 17 is the height when the standard solution at the time of calibration is sucked. If the correction is made so that it becomes the standard, more reliable data can be provided.
  • the detection of the tip height of the sample dispensing probe 17 at the time of sample aspiration is such that the dispensing arm 16 is moved up and down by the motor 28, so that the probe height calculation unit 60a at the time of sample aspiration is stopped by the liquid level detection.
  • the number of strokes for the vertical movement of the dispensing arm 16 can be calculated from the number of pulses applied by the motor 28 in FIG.
  • the memory 60c stores the tip height h 'of the dispensing probe 17 when the sample is discharged, the equation (4), and the sample suction amount.
  • the height of the dispensing probe at the time of sample suction is increased. A difference in discharge amount due to the difference can be eliminated.
  • the correction of calculating the sample discharge amount error based on the difference in the vertical position between the sample suction position and the sample discharge position of the sample dispensing probe using the correction amount calculation formula Since the amount can be corrected by the amount, it is possible to realize an automatic analyzer and a liquid dispensing method capable of improving the dispensing accuracy of a sample or the like regardless of the difference in the suction height of the sample or the like of the dispensing probe.
  • Example 2 In the first embodiment of the present invention described above, a method of calculating the correction amount by replacing the elastic deformation amount of the flow path member or the like used for sample dispensing with the equivalent air amount is employed. It is conceivable that there is a difference in the discharge amount due to the influence of other mechanisms such as volume change due to flow path deformation other than elastic deformation due to movement.
  • the discharge amount is measured for each sample suction height at the tip of the actual sample dispensing probe 17, and the error obtained from the measured result is applied to the apparatus software to drive the dispensing syringe. Is configured to eliminate the difference in discharge amount.
  • a correction function screen (correction amount setting screen, which is displayed on the screen display unit of the computer 61) as shown in FIG. 11 is provided as an apparatus function, and the error amount obtained for each sample and reagent is displayed on the apparatus screen. It is also possible to adopt a configuration in which input is performed, and a correction amount for each height is calculated and corrected based on the input value.
  • This function can be corrected for each device, so it can be used to increase reliability, and even if the hardware configuration of the flow path is changed, it is corrected only by changing the screen without changing the software. Since the amount can be corrected, it is more convenient.
  • the correction amount setting screen is provided with a button for selecting whether to perform correction or not for each sample and reagent.
  • the actual discharge amount error may be obtained for each apparatus for each sample suction height, and the result may be corrected.
  • a series of flows for obtaining the correction amount of the sample discharge amount may be automated and incorporated in the apparatus as a sample discharge correction amount calculation function.
  • Example 2 of this invention becomes the same as that of Example 1, the illustration is abbreviate
  • FIG. 8 is an operation flowchart of the sample discharge correction amount calculation function according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing an example when the TP item is calculated as the correction target item according to the flowchart shown in FIG.
  • an item “A” for calculating a correction amount calculation formula is determined. For example, a sample discharge amount of 2 microliters and a TP item that is a minute dispensing item are registered as correction target items (step S701).
  • step S702 calibration of the item “A”, here, the TP item is performed.
  • the height of the sample dispensing probe 17 at the time of standard liquid suction at that time is recorded in the memory 60c via the sample suction probe height calculation unit 60a and the corrected discharge amount calculation unit 60b (step S702).
  • the concentration input value of the TP standard solution is 6.00 g / L, and the height of the tip of the sample dispensing probe 17 from the sample disc bottom 12b when the standard solution is sucked is high. It is assumed that the thickness is 50 mm.
  • the standard solution of TP item is measured as a sample.
  • the standard solution is divided into two, for example, as shown in the conditions (2) and (4) in FIG. Measure the standard solution.
  • the height of the sample dispensing probe 17 at the time of the standard solution suction at that time is recorded in the memory 60c (step S703).
  • the measurement value when the standard solution is aspirated under the condition (2) in FIG. 4 is the input value 6.00 g / L of the standard solution, It is assumed that the height of the tip of the sample dispensing probe 17 at the time of suction of the standard solution is 10 mm from the sample disc bottom 12b at 5.88 g / L.
  • the measured value when the standard solution is aspirated under the condition (4) in FIG. 4 is 6.12 g / L, which is 102% of the standard solution input value of 6.00 g / L. It is assumed that the tip height of the sample dispensing probe 17 at the time of sucking the standard solution is 90 mm from the sample disc bottom 12b.
  • a correction amount calculation formula is created from the results of the respective measured values and suction heights at the time of measurement of the two distributed standard solutions, based on the suction height at the time of calibration, which is obtained in Steps S702 and S703. Step S704).
  • correction amount calculation formulas for the TP item in FIG. 9 are the following formulas (6) and (7).
  • Y ⁇ 0.0005X + 1.0254 (6)
  • Z Sample discharge amount ⁇ Y ⁇ Sample discharge amount (7)
  • X is the height of the tip of the sample dispensing probe 17 at the time of sample suction from the sample disc bottom 12b
  • Y is a correction coefficient
  • Z is a correction amount (microliter). .
  • the actual value of the TP item standard solution measured according to the height of the tip of the sample dispensing probe 17 at the time of sample suction is corrected to the expected value by correcting the concentration value using the above equation (6). It was confirmed that a certain measured value of 6.00 g / L could be obtained.
  • FIG. 12 is a diagram showing a setting screen for the above-described correction function, in which a correction target item is selected, whether or not to correct for each sample and reagent, a concentration and height correction amount calculation formula, and a correction amount.
  • This is a screen that can be entered and edited and confirmed. This screen is displayed on the screen display section of the computer 61.
