WO2023210174A1 - 自動分析装置およびその制御方法 - Google Patents

自動分析装置およびその制御方法 Download PDF

Info

Publication number
WO2023210174A1
WO2023210174A1 PCT/JP2023/008876 JP2023008876W WO2023210174A1 WO 2023210174 A1 WO2023210174 A1 WO 2023210174A1 JP 2023008876 W JP2023008876 W JP 2023008876W WO 2023210174 A1 WO2023210174 A1 WO 2023210174A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
probe
container
amount
sample
Prior art date
Application number
PCT/JP2023/008876
Other languages
English (en)
French (fr)
Inventor
晋弥 松岡
真結子 伊藤
巌 鈴木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023210174A1 publication Critical patent/WO2023210174A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer and a control method thereof.
  • Analysis of liquid samples consisting of biological samples such as blood is performed by dispensing a predetermined amount of the sample, mixing appropriate amounts of reagents, etc., and then measuring with a measuring means such as a photometer.
  • a measuring means such as a photometer.
  • automatic analyzers that automate this process and even output analysis results are used in medical testing.
  • the tip of the probe is immersed in a certain amount of liquid sample held in a sample container, and the sample is aspirated using the pressure of a syringe pump connected via piping.
  • the shape of the sample containers is not the same, and the amount of liquid sample held inside is also not the same, so the height of the liquid level of the sample differs for each sample container. Therefore, in order to prevent empty suction of the specimen and excessive immersion of the probe tip, a technique is usually used that detects the height of the liquid level and controls the amount of immersion of the probe tip.
  • the rate of descent of the liquid level during sample aspiration differs depending on the sample container.
  • the liquid level drops faster in a narrow container, and slower in a thicker container.
  • the cross-sectional area changes conically, the liquid level lowering speed also depends on the suction position.
  • the probe was lowered additionally after a certain amount of liquid was aspirated.
  • the probe was lowered additionally after a certain amount of liquid was aspirated.
  • probe lowering control is controlled by the sample container. It is desirable that they be the same regardless of the requirements.
  • the present disclosure aims to provide a probe control technology that is compatible with various types of sample containers while reducing the possibility of air aspiration.
  • An example of the method according to the present invention is in a method for controlling an automatic analyzer that aspirates liquid in a container using a probe,
  • the method includes an operating cycle performed more than once;
  • the operation cycle is a lowering step of lowering the probe into the liquid such that a distance from the liquid level of the liquid in the container to the tip of the probe becomes a first predetermined value; a suction step of suctioning the liquid by a first variable suction amount after the lowering step; After the suction step, a raising step of raising the probe so that the tip of the probe is removed from the liquid surface; including.
  • This specification includes the disclosure content of Japanese Patent Application No. 2022-073443, which is the basis of the priority of this application.
  • a probe control technology compatible with various types of sample containers is realized while reducing the possibility of air aspiration.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of an automatic analyzer 100 according to a first embodiment.
  • the configuration around the sample dispensing probe 105a of the automatic analyzer 100. 1 is a flowchart showing a method of controlling the automatic analyzer 100 according to the present embodiment.
  • 4 is a diagram illustrating an example of the operation of the sample dispensing probe 105a according to the method of FIG. 3.
  • a specific example of a method for determining the first variable suction amount A specific example of the first variable suction amount for each operation cycle in Embodiment 2.
  • the automatic analyzer 100 includes a sample transport section 102, a reagent disk 104, a sample dispensing section 105, a reagent dispensing section 106, a reaction disk 107, a measuring section 108, a cleaning tank 110, and a control device 113. Each part will be explained below.
  • the sample transport unit 102 stores a sample (liquid) such as blood or urine, and transports the sample container 101 placed on the sample rack 109 to a position where the sample dispensing unit 105 can access it.
  • a sample liquid
  • the sample transport unit 102 stores a sample (liquid) such as blood or urine, and transports the sample container 101 placed on the sample rack 109 to a position where the sample dispensing unit 105 can access it.
  • the sample dispensing unit 105 dispenses the sample from the sample container 101 transported by the sample transport unit 102 to the reaction container 111 arranged on the reaction disk 107.
  • a sample dispensing probe 105a included in the sample dispensing section 105 is used for dispensing the sample. Note that for convenience of illustration, the shape of the sample dispensing probe 105a is partially omitted and may differ from the shape shown in other figures.
  • the automatic analyzer 100 includes the sample dispensing probe 105a, and aspirates the sample from the sample container 101 using the sample dispensing probe 105a.
  • the reaction disk 107 insulates the plurality of reaction containers 111 provided on the circumference within a predetermined temperature range, and transports the reaction container 111 into which the sample has been dispensed to a position where the reagent dispensing section 106 can access it.
  • the reagent disk 104 stores a reagent container 103 containing a reagent (liquid) used for analysis at a predetermined temperature range.
  • the reagent dispensing unit 106 dispenses the reagent from the reagent container 103 stored in the reagent disk 104 to the reaction container 111 into which the sample has been dispensed.
  • a reagent dispensing probe 106a included in the reagent dispensing section 106 is used for dispensing the reagent. That is, the reagent dispensing probe 106a is inserted into the reagent container 103 and sucks the reagent, and then moves to the reaction container 111 and discharges the reagent.
  • the reaction container 111 into which the sample and reagent have been dispensed is transported by the reaction disk 107 to a position where it can be accessed by the stirring section 112.
  • the stirring section 112 stirs the sample and reagent in the reaction container 111. Due to the heat retention by the reaction disk 107 and the stirring by the stirring section 112, the reaction between the specimen and the reagent in the reaction container 111 is promoted, and a reaction liquid is generated.
  • the reaction disk 107 transports the reaction container 111 containing the reaction liquid to the measurement section 108.
  • the measurement unit 108 measures the physical properties of the reaction liquid contained in the reaction container 111, such as the amount of light emitted, the amount of scattered light, the amount of transmitted light, the current value, the voltage value, etc. Note that the physical properties to be measured are not limited to these.
  • the physical characteristics measured by the measurement unit 108 are transmitted to the control device 113.
  • the control device 113 is a device that receives the physical characteristics transmitted from the measurement section 108 and outputs the analysis results, and also controls each section of the automatic analysis device 100, and is configured by, for example, a so-called computer.
  • the sample dispensing probe 105a of the sample dispensing unit 105 and the reagent dispensing probe 106a of the reagent dispensing unit 106 are cleaned using a cleaning liquid in the cleaning tank 110 after dispensing the sample or reagent.
  • a cleaning liquid a highly volatile solution such as an organic solvent, an alkaline solution, a neutral solution containing a surfactant, or the like is used.
