WO2013032251A2 - 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치 - Google Patents

셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013032251A2
WO2013032251A2 PCT/KR2012/006954 KR2012006954W WO2013032251A2 WO 2013032251 A2 WO2013032251 A2 WO 2013032251A2 KR 2012006954 W KR2012006954 W KR 2012006954W WO 2013032251 A2 WO2013032251 A2 WO 2013032251A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
zone
communication
neighboring
Prior art date
Application number
PCT/KR2012/006954
Other languages
English (en)
French (fr)
Other versions
WO2013032251A3 (ko
Inventor
임동국
장지웅
조한규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020147007650A priority Critical patent/KR20140068088A/ko
Priority to CN201280042695.9A priority patent/CN103891172B/zh
Priority to US14/239,993 priority patent/US10038993B2/en
Publication of WO2013032251A2 publication Critical patent/WO2013032251A2/ko
Publication of WO2013032251A3 publication Critical patent/WO2013032251A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for supporting device-to-device (D2D) communication in a cellular network.
  • D2D device-to-device
  • D2D communication is a distributed communication technology that directly passes traffic between adjacent nodes without using an infrastructure such as a base station.
  • each node such as a portable terminal finds another physically adjacent terminal on its own, establishes a communication session, and transmits traffic. Since D2D communication can solve the traffic overload problem by distributing the concentrated traffic to the base station, it has been spotlighted as an element technology of the next generation mobile communication technology after 4G. For this reason, standards organizations such as 3GPP and IEEE are promoting D2D communication standards based on LTE-A or Wi-Fi, and Qualcomm is developing proprietary D2D communication technology.
  • D2D communication is expected to not only contribute to improving the performance of mobile communication systems but also to create new communication services. It can also support services such as social network services or network games based on proximity.
  • the D2D link can be used as a relay to solve the connectivity problem of the shadow area terminal. As such, D2D technology is expected to provide new services in various fields.
  • device-to-device communication technologies such as infrared communication, ZigBee, radio frequency identification (RFID) and near field communication (NFC) based thereon are already widely used.
  • RFID radio frequency identification
  • NFC near field communication
  • these technologies only support special-purpose communications within a very limited distance (about 1m), so it is difficult to classify them as D2D communication technology that distributes the traffic of the base station.
  • An object of the present invention is to provide a method for supporting device-to-device (D2D) communication in a cellular network.
  • D2D device-to-device
  • Another technical problem to be achieved in the present invention is to provide a terminal device supporting direct device-to-device (D2D) communication in a cellular network.
  • D2D direct device-to-device
  • a method of supporting a device-to-device (D2D) communication between terminals in a cellular network includes a D2D zone in which the terminal is configured for D2D communication from a base station. Receiving information about; And detecting a discovery signal transmitted by at least one D2D UE by monitoring a D2D zone using the D2D zone information, wherein the D2D zone includes a discovery interval for transmitting the discovery signal by the at least one D2D UE; It includes a connection section for transmitting a signal requesting the D2D transmission.
  • D2D device-to-device
  • the D2D zone information may include at least one of configuration information of the D2D zone, allocation period information of the D2D zone, the D2D zone start point information, the D2D zone length information, and the D2D zone switch information. Can be.
  • the D2D zone information may be received through a downlink broadcast channel, a common search space of a downlink control channel, a separate broadcast channel for the D2D communication, or higher layer signaling.
  • the method may further include measuring received signal strength transmitted by the at least one D2D terminal detected in the D2D zone to receive received signal strength information, signal-to-noise ratio (SNR) information, and interference of the search signal. Obtaining at least one of the level information; And generating a list of neighboring D2D terminals based on the obtained information.
  • the method may further include transmitting the generated list information of the neighboring D2D terminal to a base station, wherein the list information of the neighboring D2D terminal is an identifier of a D2D terminal neighboring the terminal and the neighboring D2D terminal is transmitted. It may include at least one of received signal strength information of one discovery signal, SNR information, and interference level information of the neighboring D2D UE.
  • the neighboring D2D terminal may be a neighboring D2D terminal transmitting a transmission request signal for performing the D2D communication, or the neighboring D2D terminal may be a terminal currently performing D2D communication.
  • the method may further include receiving information on a threshold of a discovery signal from the base station, and may generate a list of neighboring D2D terminals by further considering the threshold information in addition to the obtained information.
  • the neighbor D2D terminal list included in the list information of the neighbor D2D terminal may be a D2D terminal corresponding to the received signal strength, SNR, or interference level of the threshold value or more.
  • a terminal supporting device-to-device (D2D) communication in a cellular network receives information on the D2D zone configured for the D2D communication from the base station ; And a processor configured to detect a discovery signal transmitted by at least one D2D UE by monitoring the D2D zone using the D2D zone information, wherein the D2D zone includes a discovery interval for transmitting the discovery signal by the at least one D2D UE; It may include a connection section for transmitting a signal for requesting the D2D transmission.
  • D2D device-to-device
  • the processor measures a discovery signal transmitted by the at least one D2D terminal detected in the D2D zone to receive received signal strength information, signal to noise ratio (SNR) information of the discovery signal, and the interference level of the discovery signal. At least one of the information may be obtained, and a list of neighboring D2D terminals may be generated based on the obtained information.
  • the terminal further includes a transmitter for transmitting the generated list information of the neighboring D2D terminal to the base station, wherein the list information of the neighboring D2D terminal generated by the processor includes an identifier of the neighboring D2D terminal and the terminal; It may include at least one of received signal strength information, SNR information, and interference level information of the neighboring D2D UE transmitted by the neighboring D2D UE.
  • the receiver may be configured to further receive information on a threshold of a discovery signal from the base station, and the processor may be configured to generate a list of neighboring D2D terminals in consideration of the threshold information in addition to the obtained information.
  • the terminal may be a D2D terminal performing D2D communication or a cellular terminal of a cellular network.
  • the base station may efficiently schedule based on neighbor D2D terminal list information received from the D2D terminal or the cellular terminal, and as a result, the D2D terminal may efficiently perform D2D communication with the allocated resources. Can be.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a frame structure for D2D communication by way of example.
  • FIG. 3 is an exemplary diagram of a D2D frame structure for transmission of a transmission request signal and a transmission request response signal.
  • FIG. 4 is a diagram illustrating a frame structure for D2D communication by way of example.
  • FIG. 5 is an exemplary diagram for explaining a concept in which a cellular terminal monitors a D2D zone, receives a discovery signal transmitted by a D2D terminal, grasps information about a neighboring D2D terminal, and transmits the information to a base station in a list or a table form.
  • 6 is an exemplary diagram for explaining a procedure of D2D communication.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 175, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150.
  • Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • D2D communication when a terminal performs device to device communication (hereinafter, referred to as D2D communication or D2D direct communication), data is transmitted to another terminal through centralized scheduling.
  • D2D communication device to device communication
  • a UE performing D2D communication performs D2D communication using a frame structure as shown in FIG. 2.
  • D2D communication has a structure for directly transmitting and receiving signals between terminals that want to transmit data without using a base station or a repeater. Accordingly, since signals are transmitted and received without control of the base station, a frame structure for such an operation is required by using a predetermined channel and resource between terminals, and an example of such a frame structure is illustrated in FIG. 2.
  • FIG. 2 is a diagram illustrating a frame structure for D2D communication by way of example.
  • the D2D terminal may perform D2D communication using the D2D communication frame structure shown in FIG. 2.
  • the D2D communication frame structure shown in FIG. 2 may include a discovery interval, a paging interval, and a traffic interval.
  • the traffic interval may include a plurality of P2P traffic slots, and each P2P traffic slot may include a user scheduling interval, a rate scheduling interval, a traffic interval, and an ACK interval.
  • the user scheduling interval may include a traffic transmission request resource and a traffic transmission response resource.
  • a D2D terminal performing D2D communication using the frame structure shown in FIG. 2 may perform discovery using a discovery intervak in a frame in order to know terminals within a range in which it can transmit and receive a signal.
  • a search period consisting of a plurality of logical channels or tones is commonly used for D2D UEs and may exist periodically within a frame.
  • the D2D user equipment may first receive the discovery signal transmitted by other D2D terminals by monitoring the logical channels of the discovery period.
  • the D2D UE that receives the signals transmitted by other D2D UEs creates a D2D UE list using the received discovery signal, and selects a channel not used by other D2D UEs as a discovery channel in the discovery period, for example, a discovery signal (eg, Own information, such as its own identifier).
  • a discovery signal eg, Own information, such as its own identifier
  • the D2D UE that has obtained information on the neighboring D2D UEs through the discovery period may set a connection ID (CID) to transmit data to the D2D UE through D2D transmission.
  • the CID selected for transmission is a CID not used by other D2D terminals, and a logical channel for transmitting a transmission request signal and a transmission request response signal between D2D terminals is determined as the CID for the transmission is determined.
  • the transmission request signal (TRS) is a signal transmitted by the D2D terminal that wants to perform the D2D communication to the neighboring D2D terminals, and includes its own identifier, an identifier of the D2D terminal receiving the transmission request signal, and Qos (Quality).
  • the transmission request signal may be variously referred to as a discovery signal.
  • the signal transmitted by the D2D terminal receiving the transmission request signal in response thereto is a transmission request response signal.
  • FIG. 3 is an exemplary diagram of a D2D frame structure for transmission of a transmission request signal and a transmission request response signal.
  • the D2D frame structure 300 may include a discovery slot (or discovery section) 310 and a traffic slot (or traffic section) 320.
  • the traffic slot includes a transmission request block for transmitting a transmission request signal and a transmission request and response block interval 321 and 322 for transmitting a transmission request response signal, and a transmission corresponding to the transmission request and response block interval 321 and 322.
  • Block 323 may be included.
  • there may be one or more transmission request and response block intervals and one or more transmission blocks respectively corresponding thereto.
  • the mapped logical channels for each CID may be configured in a single tone unit and may have a predetermined transmission priority for each logical channel.
  • the priority of the logical channel and the logical channel mapped to the CID can be flexibly changed for each transmission block, and the priority is the same average transmission priority opportunity for each D2D UE based on a predetermined period. It can have For example, when the D2D user equipment determines C24 as the CID for D2D transmission, the D2D user equipment may transmit a signal using a logical channel mapped to the corresponding CID C24 in the transmission request and response blocks 321 and 322.
  • the D2D UE performs D2D transmission through decentralized scheduling, and in order to perform the operation, the D2D UE may perform discovery, transmission request, and response signals of the D2D UE using slots in a frame.
  • the logical channel used by the D2D terminal to search for the neighboring D2D terminal and the logical channel for transmitting the transmission request signal and the transmission request response signal in the transport block do not overlap each other with the logical channel of another D2D terminal, and the D2D terminal is the logical channel. It is possible to determine the signal transmission of the D2D terminal with or without signal.
  • the D2D user equipment when the D2D user equipment is operating in a cellular network, since the control signal is not transmitted from the base station of the cell, the D2D user equipment uses the resources for signal transmission and reception between the base station and the cellular phone to transmit the discovery or transmission request signal and the transmission request response signal. Can transmit
  • the D2D UE uses the same resources as the cellular in the cellular network to interfere with the signal transmission of the existing cellular terminal, thereby reducing signal transmission / reception performance between the base station and the cellular terminal, and searching or transmitting the cellular signal and the D2D terminal. Due to the overlap of the request / transmission request response signal, the D2D UE may not receive the discovery or transmission request / transmission response signal properly or may receive a wrong signal, thereby making it difficult to perform the D2D transmission.
  • the D2D UE when performing a D2D peer or D2D UE discovery in a cellular network, due to distributed scheduling, the D2D UE uses resources or channels used for transmitting and receiving signals between the base station and cellular within the discovery interval. In this case, since the D2D user equipment does not receive the information on the resource / transmission channel transmitted by the base station, it is difficult to properly receive the discovery signal transmitted by another D2D user equipment due to the collision of the transmission signal in the corresponding resource / channel.
  • the D2D UE since the D2D UE broadcasts a discovery signal using a logical channel not transmitted by another D2D UE, if the cellular uses all the areas corresponding to the discovery interval when using the same resource as the cellular, the D2D UE Since a resource or channel for transmitting a discovery signal is difficult to obtain, a problem in that discovery cannot be performed for D2D transmission may occur.