  • sample discharge amount of the TP item is 2 microliters, 98% is 1.96 microliters of -0.04 microliter, and 102% is 2.04 microliters of +0.04 microliter.
  • sample discharge amount is 3 microliters, -0.04 microliters, 2.96 microliters, corresponds to 98.7%, and +0.04 microliters, 3.04 microliters, is 101. This is equivalent to 3%.
  • FIG. 10 is an example of a correction amount calculation formula obtained by converting the GLU item whose sample discharge amount is 3 microliters using the result of the TP item of FIG.
  • the correction amount calculation formula when the sample discharge amount is 3 microliters is the following formula (8).
  • the correction amount calculation formula is derived using the TP item. However, if the correction amount calculation formula for one item is obtained, the correction amount calculation formula can be changed based on the formula based on the formula. The correction amount calculation formula can be obtained by calculation for all items.
  • Example 2 of the present invention it is confirmed whether or not it is the same as 2 microliters which is the sample discharge amount of the TP item (step S705). If it is the same as 2 microliters in step S705, the above formula (6) is used as the correction amount calculation formula (step S706), and the height of the sample dispensing probe 17 when the sample specimen is aspirated in the measurement target item. A correction amount is determined based on the information (step S709), and for example, the sample discharge amount by the dispensing syringe 25 is changed by the correction amount and correction is performed (step S710).
  • step S705 if the sample discharge amount of the measurement target item is different from the sample discharge amount of the item “A”, a correction amount calculation formula is obtained from the sample dispensing amount of the measurement target item and correction is performed.
  • the above formula (7) is derived from the sample discharge amount ratio based on the above formula (6) ((step S708)), and the above Correction is performed using equation (8).
  • each automatic analyzer can automatically determine the actual discharge amount error for each sample suction height, and can be applied to all analysis items with different sample discharge amounts. This can contribute to improving the reliability of data.
  • a presence / absence screen may be provided.
  • a screen (displayed on the screen display unit of the computer 61) on which only items of 3 microliters or less can be selected may be provided.
  • a browsing screen for the automatic correction amount calculation formula function may be provided, and a screen that can complete the series of operations described in the embodiment of the sample discharge correction amount calculation function shown in FIG. On this screen, you can select the item “A” for obtaining the automatic correction amount calculation formula, view the measurement results, height information, and correction amount calculation formulas, and edit the measurement results and height information. Thereby, the correction amount calculation formula may be recalculated, or the correction amount calculation formula may be directly editable.
  • the driving amount of the dispensing syringe is changed by the correction amount as the correction means to the apparatus, and the sample discharge amount itself is directly corrected.
  • the sample discharge amount is not corrected.
  • a certain computer 61 can also calculate the discharged sample or reagent amount from the position of the reagent or sample suction height direction and correct the concentration value as a measurement result.
  • sample dispensing method when the amount required for analyzing the sample is 2 microliters or more, the amount required for the analysis by the sample dispensing probe 17 is changed to the sample dispensing method.
  • the sample is dispensed in such a manner that the sample is aspirated in excess of the amount and only the amount required for analysis is discharged.
  • a sample dispensing method is adopted in which the sample is sucked by the sample dispensing probe 17 only for the amount required for the analysis, and the sucked sample is pushed out by the system water and discharged. Some devices do this.
  • correction of the discharge amount side has been described.
  • correction may be made.
  • the discharge amount error due to the pressure difference in the height direction of the sample dispensing probe 17 at the time of sample suction has been described.
  • a difference in discharge amount due to the influence of volume change due to flow path deformation, etc. is also considered. Therefore, the correction amount may be calculated and corrected according to the difference in operation such as the rotation direction and horizontal direction of the sample dispensing probe 17.
  • the sample aspiration probe height calculation unit 60a shown in FIG. 3 calculates not only the height of the sample dispensing probe but also the rotation angle or horizontal position of the sample dispensing probe.
  • the sample discharge time during which the error in the discharge amount greatly affects the ratio of the entire discharge amount has been described, but the sample dispensing is performed even in the reagent discharge operation with the same apparatus configuration.
  • the reagent amount can be corrected by a process similar to the operation. That is, it is possible to correct the reagent discharge amount based on the position in the height direction when the reagent dispensing probe of the reagent dispensing mechanism 20, 21 sucks the reagent from the reagent container 40.
  • the reagent dispensing mechanisms 20 and 21 have the same configuration as the sample dispensing mechanism 15 shown in FIG. 2, and the sample dispensing probe 17 can function as a reagent dispensing probe.
  • FIG. 2 can be a diagram showing the sample dispensing mechanism 15 and the reagent dispensing mechanisms 20 and 21.
  • the sample height probe height calculation unit 60a of the controller 60 shown in FIG. 3 is the sample and reagent aspiration probe height calculation unit
  • the corrected ejection amount calculation unit 60b is the sample and
  • the reagent correction discharge amount calculation unit and the reagent dispensing syringe operation control unit 60d serve as the sample and reagent dispensing syringe operation control unit.
  • DESCRIPTION OF SYMBOLS 9 Liquid level detector, 10 ... Sample container, 10a ... Test tube type sample container, 10b ... Cup type sample container, 12 ... Sample disc, 12a ... Sample disc Upper surface, 12b ... sample disc bottom, 15 ... sample dispensing mechanism, 16 ... dispensing arm, 17 ... sample dispensing probe, 18 ... serum, 19 ... clot, 20 ... 1st reagent dispensing mechanism, 21 ... 2nd reagent dispensing mechanism, 23 ... Flexible tube, 24 ... Fixed flow path, 25 ... Fixed quantity dispensing syringe, 27 ... Drive mechanism, 28 ... motor, 30 ... stirring device, 32 ... support, 33 ... fixing tool, 34 ...
  • Second reagent cleaning mechanism 50 ... light source, 51 ... spectral detector, 60 ... controller, 60a ... probe height calculation unit during sample suction, 60b ... corrected discharge amount calculation unit 60c: Memory, 60d: Dispensing syringe control unit, 61: Computer