  • the cleaning tank 110 functions as a cleaning device that cleans the sample dispensing probe 105a and the reagent dispensing probe 106a, thereby suppressing the occurrence of contamination.
  • FIG. 2 shows the configuration around the sample dispensing probe 105a of the automatic analyzer 100.
  • the sample container 101 is fixedly supported by support means (not shown) of the automatic analyzer 100.
  • a specimen 120 is accommodated in the specimen container 101 .
  • the sample dispensing probe 105a opens downward (for example, vertically downward).
  • the automatic analyzer 100 can move the specimen dispensing probe 105a up and down (for example, vertically up and down), thereby allowing the open tip of the specimen dispensing probe 105a to be immersed in the specimen 120. Further, piping and suction means (such as a syringe pump) (not shown) are connected to the specimen dispensing probe 105a, and the specimen 120 can be aspirated. In this way, the automatic analyzer 100 can aspirate the sample 120 in the sample container 101 using the sample dispensing probe 105a.
  • piping and suction means such as a syringe pump
  • the automatic analyzer 100 includes a liquid level detection device 130.
  • the liquid level detection device 130 is provided in relation to the sample container 101 and can detect the position (for example, the height position) of the liquid level of the sample 120 in the sample container 101. This makes it possible to control the operation of the sample dispensing probe 105a, which will be described later.
  • the liquid level detection device 130 can have a known configuration, and for example, a capacitive type, an optical type, an ultrasonic type, etc. can be used.
  • FIG. 3 is a flowchart showing a method of controlling the automatic analyzer 100 according to the present embodiment. Further, FIG. 4 is a diagram illustrating an example of the operation of the sample dispensing probe 105a according to this control method.
  • the control method shown in FIG. 3 is a control method when aspirating the sample 120 (liquid) in the sample container 101 using the sample dispensing probe 105a. This control method is executed by the automatic analyzer 100 under the control of the control device 113, for example.
  • the control method includes a predetermined operation cycle including steps S2 to S4.
  • the operating cycle is, for example, a normal operating cycle or a modified operating cycle, which will be described later.
  • the control method also includes step S1 of determining the number of executions (number of repetitions) of the operating cycle and the normal operating cycle.
  • An operating cycle may be performed in multiple iterations; in particular, a normal operating cycle may be performed one or more times. Since the execution of the operation cycle is controlled by the control device 113, no manual operation by the user of the automatic analyzer is required, which improves work efficiency.
  • the automatic analyzer When aspirating liquid, the automatic analyzer first determines the number of times the normal operation cycle is executed (step S1, number determination step). A specific method for determining the number of times will be described later.
  • the automatic analyzer detects the liquid level position of the liquid in the sample container 101, and the distance (plunge amount) from the liquid level to the tip of the sample dispensing probe 105a is a predetermined value (first predetermined value).
  • the sample dispensing probe 105a is lowered into the liquid so that (step S2, lowering step).
  • FIG. 4(a) shows a microcup which is an example of the specimen container 101
  • FIG. 4(b) shows a ⁇ 16 tube which is another example of the specimen container 101.
  • the sample container 101 in the automatic analyzer 100 is not limited.
  • the microcup in FIG. 4(a) has a smaller diameter than the ⁇ 16 tube. Therefore, when the same amount of liquid is sucked, the amount of liquid level drop in the microcup is greater than the amount of liquid level fall in the ⁇ 16 tube. Further, the diameter of the ⁇ 16 tube is fixed at a constant value (for example, 16 mm), but the diameter of the microcup changes depending on the depth position. Therefore, when the same amount of liquid is sucked in the microcup, the amount of drop in the liquid level changes depending on the position of the liquid level before suction.
  • step S2 the amount of thrust (first predetermined value) is 5 mm in both cases of FIGS. 4(a) and 4(b).
  • the thrust amount can be determined based on any standard, an example of the standard will be explained below.
  • FIG. 5 shows an example of a method for determining the first predetermined value.
  • the first predetermined value is such that the range that contacts the sample 120 on the outer wall of the sample dispensing probe 105a (for example, the range within the first predetermined value from the tip of the sample dispensing probe 105a) is the cleaning tank 110 of the automatic analyzer 100 (see FIG. 1), the value can be determined to be within the range that allows cleaning. Within this range, the liquid adhering to the outer wall of the sample dispensing probe 105a after liquid suction can be appropriately washed.
  • step S2 the automatic analyzer aspirates a predetermined suction amount (first variable suction amount) of the liquid using the sample dispensing probe 105a (step S3, suction step).
  • the amount of suction in step S3 may change for each normal operation cycle.
  • FIG. 6 shows a specific example of the first variable suction amount for each normal operation cycle.
  • FIG. 6 shows an example in which 130 ⁇ L of liquid is aspirated from a microcup, and it is assumed that a sufficient amount of liquid (for example, 200 ⁇ L) is contained in the microcup before suction.
  • the first variable suction amount varies depending on the execution status of the normal operation cycle. This first variable suction amount is calculated so that the tip of the sample dispensing probe 105a remains at a sufficient depth from the liquid surface after liquid suction, regardless of the type of sample container 101.
  • this first variable suction amount is such that liquid is aspirated by the first variable suction amount in a container (for example, a microcup) that has the largest liquid level drop among the sample containers 101 available in the automatic analyzer.
  • a container for example, a microcup
  • the tip of the sample dispensing probe 105a remains inside the liquid, and the distance from the liquid surface after suction to the tip of the sample dispensing probe 105a is a predetermined residual plunge amount (second predetermined value).
  • this value is calculated to be 2 mm or more.
  • this second predetermined value can be determined to be the same value in all normal operating cycles.
  • the specific values of the first variable suction amount and the second predetermined value can be appropriately determined in advance based on the shapes and sizes of all containers available in the automatic analyzer. More specifically, the function can be defined in advance based on the position (height) of the liquid level and the shape of the container (microcup in this embodiment).
  • suction of the required amount is completed in four operation cycles, but more or fewer operation cycles may be defined if a larger or smaller amount is to be aspirated.
  • This second predetermined value (2 mm in the example of FIG. 4(a)) can be designed to a value that allows the tip of the sample dispensing probe 105a to remain in the liquid with some margin after suction.
  • the first variable suction amount varies depending on the liquid level position. May change.
  • the container with the largest drop in the liquid level among the sample containers 101 varies depending on the liquid level position, it may change depending on the combination of the sample container 101 and the liquid level position.
  • FIG. 7 shows a specific example of the method for determining the first variable suction amount.
  • the thrust amount first predetermined value
  • the remaining thrust amount second predetermined value
  • the liquid level is at a relatively high position, and the cross-sectional area of the sample container 101 near the liquid level is relatively large. Therefore, it is possible to aspirate only 50 ⁇ L while the liquid level decreases by 3 mm.