  • the D2D UE in case of transmitting a transmission request signal or a transmission request response signal in a transport block, transmits a logical channel / resource mapped to a CID determined for D2D transmission (for example, one tone level). )) Can be used to transmit the transmission request / transmission request response signal.
  • the D2D user equipment determines a transmission by receiving a signal through a logical channel / resource in the transport block.
  • the present invention proposes a method in which a D2D user equipment transmits and receives data through the D2D without interfering with the cellular network in the cellular network.
  • a 3GPP LTE / LTE-A system will be described as an example, but the present invention is not limited only to such a system, but may be applied to other wireless communication systems such as IEEE 802.
  • the D2D UE present in the cell performs a search to determine whether there is a D2D UE present in its periphery, and for the discovery operation, the base station provides the D2D UEs in the cell with information about the D2D zone (or D2D region). It transmits through broadcast signal.
  • the D2D zone (or D2D region) is composed of two operation intervals (discovery interval and connection interval), the D2D terminal performs the discovery during the discovery period in the D2D zone received from the base station .
  • the base station uses a common search space of a downlink broadcast channel (eg, a PBCH (Physical Broadcast Channel) or a downlink control channel (eg, a PDCCH) to search for a D2D UE. space, CSS) or a separate broadcast channel for D2D communication or higher layer signaling to transmit information about the D2D zone to the D2D user equipment, which is allocated by the base station for discovery of the D2D user equipment and formation of a D2D link.
  • the information on the D2D zone includes D2D zone setting information, D2D zone allocation period information, D2D zone start point information (for example, in units of indexes of subframes, slots, and symbols), D2D zone length information, and D2D zones. Switching information and the like.
  • the frame structure for the D2D zone allocated by the base station for transmission of the D2D user equipment may be represented as shown in FIG. 4.
  • FIG. 4 is a diagram illustrating a frame structure for D2D communication by way of example.
  • the frame structure 400 for D2D communication includes a D2D zone 410, and the D2D zone 410 includes a discovery interval 415, a gap 416, and Connection interval 417.
  • a gap 416 is located between the search section 415 and the connection section 417.
  • the search section 415 may include a Tx block section for transmitting a search signal, a gap, and a Rx block section for receiving a search signal.
  • the connection section 417 may include a request block for transmitting a transmission request signal and a response block for transmitting a response signal for the transmission request.
  • the D2D UE transmits and receives a transmission request signal for D2D transmission and feedback (or reporting) information for performing D2D communication through a connection section 417 in the allocated D2D zone 410, and transmits data between the D2D terminals.
  • Scheduling allocation information, resource allocation information and the like can be transmitted and received. Therefore, in order to transmit and receive the signal of the D2D terminal during the connection interval (417), the corresponding areas need to be separated from each other by time or frequency.
  • the frame structure shown in FIG. 4 may be divided into frequency axes to perform each operation.
  • the D2D zone 410 may be flexibly changed in each zone (period) or may be configured as a single section. For example, when the search section 415 and the connection section 417 included in the D2D zone 410 have different periods, there are two operating regions where the periods of the two sections coincide with each other. If not, only one operating area may be located in the D2D zone 410.
  • D2D UE is a base station is a common search space (CSS) of a downlink control channel (for example, a physical broadcast channel (PBCH) or a physical downlink control channel (PDCCH)) or a separate broadcast channel for D2D communication or
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • D2D zone allocated through higher layer signaling, it is possible to perform the discovery without interference from the cellular terminal and without interfering with the cellular terminal, thereby efficiently detecting the D2D terminal in the vicinity. can do.
  • the D2D zone can be dynamically allocated through signaling, it is possible to appropriately distribute and allocate resources according to changes in the environment and the state of the cellular / D2D system, thereby enabling efficient communication.
  • cellular terminals in a cell When information about a D2D zone transmitted by a base station is transmitted through a broadcast signal, cellular terminals in a cell also receive D2D zone information.
  • the cellular terminal receiving the information on the D2D zone measures the discovery signal transmitted by the D2D terminals around the cellular terminal by monitoring the D2D zone while the D2D terminal performs the discovery through the D2D zone (that is, during the discovery period).
  • the cellular terminal receives the discovery signal transmitted by the D2D terminals to identify the D2D terminal in the vicinity, and can recognize the information of the signal interference between the D2D terminal and the cellular terminal through the received signal strength such as the measured discovery signal.
  • the cellular terminal uses the neighbor D2D terminal list (peripheral) by using the D2D terminal information (ID) obtained by receiving the discovery signal transmitted by the D2D terminal, the received signal strength, the signal to noise ratio (SNR), and the interference level information.
  • a neighboring list or table which is an uplink control channel (for example, a PUCCH (Physical Uplink Control CHannel) or an uplink). It transmits to a base station through a link data channel (for example, PUSCH (Physical Uplink Shared CHannel)).
  • the base station can determine the information of the D2D terminal and the interference present in the vicinity of the cellular terminal through the information on the neighboring D2D terminal transmitted by the cellular terminals.
  • the cellular terminal that does not perform D2D communication during the D2D zone may enter the micro sleep mode (micro sleep mode) to obtain the effect of saving power.
  • FIG. 5 is an exemplary diagram for explaining a concept in which a cellular terminal monitors a D2D zone, receives a discovery signal transmitted by a D2D terminal, grasps information about a neighboring D2D terminal, and transmits the information to a base station in a list or a table form.
  • the cellular terminal may receive and measure discovery signals of the D2D terminals to obtain information on received signal strength, SNR, and interference level. . Based on the obtained information, the cellular terminal creates a list or table of neighboring D2D terminals, and the generated list or table includes a large amount of information for a plurality of neighboring D2D terminals, so that the list or table information is used for the base station. There is a problem in that signaling overhead is large for transmitting to.
  • the base station transmits or broadcasts a threshold value to the cellular terminal, so that only information about the D2D terminal satisfying the threshold is included in the list or table information. have.
  • the cellular terminal A measures a discovery signal received from the peripheral D2D terminals WT1, WT3, WT5, WT7, and WT 9, and measures at least one of a measurement value (received signal strength level, SNR, and interference level).
  • a measurement value received signal strength level, SNR, and interference level.
  • the cellular terminal compares the information of the created neighboring D2D terminal with the threshold received from the base station and uses only information on the D2D terminal having a value exceeding the threshold value (that is, the received signal strength, SNR, interference level, etc.).
  • the list may be reconstructed and transmitted to the base station BS.
  • the threshold value received by the cellular terminal from the base station is 10, and as shown in FIG. 5, only to the D2D terminals WT3, WT5, and WT7 having a measurement value exceeding the threshold value 10.
  • the signaling overhead can be significantly reduced by including information on D2D UEs less than the measured D2D UEs in the list or table. Therefore, the cellular terminal can transmit information about neighboring D2D terminals to the base station without a large increase in signaling overhead compared to the existing one by creating a list or table using only information on the D2D terminal satisfying the threshold received from the base station.
  • the base station transmits the D2D zone measurement indicator (ie, an indicator indicating to monitor the D2D zone) and a threshold value through higher layer signaling (eg, RRC signaling).
  • the terminal may perform measurement and list preparation for the neighboring D2D terminal.
  • the D2D terminal receives the information on the D2D zone from the base station performs a search through the assigned zone / resource.
  • the D2D UE that has identified the D2D UEs in the vicinity through the D2D UE discovery may transmit information on the terminal, QoS information, bandwidth request (BR) information, and the like, to the base station.
  • the base station may establish a D2D link or a D2D connection to perform D2D communication using the information received from the D2D terminal.
  • a base station that selects D2D terminals to perform D2D communication may allocate a resource for a D2D link by using a list or information of neighboring D2D terminals created and transmitted by a cellular terminal through monitoring of the D2D zone. That is, when the D2D terminal selected to perform D2D communication is included in the neighbor D2D terminal list or table information prepared by the cellular terminal, the base station is a resource other than the resource allocated to the cellular terminal (a neighboring D2D terminal transmitted by the cellular terminal). Resource of a cellular terminal whose information does not include a terminal or a terminal pair of the D2D link) is allocated to the D2D link.
  • the base station that performs the D2D link establishment and resource allocation for the link includes a D2D transmission confirm indicator, a D2D terminal identifier, resource allocation information, and reference signal information (eg, a basic sequence index of Information such as a base sequence, a cyclic shift value, a transmission power (Tx power), and a measurement indicator may be transmitted to the D2D user equipment through downlink signaling. This will be described later with reference to FIG. 6.
  • 6 is an exemplary diagram for explaining a procedure of D2D communication.
  • the base station may broadcast D2D zone information to the D2D terminals WT1, WT2, WT3, and WT4 as well as the cellular terminal (S610). Then, the D2D UEs may transmit a discovery signal through the D2D zone according to the D2D zone information (S620). The cellular terminal can monitor the discovery signal transmitted by at least one D2D terminal (S630). Meanwhile, the 2D terminals WT1, WT2, WT3, and WT4 may also search for neighboring D2D terminals by receiving a discovery signal transmitted from another D2D terminal (S635).
  • the cellular terminal may search for a neighboring D2D terminal by monitoring a discovery signal transmitted by at least one D2D terminal, and acquire information on the received signal strength, SNR, and interference level of the measured discovery signal. Based on the neighbor D2D terminal list or table information may be generated (S640). Thereafter, the cellular terminal can transmit the neighbor D2D terminal list or table information generated to the base station (S650).
  • the neighbor D2D terminal list information generated by the cellular terminal may include both information on a terminal performing actual D2D communication and a terminal not performing D2D communication.
  • the cellular terminal does not include information about the terminal that does not perform the D2D communication in the neighbor D2D terminal list or table information to transmit to the base station. There is no (S650).
  • the base station may receive a signal for requesting D2D communication from at least one D2D terminal (S660), and allocates resources for the D2D terminals that have requested the D2D communication using neighboring D2D terminal list or table information received from the cellular terminal. It may be (S670).
  • the base station may transmit information on the allocated resources to the D2D terminals that have transmitted the D2D communication transmission request signal (S680).
  • the cellular terminal may directly receive a request signal transmitted by the D2D terminals to perform D2D communication by monitoring a connection interval of the D2D zone.
  • the base station transmits the measurement indicator and the detection area (zone) information (for example, the detection start point (symbol / Slot / subframe index)), detection zone length, etc., and the base station may allow the cellular terminal to measure the D2D transmission request signal.
  • the cellular terminal can receive the D2D transmission request signal of the D2D terminal to identify the D2D terminals around the current D2D communication to create a list with the information about the D2D terminals to transmit to the base station. Since only the D2D terminals intended to perform D2D communication are identified and a neighbor D2D terminal list is created, the signaling overhead and resource waste of the terminal transmitting to the base station can be reduced by reducing the amount of unnecessary information.
  • the base station has described a method of allocating resources that do not interfere with the cellular terminal and the D2D terminals by using a list or table that the cellular terminal identifies and transmits the neighboring D2D terminals.
  • the base station can reduce the interference between the cellular terminal and the D2D terminal by using a transmission scheme.
  • the base station can enable the cellular terminal and the D2D terminal to efficiently transmit and receive signals without interfering with each other within limited resources.
  • the base station when many cellular terminals and D2D terminals in a cell request resource allocation from the base station for signal transmission, the base station cannot allocate resources to all terminals.
  • the base station may allow the cellular and the D2D terminals to transmit signals on the same resource using a MIMO transmission scheme. That is, the base station considers the neighbor D2D terminal information received from the cellular, resource requests (cellular request, D2D terminal) of the terminals (cellular terminal, D2D terminal), channel information (eg, CQI, CSI), etc. in consideration of the cellular terminal and the D2D terminal.
  • the same resource may be allocated and at this time, orthogonal PMIs (eg, codebook indexes) may be set to transmit and receive signals through the orthogonal PMIs.
  • orthogonal PMIs eg, codebook indexes
  • the PMI set by the base station may be transmitted by the base station to the D2D terminal as with the allocated resource information.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • D2D device-to-device

Abstract

셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법 및 이를 위한 장치가 개시된다. 셀룰러 네트워크에서 단말이 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법은, 상기 단말이 기지국으로부터 상기 D2D 통신을 위해 설정된 D2D 존에 대한 정보를 수신하는 단계; 및 상기 D2D 존 정보를 이용해 D2D 존을 모니터링하여 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 검출하는 단계를 포함하되, 상기 D2D 존은 상기 적어도 하나의 D2D 단말이 탐색 신호를 전송하기 위한 탐색 구간 및 D2D 전송을 요청하는 신호를 전송하는 연결 구간을 포함할 수 있다.