Abstract

 分注プローブの試料等吸引高さの相違に関係なく、試料等の分注精度を向上可能な自動分析装置が実現され。試料量が少ない場合、試料吐出直前の試料分注プローブ17先端高さh'に対し試料吸引直後の試料分注プローブ17先端の高さh1は低く試料吐出直前の試料分注プローブ17先端試料は凹の状態となる。試料量が多い場合、h'に対し試料分注プローブ17先端高さh2はが高く試料分注プローブ17の先端試料は凸の状態となる。試料吸引時の試料分注プローブ17先端高さの違いが、試料吐出量の差になる。試料吸引時の試料分注プローブ17の先端高さを検出して、その高さにより、試料吐出時に定量分注シリンジ25の駆動量として補正すれば精度良く信頼性の高い測定データを提供することができる。

Description

自動分析装置
 本発明は、血液や尿などの多成分を含む試料中の目的成分の濃度又は活性値を測定する自動分析装置に関する。
 血液や尿などの成分を分析する自動分析装置は、試料と試薬とを反応させた反応液を保持する反応セルと、試料を保持する試料容器から所定量の試料を反応セルに分注する試料分注プローブと、試薬を保持する試薬容器から所定量の試薬を反応セルに分注する試薬分注プローブとを備え、試薬分注プローブにより反応セル内に分注された液体試料と試薬を化学反応させ、反応液にハロゲンランプなどにより光を照射して吸光度を測定し液体試料の成分を分析するものである。
 近年、自動分析装置では、試薬消費量の低減によるランニングコスト低減が求められているため、試料と試薬の比率を維持しつつ反応液量を低減させるために、特に試料分注量の低減化が行われている。よって、微量分注での精度がデータ信頼性の重要なファクタになっている。
 ここで、試料や試薬を吸引するとき分注プローブは、例えば、特許文献1に記載の技術である液面検知機能により液面を検知し、プローブ先端を試料や試薬中に数mm浸漬して停止し、試料や試薬を吸引する。これにより、余分量の反応セルへの持ち込み、また吐出後の持ちかえりを防止することで分注精度を確保し、プローブ外壁に付着する試料や試薬の面積を適正化することにより容易に洗浄している。
特開2001-4641号公報
 ところで、自動分析装置において、液面を検知して分注プローブの停止動作を制御する場合、容器中に入っている試料量や試薬量が異なっていれば、液面高さが異なるため、分注プローブの停止位置が異なり、試料や試薬ごとに吸引時の分注プローブ先端の高さが異なってくる。
 試料や試薬の吸引時の分注プローブの高さが異なると、例えば、圧力による流体と流路の弾性変形などの条件に差が生じ、反応セルへ試料や試薬を吐出する直前の分注プローブ先端の気泡量が異なり、結果として試料や試薬の吐出量に差が発生する。
 これにより、例えば試料や試薬量が少なく、容器下方から試料等を吸引したときと、試料や試薬量が多く容器上方から吸引したときで、試料等の吐出量の差が大きくなる。
 吸引高さの差による試料等の吐出量の差は、従来の自動分析装置の吐出量では分析に影響を与えるレベルではなかったが、近年の微量分注化により、その誤差量が試料分注全体に占める割合として大きくなるため、無視できなくなってきている。
 例えば、サンプル吐出量が微量の2マイクロリットルのTP(総タンパク質)項目を測定した場合について説明する。キャリブレーション測定時の標準液吸引時の試料分注プローブ先端停止位置が試料ディスク底から50mmの高さであった場合、試料分注プローブによる反応セルへの標準液吐出量が、設定量2マイクロリットルに対してちょうど100%の2.00マイクロリットルであったとする。
 キャリブレーション終了後に精度管理試料を測定する。このとき、精度管理試料吸引時の試料分注プローブ先端停止位置が試料ディスク底から下方である10mmの高さで吸引した場合、吐出誤差量が2マイクロリットルに対して、その2%に相当する-0.04マイクロリットルであったとすると、精度管理値は期待値である例えば6.50g/リットルに対して98%の6.37g/リットルとなる。
 ここで、仮に、TPの試料吐出量が5マイクロリットルの項目であったとすると、吐出誤差量が-0.04マイクロリットルは、5マイクロリットルに対して0.8%に相当するため、精度管理値は期待値の6.50g/リットルに対して99.2%の6.45g/リットルの誤差となる。
 上述したように、微量分注での分注量の誤差は、データ信頼性の重要なファクタになっている。
 しかしながら、従来の技術では、分注プローブ先端高さが試料や試薬吸引時毎に異なることにより、試料や試薬の吐出量が変化することに関して考慮されていなかった。このため、測定結果に差を与え測定データ信頼性の面で問題があった。
 本発明の目的は、上記問題点を解決し、分注プローブの試料等吸引高さの相違に関係なく、試料等の分注精度を向上可能な自動分析装置及び液体分注方法を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 試料分注プローブと、試薬分注プローブと、試料と試薬の反応液を分析する分析部とを有し、上記試料容器又は試薬容器から、試料又は試薬分注プローブで所定量の試料又は試薬を吸引する時の試料又は試薬分注プローブの高さ方向停止位置を検出し、検出した高さ方向停止位置に応じて、上記試料又は試薬分注プローブの試料又は試薬吸引量、試料又は試薬吐出量を補正させる。
 分注プローブの試料等吸引高さの相違に関係なく、試料等の分注精度を向上可能な自動分析装置及び液体分注方法を実現することができる。
本発明が適用される自動分析装置の概略構成図である。 試料分注機構の構成図である。 コントローラの内部機能の要部構成図である。 本発明の実施例における試料容器中の試料液面と底からの高さとの関係についての説明図である。 試料吸引直後と試料吐出直前の試料分注プローブ先端の試料状態について示した図である。 試料吸引直後と試料吐出直前の試料分注プローブ先端の試料状態について示した図である。 実際に試料吸引高さ別に測定した実測値(実線)と計算値(破線)との関係を示した結果を示すグラフである。 本発明の実施例1における、試料吐出補正量算出機能のフローチャートで1ある。 本発明の実施例における試料吐出補正量算出機能により補正量算出式を導き出した測定例を示す図である。 本発明の実施例における導き出した補正量算出式を使い分析項目に補正したときの測定例を示す図である。 本発明の実施例における補正量設定画面を示す図である。 本発明の実施例における補正機能設定画面を示す図である。 本発明の実施例における分析パラメータ設定画面を示す図である。
 以下、図面を用いて本発明の実施の形態を説明する。
 (実施例1)
 図1は本発明が適用される自動分析装置の概略構成図である。
 図1において、自動分析装置は、試料を保持する試料容器10を複数搭載可能な試料ディスク12と、試薬を保持する試薬容器40を複数搭載可能な第1試薬ディスク41および第2試薬ディスク42と、周上に複数の反応セル35を配置した反応ディスク36とを備える。
 また、自動分析装置は、試料容器10から吸引した試料を反応セル35に分注する試料分注機構15と、試料分注機構15を洗浄する試料洗浄機構46と、第1試薬ディスク41内の試薬容器40から吸引した試薬を反応セル35に分注する第1試薬分注機構20と、第1試薬分注機構20を洗浄する第1試薬洗浄機構47と、第2試薬ディスク42内の試薬容器40から吸引した試薬を反応セル35に分注する第2試薬分注機構21と、第2試薬分注機構21を洗浄する第2試薬洗浄機構48と、反応セル35内の液体を撹拌する攪拌装置30と、反応セル35を洗浄する反応セル洗浄機構45とを備える。
 さらに、自動分析装置は、反応ディスク36の外周付近に設置された光源50と、分光検出器51と、分光検出器51に接続されたコンピュータ61と、装置全体の動作を制御し、外部とのデータの交換を行うコントローラ60とを備える。
 試料分注機構15は、可撓チューブ23および固定流路24を介して定量分注シリンジ25に接続されている。
 図2は、試料分注機構15の構成図である。図2において、試料分注機構15は、鉛直方向に延びた円筒状の試料分注プローブ17を保持する分注アーム16と、ベース34に設置され、分注アーム16を上下方向及び回転方向に駆動する駆動機構27と、駆動機構27を動かすためのモータ28と、試料分注プローブ17と接続した可撓チューブ23と、可撓チューブ23の一端を保持し、固定流路24と連結させる固定具33と、ベース34に設置され、固定具33を保持する支持具32とを備える。