  • the liquid level has decreased and the cross-sectional area of the sample container 101 has decreased slightly. Therefore, it is possible to aspirate only 40 ⁇ L while the liquid level decreases by 3 mm.
  • the liquid level further decreases and the cross-sectional area of the sample container 101 further decreases. Therefore, it is possible to aspirate only 30 ⁇ L while the liquid level decreases by 3 mm.
  • the first variable amount is designed to decrease accordingly.
  • the diameter of the sample container 101 is larger than that of the example of FIG. 4(a), so the distance from the liquid level after suction to the tip of the sample dispensing probe 105a exceeds 2 mm. However, it is not necessary to measure the distance accurately in this case.
  • step S3 the automatic analyzer raises the sample dispensing probe 105a so that the tip of the sample dispensing probe 105a is removed from the liquid surface (step S4, rising step).
  • the ascending distance at this time can be determined in advance as a value that does not depend on the sample container 101 and the liquid level position.
  • step S4 the sample dispensing probe 105a dispenses liquid from the tip of the sample dispensing probe 105a after rising in a container (for example, a ⁇ 16 tube) with the smallest amount of liquid level drop among the sample containers 101 available in the automatic analyzer.
  • the distance to the surface increases to a third predetermined value (4 mm in the example of FIG. 4(b)) or more.
  • This third predetermined value is a margin for ensuring that the tip of the sample dispensing probe 105a is removed from the liquid surface in step S4 in order to correctly detect the position of the liquid level by the liquid level detection device after step S4.
  • the value is In this way, by separating the sample dispensing probe 105a from the liquid surface with a certain margin, the subsequent liquid level position can be measured more accurately.
  • the number of executions is determined based on the first variable suction amount and the required total amount of liquid to be aspirated (designated suction amount).
  • the first variable suction amount is accumulated in order from the first operation cycle, and when the first variable suction amount exceeds the specified suction amount, that operation cycle becomes the last operation cycle.
  • the total amount reaches the designated suction amount at the fourth time, so the number of times the operation cycle is executed is four. According to such a determination method, there is no need for the user of the automatic analyzer to input the number of operation cycles, and the work becomes more efficient.
  • the suction ends when the total amount sucked up to that point reaches the specified suction amount, so the suction amount in the fourth operation cycle is different from the first variable suction amount. Therefore, strictly speaking, the fourth operation cycle is not a normal operation cycle, but can be called, for example, a "corrective operation cycle,” and therefore, strictly speaking, the number of times the "normal operation cycle" itself is executed is three. Become.
  • the suction amount in the last corrective operation cycle is automatically calculated based on the specified suction amount and the total amount of suction in the previous normal operation cycles. Therefore, the suction amount in the last corrective operation cycle may be different from the first variable suction amount as shown in the figure.
  • the first variable suction amount in the fourth operation cycle may be 15 ⁇ L. In the first to third normal operation cycles, the first variable suction amount of liquid is aspirated, but in the fourth corrective operation cycle, the suction amount is changed to 10 ⁇ L in accordance with the designated suction amount.
  • step S5 the automatic analyzer determines whether the number of executions of the operation cycle determined in step S1 has been completed (step S5). If completed, the process in FIG. 3 ends. If not completed, the process returns to step S2 and the next operation cycle is started. In this manner, the operating cycle is repeated until the specified amount of suction is completed.
  • the tip of the sample dispensing probe 105a is not exposed above the liquid surface during aspiration, so there is no possibility of air aspiration. reduced. Furthermore, it is possible to accommodate various types of sample containers 101.
  • Embodiment 2 differs from Embodiment 1 in that the thrust amount in the last operation cycle is changed.
  • descriptions of parts common to Embodiment 1 may be omitted.
  • FIG. 8 shows a specific example of the first variable suction amount for each operation cycle in the second embodiment.
  • the control method according to the second embodiment includes, in addition to the normal operation cycle in the first embodiment, a modified operation cycle that is not included in the first embodiment.
  • the corrective operation cycle includes a corrective descending step instead of the descending step of step S2.
  • the corrective action cycle is executed last. That is, the modified lowering step is performed to replace the lowering step performed in the last normal operating cycle.
  • the fourth operation cycle is a correction operation cycle.
  • the automatic analyzer determines that the distance from the liquid level in the sample container 101 to the tip of the sample dispensing probe 105a is different from the first predetermined value (5 mm in the example of FIG. 8).
  • the sample dispensing probe 105a is lowered into the liquid so that the sample dispensing probe 105a reaches the same value (3 mm in the example of FIG. 8).
  • the fourth predetermined value is, for example, a value smaller than the first predetermined value.
  • the fourth predetermined value is determined according to the amount of liquid in the sample container 101 immediately before the corrected lowering step.
  • the amount of liquid in the sample container 101 varies, for example, from the initial amount of liquid before the first operating cycle is started (which can be entered or measured in advance) to the amount of liquid aspirated up to that point. It can be obtained by subtracting .
  • the method for determining the fourth predetermined value can be designed as appropriate, and can be defined in advance using a function or table based on the amount of liquid, for example. For example, in the example of FIG. 8, as shown by the underline, when the amount of liquid is 80 ⁇ L, the distance is 3 mm.
  • the plunge amount when the amount of liquid is decreasing (for example, near the dead volume of the sample container 101), the plunge amount can be made shallower, so that the tip of the sample dispensing probe 105a is closer to the sample container 101. to prevent contact with the bottom of the sample container 101.
  • Embodiment 3 differs from Embodiment 1 in that the suction amount is changed in a non-last operation cycle.
  • the suction amount is changed in a non-last operation cycle.
  • descriptions of parts common to Embodiment 1 may be omitted.
  • FIG. 9 shows a specific example of the first variable suction amount for each operation cycle in the third embodiment.
  • the control method includes, in addition to the normal operation cycle in the first embodiment, a modified operation cycle that is not included in the first embodiment.
  • the correction operation cycle includes a correction suction step instead of the suction step in step S3.
  • the modified operation cycle (including the modified suction step) is performed to replace the suction step performed in the normal operation cycle before the last normal operation cycle.
  • the third operation cycle is the correction operation cycle, but it is also possible to make the first or second operation cycle the correction operation cycle.
  • the automatic analyzer aspirates liquid by a second variable suction amount that is different from the first variable suction amount.
  • This second variable suction amount is determined so that the cumulative suction amount up to the last (fourth) suction step is equal to the designated suction amount (130 ⁇ L).
  • the modified suction step is included in the third operating cycle.
  • the specified suction amount is 130 ⁇ L

