WO2013034317A1 - Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier - Google Patents

Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier Download PDF

Info

Publication number
WO2013034317A1
WO2013034317A1 PCT/EP2012/052920 EP2012052920W WO2013034317A1 WO 2013034317 A1 WO2013034317 A1 WO 2013034317A1 EP 2012052920 W EP2012052920 W EP 2012052920W WO 2013034317 A1 WO2013034317 A1 WO 2013034317A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
steel
strip
temperature
Prior art date
Application number
PCT/EP2012/052920
Other languages
English (en)
Inventor
Cheng Liu
Radhakanta RANA
Original Assignee
Tata Steel Nederland Technology Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45614855&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013034317(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tata Steel Nederland Technology Bv filed Critical Tata Steel Nederland Technology Bv
Priority to CN201280043488.5A priority Critical patent/CN103827338B/zh
Priority to US14/241,644 priority patent/US20140363694A1/en
Priority to EP12704434.5A priority patent/EP2753725B1/fr
Priority to IN2603CHN2014 priority patent/IN2014CN02603A/en
Publication of WO2013034317A1 publication Critical patent/WO2013034317A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a low density and high strength steel sheet and to a method of producing a low density and high strength steel sheet, for instance for use as inner or outer steel sheets of a structural member for an automobile.
  • steel Because of its excellent strength and ductility, and very low cost as compared to aluminium or magnesium, steel has been generally used to make a body of the automobile lighter by developing stronger grades which allow the use of thinner high strength steel sheet. However, in order to overcome a future limitation to the reduction in weight, it may be required to use alternative sources for reducing the weight of steel parts.
  • TWIP steels with very high manganese contents of over 20% result in a lighter steel matrix.
  • aluminium, as a lightweight element, is sometimes added so as to reduce the density of the steel. Additions of up to 15% aluminium have been used.
  • a problem with the known steels is that processability in the existing facilities of the steel industry is problematic due to their proneness for cracking and their high deformation resistance during rolling. Other problems are weldability issues, particularly with the high aluminium content, and the likelihood of formation of undesirable martensite components.
  • a low density and high strength steel sheet comprising 0.15% to 0.25% C, 2.5% to 4% Mn, 0.02% or less P, 0. 015% or less S, 6% to 9% Al and 0.01 % or less N , the balance being iron and inevitable impurities, wherein 1 .7 (Mn-AI) + 52.7 C is at least 3 and at most 4.5 as claimed in claim 1.
  • Preferable embodiments are claimed in the dependent claims.
  • composition of the present invention will be described in detail (all compositions in weight %).
  • Carbon serves to create cementite (Fe,Mn) 3 C and kappa carbide (Fe,Mn) 3 AIC. Carbon is also an austen ite stabilising element, a nd provid es dispersion strengthening by forming precipitates. Particularly, since the columnar dendrite created during continuous casting is rapidly re-crystallized so as to create a coarse structure, the formation of carbides at high temperatures carbide is used to refine the structure. Additionally, the addition of carbon between 0.15 to 0.25% is used to increase the strength. However, if the added amount of carbon increases, the amounts of cementite and kappa carbide increase to contribute to an increase in strength, but greatly decrease ductility of steel.
  • the carbon content is at least 0.16%, more preferably at least 0.17%.
  • the carbon content is at most 0.23, more preferably at most 0.20%.
  • Manganese contributes to the formation of austenite at high temperature, together with carbon. Further, manganese increases the lattice constant of steel thereby decreasing the density of the steel. A minimum amount of 2.5% of manganese was found to result in stable austenite and a significant decrease in density of the steel. However, if the amount of manganese is excessive, then the occurrence of central segregation results in an excessive band structure in a hot rolled sheet, which causes a decrease in ductility. The upper limit of manganese is therefore restricted to 4%. A preferable upper limit of manganese is 3.8%.
  • Phosphorus is an element which is added in an amount as small as possible. It segregates on the grain boundary and causes hot shortness and cold shortness, so that workability of steel may be greatly reduced.
  • the upper limit of phosphorus is restricted to 0.02%, but preferably the amount is limited to at most 0.01 % or even 0.005%.