 また、試料分注機構15には、液面検知器9が配置されている。この液面検知器9は、例えば、分注プローブ17の静電容量変化を検知して、分注プローブ17の先端部が液面等に接触したことを静電容量の変化により検知することができる。
 なお。第1試薬分注機構20および第2試薬分注機構21も、分注機構15と同様の構造をしている。
 本発明の実施例1における自動分析装置は、以下のように動作する。
 図1において、試料容器10には血液等の検査対象の試料が入れられ、試料ディスク12にセットされる。それぞれの試料で必要な分析の種類はコントローラ60に入力される。試料分注機構15によって採取された試料は反応ディスク36に並べられている反応セル35に一定量分注され、一定量の試薬が試薬ディスク41または42に設置された試薬容器40から試薬分注機構20または21により分注され、攪拌装置30にて攪拌される。
 反応ディスク36は周期的に回転,停止を繰り返し、反応セル35が光源50の前を通過するタイミングで分光検出器51にて測光が行われる。10分間の反応時間の間に測光を繰り返し、その後、反応セル洗浄機構45で反応セル35内の反応液の排出および洗浄がなされる。それらの間に別の反応セル35では、別の試料,試薬を用いた動作が並行して実施される。
 分光検出器51にて測光したデータはコンピュータ61で演算し、分析の種類に応じた成分の濃度を算出して表示される。また、コンピュータ61は、画面表示部を有する。
 次に、図2を用いて試料分注機構15の動作を詳細に説明する。
 図2において、試料を吸引する前には図1に示す定量分注シリンジ25から固定流路24、可撓チューブ23を介して試料分注プローブ17までの間の流路はシステム水で満たされており、試料分注プローブ17の先端には分節空気として微量の空気が吸引されている。
 駆動機構27により分注アーム16が下降し、試料分注プローブ17の先端が試料容器10の中の試料に挿入される。このとき、液面検知器9により試料液面位置が検知され、試料分注プローブ17の先端が試料中に数mm浸漬して停止される。定量分注シリンジ25が吸引動作して、一定量の試料が試料分注プローブ17に吸引される。
 その後、駆動機構27を動作させ、分注プローブ17はホームポジションで停止する。分注プローブ17のホームポジションは、試料容器10や反応容器35の上端より高く、分注アーム16の回転動作が妨げられない高さである。分注プローブ17の上昇停止後、駆動機構27により分注アーム16を回転させ、試料分注プローブ17を反応ディスク36上の位置に移動させる。
 その後、駆動機構27により分注アーム16を下降させ、試料分注プローブ17の先端を反応セル35内に挿入し、定量分注シリンジ25を吐出動作させ、分注プローブ17から試料を吐出させる。反応セル35内に一定量の試料を吐出した後、試料分注プローブ17を上昇し、試料洗浄機構46により試料分注プローブ17を洗浄し、次の分析に備える。
 図3は、コントローラ60の内部機能構成図であり、本発明の実施例1における要部を示している。図3において、コントローラ60は、モータ28からのパルス信号が供給される試料吸引時プローブ高さ算出部60aと、算出式等が格納されたメモリ60cと、試料吸引時プローブ高さ算出部60aが算出した試料分注プローブ17の高さとメモリ60cに格納された算出式等に基づいて分注プローブ17の補正吐出量を算出する補正吐出量算出部60bと、この補正吐出量算出部60bからの補正吐出量に基づいて、分注シリンジの動作を制御する分注シリンジ動作制御部60dとを備える。
 なお、コントローラ60は、自動分析装置の試料ディスク12等のその他の部の動作制御も行うが、そのための機能ブロックは、図3には示さず省略してある。
 次に、図4を用いて、試料容器10中の試料液面37と試料容器10の底からの高さとの関係について説明する。
 図4において、試料容器10には、何通りかの形状のものが存在し、例えば試料ディスク底12bに設置する試験管タイプの試料容器10aや、試料ディスク12の上面12aに設置するカップタイプの試料容器10b等がある。
 次に、図4に示した条件(1)について説明する。例えば、試料が血液の場合、試料容器10aが真空採血管になっており、直接採血し、遠心分離により血清部分18と血餅部分19とに分離した後、試料ディスク12に試料容器10aをセットし、試料分注プローブ17により試料を吸引する。
 このとき、液面検知器9の機能により試料血清18の液面位置を検知し試料分注プローブ17の先端が試料血清18中に数mm浸漬して停止し、その位置から試料血清18を必要量吸引する。
 このように、条件(1)では試料液面高さ37が試料ディスク底12bから30~80mm相当の高さに位置している関係となる。
 次の条件(2)は、試験管タイプの試料容器10a中に例えば遠心分離後の血清のみを、必要量直接入れた場合などが該当する。条件(2)では試料量を必要量しか入れないため少なく、試料液面高さが試料ディスク底12bから8~30mm相当の高さに位置している関係となる。
 次の条件(3)ではカップタイプの試料容器10b中に例えば遠心分離後の血清のみを必要量直接入れた場合などが該当する。条件(3)では条件(2)と同じように、試料量を必要量しか入れないため少ないが、試料容器10bは試料ディスク上面12aに設置するため、試料液面高さは試料ディスク底12bから30~50mm相当の高さに位置している関係となる。
 次の条件(4)では、試料容器10a上面に試料容器10bを設置した場合である。このような使い方は、検体バーコード運用のときによく使われる方法で試料容器10aは検体を認識させるための検体バーコードを貼り付けるために使用し使いまわして利用する。よって、試料容器10としては試料容器10bが使われる。条件(4)では、条件(2)と同じように、試料量を必要量しか入れないため少ないが、試料容器10bは試料容器10a上に設置するため、試料液面高さは試料ディスク底12bから80~100mm相当の高さに位置している関係となる。
 このように、使う試料容器10の種類や装置運用の仕方によって、試料量は同量であっても試料ディスク12への設置の仕方によって、試料吸引時に停止する試料分注プローブ17の高さはまちまちになる。
 続いて、試料吸引時および吐出時の圧力による弾性変形について説明する。
 図5に示すように、定量分注シリンジ25から試料分注プローブ17までの間の流路23および24にはシステム水で満たされており、吸引直後時及び吐出直前時は電磁弁により流路は閉じられている。よって、定量分注シリンジ25が一定量駆動することによりシステム水を媒体として試料分注プローブ17先端から試料の吸引および吐出が行われる。このため、本システムでは、常に圧力により流路内のシステム水の圧縮および流路部材の弾性変形が起きている。ここでは、弾性変形量を等価の空気体積に置き換え、算出した空気体積量を等価空気量として弾性変形量を扱うことにする。
 分注プローブ17の試料吸引直後の等価空気量と吐出直前の等価空気量との差による試料分注プローブ17先端の試料状態について図5を用いて説明する。
 試料吸引直後の等価空気量をVair1、試料吐出直前の等価空気量をV’air1とすると、試料吐出直前の等価空気量と試料吸引直後の等価空気量の差△Vairは、次式で表すことができる。
 △Vair=V’air1 - Vair1   ・・・(1)
      =-Vair1(P’1-P1)/P0 ・・・(2)
      =-Vair1(h’-h)/h0   ・・・(3)
      =-Vair1・△h/10      ・・・(4)
 ただし、Vair1は試料吸引直後の等価空気量、V’air1は試料吐出直前の等価空気量、△Vairは試料吐出直前の等価空気量と試料吸引直後の等価空気量の差、P0は大気圧、P1は試料吸引直後の圧力、P’1は試料吐出直前の圧力、h0は大気圧と釣り合う水柱の高さ、hは試料吸引直後の試料分注プローブ17の先端の高さ、h’は試料吐出直前の試料分注プローブ17の先端の高さ、△hは試料吐出直前の試料分注プローブ17先端の高さと試料吸引直後の試料分注プローブ17先端の高さとの差である。