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

空気吸引の可能性を低減しつつ、多種の検体容器に対応した自動分析装置およびその制御方法を提供する。 自動分析装置の動作サイクルは、容器中の液体の液面からプローブの先端までの距離が第1所定値となるように、液体中にプローブを下降させる、下降ステップと、液体を第1可変吸引量だけ吸引する、吸引ステップと、プローブの先端を液面から離脱させるように、プローブを上昇させる、上昇ステップと、を含む。最も液面下降量が大きい容器において、液体を第1可変吸引量だけ吸引した場合に、プローブの先端が液体の内部に留まり、かつ、吸引後の液面からプローブの先端までの距離が第2所定値以上となる。上昇ステップにおいて、プローブは、最も液面下降量が小さい容器において、上昇後のプローブの先端から液面までの距離が第3所定値以上となるように上昇する。

Description

自動分析装置およびその制御方法
 本発明は、自動分析装置およびその制御方法に関する。
 血液等の生体試料からなる液体検体の分析は、所定量の検体を分注し、適宜、適量の試薬を混合する等の処理を行った後、光度計等の測定手段により測定することで行うが、この工程を自動化し、分析結果出力までを行う自動分析装置が医療用の検査において使用されている。
 検体の分注は、検体容器内に保持されている液体検体に対し、プローブの先端を一定量浸漬し、配管を介して接続されたシリンジポンプの圧力により検体の吸引を行う。この際、検体容器の形状は同一ではなく、また、内部に保持されている液体検体の量も同一ではないため、検体の液面の高さは検体容器毎に異なる。そのため、通常は、検体の空吸いやプローブ先端の過剰な浸漬を防ぐため、液面の高さを検知し、プローブ先端の浸漬量を制御する技術が用いられている。
 例えば、特許文献1では、「試料液の吸引中にピペット4が試料液面から離れた場合に、定量部13がシリンジ9の吸引動作を即座に停止する。その後、駆動装置7によりピペット4を試料液面に接するまで下降させ、シリンジ9が吸引動作を再開する。以後、試料を所定量吸引し終わるまで上記動作を繰り返す」技術を開示している(要約参照)。
特開2002-243749号公報
 検体分注において、検体吸引時の液面の下降速度は検体容器によって異なる。細い容器は液面下降が速く、太い容器は遅い。また円錐状に断面積が変化することで、液面下降速度が吸引位置にも依存する。
 検体吸引の際は、(1)泡吸引防止のためプローブ先端が液面から離れない、(2)プローブ汚染防止のため液面に突っ込み過ぎない、の2点を両立する必要がある。
 従来技術ではこれを実現するために、一定量液を吸引したらプローブを追加で下降させていた。しかし、吸引すべき検体量が多い場合、液面下降速度が異なる検体容器間で上記(1)(2)を同時に実現する共通の追下降条件を定めることができず、検体容器に応じた個別制御が必要になる。
 どの種の検体容器が到来するか事前に知ることができない場合や、検体容器に充填されている検体量を事前に知ることができない場合が想定されることから、プローブ下降の制御は検体容器に依らずに共通であることが望ましい。
 また、特許文献1のように、プローブ突込み量を少なくしておき、吸引によってプローブが液面から離れたら追下降をする場合、液面離脱を検知してから吸引を止めるまでのタイムラグの間に空気をプローブ内に吸引してしまい、空気を巻き込むことで検体自体が泡立ったり、吐出時の検体の飛び散りの原因になったりするという課題があった。
 そこで、本開示は、空気吸引の可能性を低減しつつ、多種の検体容器に対応したプローブ制御技術を提供することを目的とする。
 本発明に係る方法の一例は、
 プローブを用いて容器中の液体を吸引する自動分析装置の制御方法において、
 前記方法は、2回以上実行される動作サイクルを含み、
 前記動作サイクルは、
 前記容器中の前記液体の液面から前記プローブの先端までの距離が第1所定値となるように、前記液体中に前記プローブを下降させる、下降ステップと、
 前記下降ステップの後に、前記液体を第1可変吸引量だけ吸引する、吸引ステップと、
 前記吸引ステップの後に、前記プローブの先端を液面から離脱させるように、前記プローブを上昇させる、上昇ステップと、
を含む。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-073443号の開示内容を包含する。
 本発明に係る自動分析装置およびその制御方法によれば、空気吸引の可能性を低減しつつ、多種の検体容器に対応したプローブ制御技術が実現される。
実施形態1の自動分析装置100の全体構成の一例を説明する図。 自動分析装置100の検体分注プローブ105a周辺の構成。 本実施形態に係る自動分析装置100の制御方法を示すフローチャート。 図3の方法による検体分注プローブ105aの動作例を説明する図。 第1所定値の決定方法の一例。 通常動作サイクルごとの第1可変吸引量の具体例。 第1可変吸引量の決定方法の具体例。 実施形態2における動作サイクルごとの第1可変吸引量の具体例。 実施形態3における動作サイクルごとの第1可変吸引量の具体例。
 以下、本発明の実施形態を添付図面に基づいて説明する。
[実施形態1]
 図1を用いて、実施形態1に係る自動分析装置100の全体構成の一例を説明する。自動分析装置100は、検体搬送部102、試薬ディスク104、検体分注部105、試薬分注部106、反応ディスク107、測定部108、洗浄槽110、制御装置113を備える。以下、各部について説明する。
 検体搬送部102は、血液や尿等の検体(液体)を収容し、検体ラック109に載置される検体容器101を検体分注部105がアクセスできる位置まで搬送する。
 検体分注部105は、検体搬送部102によって搬送された検体容器101から反応ディスク107に配置された反応容器111へ検体を分注する。検体の分注には、検体分注部105が備える検体分注プローブ105aが用いられる。なお図示の都合上、検体分注プローブ105aの形状は一部省略して示しており、他の図に示す形状とは異なる場合がある。
 検体分注プローブ105aは検体容器101に挿入されて検体を吸引したのち、反応容器111へ移動して検体を吐出する。このように、自動分析装置100は、検体分注プローブ105aを備え、検体分注プローブ105aを用いて検体容器101の検体を吸引する。
 反応ディスク107は、円周上に備えられる複数の反応容器111を所定の温度範囲に保温するとともに、検体が分注された反応容器111を試薬分注部106がアクセスできる位置まで搬送する。試薬ディスク104は、分析に使用される試薬(液体)を収容する試薬容器103を所定の温度範囲で保管する。
 試薬分注部106は、試薬ディスク104が保管する試薬容器103から検体が分注された反応容器111へ試薬を分注する。試薬の分注には、試薬分注部106が備える試薬分注プローブ106aが用いられる。すなわち試薬分注プローブ106aは試薬容器103に挿入されて試薬を吸引したのち、反応容器111へ移動して試薬を吐出する。
 検体と試薬が分注された反応容器111は、反応ディスク107によって攪拌部112がアクセスできる位置まで搬送される。攪拌部112は、反応容器111の中の検体と試薬を撹拌する。反応ディスク107による保温と攪拌部112による攪拌によって、反応容器111の中の検体と試薬の反応が促進し、反応液が生成される。反応ディスク107は、反応液が収容される反応容器111を測定部108へ搬送する。
 測定部108は、反応容器111に収容される反応液の物理特性、例えば発光量、散乱光量、透過光量、電流値、電圧値等を測定する。なお測定される物理特性はこれらに限定されない。測定部108によって測定された物理特性は制御装置113へ送信される。
 制御装置113は、測定部108から送信される物理特性を受信して分析結果を出力するとともに、自動分析装置100が備える各部を制御する装置であり、例えばいわゆるコンピュータによって構成される。
 検体分注部105の検体分注プローブ105aや試薬分注部106の試薬分注プローブ106aは、検体や試薬の分注後に、洗浄槽110にて洗浄液を用いて洗浄される。洗浄液には、有機溶媒等の揮発性の高い溶液や、アルカリ性の溶液、界面活性剤を含む中性の溶液等が用いられる。このように、洗浄槽110は、検体分注プローブ105aおよび試薬分注プローブ106aを洗浄する洗浄装置として機能し、これによってコンタミネーションの発生が抑制される。
 以下、自動分析装置100が液体(検体または試薬)を吸引する際の動作について説明する。以下では、検体分注プローブ105aを用いて検体容器101の検体を吸引する場合を例とするが、試薬分注プローブ106aを用いて試薬容器103の試薬を吸引する場合にも同様に適用可能である。
 図2は、自動分析装置100の検体分注プローブ105a周辺の構成を示す。検体容器101は自動分析装置100の支持手段(図示せず)に固定支持される。検体容器101には検体120が収容される。検体分注プローブ105aは下方(たとえば鉛直下方)に向かって開口する。
 自動分析装置100は検体分注プローブ105aを上下(たとえば鉛直方向上下)に移動させることができ、これによって、検体分注プローブ105aの開口する先端が検体120中に浸漬できるようになっている。また、検体分注プローブ105aには図示しない配管および吸引手段(シリンジポンプ等)が接続されており、検体120を吸引することができる。このように、自動分析装置100は、検体分注プローブ105aを用いて、検体容器101中の検体120を吸引することができる。
 自動分析装置100は、液面検知装置130を備える。液面検知装置130は、検体容器101に関連して設けられ、検体容器101内の検体120の液面の位置(たとえば高さ位置)を検知することができる。これによって、後述する検体分注プローブ105aの動作制御が可能となる。液面検知装置130は公知の構成とすることができ、たとえば静電容量式、光学式、超音波式、等のものを用いることができる。
 図3は、本実施形態に係る自動分析装置100の制御方法を示すフローチャートである。また、図4は、この制御方法による検体分注プローブ105aの動作例を説明する図である。
 図3の制御方法は、検体分注プローブ105aを用いて検体容器101中の検体120(液体)を吸引する際の制御方法である。この制御方法は、たとえば制御装置113の制御に基づき、自動分析装置100によって実行される。
 制御方法は、ステップS2~S4を含む所定の動作サイクルを含む。動作サイクルは、たとえば後述の通常動作サイクルまたは修正動作サイクルである。また、制御方法は、動作サイクルおよび通常動作サイクルの実行回数(反復回数)を決定するステップS1を含む。動作サイクルは複数回反復して実行することができ、とくに、通常動作サイクルは1回または複数回実行することができる。動作サイクルの実行は、制御装置113によって制御されるので、自動分析装置の使用者による手動操作は不要であり、作業が効率化される。
 自動分析装置は、液体を吸引する際、まず通常動作サイクルの実行回数を決定する(ステップS1、回数決定ステップ)。回数の具体的な決定方法は後述する。
 通常動作サイクルにおいて、自動分析装置は、検体容器101中の液体の液面位置を検知し、液面から検体分注プローブ105aの先端までの距離(突込み量)が所定値(第1所定値)となるように、液体中に検体分注プローブ105aを下降させる(ステップS2、下降ステップ)。
 図4に示すように、自動分析装置100において、形状またはサイズの異なる複数種類の検体容器101が利用可能である。図4(a)は検体容器101の一例であるマイクロカップを示し、図4(b)は検体容器101の別の例であるΦ16チューブを示す。このように、自動分析装置100では検体容器101が限定されない。
 図4(a)のマイクロカップは、Φ16チューブに比べて径が小さい。このため、同一量の液体を吸引した場合に、マイクロカップでの液面下降量はΦ16チューブでの液面下降量よりも大きい。また、Φ16チューブの径は一定値(たとえば16mm)で固定であるが、マイクロカップの径は深さ位置に応じて変化する。このため、マイクロカップにおいて同一量の液体を吸引した場合に、吸引前の液面位置によって液面下降量が変化する。
 ステップS2では、図4(a)(b)いずれの場合でも、突込み量(第1所定値)は5mmである。突込み量は任意の基準に基づいて決定可能であるが、基準の一例を以下に説明する。
 図5に、第1所定値の決定方法の一例を示す。第1所定値は、検体分注プローブ105aの外壁において検体120に接触する範囲(たとえば検体分注プローブ105aの先端から第1所定値以内の範囲)が、自動分析装置100の洗浄槽110(図1参照)において洗浄可能な範囲内となる値に決定することができる。このような範囲内とすると、液体吸引後に検体分注プローブ105aの外壁に付着した液体を適切に洗浄することができる。
 図3に戻り、ステップS2の後、自動分析装置は、検体分注プローブ105aを用いて液体を所定の吸引量(第1可変吸引量)だけ吸引する(ステップS3、吸引ステップ)。ステップS3における吸引量は、通常動作サイクルごとに変化してもよい。
 図6に、通常動作サイクルごとの第1可変吸引量の具体例を示す。図6はマイクロカップから130μLの液体を吸引する場合の例であり、吸引前にマイクロカップに十分な量の液体(たとえば200μL)の液体が入っているものとする。
 この例では、第1可変吸引量は、通常動作サイクルの実行状況に応じて異なる。この第1可変吸引量は、液体吸引後に、検体容器101の種類に関わらず、検体分注プローブ105aの先端が液面から十分な深さに留まるように計算される。
 具体的には、この第1可変吸引量は、自動分析装置において利用可能な検体容器101のうち最も液面下降量が大きい容器(たとえばマイクロカップ)において、液体を当該第1可変吸引量だけ吸引した場合に、検体分注プローブ105aの先端が液体の内部に留まり、かつ、吸引後の液面から検体分注プローブ105aの先端までの距離が、所定の残突込み量(第2所定値。図4(a)の例では2mm)以上となるよう計算される値である。本実施形態では、この第2所定値はすべての通常動作サイクルにおいて同一の値となるよう決定することができる。このように残突込み量を確保することにより、液揺れ等によって突発的に空気を吸引することが防止される。
 なお、第1可変吸引量および第2所定値の具体的な値は、自動分析装置において利用可能なすべての容器の形状およびサイズ等に基づいて、適宜事前に決定することができる。より具体的には、液面の位置(高さ)と、容器(本実施形態ではマイクロカップ)の形状とに基づいて、関数を事前に定義しておくことができる。
 図6の例では4回の動作サイクルで必要な量の吸引が完了するが、より多いまたはより少ない量を吸引する場合には、より多いまたは少ない動作サイクルが定義されてもよい。
 この第2所定値(図4(a)の例では2mm)は、吸引後に検体分注プローブ105aの先端がある程度の余裕をもって液体内に留まる値に設計することができる。また、マイクロカップのように検体容器101の断面積が変化する場合(たとえば円錐状に、より深い位置の径がより細くなる場合)には、第1可変吸引量はその液面位置に応じて変化してもよい。また、検体容器101のうち最も液面下降量が大きい容器が、液面位置に応じて異なる場合には、検体容器101と液面位置との組み合わせに応じて変化してもよい。
 図7に、第1可変吸引量の決定方法の具体例を示す。この例では、前提として、突込み量(第1所定値)が5mm、残突込み量(第2所定値)が2mmと決定されているものとする。すなわち、1回の動作サイクルで高さ3mmに対応する容積分だけ液体が吸引可能である。
 1回目の動作サイクルでは、液面が比較的高い位置にあり、液面付近における検体容器101の断面積が比較的大きい。このため、液面が3mm低下する間に50μLだけ吸引が可能である。2回目の動作サイクルでは、液面が低下しており、検体容器101の断面積が少し減少している。このため、液面が3mm低下する間に40μLだけ吸引が可能である。3回目の動作サイクルでは、液面がさらに低下し、検体容器101の断面積がさらに減少している。このため、液面が3mm低下する間に30μLだけ吸引が可能である。
 このように、吸引が進むにつれ断面積が減少し液面の降下速度が大きくなるため、これに対応して第1可変量がより少なくなるように設計されている。
 以上のように第1所定値、第2所定値および第1可変吸引量を決定することによって、空気吸引の可能性を低減しつつ、多種の容器に対応したプローブ制御技術が実現される。