  • sulphur promotes hot shortness. Particularly, it creates coarse MnS, which upon hot rolling and cold rolling, may causes a rolling plate to break, so that it is limited to 0.015% or less. Preferably the sulphur amount is limited to at most 0.01 % or even 0.005%.
  • Aluminium is an important element in the present invention , together with carbon and manganese. Th e addition of aluminium decreases the density of the steel. Taking into consideration the decrease in specific gravity, it is preferred that a great quantity of Al be added. The addition of 6% aluminium or more results in a significant decrease in density of the steel. However, if aluminium is excessively added, the amount of intermetallic compounds such as kappa carbide, FeAI or Fe 3 AI increases which causes a reduction of the ductility of steel, leading to cracking during cold rolling, so that the upper limit is restricted to 9%. Also, aluminium causes an increase of the ductile-brittle transition temperature from sub-zero temperatures to around ambient temperatures. Therefore the upper aluminium limit is restricted to 9%. A preferable lower limit of aluminium is 6.2%.
  • N Nitrogen causes the formation of AIN-precipitates if a great quantity of aluminium is added as in the present invention. These precipitates are effective in the refinement of columnar dendrite and the improvement in a ratio of equiaxed dendrite and for this reason a small amount of nitrogen in the steel is advantageous. However, large amounts of nitrogen cause large and amounts of potentially coarse AIN-precipitates which is undesirable. Thus, the upper limit of N is restricted to 0.01 %. Preferably the nitrogen amount is limited to at most 0.008% or even 0.005%.
  • composition of the steel sheet is chosen such that the value of (36 C + Mn)/AI is at least 1 .3 and at most 2.0.
  • small to intermediate amounts of one or two or more elements of the group consisting of Si, Cr, Mo, Ni, Cu, B, Ti, Zr, Nb, W and Ca may optionally be added.
  • silicon Similar to aluminium, silicon also decreases the specific gravity of steel and contributes to the improvement in strength, but if being excessively added, it may create a thick, irregular high temperature oxide film on the surface of steel. Also, silicon causes a stronger increase of the ductile-brittle transition temperature from sub-zero temperatures to around ambient temperatures than aluminium. Therefore the upper silicon limit is restricted to 2%. Thus, it is preferred that the amount of silicon is within the range of 0.1 to 2.0%.
  • Chromium is a ferrite-forming element which forms Cr-based carbides which may serve to refine the microstructure, so that the amount can be 0.1 % or more. However, if added too much, ductility is reduced, so that the upper limit is restricted to 0.3%.
  • molybdenum is a ferrite-forming element which forms fine carbide, and is added by 0.05% or more. However, if excessively added, it decreases the ductility of steel, so that the upper limit thereof is restricted to 0.5%.
  • Nickel is an austenite-forming element, which may introduces partial austenite during hot rolling to refine the structure, to thereby greatly improve the ridging resistibility.
  • the price of nickel is high and increases the manufacturing cost, so that the limit is restricted to a range of 0.1 to 2.0%.
  • Copper acts similar to nickel, but generally the price of copper is lower than that of nickel, so that it can be added in the range of 0.1 % or more. However, if excessively added, it exists on a grain boundary in a liquid state to cause intergranular brittleness, owing to fused metal, and causes edge cracking, so that the amount is restricted to a range of 0.1 to 1.0%.
  • Boron restricts the recovery and recrystallization of ferrite in the process of hot rolling so as to contribute to the structure refinement thanks to cumulative rolling reduction and increase the strength of steel, so that the amount is 0.0005% or more.
  • it may create boron-carbide, decreases the ductility of steel, and deteriorates the wettability of a hot- dipped galvanized coating layer, so that the upper limit is restricted to 0.003%.
  • Titanium forms ⁇ or TiC or the like to thereby improve the grain refinement of the cast structure and contributes to the dispersion of kappa-carbide, so that it is added in the range of 0.01 % or more.
  • it is expensive and increases the manufacturing cost, and it reduces ductility due to the increase in strength through precipitation, so that the upper limit is restricted to 0.2%.
  • Zirconium acts similar to titanium, and forms strong nitride and carbide relative to titanium, so that it is added in the range of 0.005% or more. However, it is expensive, so that the upper limit is restricted to 0.2%.
  • Niobium acts similar to titanium, and thus it is added in the range of 0.005% or more. However, unlike titanium, it delays recrystallisation of the steel at high temperature to thereby greatly increase the rolling load of hot rolling. This may make it impossible to manufacture a thin steel sheet, so that the upper limit is restricted to 0.2%.
  • Tungsten is a heavy element which increases the specific gravity of steel so the addition, if any is within a range of 0.05 to 1 .0%.
  • Antimony (Sb) segregates on the grain boundaries restricts the formation of kappa carbide so that antimony, if added, is added in the range of 0.005% or more. However, if excessively added, antimony segregates on a grain boundary to degrade ductility, so that the upper limit thereof is restricted to 0.2%.
  • Ca forms sulphides such as CaS, and thereby prevents the formation of MnS, so that it is added in the range of 0.001 % or more to improve hot workability of steel.
  • the upper limit is restricted to 0.2%.
  • the steel sheet of the invention includes a retained austenite structure.
  • the retained austenite complements the low strength of a ferrite matrix structure and also contributes to improvement in ductility thereof, so that it is included in the range of 5% or more by area.
  • the upper limit thereof is preferably restricted to 20%, more preferably the upper limit is 15% or even 12%.
  • a slab i.e. a thin slab ( ⁇ 150 mm), thick slab (150-400 mm) or cast strip ( ⁇ 20 mm)
  • a slab is first heated in the temperature range of 1000 to 1250° C. If the reheating temperature exceeds 1250°C, coarse grains are formed in the slab, possibly creating ridging and hot shortness, whereas if it is below 1000°C, the finishing hot-rolling temperature becomes too low to both manufacture a steel sheet and remove an oxide film on a high temperature surface using the spraying of pressurized water, thereby causing surface defects.
  • the reheating temperature is restricted to 1000 to 1250° C.
  • the reheating temperature is at least 1 100°C.
  • the finishing rolling is implemented at a temperature of 900°C or less, preferably at most 850°C in order to refine crystal grains by dynamic or static recrystallisation during the hot rolling process.
  • the material is subjected to the last hot deformation step while it is at least at the aforesaid temperature.
  • the temperature is too low, hot deformation resistance increases to make it difficult to manufacture a steel sheet, and kappa carbide is precipitated to provide elongated structures, thereby increasing ridging defects, so that the rolling temperature is in the range of 700°C or more, preferably 750°C or more and more preferably 800°C or more.
  • the hot-rolled steel strip is coiled at a temperature of 600°C or less. This temperature restricts the coarsening of the grain size and the excessive-precipitation of kappa carbide. It also reduces th e ris k o f formation of abnormally coarsened grains caused by secondary recrystallisation of the coarse grains.
  • the coiling temperature is below 550°C.
  • the coiling temperature should be at least 200°C, and preferably at least 300°C, as quenching the material to ambient temperature proved to cause severe cracking during cold rolling.
  • the resulting hot-rolled material can be manufactured into a hot-rolled steel sheet after being treated with pickling, and temper rolling and oiling.
  • the steel sheet is a low density steel sheet having the specific gravity of 7400 kg/m 3 or less, preferably of 7300 kg/m 3 or less.
  • the hot-rolled steel sheet can be manufactured into a cold rolled steel sheet after being pickled and cold rolled.
  • cold rolling reduction is set to 40% or more. This is because, if the cold rolling reduction is set to 40% or more, stored energy by cold working can be secured, and a new recrystallised structure can be obtained.
  • the minimum cold rolling reduction is 50%.
  • the upper limit thereof is restricted to 90% or less in consideration of production efficiency and economy.
  • the material may be subjected to intermediate annealing in between cold rolling reductions or steps.
  • the cold rolled steel sheet is treated with continuous annealing or continuous hot-dip galvanizing after cleaning the surface if necessary.
  • the annealing rate is preferably selected in the range of 1 °C/s to 20°C/s. If the annealing rate is less than 1 °C/s, productivity is too low, and the steel sheet is exposed to high temperature condition for a long time to thereby cause the coarsening of crystal grains and reduction in strength, deteriorating the quality of material. On the other hand, if the annealing rate exceeds 20° C/s, because of insufficient re-melting of carbide, the formation of austenite also becomes insufficient and thus retained austenite is reduced to thereby reduce the ductility.