 図5に示すように、例えば、装置に固定されている定量分注シリンジ25の設置高さを起点にして垂直方向に、試料吸引直後の試料分注プローブ17の先端の高さhと試料吐出直前の試料分注プローブ17先端の高さh’とが、互いに同じであれば、上記式(4)により△Vairは0となり、試料分注プローブ17の先端の試料状態は同じ形状となる。
 図6は、試料吸引直後の試料分注プローブ17の先端の高さと試料吐出直前の試料分注プローブ17先端の高さが異なるときの例を示した図である。
 図6に示すように、例えば、図4の条件(2)の場合のように、試料容器10a中の試料量が少ない場合は、試料吐出直前の試料分注プローブ17の先端の高さh’に対して、試料吸引直後の試料分注プローブ17の先端の高さh1が低くなる。このため、上記式(4)により、等価空気量△Vairが負の値となり、試料吐出直前の試料分注プローブ17の先端の試料が吸引直後の状態と比較して凹の状態となる。
 一方、例えば、図4の条件(4)のような場合は、試料吐出直前の試料分注プローブ17の先端の高さh’に対して、試料吸引直後の試料分注プローブ17先端の高さh2が高くなる。このため、上記式(4)により、等価空気量△Vairが正の値となり、試料分注プローブ17の先端の試料が吸引直後の状態と比較し凸の状態となる。
 本発明の実施例1のように、試料吐出時の試料分注プローブ17の先端の高さh’が固定であり、試料分注プローブ17が液面検知器9の液面検知機能により試料容器10中の試料量を検出し、液面から数mm浸漬する装置においては、試料容器10中の試料液面高さの違いによる、試料吸引時の試料分注プローブ17先端高さhの違いが、試料吐出量の差になる。
 例えば、本発明の実施例1の等価空気量Vair1が、2.05マイクロリットルであったとすると、試料容器10中の試料液面が試料ディスク底12bから8mmのときの等価空気量の差△Vair’と、100mmのときの等価空気量の差△Vair"との差d△Vairを算出すると、上記式(4)から次式(5)を導き出すことができる。
 d△Vair=-2.05×0.092/10=-0.019(マイクロリットル)・・・(5)
 なお、上記(5)式中の(0.092)は、100mm-8mm=92mm=0.092mである。
 したがって、試料分注量が微量分注である1.5マイクロリットルであったとすると、上記式(5)により求めた0.019マイクロリットルは、約1.3%の吐出量の差となってでてくる。
 図7は、実際に試料吸引高さ別に測定した実測値(実線)と計算値(破線)との関係を示した結果を示すグラフである。図7に示したように、実測値と計算値はほぼ同一の結果となり、補正量算出式として利用できる。
 このように、自動分析装置のハード構成上から算出された△Vair量は、式(4)から試料の吐出量に関係なく一定である(つまり、試料吐出量が微量になるほど、その影響割合が大きくなる)。
 よって、△Vair量は、試料吸引時の試料分注プローブ17の先端高さを検出することができれば、算出でき、求めた結果を反応セル35へ試料を吐出する時に定量分注シリンジ25の駆動量として補正すれば、精度良く信頼性の高い測定データを提供することができる。
 また、測定する分析項目の濃度値は、分析項目ごとに行われるキャリブレーション結果によって決まるので、分注プローブ17の試料吸引高さの基準はキャリブレーション時の標準液を吸引したときの高さを基準となるように補正すれば、より信頼性の高いデータを提供できる。
 ここで、試料吸引時の試料分注プローブ17先端高さの検出は、モータ28により分注アーム16は上下動するため、試料吸引時プローブ高さ算出部60aが、液面検知により停止した位置でのモータ28の付与したパルス数から分注アーム16の上下動に対するストローク数を算出することにより検出することができる。
 また、メモリ60cには、試料吐出時の分注プローブ17先端高さh’、式(4)、試料吸引量が格納されている。
 以上述べた補正量算出式を装置ソフトウェアに組み込むことによって求めた補正量を、分注シリンジ17の駆動により分注プローブ17からの吐出量を補正することにより、試料吸引時における分注プローブの高低差による吐出量差を無くすことができる。
 以上のように、本発明の実施例1によれば、試料分注プローブの試料吸引位置と試料吐出位置との鉛直方向位置の差異に基づく、試料吐出量誤差を補正量算出式により算出した補正量により補正することができるので、分注プローブの試料等吸引高さの相違に関係なく、試料等の分注精度を向上可能な自動分析装置及び液体分注方法を実現することができる。
(実施例2)
 上述した本発明の実施例1では、試料分注に使用する流路部材等の弾性変形量を等価空気量に置き換えて補正量を算出する方法を採用しているが、例えば、装置によっては上下動による弾性変形以外の流路変形による容積変化など、他のメカニズムによる影響により吐出量に相違が生じることが考えられる。
 そこで、本発明の実施例2においては、実際の試料分注プローブ17の先端の試料吸引高さ別に吐出量を実測し、実測結果から求めた誤差分を装置ソフトウェアに適用し、分注シリンジ駆動を補正し、吐出量の差を無くさせるように構成する。
 この場合、装置機能として図11に示すような補正機能画面(補正量設定画面であり、コンピュータ61の画面表示部に表示される)を設け、試料、試薬ごとに求めた誤差量を装置画面に入力し、その入力値をもとに高さ毎の補正量を算出し補正させる構成とすることもできる。
 その機能により、装置ごとに補正させることもできるため、より信頼性を高めることにも活用でき、流路のハード構成が変更になった場合でもソフトウェアを変更することなく画面入力による変更だけで補正量を修正することができるため、より利便性が高くなる。
 また、図11に示すように、補正量設定画面には、補正の実施を行うか行わないかの選択を、試料及び試薬毎に設定可能なボタンを設けている。
 さらには、装置毎に試料吸引高さ別に実質吐出量誤差を求め、その結果を補正させても良い。その際、試料吐出量の補正量を求めるための一連のフローを自動化し、試料吐出補正量算出機能として装置に組み込んでも良い。
 なお、本発明の実施例2における装置構成は、実施例1と同様となるので、その図示は省略する。
 図8は、本発明の実施例2における試料吐出補正量算出機能の動作フローチャートである。また、図9は、図8に示したフローチャートに従い、TP項目を補正対象項目として算出したときの例を示す図である。
 図8において、まず補正量算出式を算出するための項目「A」を決める。例えば試料吐出量が2マイクロリットルと微量分注項目であるTP項目を補正対象項目として登録する(ステップS701)。
 次に、項目「A」、ここではTP項目のキャリブレーションを実施する。そのときの標準液吸引時の試料分注プローブ17の高さを、試料吸引プローブ高さ算出部60a及び補正吐出量算出部60bを介してメモリ60cに記録する(ステップS702)。
 例えば、図9のTP項目キャリブレーション結果に示すように、TP標準液の濃度入力値は6.00g/Lであり、標準液吸引時の試料ディスク底12bからの試料分注プローブ17先端の高さは50mmであったとする。
 次に、TP項目の標準液を試料として測定する。測定の際、標準液を2つに分配し、例えば、図4の条件(2)と条件(4)のように、試料ディスク底12bからの標準液液面高さが異なるように設置しそれぞれの標準液を測定する。そのときの標準液吸引時の試料分注プローブ17の高さをそれぞれメモリ60cに記録する(ステップS703)。
 例えば、図9のTP項目の標準液測定結果に示すように、図4の条件(2)で標準液を吸引させた場合の測定値は標準液の入力値6.00g/Lに対して、5.88g/Lで、98%の値であり、そのときの標準液吸引時の試料分注プローブ17先端高さは試料ディスク底12bから10mmであったとする。
 一方、図4の条件(4)で標準液を吸引させた場合の測定値は標準液の入力値6.00g/Lに対して、6.12g/Lで、102%の値であり、そのときの標準液吸引時の試料分注プローブ17先端高さは試料ディスク底12bから90mmであったとする。
 ステップS702とステップS703で求めた、キャリブレーション実施時の吸引高さを基準とし、分配した2つの標準液測定時におけるそれぞれの測定値と吸引高さの結果から、補正量算出式を作成する(ステップS704)。
 例えば、図9のTP項目の補正量算出式は、次式(6)、(7)となる。
 Y=-0.0005X + 1.0254   ・・・(6)
 Z=試料吐出量 × Y - 試料吐出量   ・・・(7)