 なお、図4(b)の例では、図4(a)の例より検体容器101の径がより大きいため、吸引後の液面から検体分注プローブ105aの先端までの距離は2mmを超えているが、この場合の距離を正確に測定する必要はない。
 図3に戻り、ステップS3の後、自動分析装置は、検体分注プローブ105aの先端を液面から離脱させるように、検体分注プローブ105aを上昇させる(ステップS4、上昇ステップ)。この際の上昇距離は、検体容器101および液面位置に依存しない値として事前に決定しておくことができる。
 ステップS4において、検体分注プローブ105aは、自動分析装置において利用可能な検体容器101のうち最も液面下降量が小さい容器(たとえばΦ16チューブ)において、上昇後の検体分注プローブ105aの先端から液面までの距離が第3所定値(図4(b)の例では4mm)以上となるように上昇する。この第3所定値は、ステップS4の後に液面検知装置による液面の位置の検知を正しく行うために、ステップS4において検体分注プローブ105aの先端を液面から確実に離脱させるためのマージンとなる値である。このように、ある程度のマージンをもって検体分注プローブ105aを液面から離脱させることにより、その後の液面位置の測定がより正確に行える。
 なお、図4(a)の例では、検体容器101の径がより小さく液面の下降量がより大きいため、吸引後の液面から検体分注プローブ105aの先端までの距離は4mmを超えているが、この場合の距離を正確に測定する必要はない。
 このようにして1回の通常動作サイクルが終了する。
 ステップS1における動作サイクルの実行回数(反復回数)の決定方法の例について、以下に説明する。図6に示すように、第1可変吸引量と、液体を吸引すべき必要な合計量(指定された吸引量)とに基づいて、実行回数が決定される。1回目の動作サイクルから順に第1可変吸引量を積算してゆき、指定吸引量以上となった時点で、その動作サイクルが最後の動作サイクルとなる。
 たとえば図6では4回目で合計量が指定吸引量に達するので、動作サイクルの実行回数は4回となる。このような決定方法によれば、自動分析装置の使用者が動作サイクルの回数を入力する作業が不要となり、作業が効率化される。
 なお、4回目の動作サイクルでは、それまでに吸引した合計量が指定吸引量に到達した時点で吸引を終了するので、4回目の動作サイクルにおける吸引量は第1可変吸引量とは異なる。このため、厳密に言えば、4回目の動作サイクルは通常動作サイクルではなく、たとえば「修正動作サイクル」と呼ぶことができ、したがって厳密には、「通常動作サイクル」自体の実行回数は3回となる。
 また、本実施形態では、最後の修正動作サイクルでの吸引量は、指定吸引量と、それまでの通常動作サイクルにおいて吸引した量の合計とに基づいて自動的に計算される。このため、最後の修正動作サイクルでの吸引量は、図示のように第1可変吸引量とは異なる場合がある。たとえば図6の例では、4回目の動作サイクルにおける第1可変吸引量は15μLであってもよい。1~3回目の通常動作サイクルでは第1可変吸引量の液体を吸引するが、4回目の修正動作サイクルでは、指定吸引量に応じて吸引量が10μLに変更されている。
 ステップS5の後、自動分析装置は、ステップS1で決定した動作サイクルの実行回数が完了したか否かを判定する(ステップS5)。完了していれば図3の処理は終了する。完了していなければ処理はステップS2に戻り、次の動作サイクルが開始される。このようにして、指定吸引量の吸引が完了するまで、動作サイクルが反復して実行される。
 以上説明するように、本発明の実施形態1に係る自動分析装置によれば、吸引中に検体分注プローブ105aの先端が液面の上に露出することがないので、空気吸引の可能性が低減される。また、多種の検体容器101に対応可能である。
[実施形態2]
 実施形態2は、実施形態1において、最後の動作サイクルにおける突込み量を変更するものである。以下、実施形態1と共通する部分については説明を省略する場合がある。
 図8に、実施形態2における動作サイクルごとの第1可変吸引量の具体例を示す。実施形態2に係る制御方法は、実施形態1における通常動作サイクルに加え、実施形態1には含まれない修正動作サイクルを含む。とくに、修正動作サイクルは、ステップS2の下降ステップに代えて、修正下降ステップを含む。
 修正動作サイクルは最後に実行される。すなわち、修正下降ステップは、最後の通常動作サイクルで実行される下降ステップを置き換えて実行される。図8の例では、4回目の動作サイクルが修正動作サイクルである。
 修正下降ステップにおいて、自動分析装置は、検体容器101中の液体の液面から検体分注プローブ105aの先端までの距離が、第1所定値(図8の例では5mm)とは異なる第4所定値(図8の例では3mm)となるように、液体中に検体分注プローブ105aを下降させる。第4所定値は、たとえば第1所定値より小さい値である。
 第4所定値は、修正下降ステップの直前における検体容器101中の液体の量に応じて決定される。検体容器101中の液体の量は、たとえば、1回目の動作サイクルが開始される前の当初の液体の量(事前に入力または測定することができる)から、それまでに吸引された液体の量を減算することにより取得可能である。
 第4所定値を決定する方法は適宜設計可能であり、たとえば液体の量に基づく関数またはテーブルを用いて事前に定義することができる。たとえば図8の例では、下線で示すように、液体の量が80μLである場合に3mmとなっている。
 このような制御によれば、液体の量が減少している場合(たとえば検体容器101のデッドボリューム近辺)に突込み量をより浅くすることができるので、検体分注プローブ105aの先端が検体容器101の底に接触することを防止できる。
[実施形態3]
 実施形態3は、実施形態1において、最後でない動作サイクルにおける吸引量を変更するものである。以下、実施形態1と共通する部分については説明を省略する場合がある。
 図9に、実施形態3における動作サイクルごとの第1可変吸引量の具体例を示す。実施形態3では、制御方法は、実施形態1における通常動作サイクルに加え、実施形態1には含まれない修正動作サイクルを含む。とくに、修正動作サイクルは、ステップS3の吸引ステップに代えて、修正吸引ステップを含む。
 本実施形態では、修正動作サイクル(修正吸引ステップを含む)は、最後の通常動作サイクルより前の通常動作サイクルで実行される吸引ステップを置き換えて実行される。図9の例では3回目の動作サイクルが修正動作サイクルであるが、1回目または2回目を修正動作サイクルとすることも可能である。
 修正吸引ステップにおいて、自動分析装置は、液体を、第1可変吸引量とは異なる第2可変吸引量だけ吸引する。この第2可変吸引量は、最後(4回目)の吸引ステップまでの累積の吸引量が、指定吸引量(130μL)と等しくなるように決定される。
 図9の例では、修正吸引ステップは3回目の動作サイクルに含まれる。1、2、4回目の動作サイクルでの累積の吸引量が50+40+15=105[μL]であり、指定吸引量が130μLであるため、第2可変吸引量は下線で示すように130-105=25[μL]となる。
 このように、最後でない動作サイクルにおいて吸引量を調節することにより、最後の動作サイクルを通常動作サイクルとし、すなわち第1可変吸引量だけ吸引することが可能となる。
 このような制御によれば、最後の動作サイクルの直前に、容器中により多量の液体を残すことができるので、実施形態2のように最後の動作サイクルの突込み量を修正する必要がなくなる。また、最後の動作サイクルの直前に、より多くの液体を検体容器101内に残すことができるので、液面検知の精度が向上する。
 100…自動分析装置
 101…検体容器(容器)
 102…検体搬送部
 103…試薬容器(容器)
 104…試薬ディスク
 105…検体分注部
 105a…検体分注プローブ(プローブ)
 106…試薬分注部
 106a…試薬分注プローブ(プローブ)
 107…反応ディスク
 108…測定部
 109…検体ラック
 110…洗浄槽(洗浄装置)
 111…反応容器
 112…攪拌部
 113…制御装置
 120…検体(液体)
 130…液面検知装置
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (11)

  1.  プローブを用いて容器中の液体を吸引する自動分析装置の制御方法において、
     前記方法は、2回以上実行される動作サイクルを含み、
     前記動作サイクルは、
     前記容器中の前記液体の液面から前記プローブの先端までの距離が第1所定値となるように、前記液体中に前記プローブを下降させる、下降ステップと、
     前記下降ステップの後に、前記液体を第1可変吸引量だけ吸引する、吸引ステップと、
     前記吸引ステップの後に、前記プローブの先端を液面から離脱させるように、前記プローブを上昇させる、上昇ステップと、
    を含み、
     前記第1可変吸引量は、前記自動分析装置において利用可能な容器のうち最も液面下降量が大きい容器において、前記液体を前記第1可変吸引量だけ吸引した場合に、前記プローブの先端が前記液体の内部に留まり、かつ、吸引後の液面から前記プローブの先端までの距離が第2所定値以上となるよう計算される値であり、
     前記上昇ステップにおいて、前記プローブは、前記自動分析装置において利用可能な容器のうち最も液面下降量が小さい容器において、上昇後の前記プローブの先端から液面までの距離が第3所定値以上となるように上昇する、
    ことを特徴とする、方法。
  2.  請求項1に記載の方法において、
     前記方法は、さらに前記動作サイクルの実行回数を決定する、回数決定ステップを含み、
     前記回数決定ステップにおいて、前記第1可変吸引量および指定吸引量に基づいて実行回数が決定される、
    ことを特徴とする、方法。
  3.  請求項1に記載の方法において、
     前記第1所定値は、前記プローブの外壁において前記液体に接触する範囲が、前記自動分析装置において洗浄可能な範囲内となる値である、
    ことを特徴とする、方法。
  4.  請求項1に記載の方法において、
     前記方法は、
     前記容器中の前記液体の液面から前記プローブの先端までの距離が、前記第1所定値とは異なる第4所定値となるように、前記液体中に前記プローブを下降させる、修正下降ステップをさらに含み、
     前記修正下降ステップは、最後の前記動作サイクルで実行される下降ステップを置き換えて実行され、
     前記第4所定値は、前記修正下降ステップの直前における前記容器中の前記液体の量に応じて決定される、
    ことを特徴とする、方法。
  5.  請求項1に記載の方法において、
     前記方法は、
     前記液体を、前記第1可変吸引量とは異なる第2可変吸引量だけ吸引する、修正吸引ステップをさらに含み、
     前記修正吸引ステップは、最後の前記動作サイクルより前の前記動作サイクルで実行される吸引ステップを置き換えて実行され、
     前記第2可変吸引量は、最後の前記吸引ステップまでの累積の吸引量が、指定吸引量と等しくなるように決定される、
    ことを特徴とする、方法。
  6.  請求項1に記載の方法において、
     前記自動分析装置は、前記動作サイクルの実行を制御する制御装置を備える、
    ことを特徴とする、方法。
  7.  請求項1に記載の方法において、
     前記自動分析装置において、形状またはサイズの異なる複数種類の容器が利用可能である、
    ことを特徴とする、方法。
  8.  請求項1に記載の方法において、
     前記自動分析装置は、液面の位置を検知する液面検知装置を備える、
    ことを特徴とする、方法。
  9.  請求項8に記載の方法において、
     前記第3所定値は、前記上昇ステップの後に前記液面検知装置による液面の位置の検知が可能となる値である、
    ことを特徴とする、方法。
  10.  請求項3に記載の方法において、
     前記自動分析装置は、前記プローブを洗浄する洗浄装置を備える、
    ことを特徴とする、方法。
  11.  プローブを備え、前記プローブを用いて容器中の液体を吸引する自動分析装置であって、請求項1に記載の方法を実行することを特徴とする、自動分析装置。
PCT/JP2023/008876 2022-04-27 2023-03-08 自動分析装置およびその制御方法 WO2023210174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073443 2022-04-27
JP2022073443 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210174A1 true WO2023210174A1 (ja) 2023-11-02