  • the cooling rate after annealing is preferably between 10 and 50°C/s, either to ambient temperatures, or to the galvanising bath and/or the overaging treatment. After galvanising or overageing, the cooling rate is preferably between 10 and 50°C/s, more preferably between 10 and 25°C/s, Annealing is implemented in the temperature range between the recovery temperature and 900° C. Between the recovery temperature and below the recrystallisation temperature, some ductility is recovered. This may be used to create high strength steels whilst securing adequate ductility by selecting the recovery annealing temperature and time. Above the recrystallisation temperature and below 900°C, the cold deformed structure readily recrystallises.
  • the combination of annealing temperature and annealing time to obtain full recrystallisation of the cold-rolled steel strip can be easily determined.
  • the inventors found a lower austenite content in the final product after annealing if the cold-rolled material was annealed at a higher annealing temperature. Above 900°C, because of the formation of a lower amount of austenite, the ductility decreases.
  • the lower limit is at least 800°C
  • the annealing is carried out for 10 seconds or more so as to achieve excellent strength and workability. However, if the annealing time exceeds 180 seconds, the productivity is excessively lowered and the properties may be adversely affected by the prolonged annealing process.
  • the steel sheet After annealing the steel sheet is cooled to the temperature of the bath and may be coated with Zn, Zn-Fe, Zn-AI, Zn-Mg, Zn-AI-Mg, Al-Si, Al-Mg-Si, or the like in the thickness of 10 to 200 ⁇ per one side thereof, thereby forming coated steel sheet, by a hot dip coating process.
  • These or other metal coating layers may also be applied by an electroplating process.
  • the coating thickness on the or each surface is between 10 ⁇ and 200 ⁇ .
  • the material is subjected to overageing after annealing. If applicable this overageing may precede or follow after the hot dip coating process, depending on the lay-out of the plant or depending on metallurgical preferences.
  • the overageing temperature is preferably between 350 and 500°C, and preferably about 400°C.
  • the overageing time is preferably at least 30 and/or at most 180s.
  • the annealing temperature is preferably at least 825°C and/or preferably at most 875°C.
  • the steel sheet produced as above carbides and 5% or more of retained austenite is dispersed in a ferrite matrix, so that the tensile strength is high in the level of 600 to 900 MPa, the ductility is excellent, and therefore the combination of strength-ductility is also excellent.
  • the steel sheet has a tensile strength of 600 to 900MPa.
  • the steels were the n su bjected to cold-rolling at a reduction (CRR) of 67% a n d continuously annealed at annealing temperatures (AT) between 800 and 1050°C (see Table 3) and with and without overageing at 400°C (see Table 4).
  • the annealing time was 60 seconds and the overageing time was 80 seconds.
  • the overageing treatment appears to have a beneficial effect in combination with a higher annealing temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne une feuille d'acier à haute résistance, à faible densité, comprenant 0,15 % à 0,25 % de C, 2,5 % à 4 % de Mn, 0,02% ou moins de P, 0,015 % ou moins de S, 6 % à 9 % d'Al et 0,01 % ou moins de N, le complément étant constitué par le fer et les impuretés inévitables, 1,7•(Mn-Al) + 52,7•C étant d'au moins 3 et d'au plus 4,5. L'invention concerne également un procédé de fabrication de ladite feuille d'acier à faible densité et à haute résistance.
PCT/EP2012/052920 2011-09-09 2012-02-21 Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier WO2013034317A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280043488.5A CN103827338B (zh) 2011-09-09 2012-02-21 低密度高强度钢及制备所述钢的方法
US14/241,644 US20140363694A1 (en) 2011-09-09 2012-02-21 Low density high strength steel and method for producing said steel
EP12704434.5A EP2753725B1 (fr) 2011-09-09 2012-02-21 Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier
IN2603CHN2014 IN2014CN02603A (fr) 2011-09-09 2012-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11180669.1 2011-09-09
EP11180669 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013034317A1 true WO2013034317A1 (fr) 2013-03-14

Family

ID=45614855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/052920 WO2013034317A1 (fr) 2011-09-09 2012-02-21 Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier

Country Status (5)

Country Link
US (1) US20140363694A1 (fr)
EP (1) EP2753725B1 (fr)
CN (1) CN103827338B (fr)
IN (1) IN2014CN02603A (fr)
WO (1) WO2013034317A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178358A1 (fr) * 2013-05-01 2014-11-06 新日鐵住金株式会社 Tôle d'acier galvanisée et son procédé de production
WO2014178359A1 (fr) * 2013-05-01 2014-11-06 新日鐵住金株式会社 Plaque en acier de haute résistance, de faible densité relative ayant d'excellentes propriétés de soudage par points
EP3088546A4 (fr) * 2013-12-24 2016-12-07 Posco Feuille d'acier léger présentant d'excellentes caractéristiques de résistance et de ductilité et procédé de fabrication de cette dernière
WO2018115938A1 (fr) * 2016-12-22 2018-06-28 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
KR20180126070A (ko) * 2016-06-28 2018-11-26 바오샨 아이론 앤 스틸 유한공사 우수한 인수용성을 갖는 냉간 압연 저밀도 강철 판, 및 이의 제조 방법
WO2019122960A1 (fr) * 2017-12-19 2019-06-27 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789902A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于钢平台的高强度钢板及其锻造工艺
CN104789904A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于轻型模具货架的高强度钢板及其热处理工艺
CN104789903A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于重型横梁式货架的高强度钢板及其热处理工艺
CN104789901A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于重型模具货架的高强度钢板及其热处理工艺
CN104789888A (zh) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 一种用于中型货架的高强度钢板及其锻造工艺
CN107326282B (zh) * 2017-07-13 2018-09-14 武汉钢铁有限公司 600MPa级高屈强比热轧高强轻质钢及其制造方法
CN108950392B (zh) * 2018-07-19 2020-10-30 首钢集团有限公司 一种超高延性低密度钢及其制备方法
CN113430453A (zh) * 2021-05-27 2021-09-24 南京钢铁股份有限公司 一种低密度复合钢板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398951A (en) * 1981-04-22 1983-08-16 Unisearch Limited Fermalloy(Fe-Mn-Al stainless steel)
JP2004068098A (ja) * 2002-08-07 2004-03-04 Nippon Steel Corp 被削性および湿潤耐食性の優れた鋼
JP2005015909A (ja) * 2003-06-05 2005-01-20 Nippon Steel Corp 高強度低比重鋼板およびその製造方法
JP2005120399A (ja) * 2003-10-14 2005-05-12 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191657A (en) * 1967-06-15 1970-05-13 Fagersta Bruks Ab A High-Strength, Weldable Constructional Steel
JP3598087B2 (ja) * 2001-10-01 2004-12-08 新日本製鐵株式会社 加工性の優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP4797807B2 (ja) * 2006-05-30 2011-10-19 Jfeスチール株式会社 高剛性低密度鋼板およびその製造方法
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398951A (en) * 1981-04-22 1983-08-16 Unisearch Limited Fermalloy(Fe-Mn-Al stainless steel)
JP2004068098A (ja) * 2002-08-07 2004-03-04 Nippon Steel Corp 被削性および湿潤耐食性の優れた鋼
JP2005015909A (ja) * 2003-06-05 2005-01-20 Nippon Steel Corp 高強度低比重鋼板およびその製造方法
JP2005120399A (ja) * 2003-10-14 2005-05-12 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178359A1 (fr) * 2013-05-01 2014-11-06 新日鐵住金株式会社 Plaque en acier de haute résistance, de faible densité relative ayant d'excellentes propriétés de soudage par points
JPWO2014178359A1 (ja) * 2013-05-01 2017-02-23 新日鐵住金株式会社 スポット溶接性に優れた高強度低比重鋼板
JPWO2014178358A1 (ja) * 2013-05-01 2017-02-23 新日鐵住金株式会社 亜鉛めっき鋼板及びその製造方法
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
WO2014178358A1 (fr) * 2013-05-01 2014-11-06 新日鐵住金株式会社 Tôle d'acier galvanisée et son procédé de production
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same
EP3088546A4 (fr) * 2013-12-24 2016-12-07 Posco Feuille d'acier léger présentant d'excellentes caractéristiques de résistance et de ductilité et procédé de fabrication de cette dernière
US10273556B2 (en) 2013-12-24 2019-04-30 Posco Lightweight steel sheet having excellent strength and ductility and method for manufacturing same
EP3476967A4 (fr) * 2016-06-28 2020-02-26 Baoshan Iron & Steel Co., Ltd. Tôle d'acier faible densité laminée à froid ayant d'excellentes performances de phosphorisation et son procédé de fabrication
US11371112B2 (en) 2016-06-28 2022-06-28 Baoshan Iron & Steel Co., Ltd. Cold-rolled low-density steel sheet having excellent phosphorability, and manufacturing method therefor
KR20180126070A (ko) * 2016-06-28 2018-11-26 바오샨 아이론 앤 스틸 유한공사 우수한 인수용성을 갖는 냉간 압연 저밀도 강철 판, 및 이의 제조 방법
KR102163179B1 (ko) 2016-06-28 2020-10-08 바오샨 아이론 앤 스틸 유한공사 우수한 인수용성을 갖는 냉간 압연 저밀도 강철 판, 및 이의 제조 방법
RU2750494C2 (ru) * 2016-12-22 2021-06-28 Арселормиттал Холоднокатаная и термообработанная листовая сталь, способ ее производства и применение такой стали для производства деталей транспортных средств
WO2018115938A1 (fr) * 2016-12-22 2018-06-28 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
WO2019123239A1 (fr) * 2017-12-19 2019-06-27 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
JP2021507110A (ja) * 2017-12-19 2021-02-22 アルセロールミタル 冷間圧延及び熱処理された鋼板、その製造方法及び車両部品の製造のためのそのような鋼の使用
WO2019122960A1 (fr) * 2017-12-19 2019-06-27 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
RU2751718C1 (ru) * 2017-12-19 2021-07-16 Арселормиттал Холоднокатаная и термообработанная листовая сталь, способ ее производства и использование такой стали для производства деталей транспортных средств
JP7138710B2 (ja) 2017-12-19 2022-09-16 アルセロールミタル 冷間圧延及び熱処理された鋼板、その製造方法及び車両部品の製造のためのそのような鋼の使用
US11549163B2 (en) 2017-12-19 2023-01-10 Arcelormittal Cold rolled and heat treated steel sheet, method of production thereof and use of such steel to produce vehicle parts

Also Published As

Publication number Publication date
US20140363694A1 (en) 2014-12-11
CN103827338B (zh) 2017-02-15
EP2753725A1 (fr) 2014-07-16
EP2753725B1 (fr) 2015-09-16
IN2014CN02603A (fr) 2015-08-07
CN103827338A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6213696B1 (ja) 高強度鋼板
EP2753725B1 (fr) Acier à haute résistance, à faible densité, et procédé de fabrication dudit acier
JP7055171B2 (ja) オーステナイト系マトリックスを有するtwip鋼板
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP4998757B2 (ja) 深絞り性に優れた高強度鋼板の製造方法
CN107429355B (zh) 高强度钢板及其制造方法
JP2009102715A (ja) 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
TWI519650B (zh) 鍍鋅鋼板及其製造方法
JP5251207B2 (ja) 深絞り性に優れた高強度鋼板及びその製造方法
JP4924203B2 (ja) 高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP5397141B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
US20190292616A1 (en) Twip steel sheet having an austenitic matrix
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP6780804B1 (ja) 高強度鋼板およびその製造方法
JP5076480B2 (ja) 強度−延性バランスと深絞り性に優れた高強度鋼板およびその製造方法
CN116507753A (zh) 延展性优异的超高强度钢板及其制造方法
JP4380353B2 (ja) 深絞り性と強度−延性バランスに優れた高強度鋼板およびその製造方法
JP2004002909A (ja) 深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法
CN117751204A (zh) 冷轧钢板及其制造方法
JP2009235531A (ja) 深絞り性、耐時効性及び焼き付け硬化性に優れた高強度鋼板並びにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12704434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012704434

Country of ref document: EP