 ただし、上記式(6)、(7)において、Xは試料吸引時の試料分注プローブ17先端の試料ディスク底12bからの高さ、Yは補正係数、Zは補正量(マイクロリットル)である。
 図9に示すように、試料吸引時の試料分注プローブ17の先端高さ別に測定したTP項目標準液の実測値を、上記式(6)を使って濃度値補正することにより、期待値である6.00g/Lの測定値を得られることが確認できた。
 図12は、上述した補正機能の設定画面を示す図であり、補正対象項目を選択し、試料、試薬毎に補正するか否かの選択、濃度、高さの、補正量算出式、補正量等を入力して、編集、確認を行うことができる画面である。この画面はコンピュータ61の画面表示部に表示される。
 ここで、先に述べたように、△Vair量は、上記式(4)から試料の吐出量の大小に関係なく一定であるから、求める補正量算出式は試料吐出量が同じであれば同じになる。
 TP項目の試料吐出量は2マイクロリットルであるから、その98%は-0.04マイクロリットルの1.96マイックロリットルとなり、102%は+0.04マイクロリットルの2.04マイクロリットルとなる。
 それに対して、試料吐出量が3マイクロリットルの場合、-0.04マイクロリットルである2.96マイクロリットルは98.7%に相当し、+0.04マイクロリットルである3.04マイクロリットルは101.3%に相当することになる。
 このような関係から試料吐出量の比率を利用することにより、TP項目の補正量算出式である上記式(6)を、他の異なる試料吐出量項目向けに換算させることができる。例えば、図10は図9のTP項目の結果を利用して試料吐出量が3マイクロリットルであるGLU項目に対して、換算して求めた補正量算出式の例である。
 図10に示すように、試料吐出量が3マイクロリットルの場合の補正量算出式は次式(8)となる。
 Y=-0.00033X + 1.0168   ・・・(8)
 例えば、図10に示すように、GLU項目に対して、試料吸引時の試料分注プローブ17の先端高さ別に測定した実測値を、上記式(8)を使って濃度値補正することにより、期待値である300mg/dLの測定値を得られることが確認できた。
 以上のように、本発明の実施例2ではTP項目を用いて補正量算出式を導いたが、ある1項目の補正量算出式を求めれば、その式を元に試料吐出量の比率により他の全ての項目に対して、補正量算出式を演算により求めることができる。
 よって、測定対象項目が、補正算出式を導き出した項目である項目「A」と試料吐出量が同じかどうかをチェックする。
 本発明の実施例2では、TP項目の試料吐出量である2マイクロリットルと同じかどうかを確認する(ステップS705)。ステップS705で、2マイクロリットルと同じであれば、補正量算出式として上記式(6)を使用し(ステップS706)し、測定対象項目での試料検体吸引時の試料分注プローブ17の高さ情報を元に補正量を決定し(ステップS709)、例えば分注シリンジ25による試料吐出量を補正量分変更し補正を実施する(ステップS710)。
 また、ステップS705において、測定対象項目の試料吐出量が項目「A」の試料吐出量と異なる場合は、測定対象項目の試料分注量から、補正量算出式を求め補正を実施する。本発明の実施例では測定対象項目としてGLU項目を選択した場合(ステップS707)は、上記式(6)を元に試料吐出量比から上記式(7)を導き出し((ステップS708))、上記式(8)を用いて補正を実施する。
 このような操作フローにより自動分析装置ごとに、試料吸引高さ別に自動的に実質の吐出量誤差を求めることができ、かつ試料吐出量の異なる全ての分析項目に適用することができるため、測定データの信頼性向上に寄与することができる。
 また、使用者が補正などにより測定ごとに動作が異なることを嫌う場合や、測定項目の臨床的許容幅に裕度があり、補正の必要がないと判断した場合向けに、吐出量の補正実施有無画面を設けても良い。
 また、図13に示すように、項目ごとに設定する分析パラメータにて、項目ごとに補正させるかの有無を選択する、あるいは誤差量の影響が大きくなる微量吐出量項目のみ適用させたい場合などは、3マイクロリットル以下の項目のみ適用など選択できる画面(コンピュータ61の画面表示部に表示される)を設けても良い。
 さらに、例えば自動補正量算出式機能の閲覧画面を設け、図8に示した試料吐出補正量算出機能の実施例で説明した一連の操作を完結できる画面としても良い。この画面では、自動補正量算出式を求めるための項目「A」の選択や、測定結果、高さ情報、補正量算出式が閲覧することができ、また測定結果や高さ情報も編集可能とし、それにより補正量算出式を再計算、あるいは直接補正量算出式を編集可能にしても良い。
 以上説明した実施例では、装置への補正手段として分注シリンジの駆動量を補正量分変更し、試料吐出量自体を直接補正させたが、試料吐出量は補正せず、例えば、分析部であるコンピュータ61が、吐出された試料又は試薬量を上記試薬又は試料吸引高さ方向位置により算出し、測定結果である濃度値に対して補正することもできる。
 そうすれば、ハード動作を変更させることなくソフトウェア上の演算処理だけで補正させることができる。
 また、試料分注方式には何種類かの手段があり、例えば、試料の分析に要する量が2マイクロリットル以上の場合は、試料の分注方式を、試料分注プローブ17により分析に要する量よりも余分に試料を吸引し、分析に要する量のみを吐出する試料分注方式で実施する。
 そして、試料の分析に要する量が2マイクロリットル未満の場合は試料分注プローブ17により分析に要する量のみ試料を吸引し、吸引した試料を、システム水で押し出して吐出する試料分注方式を採用する装置もある。
 本発明の実施例1、2では吐出量側を補正することについて説明してきたが、試料の分析に要する量が2マイクロリットル未満の場合のシステム水での押し出し方式の場合などでは、吸引時においても補正必要ありとなった場合は、補正できるようにしても良い。
 さらに、本発明では試料吸引時の試料分注プローブ17の高さ方向の圧力差による吐出量誤差について説明してきたが、その他要因として流路変形による容積変化などによる影響により吐出量の差も考えられることから、試料分注プローブ17の回転方向や水平方向など動作の違いにより、それぞれ補正量を算出し補正させても良い。
 この場合、図3に示した試料吸引時プローブ高さ算出部60aが試料分注プローブの高さのみならず、試料分注プローブの回転角度又は水平方向位置を算出することになる。
 以上のように、本発明の実施例では、吐出量の誤差が全体の吐出量の割合に大きく影響してしまう試料吐出時について説明してきたが、装置構成が同じ試薬吐出動作においても試料分注動作と同様な処理により試薬量の補正が可能である。つまり、試薬分注機構20、21の試薬分注プローブが試薬容器40から試薬を吸引するときの高さ方向位置に基づいて、試薬吐出量を補正することが可能である。試薬分注機構20、21は図2に示した試料分注機構15と同様な構成となっており、試料分注プローブ17は試薬分注プローブとして機能することが可能である。
 このため、図2は、試料分注機構15及び試薬分注機構20、21を示す図とすることができる。
 試薬分注プローブの吐出量補正を行う場合、図3に示したコントローラ60の試料吸引時プローブ高さ算出部60aが試料及び試薬吸引時プローブ高さ算出部、補正吐出量算出部60bが試料及び試薬補正吐出量算出部、試薬分注シリンジ動作制御部60dが試料及び試薬分注シリンジ動作制御部となる。
 9・・・液面検知器、 10・・・試料容器、 10a・・・試験管タイプの試料容器、 10b・・・カップタイプの試料容器、 12・・・試料ディスク、 12a・・・試料ディスク上面、 12b・・・試料ディスク底、 15・・・試料分注機構、 16・・・分注アーム、 17・・・試料分注プローブ、 18・・・血清、 19・・・血餅、 20・・・第1試薬分注機構、 21・・・第2試薬分注機構、 23・・・可撓チューブ、 24・・・固定流路、 25・・・定量分注シリンジ、 27・・・駆動機構、 28・・・モータ、 30・・・攪拌装置、 32・・・支持具、 33・・・固定具、 34・・・ベース、 35・・・反応セル、 36・・・反応ディスク、 37・・・試料液面、 40・・・試薬容器、 41・・・第1試薬ディスク、 42・・・第2試薬ディスク、 45・・・反応セル洗浄機構、 46・・・試料洗浄機構、 47・・・第1試薬洗浄機構、 48・・・第2試薬洗浄機構、 50・・・光源、 51・・・分光検出器、 60・・・コントローラ、 60a・・・試料吸引時プローブ高さ算出部、 60b・・・補正吐出量算出部、 60c・・・メモリ、 60d・・・分注シリンジ制御部、 61・・・コンピュータ