Family

ID=88518470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008876 WO2023210174A1 (ja) 2022-04-27 2023-03-08 自動分析装置およびその制御方法

Country Status (1)

Country Link
WO (1) WO2023210174A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958789A (en) * 1997-07-29 1999-09-28 Johnson & Johnson Clinical Diagnostics, Inc. Reduction in positive bias in wet assays due to splashing
JP2007322286A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2013054014A (ja) * 2011-09-06 2013-03-21 Hitachi High-Technologies Corp 自動分析装置
JP2015108601A (ja) * 2013-12-05 2015-06-11 キヤノン株式会社 液面位置の検出方法、装置、液体供給装置、および分析システム
JP2016040535A (ja) * 2014-08-12 2016-03-24 日本電子株式会社 自動分析装置および自動分析装置の制御方法
JP2017032302A (ja) * 2015-07-29 2017-02-09 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958789A (en) * 1997-07-29 1999-09-28 Johnson & Johnson Clinical Diagnostics, Inc. Reduction in positive bias in wet assays due to splashing
JP2007322286A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2013054014A (ja) * 2011-09-06 2013-03-21 Hitachi High-Technologies Corp 自動分析装置
JP2015108601A (ja) * 2013-12-05 2015-06-11 キヤノン株式会社 液面位置の検出方法、装置、液体供給装置、および分析システム
JP2016040535A (ja) * 2014-08-12 2016-03-24 日本電子株式会社 自動分析装置および自動分析装置の制御方法
JP2017032302A (ja) * 2015-07-29 2017-02-09 株式会社日立ハイテクノロジーズ 自動分析装置

Similar Documents

Publication Publication Date Title
JP7399330B2 (ja) 自動分析装置、及びその洗浄方法
US9335335B2 (en) Automatic analyzer
JP5122949B2 (ja) 分注量検出方法および吸液モニタ型分注装置
JP5736280B2 (ja) 自動分析装置
JP6676489B2 (ja) 自動分析装置で液体をピペッティングする方法
JP6567873B2 (ja) 自動分析装置
WO2011074273A1 (ja) 自動分析装置
US6890761B2 (en) Automatic analyzer
US9897623B2 (en) Automatic analyzer
JP2019100909A (ja) 分注装置
WO2023210174A1 (ja) 自動分析装置およびその制御方法
WO2021111754A1 (ja) 自動分析装置
JP2010286324A (ja) 分注装置、自動分析装置、および分注方法
JP2010271203A (ja) 液体のサンプリング方法、及び自動分析装置
JPH02243960A (ja) 分析装置の分注器操作方式
JP2015031586A (ja) 分析装置及び液体吸引装置
WO2010150502A1 (ja) 自動分析装置
JP2553064B2 (ja) 分注装置
JP2015137975A (ja) 自動分析装置および試薬分注方法
WO2023167078A1 (ja) 検体分析装置及び検体分析方法
JP2012021892A (ja) 自動分析装置及び分注方法
JP6004398B2 (ja) 自動分析装置
WO2021215068A1 (ja) 分注装置、自動分析装置、分注方法
JP2001337093A (ja) 尿自動分析装置
WO2024219094A1 (ja) 自動分析装置及び自動分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024517883

Country of ref document: JP

Kind code of ref document: A