Description

셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법 및 이를 위한 장치에 관한 것이다.
최근 스마트폰과 태블릿 PC가 보급되고 고용량 멀티미디어 통신이 활성화되면서 모바일 트래픽이 급격하게 증가하고 있다. 앞으로의 모바일 트래픽의 증가 추세가 해마다 약 2배 정도의 트래픽 증가가 예상된다. 이러한 모바일 트래픽의 대부분은 기지국을 통해 전송되고 있기 때문에 통신 서비스 사업자들은 당장 심각한 망 부하 문제에 직면해 있다. 이에 통신 사업자들은 증가하는 트래픽을 처리하기 위해 망 설비를 증가하고, 모바일 WiMAX, LTE(Long Term Evolution)와 같이 많은 양의 트래픽을 효율적으로 처리할 수 있는 차세대 이동통신 표준을 서둘러 상용화해왔다. 하지만 앞으로 더욱 급증하게 될 트래픽의 양을 감당하기 위해서는 또 다른 해결책이 필요한 시점이다.
기기 간 직접(device-to-device, D2D) 통신은 기지국과 같은 기반 시설을 이용하지 않고 인접한 노드 사이에 트래픽을 직접 전달하는 분산형 통신 기술이다. D2D 통신 환경에서 휴대 단말 등 각 노드는 스스로 물리적으로 인접한 다른 단말을 찾고, 통신 세션을 설정한 뒤 트래픽을 전송한다. 이처럼 D2D 통신은 기지국으로 집중되는 트래픽을 분산시켜 트래픽 과부화 문제를 해결할 수 있기 때문에 4G 이후의 차세대 이동통신 기술의 요소 기술로써 각광을 받고 있다. 이러한 이유로 3GPP나 IEEE 등의 표준 단체는 LTE-A 나 Wi-Fi에 기반하여 D2D 통신 표준 제정을 추진하고 있으며, 퀄컴 등에서도 독자적인 D2D 통신 기술을 개발하고 있다.
D2D 통신은 이동통신 시스템의 성능을 높이는데 기여할뿐만 아니라 새로운 통신 서비스를 창출할 것으로도 기대된다. 또한 인접성 기반의 소셜 네트워크 서비스나 네트워크 게임 등의 서비스를 지원할 수 있다. D2D 링크를 릴레이로 활용하여 음영지역 단말의 연결성 문제를 해결할 수도 있다. 이처럼 D2D 기술은 다양한 분야에서 새로운 서비스를 제공해 줄 것으로 예상된다.
사실 적외선 통신, ZigBee, RFID(radio frequency identification)와 이에 기반한 NFC(near field communi- cations) 등의 기기 간 통신 기술은 이미 널리 사용되고 있다. 하지만 이 기술들은 굉장히 제한적인 거리(1m 내외) 내에서 특수한 목적의 통신만을 지원하기 때문에 엄밀하게는 기지국의 트래픽을 분산시키는 D2D 통신 기술로 분류하기 어렵다.
지금까지 D2D 통신에 대해 설명하였으나, 아직까지는 셀룰러 네트워크에서 효율적인 D2D 통신 수행을 위한 D2D 프레임 구조나 D2D 통신 수행 방법에 대해 구체적으로 제안된 바가 없었다.
본 발명에서 이루고자 하는 기술적 과제는 셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법을 제공하는 데 있다.
본 발명에서 다른 이루고자 하는 다른 기술적 과제는 셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 단말 장치을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 셀룰러 네트워크에서 단말이 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법은, 상기 단말이 기지국으로부터 상기 D2D 통신을 위해 설정된 D2D 존에 대한 정보를 수신하는 단계; 및 상기 D2D 존 정보를 이용해 D2D 존을 모니터링하여 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 검출하는 단계를 포함하되, 상기 D2D 존은 상기 적어도 하나의 D2D 단말이 탐색 신호를 전송하기 위한 탐색 구간 및 D2D 전송을 요청하는 신호를 전송하는 연결 구간을 포함한다. 상기 D2D 존 정보는 상기 D2D 존의 설정 정보, 상기 D2D 존의 할당 주기(period) 정보, 상기 D2D 존 시작 포인트 정보, 상기 D2D 존 길이 정보 및 상기 D2D 존 스위치(switch) 정보 중 적어도 하나를 포함할 수 있다. 상기 D2D 존 정보는 하향링크 방송 채널, 하향링크 제어 채널의 공통 검색 공간(common search space), 또는 상기 D2D 통신을 위한 별도의 방송 채널, 또는 상위 계층 시그널링을 통해 수신될 수 있다.
상기 방법은, 상기 D2D 존에서 검출된 상기 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 측정하여 상기 탐색 신호의 수신 신호 세기 정보, 신호대 잡음비(Signal to Noise Ratio, SNR) 정보 및 상기 탐색 신호의 간섭 레벨 정보 중 적어도 하나를 획득하는 단계; 및 상기 획득한 정보에 기초하여 이웃 D2D 단말의 리스트를 생성하는 단계를 더 포함할 수 있다. 상기 방법은, 상기 생성된 이웃 D2D 단말의 리스트 정보를 기지국으로 전송하는 단계를 더 포함하되, 상기 이웃 D2D 단말의 리스트 정보는 상기 단말과 이웃하고 있는 D2D 단말의 식별자와, 상기 이웃 D2D 단말이 전송한 탐색 신호의 수신 신호 세기 정보, SNR 정보 및 상기 이웃 D2D 단말의 간섭 레벨 정보 중 적어도 하나를 포함할 수 있다. 상기 이웃 D2D 단말은 상기 D2D 통신을 수행을 원하는 전송 요청 신호를 전송한 이웃 D2D 단말이거나, 상기 이웃 D2D 단말은 현재 D2D 통신을 수행하고 있는 단말일 수 있다. 상기 방법은, 상기 기지국으로부터 탐색 신호의 임계값에 대한 정보를 수신하는 단계를 더 포함할 수 있으며, 상기 획득한 정보 이외에 상기 임계값 정보를 더 고려하여 이웃 D2D 단말의 리스트를 생성할 수 있다. 이때 상기 이웃 D2D 단말의 리스트 정보에 포함된 이웃 D2D 단말 리스트는 상기 임계값 이상의 수신 신호 세기, SNR 또는 간섭 레벨에 해당하는 D2D 단말일 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 단말은, 상기 단말이 기지국으로부터 상기 D2D 통신을 위해 설정된 D2D 존에 대한 정보를 수신기; 및 상기 D2D 존 정보를 이용해 D2D 존을 모니터링하여 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 검출하는 프로세서를 포함하되, 상기 D2D 존은 상기 적어도 하나의 D2D 단말이 탐색 신호를 전송하기 위한 탐색 구간 및 D2D 전송을 요청하는 신호를 전송하는 연결 구간을 포함할 수 있다. 상기 프로세서는 상기 D2D 존에서 검출된 상기 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 측정하여 상기 탐색 신호의 수신 신호 세기 정보, 신호대 잡음비(Signal to Noise Ratio, SNR) 정보 및 상기 탐색 신호의 간섭 레벨 정보 중 적어도 하나를 획득하고, 상기 획득한 정보에 기초하여 이웃 D2D 단말의 리스트를 생성할 수 있다. 상기 단말은, 상기 생성된 이웃 D2D 단말의 리스트 정보를 기지국으로 전송하는 송신기를 더 포함하며, 상기 프로세서가 생성한 상기 이웃 D2D 단말의 리스트 정보는 상기 단말과 이웃하고 있는 D2D 단말의 식별자와, 상기 이웃 D2D 단말이 전송한 탐색 신호의 수신 신호 세기 정보, SNR 정보 및 상기 이웃 D2D 단말의 간섭 레벨 정보 중 적어도 하나를 포함할 수 있다. 상기 수신기는 상기 기지국으로부터 탐색 신호의 임계값에 대한 정보를 더 수신하도록 구성되며, 상기 프로세서는 상기 획득한 정보 이외에 상기 임계값 정보를 더 고려하여 이웃 D2D 단말의 리스트를 생성하도록 구성될 수 있다. 상기 단말은 D2D 통신을 수행하는 D2D 단말이거나 셀룰러 네트워크의 셀룰러 단말일 수 있다.
본 발명의 다양한 실시예들에 따라, 기지국은 D2D 단말 또는 셀룰러 단말로부터 받은 이웃 D2D 단말 리스트 정보에 기초하여 효율적으로 스케줄링할 수 있고, 그 결과 D2D 단말은 할당받은 자원으로 효율적으로 D2D 통신을 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 D2D 통신을 위한 프레임 구조를 예시적으로 나타낸 도면이다.
도 3은 전송 요청 신호 및 전송 요청 응답 신호의 전송을 위한 D2D 프레임 구조의 예시적 도면이다.
도 4는 D2D 통신을 위한 프레임 구조를 예시적으로 나타낸 도면이다.
도 5는 셀룰러 단말이 D2D 존을 모니터링하여 D2D 단말이 전송하는 탐색 신호를 수신하여 인접 D2D 단말에 대한 정보를 파악하며 이를 리스트 또는 테이블 형태로 기지국에 전송하는 개념을 설명하기 위한 예시적 도면이다.
도 6은 D2D 통신의 절차를 설명하기 위한 예시적 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선 통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(175), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
이하에서 단말이 단말 간 직접 통신(device to device communication(이하, D2D 통신 또는 D2D 직접 통신 등으로 호칭될 수 있다)을 수행하는 경우에 중앙집중화된 스케줄링(centralized scheduling)을 통하여 다른 단말에게 데이터를 전송할 자원(혹은 대역)을 할당 받아 전송을 수행하는 방법을 제안한다. 이러한 제안 방법은 자세한 설명을 위하여 3GPP LTE/LTE-A을 예를 들어 설명하지만, 상기 제안된 발명은 다른 통신 시스템(IEEE 802.16, WiMAX 등)에서 적용되어 사용될 수 있다.
본 발명에서 D2D 통신을 수행하는 단말은 다음 도 2와 같은 프레임 구조를 이용하여 D2D 통신을 수행하게 된다.
앞서 언급한 바와 같이, D2D 통신은 기지국이나 중계기를 통하지 않고 데이터를 전송하기 원하는 단말끼리 직접 신호를 송수신하는 구조를 가지고 있다. 따라서 기지국의 제어없이 신호를 송수신하기 때문에 단말 간 정해진 채널 및 자원을 이용하여 송수신하며 이러한 동작을 위한 프레임 구조가 필요하며, 이러한 프레임 구조의 일 예를 도 2에 도시하였다.
도 2는 D2D 통신을 위한 프레임 구조를 예시적으로 나타낸 도면이다.
이하에서 D2D 통신을 수행할 수 있거나 수행하는 단말을 이하 D2D 단말이라 칭한다. D2D 단말은 도 2와 같은 D2D 통신 프레임 구조를 이용하여 D2D 통신를 수행할 수 있다. 도 2에서 나타낸 D2D 통신 프레임 구조는 탐색 구간(discovery interval), 페이징 구간(paging interval), 트래픽 구간(traffic interval)을 포함할 수 있다. 트래픽 구간은 복수의 P2P 트래픽 슬롯을 포함할 수 있고, 각 P2P 트래픽 슬롯은 사용자 스케줄링 구간, 레이트(rate) 스케줄링 구간, 트래픽 구간, ACK 구간을 포함할 수 있다. 또한, 사용자 스케줄링 구간은 트래픽 전송 요청 자원과 트래픽 전송 응답 자원을 포함할 수 있다.
도 2에 도시된 프레임 구조를 이용하여 D2D 통신을 수행하는 D2D 단말은 자신이 신호를 송수신할 수 있는 범위 내에 있는 단말들을 알기 위하여 프레임 내 탐색 구간(discovery intervak)을 이용하여 탐색을 수행할 수 있다. 다수의 논리 채널 또는 톤(tone)으로 구성된 탐색 구간은 D2D 단말에게 공통적으로 사용되며 프레임 내에서 주기적으로 존재할 수 있다.
D2D 단말은 탐색을 위한 신호를 전송하기 전에 우선 탐색 구간의 논리채널들을 모니터링하여 다른 D2D 단말들이 전송하는 탐색 신호를 수신할 수 있다. 다른 D2D 단말들이 전송하는 신호를 수신한 D2D 단말은 수신한 탐색 신호를 이용하여 D2D 단말 리스트를 작성하며 탐색 구간에서 다른 D2D 단말들이 사용하지 않은 채널을 탐색 채널로 선택하여 탐색 신호(예를 들어, 자신의 식별자와 같은 자신의 정보)를 방송할 수 있다.
탐색 구간을 통하여 주변 D2D 단말들에 대한 정보를 파악한 D2D 단말은 D2D 전송을 통해 데이터를 D2D 단말에게 전송하기 위하여 CID(connection ID)를 설정할 수 있다. 이때 전송을 위해서 선택된 CID는 다른 D2D 단말들이 사용하지 않은 CID이며 상기 전송을 위한 CID가 결정됨에 따라 D2D 단말간 전송 요청 신호 및 전송 요청 응답 신호를 전송하기 위한 논리 채널이 정해진다. 여기서 전송 요청 신호(Transmit Request signal, TRS)는 D2D 통신을 수행하기를 원하는 D2D 단말이 주변 D2D 단말로 전송하는 신호로서, 자신의 식별자, 이 전송 요청 신호를 수신하는 D2D 단말의 식별자, Qos(Quality of Service), 전송 전력 레벨 등의 정보를 포함할 수 있으며, 방송 채널을 통해 전송될 수 있다. 전송 요청 신호는 탐색 신호 등으로 다양하게 호칭될 수 있다. 이러한 전송 요청 신호를 수신한 D2D 단말이 이에 대한 응답으로 전송하는 신호가 전송 요청 응답 신호이다.
도 3은 전송 요청 신호 및 전송 요청 응답 신호의 전송을 위한 D2D 프레임 구조의 예시적 도면이다.
도 3에 도시한 바와 같이, D2D 프레임 구조(300)는 탐색 슬롯(혹은 탐색 구간)(310), 트래픽 슬롯(혹은 트래픽 구간)(320)을 포함할 수 있다. 트래픽 슬롯은 전송 요청 신호를 전송하기 위한 전송 요청 블록과 전송 요청 응답 신호를 전송하기 위한 전송 요청 및 응답 블록 구간(321, 322)과 이 전송 요청 및 응답 블록 구간(321, 322)에 대응하는 전송 블록(323)를 포함할 수 있다. 도 3에 도시한 바와 같이, 하나 이상의 전송 요청 및 응답 블록 구간과 이에 각각 대응하는 하나 이상의 전송 블록이 존재할 수 있다,
전송 요청 및 응답 블록 구간(321, 322)에서, CID 별 맵핑된 논리 채널은 단일 톤(single tone) 단위로 구성될 수 있으며 각 논리 채널 마다 정해진 전송 우선도(priority)를 가질 수 있 있다. 이때 상기 CID에 맵핑되는 논리 채널 및 논리 채널에 대한 우선도는 전송 블록(transmission block) 마다 유연하게 변경될 수 있으며 우선도는 일정 기간을 기준으로 D2D 단말 마다 동일한 평균 전송 우선도 기회(priority opportunity)를 가질 수 있다. 예를 들어, D2D 단말이 D2D 전송을 위한 CID로 C24를 정한 경우에 전송 요청 및 응답 블록(321, 322) 내에서 해당 CID인 C24에 맵핑된 논리 채널을 이용하여 신호를 전송할 수 있다.
D2D 단말은 분산화된 스케줄링(decentralized scheduling)을 통해서 D2D 전송을 수행하며 상기 동작을 수행하기 위하여 D2D 단말의 탐색과 전송 요청 및 응답 신호를 프레임 내 슬롯을 이용하여 수행할 수 있다. 이때 D2D 단말이 주변 D2D 단말을 탐색하기 위해 이용하는 논리 채널 및 전송 블록 내 전송 요청 신호와 전송 요청 응답 신호의 전송을 위한 논리 채널은 다른 D2D 단말의 논리 채널과 서로 중첩되지 않으며 D2D 단말은 상기 논리 채널의 신호 또는 파워 유무로 D2D 단말의 신호 전송을 파악할 수 있다. 따라서 D2D 단말이 셀룰러 네트워크에서 동작하는 경우에 해당 셀의 기지국으로부터 제어 신호를 전송받지 않기 때문에 D2D 단말은 기지국과 셀룰러 간 신호 송수신을 위한 자원을 이용하여 상기 탐색 또는 전송 요청 신호 및 전송 요청 응답 신호를 전송할 수 있다.
이와 같이, 셀룰러 네트워크에서 D2D 단말이 셀룰러와 동일한 자원을 이용함으로써 기존 셀룰러 단말의 신호 전송에 간섭으로 작용하여 기지국과 셀룰러 단말간 신호 송수신 성능을 감소시키며, 셀룰러 신호와 D2D 단말이 전송하는 탐색 또는 전송 요청/전송 요청 응답 신호의 중첩으로 인해 D2D 단말이 탐색 또는 전송 요청/전송 응답 신호를 제대로 수신하지 못하게 되거나 잘못된 신호를 수신함으로써 D2D 전송을 수행하기가 어렵게 될 수 있다.
예를 들어, 셀룰러 네트워크 내에서 D2D 피어(peer) 혹은 D2D 단말 탐색을 수행하는 경우, 분산화된 스케줄링으로 인해서 D2D 단말은 탐색 구간 내에서 기지국과 셀룰러 간 신호 송수신을 위해 사용되는 자원 또는 채널을 이용하며, 이때 D2D 단말은 기지국이 전송하는 자원/전송 채널에 대한 정보를 수신하지 않기 때문에 해당 자원/채널에서 전송 신호의 충돌로 인하여 다른 D2D 단말이 전송한 탐색 신호를 제대로 수신하기 어렵다.
또한, D2D 단말은 다른 D2D 단말이 전송하지 않는 논리 채널을 이용하여 탐색 신호를 방송하기 때문에 셀룰러와 동일한 자원을 이용하는 경우에 탐색 구간(discovery interval)에 해당하는 영역을 셀룰러가 모두 이용한다면, D2D 단말은 탐색 신호를 전송하기 위한 자원 또는 채널을 얻기가 어려워서 D2D 전송을 위한 탐색을 수행하지 못하는 문제점이 발생할 수 있다.
다른 실시 예로, 전송 블록 내 전송 요청 신호 또는 전송 요청 응답 신호를 전송하는 경우에, D2D 단말은 D2D 전송을 위해서 정해진 CID에 맵핑된 논리 채널/자원(예를 들어, 하나의 톤 레벨(one tone level ))을 이용하여 전송 요청/전송 요청 응답 신호를 전송할 수 있다. 이때 D2D 단말은 전송 블록 내 논리 채널/자원을 통해 신호를 수신함으로써 전송을 결정하게 된다. 그러나, 셀룰러와 동일한 자원을 이용하여 상기 동작을 수행하는 경우에 동일 채널에 대한 시그널링 충돌 및 미스 검출(miss detection)으로 인하여 셀룰러에 간섭을 주거나 효율적인 D2D 전송을 수행하기 어렵게 된다.
이러한 문제를 극복하기 위해, 본 발명에서는 셀룰러 네트워크에서 D2D 단말이 셀룰러 네트워크에 간섭을 주지 않고 D2D를 통해서 데이터를 송수신하는 방법을 제안한다. 본 발명에서는 3GPP LTE/LTE-A 시스템을 예를 들어 설명하나 이러한 시스템만으로 제한하는 것은 아니고 IEEE 802 등과 같은 다른 무선통신 시스템에서도 적용할 수 있다.
셀 내에 존재하는 D2D 단말은 자신의 주변에 존재하는 D2D 단말의 존재 여부를 파악하기 위하여 탐색을 수행하며, 탐색 동작을 위해서 기지국은 셀 내 D2D 단말들에게 D2D 존(혹은 D2D 영역)에 대한 정보를 방송 신호를 통하여 전송하여 준다. 이때 상기 D2D 존(혹은 D2D 영역)은 두 개의 동작 구간(탐색 구간(discovery interval) 및 연결 구간(connection interval))으로 구성되며, D2D 단말은 기지국으로부터 수신한 D2D 존 내 탐색 구간 동안 탐색을 수행한다. 이와 같이 D2D 단말의 탐색을 위하여 기지국은 하향링크 방송 채널(예를 들어, PBCH(Physical Broadcast Channel) 나 하향링크 제어 채널(예를 들어, PDCCH(Physical Downlink Control CHannel))의 공통 검색 공간(common search space, CSS) 또는 D2D 통신을 위한 별도의 방송 채널이나 상위 계층 시그널링을 이용하여 D2D 존에 대한 정보를 D2D 단말에게 전송하여 줄 수 있으며, 기지국이 D2D 단말의 탐색 및 D2D 링크 형성을 위해서 할당해 주는 D2D 존에 대한 정보는 D2D 존 설정 정보, D2D 존 할당 주기(period) 정보, D2D 존 시작 포인트 정보(예를 들어, 서브프레임, 슬롯, 심볼의 인덱스 단위로)), D2D 존 길이 정보, D2D 존 스위칭(switch) 정보 등을 포함할 수 있다.
기지국이 D2D 단말의 전송을 위하여 할당하여 주는 D2D 존에 대한 프레임 구조는 다음 도 4와 같이 나타낼 수 있다.
도 4는 D2D 통신을 위한 프레임 구조를 예시적으로 나타낸 도면이다.
도 4를 참조하면, D2D 통신을 위한 프레임 구조(400)는 D2D 존(410)을 포함하며, D2D 존(410)은 탐색 구간(discovery interval)(415), 갭(gap)(416), 및 연결 구간(connection interval)(417)을 포함한다. 갭(gap)(416)은 탐색 구간(415) 및 연결 구간(417) 사이에 위치하고 있다. 탐색 구간(415)은 탐색 신호를 전송하는 전송 블록(Tx block) 구간, 갭 및 탐색 신호를 수신하는 수신 블록(Rx block) 구간을 포함할 수 있다. 연결 구간(417)은 전송 요청 신호를 전송하는 요청 블록(Request block) 및 전송 요청에 대한 응답 신호를 전송하는 응답 블록(Response block)을 포함할 수 있다.
D2D 단말은 할당된 D2D 존(410) 내 연결 구간(417)을 통하여 D2D 전송을 위한 전송 요청 신호 및 D2D 통신을 수행하기 위한 피드백(또는 리포팅) 정보의 송수신, 그리고 D2D 단말끼리의 데이터 전송을 위한 스케줄링 할당 정보, 자원 할당 정보 등을 송수신할 수 있다. 따라서 연결 구간(connection interval)(417) 동안 D2D 단말의 상기 신호 송수신을 위하여 해당 영역은 시간 또는 주파수로 서로 구분되어 사용될 필요가 있다.
도 4에 도시한 프레임 구조는 주파수 축으로 구분하여 각 동작을 수행할 수도 있다. 또한 상기 D2D 존(410)은 도 4에서 나타낸 것과는 다르게 존에 포함된 구간(동작을 수행할 영역)이 일정 주기(period) 마다 유연하게 바뀌거나 단일 구간으로도 구성될 수 있다. 예를 들어, D2D 존(410)에 포함된 탐색 구간(415)과 연결 구간(417)이 서로 다른 주기를 가지는 경우에 두 구간의 주기가 서로 일치하는 곳에서는 두 개의 동작 영역이 존재하나 일치하지 않는 곳에서는 하나의 동작 영역만이 D2D 존(410)에 위치할 수 있다.
D2D 단말은 기지국이 하향링크 제어 채널(예를 들어, PBCH(Physical Broadcast Channel) 나 PDCCH(Physical Downlink Control CHannel))의 공통 검색 공간(common search space, CSS) 또는 D2D 통신을 위한 별도의 방송 채널이나 상위 계층 시그널링을 통해 할당해준 D2D 존을 이용하여 D2D 탐색을 수행함으로써 셀룰러 단말로부터 간섭 없이 그리고 셀룰러 단말에 간섭을 주지 않고 탐색을 수행할 수 있게 되고, 이로인해 주변에 존재하는 D2D 단말을 효율적으로 검출할 수 있다. 또한, 시그널링을 통하여 D2D 존이 동적으로(dynamica) 할당될 수 있으므로 환경의 변화와 셀룰러/D2D 시스템의 상태에 따라 자원을 적절하게 분배 및 할당하는 것이 가능해져 효율적인 통신이 가능해진다.
기지국이 전송하는 D2D 존에 대한 정보가 방송 신호를 통해 전송되는 경우에는 셀 내 셀룰러 단말들도 D2D 존 정보를 전송받는다. D2D 존에 대한 정보를 수신한 셀룰러 단말은 D2D 존을 통하여 D2D 단말이 탐색을 수행하는 동안 (즉 탐색 구간 동안) D2D 존을 모니터링하여 셀룰러 단말 주변에 있는 D2D 단말들이 전송하는 탐색 신호를 측정한다. 셀룰러 단말은 D2D 단말들이 전송하는 탐색 신호를 수신하여 주변에 있는 D2D 단말을 파악하고, 측정된 탐색 신호 등의 수신 신호 세기를 통하여 D2D 단말과 셀룰러 단말 간의 신호 간섭의 정보를 알 수 있다.
이와 같이 D2D 단말이 전송하는 탐색 신호를 수신함으로써 얻어진 D2D 단말 정보(Identifier), 수신 신호 세기, 신호대 잡음비(Signal to Noise Ratio, SNR), 간섭 레벨 정보를 이용하여 셀룰러 단말은 이웃 D2D 단말 리스트(주변 D2D 단말 리스트, 인접 D2D 단말 리스트 등으로 다양하게 호칭될 수 있다)) 또는 테이블(neighboring list or table)을 작성하여, 이를 상향링크 제어채널(예를 들어, PUCCH(Physical Uplink Control CHannel)) 또는 상향링크 데이터 채널(예를 들어, PUSCH(Physical Uplink Shared CHannel))를 통하여 기지국에 전송한다. 셀룰러 단말들이 전송하는 이웃 D2D 단말에 대한 정보를 통하여 기지국은 셀룰러 단말의 근처에 존재하는 D2D 단말 및 간섭의 정보를 파악할 수 있다.
한편, 이와는 달리, D2D 존 동안 D2D 통신을 하지 않는 셀룰러 단말은 마이크로 슬립 모드(micro sleep mode)로 들어가 전력을 절약하는 효과를 얻을 수도 있다.
도 5는 셀룰러 단말이 D2D 존을 모니터링하여 D2D 단말이 전송하는 탐색 신호를 수신하여 인접 D2D 단말에 대한 정보를 파악하며 이를 리스트 또는 테이블 형태로 기지국에 전송하는 개념을 설명하기 위한 예시적 도면이다.
도 5에 도시한 바와 같이, 셀룰러 단말 주변에 많은 D2D 단말들이 존재하는 경우에, 셀룰러 단말은 D2D 단말들의 탐색 신호를 수신하여 측정하여 수신신호 세기, SNR, 간섭 정도에 대한 정보를 획득할 수 있다. 이러한 획득된 정보에 기초하여, 셀룰러 단말은 이웃 D2D 단말의 리스트 또는 테이블을 작성하고, 이 작성된 리스트 또는 테이블에는 다수의 주변 D2D 단말들에 대해 많은 양의 정보가 포함되므로 이 리스트 또는 테이블 정보를 기지국에 전송하기 위해서는 시그널링 오버헤드가 크다는 문제가 있다. 따라서, 셀룰러 단말이 기지국에 전송하는 리스트 정보의 양을 줄이기 위하여 기지국은 셀룰러 단말에게 임계치를 전송 또는 방송해주어, 상기 임계치를 만족하는 D2D 단말에 대한 정보만을 리스트 또는 테이블 정보에 포함시켜 전송하도록 할 수 있다.
도 5에서와 같이, 셀룰러 단말 A는 주변 D2D 단말들(WT1, WT3, WT5, WT7, WT 9)로부터 수신한 탐색 신호를 측정하고, 측정값(수신신호 세기 레벨, SNR, 간섭 레벨 중 적어도 하나를 포함)을 통해 인접 D2D 단말의 리스트 또는 테이블을 작성한다. 이후 셀룰러 단말은 작성된 인접 D2D 단말의 정보와 기지국으로부터 전송 받은 임계치를 비교하여 상기 임계치(즉, 수신신호 세기, SNR, 간섭 레벨 등으로 표현될 수 있음)를 넘는 값을 가지는 D2D 단말에 대한 정보만으로 리스트를 다시 구성하여 기지국(BS)에 전송할 수 있다.
예를 들어, 셀룰러 단말이 기지국으로부터 수신한 임계값이 10이라고 가정하며, 상기 도 5에 도시한 경우와 같이 상기 임계값 10을 넘어가는 측정값을 가지는 D2D 단말들(WT3, WT5, WT7)로만 이웃 D2D 단말 리스트 또는 테이블을 작성함으로써 실제 측정한 D2D 단말보다 적은 D2D 단말에 대한 정보를 리스트 또는 테이블에 포함시킴에 따라 시그널링 오버헤드를 상당히 줄일 수 있다. 따라서 셀룰러 단말은 기지국으로부터 전송받은 임계값을 만족하는 D2D 단말에 대한 정보만으로 리스트 또는 테이블을 작성함으로써 기존 대비 시그널링 오버헤드의 큰 증가 없이 이웃 D2D 단말들에 대한 정보를 기지국에 전송할 수 있다.
셀룰러 단말의 D2D 존에 대한 모니터링 수행을 위해, 기지국은 상위 계층 시그널링(예를 들어, RRC 시그널링)을 통해서 D2D 존 측정 지시자(즉, D2D 존을 모니터링 하도록 지시하는 지시자), 임계값을 전송하여 셀룰러 단말이 인접 D2D 단말에 대한 측정 및 리스트 작성을 수행하도록 할 수 있다.
한편, 기지국으로부터 D2D 존에 대한 정보를 수신한 D2D 단말은 할당 받은 존/자원을 통하여 탐색을 수행한다. D2D 단말 탐색을 통하여 주변에 있는 D2D 단말들을 파악한 D2D 단말은 D2D 통신을 수행하기 원하는 단말에 대한 정보와 QoS 정보, 대역폭 요청(BR) 정보 등을 요청 신호에 포함시켜 기지국에 전송할 수 있다. 기지국은 D2D 단말로부터 수신한 정보를 이용하여 D2D 통신을 수행할 D2D 링크 또는 D2D 연결을 설정할 수 있다.
D2D 통신을 수행할 D2D 단말들을 선택한 기지국은 셀룰러 단말이 상기 D2D 존에 대한 모니터링을 통해 작성하여 전송한 이웃 D2D 단말의 리스트 또는 정보를 이용하여 D2D 링크에 대한 자원을 할당할 수 있다. 즉 D2D 통신을 수행하기 위해서 선택된 D2D 단말이 셀룰러 단말이 작성한 이웃 D2D 단말 리스트 또는 테이블 정보에 포함된 경우에, 기지국은 상기 셀룰러 단말에게 할당한 자원을 제외한 나머지 자원(셀룰러 단말이 전송한 주변 D2D 단말 정보에 상기 D2D 링크의 단말 혹은 단말 페어가 포함되지 않은 셀룰러 단말의 자원)을 D2D 링크에 할당한다.
D2D 링크 형성과 링크에 대한 자원 할당을 수행한 기지국은 D2D 전송 확인 지시자(D2D transmission confirm indicator), D2D 단말 식별자(identifier), 자원 할당 정보, 참조신호 정보(예를 들어, 기본 시퀀스 인덱스(index of base sequence), 순환천이 값(cyclic shift value), 전송 파워(Tx power) 등), 측정 지시자(measurement indicator) 등의 정보를 하향링크 시그널링을 통해 D2D 단말에게 전송해 줄 수 있다. 이에 대해 다음 도 6을 참조하여 더 설명하기로 한다.
도 6은 D2D 통신의 절차를 설명하기 위한 예시적 도면이다.
도 6을 참조하면, 기지국은 셀룰러 단말뿐만 아니라 D2D 단말들(WT1, WT2, WT3, WT4)에게 D2D 존 정보를 방송해 줄 수 있다(S610). 그러면, D2D 단말들은 D2D 존 정보에 따라 D2D 존을 통해 탐색 신호를 전송할 수 있다(S620). 셀룰러 단말은 적어도 하나의 D2D 단말이 전송하는 탐색신호를 모니터링할 수 있다(S630). 한편, 2D 단말들(WT1, WT2, WT3, WT4) 끼리도 다른 D2D 단말이 전송하는 탐색 신호를 수신하여 주변 D2D 단말들을 탐색할 수 있다(S635).
셀룰러 단말은 적어도 하나의 D2D 단말이 전송한 탐색 신호를 모니터링하여인접 D2D 단말을 탐색하고, 이러한 측정된 탐색 신호의 수신 신호 세기, SNR, 간섭 레벨에 대한 정보를 획득할 수 있으며, 이러한 획득한 정보에 기초하여 이웃 D2D 단말 리스트 또는 테이블 정보를 생성할 수 있다(S640). 이후, 셀룰러 단말은 기지국으로 생성한 이웃 D2D 단말 리스트 또는 테이블 정보를 전송할 수 있다(S650). 여기서, 셀룰러 단말이 생성한 이웃 D2D 단말 리스트 정보에는 실제 D2D 통신을 수행하는 단말과 D2D 통신을 수행하지 않는 단말에 대한 정보를 모두 포함하고 있을 수 있다. 그러나, 이때 D2D 통신을 수행하지 않는 단말은 현재 셀룰러 단말에 간섭을 미치지 않으므로 셀룰러 단말은 D2D 통신을 수행하지 않는 단말에 대한 정보는 이웃 D2D 단말 리스트 또는 테이블 정보에 포함시키지 않음으로써 기지국에 전송해줄 필요가 없다(S650).
이후 기지국은 적어도 하나의 D2D 단말로부터 D2D 통신을 요청하는 신호를 수신할 수 있고(S660), 셀룰러 단말로부터 수신한 이웃 D2D 단말 리스트 또는 테이블 정보를 이용하여 D2D 통신을 요청한 D2D 단말들을 위해 자원을 할당할 수 있다(S670). 그리고, 기지국은 할당된 자원에 대한 정보를 D2D 통신 전송 요청 신호를 전송한 D2D 단말들에게 전송해 줄 수 있다(S680).
한편, 도 6의 경우와 다르게, 셀룰러 단말은 D2D 존의 연결 구간(connection interval)을 모니터링하여 D2D 통신 수행을 위하여 D2D 단말들이 전송하는 요청 신호를 직접 수신할 수 있다. 셀룰러 단말이 상기와 같이 D2D 단말이 전송하는 요청 신호를 수신하기 위하여 기지국은 상술한 바와 같이 상위 계층 시그널링을 통해 셀룰러 단말에게 측정 지시자, 검출 영역(존) 정보(예를 들어, 검출 시작점(심볼/슬롯/서브프레임 인덱스)), 검출 존 길이 등과 같은 정보를 전송하여 줄 수 있고, 기지국은 셀룰러 단말이 D2D 전송 요청 신호를 측정하도록 할 수 있다. 이와 같이, 셀룰러 단말이 D2D 단말의 D2D 전송 요청 신호를 수신함으로써 현재 D2D 통신을 수행하려는 주변의 D2D 단말들을 파악하여 상기 D2D 단말들에 대한 정보로 리스트를 작성하여 기지국에 전송할 수 있다. D2D 통신을 수행하려는 D2D 단말들만을 파악하여 이웃 D2D 단말 리스트를 작성하므로 불필요한 정보의 양을 줄임으로써 기지국에 전송하는 단말의 시그널링 오버헤드 및 자원 낭비를 줄일 수 있다.
상기에서는, 기지국은 셀룰러 단말이 주변 D2D 단말을 파악하여 전송해준 리스트 또는 테이블을 이용하여 셀룰러 단말과 D2D 단말들에게 서로 간섭을 미치지 않은 자원을 할당하는 방법을 설명하였다. 그러나 이와 다르게 기지국은 동일한 자원 내에 셀룰러 단말과 D2D 단말을 할당하더라도 전송 기법을 이용하여 셀룰러 단말과 D2D 단말간의 간섭을 줄일 수 있다. 상기 방법을 통하여 기지국은 제한된 자원 내에서 셀룰러 단말과 D2D 단말이 서로 간의 간섭 없이 효율적으로 신호를 송수신 할 수 있도록 할 수 있다.
예를 들어, 셀 내 많은 셀룰러 단말과 D2D 단말이 신호 전송을 위하여 기지국에 자원 할당을 요청할 때, 기지국은 모든 단말들에게 자원을 할당하여 줄 수 없다. 자원의 효율성 및 단말간의 간섭을 줄이기 위하여 기지국은 MIMO 전송 기법을 이용하여 동일한 자원에서 셀룰러와 D2D 단말이 신호를 전송하도록 할 수 있다. 즉, 기지국은 셀룰러로부터 전송받은 주변 D2D 단말 정보와 단말들(셀룰러 단말, D2D 단말)의 자원 요청(request), 채널 정보(예를 들어, CQI, CSI)등을 고려하여 셀룰러 단말과 D2D 단말에게 동일한 자원을 할당하며 이때 서로 직교한(orthogonal)한 PMI(예를 들어, 코드북 인덱스(Codebook index))를 설정하여 이러한 직교 PMI를 통하여 신호를 송수신할 수 있다. 이때, 기지국에 의해서 설정된 상기 PMI는 할당된 자원 정보와 같이 기지국이 D2D 단말에게 전송해 줄 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법 및 이를 위한 장치는 3GPP LTE, LTE-A, IEEE 802 등 다양한 통신 시스템에서 산업상으로 이용가능하다.

Claims (15)

  1. 셀룰러 네트워크에서 단말이 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 방법에 있어서,
    상기 단말이 기지국으로부터 상기 D2D 통신을 위해 설정된 D2D 존에 대한 정보를 수신하는 단계; 및
    상기 D2D 존 정보를 이용해 D2D 존을 모니터링하여 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 검출하는 단계를 포함하되,
    상기 D2D 존은 상기 적어도 하나의 D2D 단말이 탐색 신호를 전송하기 위한 탐색 구간 및 D2D 전송을 요청하는 신호를 전송하는 연결 구간을 포함하는, 단말 간 직접 통신 지원 방법.
  2. 제 1항에 있어서,
    상기 D2D 존 정보는 상기 D2D 존의 설정 정보, 상기 D2D 존의 할당 주기(period) 정보, 상기 D2D 존 시작 포인트 정보, 상기 D2D 존 길이 정보 및 상기 D2D 존 스위치(switch) 정보 중 적어도 하나를 포함하는, 단말 간 직접 통신 지원 방법.
  3. 제 1항에 있어서,
    상기 D2D 존 정보는 하향링크 방송 채널, 하향링크 제어 채널의 공통 검색 공간(common search space), 또는 상기 D2D 통신을 위한 별도의 방송 채널, 또는 상위 계층 시그널링을 통해 수신되는, 단말 간 직접 통신 지원 방법.
  4. 제 1항에 있어서,
    상기 D2D 존에서 검출된 상기 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 측정하여 상기 탐색 신호의 수신 신호 세기 정보, 신호대 잡음비(Signal to Noise Ratio, SNR) 정보 및 상기 탐색 신호의 간섭 레벨 정보 중 적어도 하나를 획득하는 단계; 및
    상기 획득한 정보에 기초하여 이웃 D2D 단말의 리스트를 생성하는 단계를 더 포함하는, 단말 간 직접 통신 지원 방법.
  5. 제 4항에 있어서,
    상기 생성된 이웃 D2D 단말의 리스트 정보를 기지국으로 전송하는 단계를 더 포함하되,
    상기 이웃 D2D 단말의 리스트 정보는 상기 단말과 이웃하고 있는 D2D 단말의 식별자와, 상기 이웃 D2D 단말이 전송한 탐색 신호의 수신 신호 세기 정보, SNR 정보 및 상기 이웃 D2D 단말의 간섭 레벨 정보 중 적어도 하나를 포함하는, 단말 간 직접 통신 지원 방법.
  6. 제 5항에 있어서,
    상기 이웃 D2D 단말은 상기 D2D 통신을 수행을 원하는 전송 요청 신호를 전송한 이웃 D2D 단말인, 단말 간 직접 통신 지원 방법.
  7. 제 5항에 있어서,
    상기 이웃 D2D 단말은 현재 D2D 통신을 수행하고 있는 단말인, 단말 간 직접 통신 지원 방법.
  8. 제 4항에 있어서,
    상기 기지국으로부터 탐색 신호의 임계값에 대한 정보를 수신하는 단계를 더 포함하며,
    상기 획득한 정보 이외에 상기 임계값 정보를 더 고려하여 이웃 D2D 단말의 리스트를 생성하는 것을 특징으로 하는, 단말 간 직접 통신 지원 방법.
  9. 제 8항에 있어서,
    상기 이웃 D2D 단말의 리스트 정보에 포함된 이웃 D2D 단말 리스트는 상기 임계값 이상의 수신 신호 세기, SNR 또는 간섭 레벨에 해당하는 D2D 단말인, 단말 간 직접 통신 지원 방법.
  10. 제 1항에 있어서,
    상기 단말은 D2D 통신을 수행하는 D2D 단말이거나 셀룰러 네트워크의 셀룰러 단말인 것을 특징으로 하는, 단말 간 직접 통신 지원 방법.
  11. 셀룰러 네트워크에서 단말 간 직접(Device-to-Device, D2D) 통신을 지원하는 단말에 있어서,
    상기 단말이 기지국으로부터 상기 D2D 통신을 위해 설정된 D2D 존에 대한 정보를 수신기; 및
    상기 D2D 존 정보를 이용해 D2D 존을 모니터링하여 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 검출하는 프로세서를 포함하되,
    상기 D2D 존은 상기 적어도 하나의 D2D 단말이 탐색 신호를 전송하기 위한 탐색 구간 및 D2D 전송을 요청하는 신호를 전송하는 연결 구간을 포함하는, 단말.
  12. 제 11항에 있어서,
    상기 프로세서는 상기 D2D 존에서 검출된 상기 적어도 하나의 D2D 단말이 전송하는 탐색 신호를 측정하여 상기 탐색 신호의 수신 신호 세기 정보, 신호대 잡음비(Signal to Noise Ratio, SNR) 정보 및 상기 탐색 신호의 간섭 레벨 정보 중 적어도 하나를 획득하고, 상기 획득한 정보에 기초하여 이웃 D2D 단말의 리스트를 생성하는, 단말.
  13. 제 12항에 있어서,
    상기 생성된 이웃 D2D 단말의 리스트 정보를 기지국으로 전송하는 송신기를 더 포함하며,
    상기 프로세서가 생성한 상기 이웃 D2D 단말의 리스트 정보는 상기 단말과 이웃하고 있는 D2D 단말의 식별자와, 상기 이웃 D2D 단말이 전송한 탐색 신호의 수신 신호 세기 정보, SNR 정보 및 상기 이웃 D2D 단말의 간섭 레벨 정보 중 적어도 하나를 포함하는, 단말.
  14. 제 12항에 있어서,
    상기 수신기는 상기 기지국으로부터 탐색 신호의 임계값에 대한 정보를 더 수신하도록 구성되며,
    상기 프로세서는 상기 획득한 정보 이외에 상기 임계값 정보를 더 고려하여 이웃 D2D 단말의 리스트를 생성하도록 구성된 것을 특징으로 하는, 단말.
  15. 제 11항에 있어서,
    상기 단말은 D2D 통신을 수행하는 D2D 단말이거나 셀룰러 네트워크의 셀룰러 단말인, 단말.
PCT/KR2012/006954 2011-08-30 2012-08-30 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치 WO2013032251A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147007650A KR20140068088A (ko) 2011-08-30 2012-08-30 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치
CN201280042695.9A CN103891172B (zh) 2011-08-30 2012-08-30 在蜂窝网络中支持设备到设备通信的方法和装置
US14/239,993 US10038993B2 (en) 2011-08-30 2012-08-30 Method for supporting device-to-device communication in a cellular network, and apparatus for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161528764P 2011-08-30 2011-08-30
US61/528,764 2011-08-30

Publications (2)

Publication Number Publication Date
WO2013032251A2 true WO2013032251A2 (ko) 2013-03-07
WO2013032251A3 WO2013032251A3 (ko) 2013-05-02

Family

ID=47757064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006954 WO2013032251A2 (ko) 2011-08-30 2012-08-30 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10038993B2 (ko)
KR (1) KR20140068088A (ko)
CN (1) CN103891172B (ko)
WO (1) WO2013032251A2 (ko)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347246A (zh) * 2013-07-18 2013-10-09 西安电子科技大学 蜂窝网络中嵌入式d2d环境下邻近用户间的发现方法
WO2014152671A1 (en) * 2013-03-14 2014-09-25 Fujitsu Limited Signal timing in device-to-device communication
WO2014158006A1 (ko) * 2013-03-29 2014-10-02 삼성전자 주식회사 장치 간 통신 방법 및 장치
WO2015005743A1 (ko) * 2013-07-12 2015-01-15 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신방법 및 장치
WO2015005699A1 (ko) * 2013-07-12 2015-01-15 삼성전자 주식회사 D2d 탐색 수행 방법 및 그 방법을 사용하는 단말
WO2015021399A1 (en) 2013-08-08 2015-02-12 Intel IP Corporation Techniques for device-to-device communications
WO2015046973A1 (ko) * 2013-09-26 2015-04-02 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 통신 방법 및 이를 지원하는 장치
WO2015069040A1 (ko) * 2013-11-08 2015-05-14 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 이용하여 신호를 송신하는 방법 및 이를 위한 장치
WO2015119476A1 (ko) * 2014-02-10 2015-08-13 삼성전자주식회사 무선 통신 시스템에서 단말 탐색을 위한 채널 구조와 전력 제어 방법 및 장치
CN104937857A (zh) * 2013-03-14 2015-09-23 富士通株式会社 邻居发现信号的功率控制
EP2859775A4 (en) * 2013-04-04 2016-03-16 Blackberry Ltd METHOD AND APPARATUS FOR PROXIMITY SEARCH FOR DEVICE DEVICE COMMUNICATION
CN105409313A (zh) * 2013-07-15 2016-03-16 三星电子株式会社 用于在无线通信系统中消除干扰的方法和设备
CN105453616A (zh) * 2013-08-12 2016-03-30 谷歌技术控股有限责任公司 用于移动站设备对设备信标窗口确定的方法和设备
WO2016045437A1 (zh) * 2014-09-25 2016-03-31 中兴通讯股份有限公司 一种实现d2d处理的方法及装置
EP3065467A4 (en) * 2013-12-06 2016-11-23 Huawei Device Co Ltd METHOD FOR TRANSMITTING DETECTION SIGNALS, USER DEVICE AND BASE STATION
EP3021614A4 (en) * 2013-07-12 2017-01-04 Samsung Electronics Co., Ltd. Method and device for transmitting device-to-device discovery signal of terminal between base stations in wireless cellular communication system
CN106465412A (zh) * 2014-05-08 2017-02-22 英特尔Ip公司 有效设备到设备通信的试探授权
EP3163956A4 (en) * 2014-06-30 2017-07-12 Fujitsu Limited Wireless communication system
EP3461156A1 (en) * 2014-02-02 2019-03-27 LG Electronics Inc. D2d gap for d2d discovery signal
CN111542024A (zh) * 2014-11-05 2020-08-14 英特尔公司 设备到设备(d2d)传输行为
CN111601400A (zh) * 2014-03-24 2020-08-28 三星电子株式会社 用于在连接状态中监视设备对设备传输的装置和方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654266B2 (en) * 2011-11-03 2017-05-16 Lg Electronics Inc. Method for transreceiving downlink control information in wireless access system and apparatus for same
US9456375B2 (en) * 2011-11-30 2016-09-27 Lg Electronics Inc. Method for transmitting data from terminal in wireless communication system, and device for same
US9226298B2 (en) * 2012-03-12 2015-12-29 Htc Corporation Method and apparatus for performing direct communications in wireless communication system
US9553769B2 (en) 2012-04-06 2017-01-24 Qualcomm Incorporated Devices and methods for communication in ad-hoc networks
EP2898735B1 (en) * 2012-09-19 2018-11-14 Telefonaktiebolaget LM Ericsson (publ) Network node and method for managing maximum transmission power levels for a d2d communication link
US9705578B2 (en) * 2012-11-06 2017-07-11 Kyocera Corporation Mobile communication system, user terminal, and processor
US9516659B2 (en) * 2012-12-06 2016-12-06 Intel Corporation Carrier type (NCT) information embedded in synchronization signal
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
WO2014126255A1 (ja) * 2013-02-18 2014-08-21 京セラ株式会社 基地局及び通信制御方法
WO2014130091A1 (en) * 2013-02-22 2014-08-28 Intel IP Corporation Systems and methods for access network selection and traffic routing
EP2975889A4 (en) * 2013-03-11 2016-08-24 Fujitsu Ltd D2D DISCOVERY SEQUENCE DETECTING METHOD AND D2D DATA RECEIVING METHOD AND DEVICE
WO2014145206A1 (en) * 2013-03-15 2014-09-18 Huawei Technologies Co., Ltd. System and method for direct mobile communication
KR102043134B1 (ko) * 2013-04-30 2019-11-11 삼성전자주식회사 D2d 디스커버리에서 우선순위를 다루기 위한 기법
KR101710968B1 (ko) * 2013-05-22 2017-02-28 후아웨이 디바이스 컴퍼니 리미티드 근접 서비스를 위한 메시지를 송신하고 수신하기 위한 방법, 장치, 및 시스템
CN104429142B (zh) * 2013-07-12 2019-03-26 华为技术有限公司 一种多用户协同通信触发方法及设备
WO2015014395A1 (en) * 2013-07-31 2015-02-05 Telecom Italia S.P.A. Device-to-device communication management in mobile communication networks
US9681354B2 (en) 2013-08-08 2017-06-13 Intel IP Corporation Signaling radio bearer optimizations and other techniques for supporting small data transmissions
US9762306B2 (en) 2013-08-08 2017-09-12 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9326122B2 (en) * 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US9499995B2 (en) 2013-08-08 2016-11-22 Intel IP Corporation Coverage extension level for coverage limited device
US9564958B2 (en) 2013-08-08 2017-02-07 Intel IP Corporation Power saving mode optimizations and related procedures
EP3057368B1 (en) 2013-10-11 2019-07-17 Kyocera Corporation Communication control method, user terminal, and communication device
US9661657B2 (en) 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
EP3869759B1 (en) * 2014-01-13 2022-11-30 Huawei Device Co., Ltd. Reference signal transmission method and user equipment
KR102235369B1 (ko) * 2014-03-21 2021-04-02 삼성전자 주식회사 기기간 통신을 위한 저전력을 고려한 경쟁 기반 자원 할당 방법 및 장치
US9369950B2 (en) * 2014-06-05 2016-06-14 Sony Corporation User equipment and method of searching for a cell
WO2016013826A1 (ko) * 2014-07-20 2016-01-28 엘지전자(주) 무선 통신 시스템에서 단말 조건 기반 d2d 통신 방법 및 이를 위한 장치
WO2016014106A1 (en) * 2014-07-21 2016-01-28 Fujitsu Limited Device-to-device (d2d) signaling
US10187903B2 (en) 2014-07-29 2019-01-22 Lg Electronics Inc. Method for transceiving signal for device-to-device (D2D) communication and apparatus therefor in wireless communication system
KR101636022B1 (ko) * 2014-07-30 2016-07-04 에스케이텔레콤 주식회사 서비스 제어 장치 연동을 통한 단말간 컨텐츠 전송 방법 및 이를 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
CN106489285B (zh) * 2014-08-05 2019-11-19 华为技术有限公司 D2d终端、系统及d2d发现方法
EP2983387A1 (en) * 2014-08-07 2016-02-10 Alcatel Lucent Facilitating direct user equipment to user equipment transmission
WO2016019557A1 (zh) * 2014-08-07 2016-02-11 华为技术有限公司 一种资源配置方法、用户直联通信方法及装置
US10172174B2 (en) 2014-08-08 2019-01-01 Kyocera Corporation Selection between cellular communication link and device-to-device (D2D) communication link using reference signals
CN105451282A (zh) 2014-08-22 2016-03-30 电信科学技术研究院 一种中继终端重选的方法及设备
JP6434616B2 (ja) * 2014-09-24 2018-12-05 エルジー エレクトロニクス インコーポレイティド D2d信号の送信方法及びそのための端末
KR101630276B1 (ko) * 2014-10-21 2016-06-24 에스케이텔레콤 주식회사 단말간 컨텐츠 제공 방법 및 이를 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
EP3217759B1 (en) * 2014-11-07 2020-03-11 Kyocera Corporation Base station and user terminal
KR102373464B1 (ko) * 2015-06-22 2022-03-11 삼성전자주식회사 소정의 공간 내의 단말기들을 연결하는 방법 및 이를 이용한 단말기
US9374751B1 (en) * 2015-06-25 2016-06-21 Sprint Spectrum L.P. Bilateral transition of control communication for control of mobile craft
EP3342202B1 (en) * 2015-08-24 2021-04-21 Sony Corporation Telecommunications apparatus and methods for access control in d2d communications
US10045244B2 (en) * 2015-09-03 2018-08-07 Qualcomm Incorporated Enhanced connection performance in UL/DL imbalance scenarios
US10939455B2 (en) 2015-12-22 2021-03-02 Lg Electronics Inc. Method for allocating priorities to a logical channel group implicitly in a D2D communication system and device therefor
JP6686490B2 (ja) * 2016-02-04 2020-04-22 ソニー株式会社 ユーザ端末、方法及びプログラム
US10306660B2 (en) * 2016-03-24 2019-05-28 Qualcomm Incorporated Mechanisms for co-existence between communication modes in a mesh wide area network
EP3437421A1 (en) * 2016-04-01 2019-02-06 Telefonaktiebolaget LM Ericsson (PUBL) Sidelink communication techniques in radiocommunication systems
KR20170141932A (ko) * 2016-06-16 2017-12-27 삼성전자주식회사 채널 상태 정보를 송수신하기 위한 장치 및 방법
CN106162737B (zh) * 2016-08-09 2019-05-17 北京交通大学 一种基于自适应拥塞控制的d2d设备自主发现方法
WO2018058635A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 一种控制信号发射的方法和装置
WO2018123127A1 (ja) * 2016-12-27 2018-07-05 日本電気株式会社 無線通信のための装置、方法、及びプログラムを格納した非一時的なコンピュータ可読媒体
CN108347737B (zh) * 2017-01-25 2021-08-06 上海诺基亚贝尔股份有限公司 通信方法和设备
US11229054B2 (en) 2017-11-06 2022-01-18 Lg Electronics Inc. Method for feedback for device-to-device communication in wireless communication system, and device for same
CN112997552B (zh) * 2018-09-27 2024-01-05 中兴通讯股份有限公司 用于配置侧链路信道资源单元的方法和装置
KR20230006476A (ko) * 2020-04-27 2023-01-10 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105592A1 (en) * 2005-11-09 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method for providing neighbor node information in cellular communication system
WO2009009394A1 (en) * 2007-07-10 2009-01-15 Qualcomm Incorporated Performing paging in a wireless peer-to-peer network
KR20090062435A (ko) * 2007-12-13 2009-06-17 삼성전자주식회사 이동통신 시스템에서 단말간 직접 통신을 위한 자원할당방법 및 시스템
JP2010193288A (ja) * 2009-02-19 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、基地局およびスケジューリング方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9342829B2 (en) * 2002-10-01 2016-05-17 Andrew H B Zhou Systems and methods for mobile application, wearable application, transactional messaging, calling, digital multimedia capture and payment transactions
US7720471B2 (en) * 2005-07-27 2010-05-18 Sharp Laboratories Of America Method for managing hidden stations in a centrally controlled network
US20070105596A1 (en) * 2005-11-04 2007-05-10 Motorola, Inc. Real time caller information retrieval and display in dispatch calls
US7920887B2 (en) * 2007-07-20 2011-04-05 Korean Advanced Institute Of Science And Technology System and method for setting up P2P communication group in cellular system, and P2P communication system and method using P2P communication group
WO2011121374A1 (en) * 2010-03-30 2011-10-06 Nokia Corporation Method and apparatus for device discovery through beaconing
WO2012019348A1 (en) * 2010-08-12 2012-02-16 Nokia Corporation Configuring an uplink and downlink splitting pattern for device-to-device communication under a cellular network
US20150094830A1 (en) * 2012-01-18 2015-04-02 Rest Devices, Inc. Network-based Care System
US20140236025A1 (en) * 2013-02-15 2014-08-21 Michael L. Sheldon Personal Health Monitoring System
US20150148632A1 (en) * 2013-11-26 2015-05-28 David Alan Benaron Calorie Monitoring Sensor And Method For Cell Phones, Smart Watches, Occupancy Sensors, And Wearables
US20150172893A1 (en) * 2013-12-12 2015-06-18 Gerard St. Germain Mobile Companion
EP2887692B1 (en) * 2013-12-20 2019-07-10 Valencell, Inc. A fitting system for a headphone with physiological sensor
US20150185883A1 (en) * 2013-12-27 2015-07-02 Arvind S Multi-point touch for identity
GB2548944B (en) * 2014-04-17 2018-11-28 Z Integrated Digital Tech Inc Electronic test device data communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105592A1 (en) * 2005-11-09 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method for providing neighbor node information in cellular communication system
WO2009009394A1 (en) * 2007-07-10 2009-01-15 Qualcomm Incorporated Performing paging in a wireless peer-to-peer network
KR20090062435A (ko) * 2007-12-13 2009-06-17 삼성전자주식회사 이동통신 시스템에서 단말간 직접 통신을 위한 자원할당방법 및 시스템
JP2010193288A (ja) * 2009-02-19 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 無線通信システム、基地局およびスケジューリング方法

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937857A (zh) * 2013-03-14 2015-09-23 富士通株式会社 邻居发现信号的功率控制
WO2014152671A1 (en) * 2013-03-14 2014-09-25 Fujitsu Limited Signal timing in device-to-device communication
US9628212B2 (en) 2013-03-14 2017-04-18 Fujitsu Limited Signal timing in device-to-device communication
KR102046111B1 (ko) * 2013-03-29 2019-11-18 삼성전자주식회사 장치 간 통신 방법 및 장치
WO2014158006A1 (ko) * 2013-03-29 2014-10-02 삼성전자 주식회사 장치 간 통신 방법 및 장치
US9955409B2 (en) 2013-03-29 2018-04-24 Samsung Electronics Co., Ltd. Method and apparatus for device-to-device communication
KR20140118496A (ko) * 2013-03-29 2014-10-08 삼성전자주식회사 장치 간 통신 방법 및 장치
US10021555B2 (en) 2013-04-04 2018-07-10 Blackberry Limited Method and apparatus for proximity discovery for device-to-device communication
EP2859775A4 (en) * 2013-04-04 2016-03-16 Blackberry Ltd METHOD AND APPARATUS FOR PROXIMITY SEARCH FOR DEVICE DEVICE COMMUNICATION
US10039140B2 (en) 2013-07-12 2018-07-31 Lg Electronics Inc. Method and apparatus for transreceiving signal in wireless communication system
WO2015005743A1 (ko) * 2013-07-12 2015-01-15 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신방법 및 장치
KR102026792B1 (ko) 2013-07-12 2019-09-30 삼성전자 주식회사 D2d 탐색 수행 방법 및 그 방법을 사용하는 단말
EP3021614A4 (en) * 2013-07-12 2017-01-04 Samsung Electronics Co., Ltd. Method and device for transmitting device-to-device discovery signal of terminal between base stations in wireless cellular communication system
KR20150007831A (ko) * 2013-07-12 2015-01-21 삼성전자주식회사 D2d 탐색 수행 방법 및 그 방법을 사용하는 단말
US9848316B2 (en) 2013-07-12 2017-12-19 Samsung Electronics Co., Ltd. Method for performing D2D discovery and terminal using same
WO2015005699A1 (ko) * 2013-07-12 2015-01-15 삼성전자 주식회사 D2d 탐색 수행 방법 및 그 방법을 사용하는 단말
US10840955B2 (en) 2013-07-15 2020-11-17 Samsung Electronics Co., Ltd. Method and apparatus for cancelling interference signal in wireless communication system
CN105409313A (zh) * 2013-07-15 2016-03-16 三星电子株式会社 用于在无线通信系统中消除干扰的方法和设备
CN103347246A (zh) * 2013-07-18 2013-10-09 西安电子科技大学 蜂窝网络中嵌入式d2d环境下邻近用户间的发现方法
EP3031287A4 (en) * 2013-08-08 2017-04-19 Intel IP Corporation Techniques for device-to-device communications
WO2015021399A1 (en) 2013-08-08 2015-02-12 Intel IP Corporation Techniques for device-to-device communications
CN105393632A (zh) * 2013-08-08 2016-03-09 英特尔Ip公司 用于设备对设备通信的技术
CN105453616A (zh) * 2013-08-12 2016-03-30 谷歌技术控股有限责任公司 用于移动站设备对设备信标窗口确定的方法和设备
CN105453616B (zh) * 2013-08-12 2019-10-15 谷歌技术控股有限责任公司 用于移动站设备对设备信标窗口确定的方法和设备
US10440717B2 (en) 2013-09-26 2019-10-08 Lg Electronics Inc. Method for D2D communication performed by terminals in wireless communication system, and devices for supporting same
WO2015046973A1 (ko) * 2013-09-26 2015-04-02 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 통신 방법 및 이를 지원하는 장치
US10966262B2 (en) 2013-11-08 2021-03-30 Lg Electronics Inc. Method for transmitting signal using direct communication between terminals in wireless communication system and device therefor
KR102295821B1 (ko) 2013-11-08 2021-08-31 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 이용하여 신호를 송신하는 방법 및 이를 위한 장치
KR20160082983A (ko) * 2013-11-08 2016-07-11 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 이용하여 신호를 송신하는 방법 및 이를 위한 장치
WO2015069040A1 (ko) * 2013-11-08 2015-05-14 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 이용하여 신호를 송신하는 방법 및 이를 위한 장치
US10091828B2 (en) 2013-11-08 2018-10-02 Lg Electronics Inc. Method for transmitting signal using direct communication between terminals in wireless communication system and device therefor
EP3065467A4 (en) * 2013-12-06 2016-11-23 Huawei Device Co Ltd METHOD FOR TRANSMITTING DETECTION SIGNALS, USER DEVICE AND BASE STATION
US10194305B2 (en) 2013-12-06 2019-01-29 Huawei Device (Dongguan) Co., Ltd. Discovery signal transmission method, user equipment, and base station
US10405364B2 (en) 2014-02-02 2019-09-03 Lg Electronics Inc. Method and apparatus for transmitting information for D2D operation in wireless communication system
EP3461156A1 (en) * 2014-02-02 2019-03-27 LG Electronics Inc. D2d gap for d2d discovery signal
US10772143B2 (en) 2014-02-02 2020-09-08 Lg Electronics Inc. Method and apparatus for transmitting information for D2D operation in wireless communication system
WO2015119476A1 (ko) * 2014-02-10 2015-08-13 삼성전자주식회사 무선 통신 시스템에서 단말 탐색을 위한 채널 구조와 전력 제어 방법 및 장치
KR20150094051A (ko) * 2014-02-10 2015-08-19 삼성전자주식회사 무선 통신 시스템에서 단말 탐색을 위한 채널 구조와 전력 제어 방법 및 장치
KR102196245B1 (ko) 2014-02-10 2020-12-29 삼성전자주식회사 무선 통신 시스템에서 단말 탐색을 위한 채널 구조와 전력 제어 방법 및 장치
CN111601400A (zh) * 2014-03-24 2020-08-28 三星电子株式会社 用于在连接状态中监视设备对设备传输的装置和方法
CN111601400B (zh) * 2014-03-24 2023-12-08 三星电子株式会社 用于在连接状态中监视设备对设备传输的装置和方法
KR101832655B1 (ko) 2014-05-08 2018-02-26 인텔 아이피 코포레이션 효율적인 디바이스 투 디바이스 통신을 위한 잠정적 승인
CN106465412B (zh) * 2014-05-08 2019-11-15 英特尔Ip公司 有效设备到设备通信的试探授权
EP3141069A4 (en) * 2014-05-08 2017-12-20 Intel IP Corporation Tentative grant for efficient device to device communications
CN106465412A (zh) * 2014-05-08 2017-02-22 英特尔Ip公司 有效设备到设备通信的试探授权
US10080251B2 (en) 2014-06-30 2018-09-18 Fujitsu Limited Wireless communication system
EP3163956A4 (en) * 2014-06-30 2017-07-12 Fujitsu Limited Wireless communication system
WO2016045437A1 (zh) * 2014-09-25 2016-03-31 中兴通讯股份有限公司 一种实现d2d处理的方法及装置
CN111542024A (zh) * 2014-11-05 2020-08-14 英特尔公司 设备到设备(d2d)传输行为
CN111542024B (zh) * 2014-11-05 2024-02-27 英特尔公司 设备到设备(d2d)传输行为

Also Published As

Publication number Publication date
CN103891172B (zh) 2017-02-15
WO2013032251A3 (ko) 2013-05-02
US20140185529A1 (en) 2014-07-03
KR20140068088A (ko) 2014-06-05
US10038993B2 (en) 2018-07-31
CN103891172A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2013032251A2 (ko) 셀룰러 네트워크에서 단말 간 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2013028044A2 (ko) 단말 간 직접 통신을 수행하는 방법과 이를 지원하는 방법 및 이를 위한 장치
WO2013062351A1 (ko) 무선통신 시스템에서 셀 간 d2d 통신을 수행하는 방법 및 이를 위한 장치
WO2013081370A1 (ko) 무선통신 시스템에서 d2d 통신을 수행하거나 d2d 통신을 지원하는 방법과 이를 위한 장치
WO2013025040A2 (ko) 단말 간 직접 통신을 수행하는 방법과 이를 지원하는 방법 및 이를 위한 장치
WO2013062310A1 (ko) 무선통신 시스템에서 기지국이 d2d(device-to-device) 통신을 지원하는 방법과 d2d 단말이 효율적으로 d2d 통신 요청 신호를 전송하는 방법
WO2013115567A1 (ko) D2d 통신을 지원하는 무선통신 시스템에서 d2d 전송 데이터에 대한 피드백 정보를 전송 및 수신하는 방법과 이를 위한 장치
WO2014104627A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2013119017A1 (en) In-device coexistence interference report control method and apparatus of network in mobile communication system
WO2014168412A1 (en) Device-to-device communication method and apparatus for use in wireless communication system
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2018084382A1 (ko) 무선통신 시스템에서 sr을 전송하는 방법 및 이를 위한 단말
WO2013119094A1 (ko) D2d 서비스 타입 또는 d2d 어플리케이션 타입에 따른 d2d 통신 방법 및 이를 위한 장치
WO2018080184A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 센싱 방법 및 이를 위한 장치
WO2012173443A2 (ko) 무선 접속 시스템에서 무선 자원 할당 방법 및 이를 위한 장치
WO2012096493A2 (ko) 단말 간 통신을 지원하는 무선통신 시스템에서 단말 간 상향링크 신호 전송을 위한 전송 전력을 결정하는 방법 및 이를 위한 장치
WO2015016567A1 (ko) 무선 통신 시스템에서 링크 적응 수행 방법 및 장치
WO2018084331A1 (ko) Rrc 연결 요청을 전송하는 방법 및 이를 위한 단말
WO2016056877A2 (ko) D2d 동기화 신호의 송신 방법 및 이를 위한 단말
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2015174805A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2017155366A1 (ko) V2x 통신 환경에서 자원 충돌을 해소하기 위한 방법 및 이를 위한 이동 기기
WO2011071220A1 (ko) 무선 통신 시스템에서 파워 세이빙 방법
WO2017183865A2 (ko) FeD2D 환경에서 간섭을 고려하여 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018101738A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827119

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14239993

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 20147007650

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12827119

Country of ref document: EP

Kind code of ref document: A2