Claims (14)

  1.  試料を保持する試料容器から試料を反応セルに分注する試料分注プローブと、試薬を保持する試薬容器から試薬を上記反応セルに分注する試薬分注プローブと、試料と試薬の反応液を分析する分析部とを有する自動分析装置において、
     上記試料容器又は試薬容器から、上記試料又は試薬分注プローブで所定量の試料又は試薬を吸引する時の試料又は試薬分注プローブの高さ方向停止位置を検出し、検出した高さ方向停止位置に応じて、上記試料又は試薬分注プローブの試料又は試薬吸引量、試料又は試薬吐出量を補正させるように上記試料又は試薬分注プローブの動作を制御するコントローラを備えることを特徴とする自動分析装置。
  2.  試料を保持する試料容器から試料を反応セルに分注する試料分注プローブと、試薬を保持する試薬容器から試薬を上記反応セルに分注する試薬分注プローブと、試料と試薬の反応液を分析する分析部とを有する自動分析装置において、
     上記試料又は試薬分注プローブの動作を制御するとともに、上記試料又は試薬容器から、上記試料又は試薬分注プローブで所定量の試料又は試薬を吸引する時の試料又は試薬分注プローブの高さ方向停止位置を検出するコントローラを備え、上記分析部は、上記検出した試料又は試薬分注プローブの高さ方向停止位置別に出力する測定結果を補正することを特徴とする自動分析装置。
  3.  請求項1に記載の自動分析装置において、
     上記コントローラにより検出された、上記試料又は試薬分注プローブの高さ方向停止位置別に、試料や試薬の吸引量、吐出量を設定できる画面を表示する画面表示部を備えることを特徴とする自動分析装置。
  4.  請求項1に記載の自動分析装置において、
     上記コントローラは、検出した上記試料又は試薬分注プローブの高さ方向停止位置別に、試料あるいは試薬の吸引量又は吐出量の補正量を算出することを特徴とする自動分析装置。
  5.  請求項4に記載の自動分析装置において、
     測定項目の選択、試料あるいは試薬の吸引量又は吐出量の補正量、補正量算出式を表示する画面表示部を備えることを特徴とする自動分析装置。
  6.  請求項1に記載の自動分析装置において、
     上記試料あるいは試薬の吸引量又は吐出量の変更量あるいは測定結果への補正量を、測定する分析項目に対して適用するか否かを予め選択する画面を表示する画面表示部を備えることを特徴とする自動分析装置。
  7.  請求項1に記載の自動分析装置において、
     上記試料あるいは試薬の吸引量又は吐出量の補正量あるいは測定結果への補正量を、適用するか否かを分析項目ごとに設定する画面を表示する画面表示部を備えることを特徴とする自動分析装置。
  8.  試料を保持する試料容器から試料を反応セルに分注する試料分注プローブと、試薬を保持する試薬容器から試薬を上記反応セルに分注する試薬分注プローブと、試料と試薬の反応液を分析する分析部とを有する自動分析装置の液体分注方法において、
     上記試料容器又は試薬容器から、上記試料又は試薬分注プローブで所定量の試料又は試薬を吸引する時の試料又は試薬分注プローブの高さ方向停止位置を検出し、検出した高さ方向停止位置に応じて、上記試料又は試薬分注プローブの試料又は試薬吸引量、試料又は試薬吐出量を補正させるように上記試料又は試薬分注プローブの動作を制御することを特徴とする自動分析装置の液体分注方法。
  9.  試料を保持する試料容器から試料を反応セルに分注する試料分注プローブと、試薬を保持する試薬容器から試薬を上記反応セルに分注する試薬分注プローブと、試料と試薬の反応液を分析する分析部とを有する自動分析装置の液体分注方法において、
     上記試料又は試薬分注プローブの動作を制御するとともに、上記試料又は試薬容器から、上記試料又は試薬分注プローブで所定量の試料又は試薬を吸引する時の試料又は試薬分注プローブの高さ方向停止位置を検出し、上記検出した試料又は試薬分注プローブの高さ方向停止位置別に出力する測定結果を補正することを特徴とする自動分析装置の液体分注方法。
  10.  請求項8に記載の自動分析装置の液体分注方法において、
     上記検出された、上記試料又は試薬分注プローブの高さ方向停止位置別に、試料や試薬の吸引量、吐出量を設定できる画面を表示することを特徴とする自動分析装置の液体分注方法。
  11.  請求項8に記載の自動分析装置の液体分注方法において、
     上記検出した上記試料又は試薬分注プローブの高さ方向停止位置別に、試料あるいは試薬の吸引量又は吐出量の補正量を算出することを特徴とする自動分析装置の液体分注方法。
  12.  請求項11に記載の自動分析装置の液体分注方法において、
     測定項目の選択、試料あるいは試薬の吸引量又は吐出量の補正量、補正量算出式を画面に表示することを特徴とする自動分析装置の液体分注方法。
  13.  請求項8記載の自動分析装置の液体分注方法において、
     上記試料あるいは試薬の吸引量又は吐出量の変更量あるいは測定結果への補正量を、測定する分析項目に対して適用するか否かを予め選択する画面を表示することを特徴とする自動分析装置の液体分注方法。
  14.  請求項8に記載の自動分析装置の液体分注方法において、
     上記試料あるいは試薬の吸引量又は吐出量の補正量あるいは測定結果への補正量を、適用するか否かを分析項目ごとに設定する画面を表示することを特徴とする自動分析装置の液体分注方法。
PCT/JP2012/068385 2011-09-06 2012-07-19 自動分析装置 WO2013035444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039372.4A CN103733075B (zh) 2011-09-06 2012-07-19 自动分析装置
US14/238,205 US9389240B2 (en) 2011-09-06 2012-07-19 Automatic analyzer
EP12829330.5A EP2755038B1 (en) 2011-09-06 2012-07-19 Automatic analyzing apparatus and method for use in an automatic analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194356 2011-09-06
JP2011194356A JP5736280B2 (ja) 2011-09-06 2011-09-06 自動分析装置

Publications (1)

Publication Number Publication Date
WO2013035444A1 true WO2013035444A1 (ja) 2013-03-14

Family

ID=47831896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068385 WO2013035444A1 (ja) 2011-09-06 2012-07-19 自動分析装置

Country Status (5)

Country Link
US (1) US9389240B2 (ja)
EP (1) EP2755038B1 (ja)
JP (1) JP5736280B2 (ja)
CN (1) CN103733075B (ja)
WO (1) WO2013035444A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151305A1 (en) * 2013-03-15 2014-09-25 X-Ray Optical Systems, Inc. Non-homogeneous sample handling apparatus and x-ray analyzer applications thereof
JP6230450B2 (ja) 2014-03-10 2017-11-15 株式会社日立ハイテクノロジーズ 分注装置及び分注方法
CN106471374B (zh) 2014-07-18 2018-12-14 株式会社日立高新技术 液体搅拌方法
US20160238627A1 (en) 2015-02-13 2016-08-18 Abbott Laboratories Decapping and capping apparatus, systems and methods for use in diagnostic analyzers
WO2016132793A1 (ja) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 検出方法および反応装置
ES2831337T3 (es) * 2016-02-10 2021-06-08 Siemens Healthcare Diagnostics Products Gmbh Procedimiento para el funcionamiento de un analizador automático y analizador automático
US11740254B2 (en) * 2018-01-10 2023-08-29 Hitachi High-Tech Corporation Automatic analysis apparatus
CN110346588A (zh) * 2018-04-04 2019-10-18 深圳市帝迈生物技术有限公司 一种试剂耗量修正方法、试剂注液系统以及血液分析仪
WO2023210174A1 (ja) * 2022-04-27 2023-11-02 株式会社日立ハイテク 自動分析装置およびその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167670A (ja) * 1987-12-24 1989-07-03 Fuji Photo Film Co Ltd 液体吸引方法
JPH063363A (ja) * 1992-06-19 1994-01-11 Nittec Co Ltd 液体吸排装置
JP2001004641A (ja) 1999-06-18 2001-01-12 Hitachi Ltd 液面検出機能を備えた自動分析装置
JP2005227102A (ja) * 2004-02-12 2005-08-25 Aloka Co Ltd 分注装置
JP2008122333A (ja) * 2006-11-15 2008-05-29 Toshiba Corp 自動分析装置及びその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295764A (ja) * 1991-03-26 1992-10-20 Toshiba Corp 自動化学分析装置
US7027935B2 (en) * 2002-08-07 2006-04-11 Hitachi High Technologies Corp. Sample dispensing apparatus and automatic analyzer using the same
JP2006090771A (ja) * 2004-09-22 2006-04-06 Toshiba Corp 自動分析装置
JP4427461B2 (ja) * 2005-01-21 2010-03-10 株式会社日立ハイテクノロジーズ 化学分析装置及び分析デバイス
DE102006052833A1 (de) * 2006-11-09 2008-05-15 Diasys Diagnostic Systems Gmbh Verfahren zum Feststellen einer Verstopfung, eines Koagels oder eines Pfropfens an der Aufnahmeöffnung einer Dosiernadel
CN101509916B (zh) * 2009-03-16 2013-01-09 青岛众瑞智能仪器有限公司 智能生物安全柜生物检测仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167670A (ja) * 1987-12-24 1989-07-03 Fuji Photo Film Co Ltd 液体吸引方法
JPH063363A (ja) * 1992-06-19 1994-01-11 Nittec Co Ltd 液体吸排装置
JP2001004641A (ja) 1999-06-18 2001-01-12 Hitachi Ltd 液面検出機能を備えた自動分析装置
JP2005227102A (ja) * 2004-02-12 2005-08-25 Aloka Co Ltd 分注装置
JP2008122333A (ja) * 2006-11-15 2008-05-29 Toshiba Corp 自動分析装置及びその方法

Also Published As

Publication number Publication date
EP2755038B1 (en) 2020-01-08
EP2755038A1 (en) 2014-07-16
US20140193918A1 (en) 2014-07-10
JP5736280B2 (ja) 2015-06-17
CN103733075B (zh) 2015-09-09
EP2755038A4 (en) 2015-04-08
US9389240B2 (en) 2016-07-12
JP2013054014A (ja) 2013-03-21
CN103733075A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5736280B2 (ja) 自動分析装置
US9335335B2 (en) Automatic analyzer
JP5899075B2 (ja) 自動分析装置
JP5865633B2 (ja) 自動分析装置
JP5761753B2 (ja) 自動分析装置及びその動作不良判定方法
JP6076108B2 (ja) 自動分析装置
JP6649942B2 (ja) 自動分析装置
US20130064737A1 (en) Automatic analyzer
WO2011074273A1 (ja) 自動分析装置
JP2004271266A (ja) 分注装置およびそれを用いた自動分析装置
EP2075587B1 (en) Automatic analyzer and dispensing method thereof
WO2015111442A1 (ja) 自動分析装置
WO2018163744A1 (ja) 自動分析装置
US9897623B2 (en) Automatic analyzer
JP5199785B2 (ja) 血液サンプル検出方法、血液サンプル分注方法、血液サンプル分析方法、分注装置および血液サンプル種類検出方法
JP4045211B2 (ja) 自動分析装置
JP2013032928A (ja) 分注装置
JPH02243960A (ja) 分析装置の分注器操作方式
JP7105577B2 (ja) 自動分析装置
JP2022107065A (ja) 自動分析装置
JP2000046624A (ja) 液体残量検出機能を備えた分析装置
WO2010150502A1 (ja) 自動分析装置
WO2022259767A1 (ja) 分注装置、自動分析装置及び分注方法
WO2023210174A1 (ja) 自動分析装置およびその制御方法
JP2016040535A (ja) 自動分析装置および自動分析装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012829330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE