WO2013032009A1 - 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片 - Google Patents

脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片 Download PDF

Info

Publication number
WO2013032009A1
WO2013032009A1 PCT/JP2012/072374 JP2012072374W WO2013032009A1 WO 2013032009 A1 WO2013032009 A1 WO 2013032009A1 JP 2012072374 W JP2012072374 W JP 2012072374W WO 2013032009 A1 WO2013032009 A1 WO 2013032009A1
Authority
WO
WIPO (PCT)
Prior art keywords
decellularized
decellularized tissue
liquid
aorta
tissue material
Prior art date
Application number
PCT/JP2012/072374
Other languages
English (en)
French (fr)
Inventor
岸田 晶夫
舩本 誠一
良秀 橋本
淳 根岸
総一郎 桑
崇夫 江間
国治 小林
Original Assignee
株式会社エフコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフコム filed Critical 株式会社エフコム
Priority to CN201280042750.4A priority Critical patent/CN103987392A/zh
Priority to US14/342,293 priority patent/US9901601B2/en
Priority to EP12827099.8A priority patent/EP2752192B1/en
Priority to JP2013531452A priority patent/JP6091414B2/ja
Publication of WO2013032009A1 publication Critical patent/WO2013032009A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/362Skin, e.g. dermal papillae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3625Vascular tissue, e.g. heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking

Definitions

  • the present invention relates to a method for preparing a decellularized tissue product and a graft including the decellularized tissue product.
  • the supporting tissue (collagen etc.) constituting the living tissue has voids of various sizes inside. Usually, these voids are filled with biological material, moisture and the like. In recent years, attempts have been made to impart functionality to living tissues by filling these voids with functional substances such as proteins, polysaccharides, enzymes, and synthetic polymers, and to use them as living tissue materials.
  • the present invention provides a method for preparing a decellularized tissue product capable of filling a liquid in a living tissue while suppressing a change in the structure of a supporting tissue constituting the living tissue, and a graft including the decellularized tissue product. For the purpose.
  • the inventors of the present invention have a structure such as collagen that constitutes a living tissue by a depressurization step in which an animal-derived decellularized tissue material is brought into contact with a liquid under a reduced pressure condition and / or a pressurization step in which the liquid is brought into contact under a pressurized condition.
  • the present inventors have found that the tissue can be filled with a liquid while suppressing the change of the above, and have completed the present invention.
  • the present invention provides the following.
  • a method for preparing a decellularized tissue product which includes a depressurization step in which an animal-derived decellularized tissue material and a liquid are brought into contact under reduced pressure conditions and / or a pressurization step in which contact is made under pressurized conditions.
  • a graft that is transplanted into an animal includes a decellularized tissue product prepared by the preparation method according to any one of (1) to (6).
  • the tissue can be filled with the liquid while suppressing the change of the above.
  • FIG. 1 It is a figure which shows the cross section of the cornea after restoring
  • (A) is a figure which shows the cross section of the aorta after restoring the lyophilized decellularized aorta by immersion or impregnation.
  • (B) is a graph showing the water content of the aorta after reconstitution of the lyophilized decellularized aorta by immersion or impregnation.
  • A) is a figure which shows the cross section of the skin after restoring
  • FIG. 3 is a view showing a cross section of a cornea after lyophilized decellularized cornea is immersed or impregnated in a ⁇ -glucan solution.
  • FIG. 1 It is a figure which shows the cross section of the cornea one month after restoring
  • (A) shows the result of staining with hematoxylin-eosin staining.
  • the preparation method of the present invention includes a depressurization step in which an animal-derived decellularized tissue material and a liquid are brought into contact under reduced pressure conditions and / or a pressurization step in which contact is made under pressurized conditions.
  • a depressurization step in which an animal-derived decellularized tissue material and a liquid are brought into contact under reduced pressure conditions
  • a pressurization step in which contact is made under pressurized conditions.
  • the impregnation of the liquid into the decellularized tissue material is accelerated.
  • transduce can be physically substituted on pressure reduction conditions.
  • the air in the decellularized tissue material is exhausted and reduced under reduced pressure conditions, the voids in the decellularized tissue material are in a reduced pressure state equivalent to that around the decellularized tissue material.
  • the liquid can be preferably impregnated in the decellularized tissue material by either or both of the above actions.
  • the above-mentioned action can uniformly impregnate the liquid in the decellularized tissue material while suppressing the change in the structure of the supporting tissue constituting the decellularized tissue material. it can.
  • a liquid having low compatibility with the decellularized tissue material can be preferably impregnated into the decellularized tissue material.
  • action can be accelerated
  • the decompression may be performed at least once in the process of impregnating the liquid into the decellularized tissue material.
  • the decellularized tissue material and the liquid may be brought into contact by depressurizing the atmosphere of the decellularized tissue material and injecting a liquid while maintaining the reduced pressure state. You may reduce pressure after making contact by immersion etc.
  • the decompression condition may be a pressure lower than the atmospheric pressure, as long as it can be maintained at a vacuum degree of 0 to -0.101 MPa.
  • the “vacuum degree” in the present invention is expressed as a gauge pressure. This value indicates how close to an ideal vacuum state (absolute vacuum) with the atmospheric pressure being zero.
  • the ideal vacuum state in the present invention is a vacuum degree of ⁇ 0.101 MPa, and the closer to this value, the closer to the ideal vacuum state.
  • the “maintenance” of the pressure does not require the pressure to be within the above range through the decompression step, and is decellularized tissue material in these pressure ranges for at least a fixed time (for example, 0.01 seconds to 24 hours). Should just be able to decompress. When the pressure is reduced within these pressure ranges, the penetration of the liquid into the decellularized tissue material becomes uniform.
  • the pressure range can be adjusted as appropriate according to the liquid used during impregnation.
  • an osmotic pressure difference may occur between the inside and the outside of the decellularized tissue material when the water or the like comes into contact with the liquid to be introduced.
  • moisture and liquid may be vaporized before the moisture and the liquid to be introduced are physically replaced by an osmotic pressure difference.
  • the vaporized water or the like may freeze on the surface of the decellularized tissue material, destroy the surface structure of the decellularized tissue material, or prevent impregnation of the liquid into the decellularized tissue material. Therefore, in such a case, it is preferable that the pressure be close to the atmospheric pressure, or the liquid be cooled or an additive be mixed for the purpose of adjusting the vapor pressure.
  • the decellularized tissue material when the decellularized tissue material is dried, if the decellularized tissue material is to be impregnated with a liquid containing a polymer or the like, the decellularized tissue material can be removed using a pressure close to absolute vacuum. While liquid is rapidly sucked into the cell tissue material, macromolecules and the like are deposited on the surface of the cell decellularized tissue material, and as a result, the supporting tissue of the cell denatured tissue material is deformed, and the cell denatured tissue material Impregnation of liquid into it may be hindered.
  • the pressure is close to atmospheric pressure, or after the decellularized tissue material and the liquid are brought into contact with each other, the vacuum state is gradually increased. It is preferable to do so.
  • the decompression time is not particularly limited, but may be 1 second to 60 minutes, preferably 5 seconds to 10 minutes. According to the present invention, since the impregnation is performed under a reduced pressure condition, decellularization is achieved even when the contact time between the decellularized tissue material and the liquid is short compared to the method performed under atmospheric pressure such as immersion. Liquid is impregnated to the inside of the textured material.
  • the liquid to be introduced is infiltrated under pressure under the voids of the decellularized tissue material. It is presumed that the liquid is pushed into the voids of the decellularized tissue material by the pressurization, and the liquid penetrates. Thus, the liquid is uniformly impregnated in the decellularized tissue material while suppressing the change in the structure of the supporting tissue constituting the decellularized tissue material. Further, even if the compatibility between the decellularized tissue material and the liquid is low, the decellularized tissue material can be preferably impregnated with the liquid.
  • the pressurizing step for bringing the decellularized tissue material into contact with the liquid under pressure a method in which pressurization is performed at least once in the process of impregnating the liquid into the decellularized tissue material may be used.
  • the decellularized tissue material and the liquid may be contacted by pressurizing the atmosphere of the decellularized tissue material and injecting a liquid while maintaining the pressurized state. You may pressurize after making it contact by immersion.
  • the pressurizing condition may be a pressure higher than the atmospheric pressure.
  • the pressure is 0.1 to 10,000 atm, preferably 0.1 to 1000 atm, particularly preferably 0.1 to 100 atm. It only needs to be maintained at atmospheric pressure. Moreover, if the atmospheric pressure is 1000 atm or higher, the cells of resident bacteria are sufficiently destroyed, and the resident bacteria remain in the decellularized tissue material.
  • the pressure can be appropriately adjusted according to the components contained in the liquid, the degree of impregnation of the liquid into the decellularized tissue material, and the like.
  • the maintenance of the pressure mentioned here does not require the pressure to be within these ranges throughout the pressurization step, and pressurizes the decellularized tissue material within these pressure ranges for at least a fixed time (for example, 0.01 seconds to 24 hours). I can do it.
  • Such pressurization is performed according to the value of the pressure used for pressurization, for example, a device such as a first-class pressure vessel, a second-class pressure vessel, or a small-sized pressure vessel as defined in the Industrial Safety and Health Act. It can be done by using.
  • the pressurization time is not particularly limited, but may be performed for 1 second to 24 hours, preferably 1 minute to 60 minutes. According to the present invention, since the impregnation is performed under a pressurized condition, the decellularized tissue material and the liquid are removed even if the contact time is short compared with a method performed under atmospheric pressure such as immersion. The liquid is impregnated into the cellized tissue material.
  • the pressurization temperature is not particularly limited as long as the decellularized tissue material is not denatured, but may be ⁇ 20 to 30 ° C., preferably ⁇ 10 to 25 ° C.
  • a decompression step and a pressurization step may be combined. Either the depressurization step or the pressurization step may be performed first. However, if the pressurization step is performed after the depressurization step, the air in the decellularized tissue material is reduced, and then in the decellularized tissue material. It is particularly preferable in that uniform impregnation throughout the entire tissue can be realized quickly because the liquid can be accelerated to penetrate into the tissue.
  • the decellularized tissue material can be prepared by a conventionally known method (for example, WO2008 / 111530 pamphlet).
  • the decellularized tissue material may be prepared as it is, or may be subjected to a usual storage process (freeze drying process, freezing process, drying process, etc.). According to the preparation method of the present invention, regardless of whether or not the decellularized tissue material is preserved, in the above-described decompression step, moisture, gas, and the like inside the voids in the supporting tissue constituting the decellularized tissue material Impregnation can be promoted by physical replacement with the introduced liquid.
  • the decellularized tissue material is lyophilized in that the impregnation by the physical replacement of the gas inside the void in the supporting tissue constituting the decellularized tissue material and the liquid to be introduced can be particularly promoted. Is preferred.
  • the decellularized tissue material can be preferably impregnated with a liquid. According to the present invention, it is possible to restore the decellularized tissue material while suppressing the change in the structure of the decellularized tissue material subjected to the storage treatment.
  • the method for freeze-drying the decellularized tissue material is not particularly limited, but the decellularized tissue is immersed in liquid nitrogen, rapidly freeze-dried with dry ice, or ⁇ 80 ° C. using a freezer (manufactured by Japan Freezer, etc.).
  • Examples of the method include slow lyophilization at -4 ° C, controlled freezing at -10 ° C to -80 ° C using a program freezer, and the like, followed by drying in a vacuum state.
  • the decellularized tissue material may be freeze-dried after being immersed in any solvent commonly used for storing the decellularized tissue material, but it may be freeze-dried after being immersed in the treatment solution.
  • Treatment solutions include disaccharides such as sucrose, trehalose, lactose, maltose, cellobiose, trisaccharides such as raffinose, melezitose, maltotriose, glycerin, ribitol, galactitol, xylitol, sorbitol, erythritol, mannitol, maltitol, etc.
  • the conditions for immersion in the solvent may be 4 ° C. to 30 ° C. and 30 minutes to 1 day.
  • the animal from which the decellularized tissue material in the present invention is derived is not particularly limited, and examples thereof include mammals such as pigs, cows, horses, goats, sheep, rabbits, kangaroos, monkeys, and humans.
  • the decellularized tissue in the present invention is not particularly limited, but cornea, heart valve, blood vessel, skin, cartilage, bone, tendon, muscle, bladder, small intestine, heart, liver, lung, trachea, esophagus, lens, glass
  • organs such as body, retina, nerve, adipose tissue, brain, dura mater, pleura, diaphragm, ureter, kidney, pancreas, gallbladder, gingiva, periodontal ligament, tooth, placenta, and genital organs.
  • the liquid to be impregnated to be brought into contact with the decellularized tissue material is not particularly limited as long as it is a liquid at the time of contact. Liquids such as solutions, slurry liquids, and dispersion liquids can be used.
  • Such a liquid may contain a function-imparting agent.
  • the function-imparting agent refers to an agent containing a substance that acts on a physiological function of a living body. Although it does not specifically limit as a functional grant agent, For example, low molecular weight drugs (aspirin etc.), natural medicinal substances (antibiotics etc.), proteins (growth factor etc.), polymerizable monomers, polysaccharides (heparin, ⁇ -glucan etc.) ), Nucleic acids (such as plasmids), synthetic polymers (such as polyethylene glycol (PEG)), lipids (such as cholesterol), surfactants, and combinations thereof. Further, the functionality-imparting agent may be either liquid or solid, or a mixture thereof.
  • reactive substances polymerizable monomers, etc.
  • these reactive substances can be chemically reacted after impregnation into the decellularized tissue material.
  • the liquid can be preferably impregnated in the decellularized tissue material regardless of the physical properties of the liquid, for example, a substance having high viscosity (such as ⁇ -glucan) and compatibility with the decellularized tissue material are used.
  • the decellularized tissue material can be preferably impregnated with a poor substance (for example, a hydrophobic substance such as heparin) or a high molecular substance (polyethylene glycol or the like).
  • Whether or not a decellularized tissue product in which a liquid is impregnated in the decellularized tissue material is obtained can be determined by measuring an index corresponding to the introduced liquid for the decellularized tissue product. For example, when a decellularized tissue material is impregnated with an aqueous solution, it can be understood by measuring the moisture content of the decellularized tissue product. Further, when impregnated with a specific substance, it can be understood by staining the decellularized tissue product with a reagent capable of staining the substance.
  • the decellularized tissue product obtained from the preparation method of the present invention is useful as a configuration of a graft to be transplanted into an animal. That is, the graft of the present invention comprises the aforementioned decellularized tissue product.
  • Example 1 Restoration of freeze-dried decellularized cornea-I> [Decellularization of cornea]
  • the cornea was collected from pig eyeballs and washed with PBS solution.
  • a basal medium (hereinafter referred to as “M ⁇ medium”) in which M199 medium and MEM ⁇ medium were mixed one-on-one was prepared, and 10% by mass of glycerol was added.
  • M ⁇ medium A basal medium
  • the cornea was placed in a polyethylene film bag, moistened, and sealed with a heat sealer.
  • This bag was placed in a chamber of “Dr. CHEF” (manufactured by Kobe Steel, Ltd.), and an ultrahigh hydrostatic pressure of 6000 atm was applied for 10 minutes while maintaining the temperature at 10 ° C.
  • the pressurization / decompression rate was 1200 atm / min.
  • the applied cornea was transferred to a sterile cup (200 mL) in a clean environment, and 50 mL of washing M ⁇ medium (0.02 mass% Dnase, 3.5 mass% dextran added to the M ⁇ medium) was placed at 23 ° C. Then, the washing solution was changed, and the cells were further washed at 23 ° C. for 24 hours to remove cells inside the cornea to obtain a decellularized cornea.
  • washing M ⁇ medium 0.02 mass% Dnase, 3.5 mass% dextran added to the M ⁇ medium
  • the decellularized cornea was immersed in a treatment solution (using sucrose) at 20 ° C. for 90 minutes. The decellularized cornea was then frozen using liquid nitrogen. The frozen decellularized cornea was dried in a vacuum state using a freeze dryer (manufactured by Tokyo Rika Kikai Co., Ltd.) to obtain a freeze-dried decellularized cornea.
  • the lyophilized decellularized cornea was placed in a stainless steel vacuum tube, and the degree of vacuum in the stainless steel vacuum tube was reduced to -0.09 MPa using a vacuum pump. Further, physiological saline was injected into the stainless steel vacuum tube, and the degree of vacuum was maintained for 5 minutes. The stainless steel vacuum tube was opened to atmospheric pressure, and the decellularized cornea was placed in a polyethylene bag together with physiological saline and sealed. A high isostatic pressure of 100 atm was applied to the sealed decellularized cornea at 25 ° C. for 15 minutes using a cold isostatic press (made by Kobe Steel).
  • Example 2 Restoration of lyophilized decellularized aorta> Except for using porcine aorta as the animal-derived tissue, decellularization treatment and lyophilization were performed in the same manner as in Example 1 to obtain a lyophilized decellularized aorta.
  • the decellularized aorta lyophilized by the following three methods was impregnated with physiological saline.
  • Impregnation by reduced pressure The freeze-dried decellularized aorta was placed in a stainless steel vacuum tube, and the degree of vacuum in the stainless steel vacuum tube was reduced to -0.09 MPa using a vacuum pump. Saline was injected into the stainless steel vacuum tube, and the degree of vacuum was maintained for 5 minutes.
  • (2) Impregnation by pressurization The lyophilized decellularized aorta was placed in a polyethylene bag together with physiological saline and sealed. A high isostatic pressure of 100 atm was applied to the sealed decellularized aorta at 25 ° C.
  • the result is shown in FIG.
  • the water content of the decellularized aorta restored by impregnation was equal to or higher than the water content of the decellularized aorta restored by immersion.
  • the moisture content of the decellularized aorta restored by impregnation with reduced pressure and pressure was almost the same as the moisture content of the native aorta and was restored very well.
  • Example 3 Restoration of lyophilized decellularized skin>
  • Decellularization treatment and lyophilization were performed in the same manner as in Example 1 except that porcine skin was used as the animal-derived tissue to obtain lyophilized decellularized skin.
  • the freeze-dried skin was placed in a stainless steel vacuum tube, and the degree of vacuum in the stainless steel vacuum tube was -0.01 MPa, -0.05 MPa, or -0.09 MPa using a vacuum pump.
  • Saline was injected into the stainless steel vacuum tube, and the degree of vacuum was maintained for 5 minutes.
  • the lyophilized skin was then placed in a polyethylene bag with saline and sealed.
  • a high isostatic pressure of 100 atm was applied to the sealed decellularized skin at 25 ° C. for 15 minutes using a cold isostatic pressing device (manufactured by Kobe Steel).
  • Example 2 Evaluation of restoration by eosin staining
  • restoration of decellularized skin was evaluated by eosin staining.
  • the result is shown in FIG.
  • the decellularized cornea restored by the immersion was hardly stained, and physiological saline did not penetrate into the tissue during restoration.
  • the collagen structure was broken.
  • the decellularized cornea restored by impregnation was stained with collagen, and physiological saline permeated into the tissue during restoration.
  • the change of the collagen structure was suppressed.
  • collagen When impregnated with a vacuum degree of ⁇ 0.09 MPa, collagen was uniformly dyed, and voids and textures of the collagen structure were prepared, and the collagen structure was particularly well maintained.
  • Example 4 Functionalization of Lyophilized Decellularized Aorta with Heparin Solution-I>
  • a functional decellularized aorta was obtained by performing the same treatment as in Example 2 except that physiological saline was used as a heparin solution.
  • the resulting decellularized aorta was stained with toluidine blue.
  • Toluidine blue By staining the decellularized aorta with toluidine blue, the distribution of heparin in the decellularized aorta can be visualized. The result is shown in FIG. In the decellularized aorta functionalized by immersion, heparin did not penetrate. On the other hand, in the decellularized aorta functionalized by impregnation, heparin penetrated into the tissue. In particular, in the decellularized aorta that was functionalized by impregnation with reduced pressure and increased pressure, heparin permeated throughout the tissue.
  • Example 5 Functionalization of lyophilized decellularized aorta with heparin solution-II> A lyophilized decellularized aorta was obtained in the same manner as in Example 2 except that the physiological saline was changed to a heparin solution.
  • the lyophilized decellularized aorta was placed in a stainless steel vacuum tube, and the vacuum in the stainless steel vacuum tube was reduced to -0.09 MPa using a vacuum pump. Next, heparin solution or physiological saline was injected into the stainless steel vacuum tube, and the degree of vacuum was maintained for 5 minutes. The stainless steel vacuum tube was opened to atmospheric pressure, and the decellularized aorta was placed in a polyethylene bag with heparin solution or physiological saline and sealed. A high isostatic pressure of 100 atm was applied to the sealed decellularized aorta at 25 ° C. for 15 minutes using a cold isostatic press (made by Kobe Steel Co., Ltd.).
  • Heparin dissolution test The decellularized aorta functionalized by immersion or impregnation was immersed in physiological saline and shaken at 37 ° C. Saline was collected at 1 hour, 3 hours, 6 hours, 9 hours, 12 hours, and 24 hours after the start of shaking. Each time the physiological saline was collected, the decellularized aorta was transferred to a new container, and physiological saline was newly added to repeat the elution process.
  • a test by the Lee-White method was performed. Specifically, porcine whole blood (10 mL) and each collected eluate (1 mL) were added to a sterilized polyethylene tube (product name; VIOLAMO, manufactured by ASONE CORPORATION), and incubated at 37 ° C. The time from the start of incubation to blood clot formation was measured for each eluate. The result is shown in FIG. Decellularized aorta functionalized by impregnation showed antithrombogenicity for a long time, indicating that heparin was retained inside the tissue. Although heparin has a high molecular weight and low compatibility with the decellularized aorta, according to the present invention, the decellularized aorta can be preferably impregnated with heparin.
  • Example 6 Functionalization of freeze-dried decellularized cornea with ⁇ -glucan solution> A lyophilized decellularized cornea was obtained in the same manner as in Example 1.
  • the lyophilized decellularized cornea was placed in a stainless steel vacuum tube, and the degree of vacuum in the stainless steel vacuum tube was reduced to -0.09 MPa using a vacuum pump. Next, a 1% ⁇ -glucan solution was injected into the stainless steel vacuum tube, and the degree of vacuum was maintained for 5 minutes. The stainless steel vacuum tube was opened to atmospheric pressure, and the decellularized cornea was placed in a polyethylene bag together with a 1% ⁇ -glucan solution and sealed. A high isostatic pressure of 100 atm was applied to the sealed decellularized cornea at 25 ° C. for 15 minutes using a cold isostatic press (made by Kobe Steel).
  • Example 7 Xenograft test of regenerated decellularized cornea>
  • a porcine-derived decellularized cornea regenerated by impregnation was obtained.
  • the obtained decellularized cornea was sliced into a thickness of 160 ⁇ m using a microkeratome (manufactured by Nidec Co., Ltd.).
  • the decellularized cornea was sterilized by high hydrostatic pressure treatment (10 ° C., 5000 atmospheres, 10 minutes).
  • the decellularized cornea was processed into a disk shape having a diameter of 2 mm in a clean environment to obtain a graft.
  • FIGS. 7A and 7B After incising the corneal stroma of a Japanese white rabbit, delamination was performed to create a corneal transplant pocket. A graft was inserted into this pocket. The cornea one month after transplantation was stained with hematoxylin-eosin and Masson trichrome. The results are shown in FIGS. 7A and 7B, respectively.
  • FIGS. 7A and 7B When the cornea is stained with hematoxylin-eosin or Masson trichrome, collagen or the like in the graft is stained, and it is possible to know whether or not the graft has dropped after transplantation. As shown in FIG. 7, the restored decellularized cornea could be transplanted without causing detachment and rejection after transplantation.
  • Example 8 Functionalization of freeze-dried decellularized aorta with rhodamine-labeled PEG solution> A lyophilized decellularized aorta was obtained as in Example 2.
  • the lyophilized decellularized aorta was placed in a vacuum pressure impregnation apparatus (manufactured by Fcom Co., Ltd.), and the degree of vacuum in the apparatus was -0.09 MPa.
  • a rhodamine-labeled PEG solution was injected into the apparatus, and the degree of vacuum was maintained for 30 seconds.
  • the inside of the apparatus was pressurized, pressurized at 25 ° C. for 15 minutes at 3 atm, and then released to atmospheric pressure.
  • a decellularized aorta functionalized with a rhodamine solution or a rhodamine labeled PEG solution can visualize the distribution of rhodamine in the decellularized aorta by observation with a fluorescence microscope.
  • the result of visualizing the distribution of rhodamine in the decellularized aorta is shown in FIG. 8 (right photo).
  • FIG. 8 photo on the right
  • rhodamine penetrated throughout the entire tissue, but rhodamine-labeled PEG penetrated only on the surface of the aorta. I did not.
  • rhodamine-labeled PEG penetrated the entire tissue.
  • a freezer manufactured by Nippon Freezer
  • the inside of the tissue was impregnated with rhodamine-labeled PEG at a high concentration.
  • Example 9 Functionalization of freeze-dried decellularized aorta with heparin solution-III> A lyophilized decellularized aorta was obtained as in Example 2. In addition, a freeze-dried decellularized aorta was obtained by slow drying using a freezer (manufactured by Nippon Freezer) at the time of freezing.
  • Example 10 Restoration of freeze-dried decellularized cornea-II> A lyophilized decellularized cornea was obtained in the same manner as in Example 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Botany (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurosurgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Prostheses (AREA)

Abstract

 脱細胞化組織を構成する支持組織の構造の変化を抑制しながら、脱細胞化組織中に液体を充填できる脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片を提供すること。 脱細胞化組織製品の調製方法は、動物由来の脱細胞化組織材料と、液体と、を減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程を含む。また、移植片は、当該調製方法で調製された脱細胞化組織製品を備える。

Description

脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片
 本発明は、脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片に関する。
 近年、移植医療等の分野においては、生体組織との適合性に優れる人工素材の開発が進められている。このような人工素材としては、例えば、生体組織から細胞を除去して残存する支持組織である脱細胞化組織を、移植片として使用する技術が挙げられる(例えば、特許文献1)。
 生体組織を構成する支持組織(コラーゲン等)は、その内部に、様々なサイズの空隙を有する。通常、これらの空隙は生体物質や、水分等で満たされている。近年、これらの空隙にタンパク質、多糖、酵素、合成高分子等の機能物質を充填することにより、生体組織に機能性を付与し、これを生体組織材料として利用しようとする試みがなされている。
 このような試みとして、生体組織を、機能物質等を含有する液体に浸漬する方法が知られている。しかし、浸漬による方法では、生体組織の表層部にしか機能物質等が固定されず、生体組織の内部まで全体にわたって液体を充填することが困難である。
 また、熱、マイクロ波、超音波等によって生体組織中に液体を充填する方法も考えられるものの、これらの方法によっては、生体組織を構成する支持組織が変性、破壊等されるため、生体組織材料として使用することが困難となる。
 そのため、生体組織を構成する支持組織の構造の変化を抑制しながら、生体組織中に液体を充填できる方法の開発が望まれていた。
WO2008/111530号パンフレット
 本発明は、生体組織を構成する支持組織の構造の変化を抑制しながら、生体組織中に液体を充填できる脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片を提供することを目的とする。
 本発明者らは、動物由来の脱細胞化組織材料と液体を、減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程により、生体組織を構成するコラーゲン等の構造の変化を抑制しながら、組織中に液体を充填できることを見出し、本発明を完成するに至った。本発明は、具体的には、以下のようなものを提供する。
 (1) 動物由来の脱細胞化組織材料と液体を、減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程を含む、脱細胞化組織製品の調製方法。
 (2) 上記減圧工程は、0~-0.101MPaの真空度で行われる(1)記載の調製方法。
 (3) 上記減圧工程の後に、さらに上記加圧工程を含む、(1)又は(2)に記載の調製方法。
 (4) 上記脱細胞化組織材料は、凍結乾燥された脱細胞化組織である(1)から(3)いずれかに記載の調製方法。
 (5) 上記脱細胞化組織材料は、処理溶液に浸漬した後に凍結乾燥された脱細胞化組織である(4)記載の調製方法。
 (6) 上記液体は機能性付与剤を含む、(1)から(5)いずれかに記載の調製方法。
 (7) 動物に移植される移植片であって、(1)から(6)いずれかに記載の調製方法で調製された脱細胞化組織製品を備える移植片。
 本発明によれば、動物由来の脱細胞化組織材料と液体を、減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程により、生体組織を構成する支持組織の構造の変化を抑制しながら、組織中に液体を充填できる。
凍結乾燥された脱細胞化角膜を浸漬又は含浸によって復元した後の角膜の断面を示す図である。 (A)は、凍結乾燥された脱細胞化大動脈を浸漬又は含浸によって復元した後の大動脈の断面を示す図である。(B)は、凍結乾燥された脱細胞化大動脈を浸漬又は含浸によって復元した後の大動脈の含水量を示すグラフである。 (A)は、凍結乾燥された脱細胞化皮膚を浸漬又は含浸によって復元した後の皮膚の断面を示す図である。(B)は、凍結乾燥された脱細胞化皮膚を浸漬又は含浸によって復元した後の皮膚の含水量を示すグラフである。 凍結乾燥された脱細胞化大動脈を、ヘパリン溶液に浸漬又は含浸した後の大動脈の断面を示す図である。 凍結乾燥された脱細胞化大動脈を、ヘパリン溶液に浸漬又は含浸した後に実施した、ヘパリンの溶出試験の結果を示すグラフである。 凍結乾燥された脱細胞化角膜を、β-グルカン溶液に浸漬又は含浸した後の角膜の断面を示す図である。 凍結乾燥された脱細胞化角膜を含浸によって復元し、これを日本白色家兎に移植した1ヶ月後の角膜の断面を示す図である。(A)はヘマトキシリン-エオジン染色による染色結果を示す。(B)はマッソントリクローム染色による染色結果を示す。 凍結乾燥時の冷凍条件を変えて凍結乾燥された脱細胞化大動脈を、ローダミン溶液又はローダミンラベル化PEG溶液に浸漬又は含浸した後の大動脈の断面を示す図である。 凍結乾燥時の冷凍条件を変えて凍結乾燥された脱細胞化大動脈を、ヘパリン溶液に含浸した後の大動脈の断面を示す図である。 凍結乾燥時の冷凍条件を変えて凍結乾燥された脱細胞化角膜を含浸によって復元した後の角膜の断面を示す図である。
 以下、本発明の実施形態について説明するが、本発明を限定することを意図するものではない。
<減圧工程及び/又は加圧工程>
 本発明の調製方法は、動物由来の脱細胞化組織材料と液体を、減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程を含む。以下、本発明の減圧又は加圧条件の下で脱細胞化組織材料中に液体が充填された状態を「含浸」と言う。
(減圧工程)
 脱細胞化組織材料を構成する支持組織(コラーゲン等)中には、多くの空隙が存在する。この空隙の内部には、水分、生体物質、気体等が存在する。本発明の調製方法では、脱細胞化組織材料を構成する支持組織中の空隙の内部の水分等と、導入する液体と、が接触すると、脱細胞化組織材料の内部と外部との間に浸透圧差が生じ得る。かかる場合、減圧条件下にて、脱細胞化組織材料を構成する支持組織中の空隙の内部の水分等と、導入する液体とが物理的に置換され得る。支持組織中の空隙の内部に、導入する液体が一旦入り込むと、脱細胞化組織材料への液体の含浸が加速する。また、本発明の調製方法では、脱細胞化組織材料を構成する支持組織中の空隙の内部の気体等と、導入する液体と、が減圧条件下にて物理的に置換され得る。減圧条件下で脱細胞化組織材料中の空気が組織中から排出されて減少すると、脱細胞化組織材料の空隙が脱細胞化組織材料周囲と同等の減圧状態となる。次いで、導入した液体が脱細胞化組織材料中の空隙に浸透すると推察される。
 上記の作用のいずれか、又は両方によって、脱細胞化組織材料中に液体を好ましく含浸することができる。また、本発明の調製方法によれば、上記の作用により、脱細胞化組織材料を構成する支持組織の構造の変化を抑制しながら、液体を脱細胞化組織材料中に均一に含浸させることができる。また、脱細胞化組織材料との相溶性が低い液体を脱細胞化組織材料に好ましく含浸できる。また、上記の作用は、後述する加圧工程をさらに行うことで促進され得る。
 減圧工程では、脱細胞化組織材料中に液体を含浸する過程で、少なくとも一度減圧を行えばよい。例えば、脱細胞化組織材料の雰囲気を減圧し、減圧状態を保ちながら液体を注入等することで、脱細胞化組織材料と液体とを接触させてもよく、脱細胞化組織材料と液体とを浸漬等によって接触させた後に、減圧してもよい。
 減圧条件は、大気圧よりも低い圧力であればよく、0~-0.101MPaの真空度に維持できればよい。本発明における「真空度」は、ゲージ圧として表記される。この値は、大気圧をゼロとして、理想的な真空の状態(絶対真空)にどの程度接近しているかを示す。本発明における理想的な真空の状態は、-0.101MPaの真空度であり、この値に近いほど理想的な真空の状態に近くなる。また、本発明における圧力の「維持」とは、減圧工程を通して圧力を上記の範囲にする必要はなく、少なくとも一定時間(例えば0.01秒~24時間)これらの圧力範囲で脱細胞化組織材料を減圧できればよい。これらの圧力範囲で減圧を行うと、脱細胞化組織材料中への液体の浸透が均一となる。
 また、圧力範囲は、含浸時に使用する液体に応じて適宜調整できる。例えば、脱細胞化組織材料が水分等を含有するものである場合は、当該水分等と、導入する液体とが接触すると、脱細胞化組織材料の内部と外部との間に浸透圧差が生じ得る。このときに、絶対真空に近い圧力を使用すると、水分等と、導入する液体とが浸透圧差によって物理的に置換される前に、水分や液体等が気化してしまう可能性がある。気化した水分等は、脱細胞化組織材料の表面で凍結等し、脱細胞化組織材料の表面構造を破壊したり、脱細胞化組織材料中への液体の含浸を妨げたりし得る。従って、このような場合は、大気圧に近い圧力にするか、液体を冷却したり、蒸気圧を調整する目的で添加剤を混合したりしておくこと等が好ましい。
 また、脱細胞化組織材料が乾燥されたものであるときに、この脱細胞化組織材料に高分子等が含まれる液体を含浸させようとする場合は、絶対真空に近い圧力を使用すると、脱細胞化組織材料中に急激に液体が吸い込まれる一方で、高分子等が脱細胞化組織材料の表面に堆積し、その結果、脱細胞化組織材料の支持組織が変形し、脱細胞化組織材料中への液体の含浸が妨げられる可能性がある。このような場合は、脱細胞化組織材料中に液体を均一に含浸させるため、大気圧に近い圧力にするか、脱細胞化組織材料と液体とを接触させた後に段階的に高真空状態にすること等が好ましい。
 減圧時間は、特に限定されないが、1秒~60分、好ましくは5秒~10分であってもよい。本発明によれば、減圧条件下で含浸を行うため、浸漬等の大気圧下で行われる方法と比較して、脱細胞化組織材料と液体との接触時間が短時間であっても脱細胞化組織材料の内部まで液体が含浸する。
 脱細胞化組織材料と、液体と、を減圧条件下で接触させた後は、減圧条件を解除して、大気圧(約0.1MPa)程度まで圧力を上昇させ、脱細胞化組織製品を回収することができる。この際に、圧力の上昇により、脱細胞化組織材料中への液体の含浸を促進させることができる。
(加圧工程)
 本発明の調製方法では、脱細胞化組織材料の空隙の内部へ、導入する液体を加圧条件下にて浸透させる。加圧により、液体が脱細胞化組織材料の空隙の内部へ押し込まれ、液体が浸透するものと推察される。これにより、脱細胞化組織材料を構成する支持組織の構造の変化を抑制しながら、脱細胞化組織材料中に液体が均一に含浸する。また、脱細胞化組織材料と液体との相溶性が低くとも、液体を脱細胞化組織材料に好ましく含浸できる。
 加圧条件下で、脱細胞化組織材料と液体を接触させる加圧工程としては、脱細胞化組織材料中に液体を含浸する過程で、少なくとも一度加圧がなされる方法を用いてもよい。例えば、脱細胞化組織材料の雰囲気を加圧し、加圧状態に保ちながら液体を注入等することで、脱細胞化組織材料と液体とを接触させてもよく、脱細胞化組織材料と液体とを浸漬等によって接触させた後に、加圧してもよい。
 加圧条件は、大気圧よりも高い圧力であればよく、大気圧を0気圧とした場合に、0.1~10000気圧、好ましくは0.1~1000気圧、特に好ましくは0.1~100気圧に維持できればよい。また、気圧が1000気圧以上であれば、常在菌の細胞が充分に破壊され、脱細胞化組織材料における常在菌の残存が抑制される。圧力は、液体に含まれる成分、脱細胞化組織材料へ液体を含浸させる度合い等に応じて適宜調整できる。ここで言う圧力の維持とは、加圧工程を通して圧力をこれらの範囲とする必要はなく、少なくとも一定時間(例えば0.01秒~24時間)これらの圧力範囲で脱細胞化組織材料を加圧できればよい。このような加圧は、加圧のために使用する圧力の値等に応じて、例えば、労働安全衛生法に定められる第一種圧力容器、第二種圧力容器、小型圧力容器等の機器を使用することで行うことができる。
 加圧時間は、特に限定されないが、1秒から24時間、好ましくは1分から60分行ってもよい。本発明によれば、加圧条件下で含浸を行うため、浸漬等の大気圧下で行われる方法と比較して、脱細胞化組織材料と液体との接触時間が短時間であっても脱細胞化組織材料の内部まで液体が含浸する。
 加圧温度は、脱細胞化組織材料が変性しなければ特に限定されないが、-20~30℃、好ましくは-10~25℃でもよい。
 本発明の調製方法においては、減圧工程及び加圧工程を組み合わせてもよい。減圧工程及び加圧工程のうち、いずれを先に行ってもよいが、減圧工程の後に加圧工程を行うと、脱細胞化組織材料中の空気を減少させた後に、脱細胞化組織材料中への液体の浸透を加速させることができるため、組織全体にわたる均一な含浸を迅速に実現できる点で特に好ましい。
<脱細胞化組織材料>
 脱細胞化組織材料は、従来公知(例えば、WO2008/111530号パンフレット)の方法によって調製できる。
 脱細胞化組織材料は、調製されたそのままの状態でもよく、通常行われる保存処理(凍結乾燥処理、凍結処理、乾燥処理等)を施されたものであってもよい。本発明の調製方法によれば、脱細胞化組織材料の保存処理の有無に関わらず、上述の減圧工程において、脱細胞化組織材料を構成する支持組織中の空隙の内部の水分、気体等と、導入する液体との物理的な置換によって含浸を促進できる。脱細胞化組織材料を構成する支持組織中の空隙の内部の気体等と、導入する液体との物理的な置換による含浸を特に促進できる点で、脱細胞化組織材料は、凍結乾燥されたものが好ましい。また、脱細胞化組織材料が凍結乾燥されたものであれば、導入しようとする液体に高分子等が含まれていても、脱細胞化組織材料の表面に高分子等が堆積しづらいため、脱細胞化組織材料に液体を好ましく含浸させることができる。本発明によれば、保存処理を施された脱細胞化組織材料の構造の変化を抑制しながら脱細胞化組織材料を復元できる。
 脱細胞化組織材料を凍結乾燥する方法としては特に制限されないが、脱細胞化組織を、液体窒素への浸漬、ドライアイスによる急速凍結乾燥、フリーザー(日本フリーザー社製等)を用いた-80℃~-4℃での緩徐凍結乾燥、プログラムフリーザーを用いた-10℃~-80℃での制御凍結等によって凍結させた後に、真空状態にて乾燥する方法が挙げられる。
 また、脱細胞化組織材料は、脱細胞化組織材料を保存するために通常使用される任意の溶媒に浸漬した後に凍結乾燥されたものであってもよいが、処理溶液に浸漬した後に凍結乾燥されたものが特に好ましい。処理溶液としては、ショ糖、トレハロース、ラクトース、マルトース、セロビオース等の二糖類、ラフィノース、メレジトース、マルトトリオース等の三糖類、グリセリン、リビトール、ガラクチトール、キシリトール、ソルビトール、エリスリトール、マンニトール、マルチトール等をそれぞれ単独又は組み合わせて含む溶液、又は、これらを水、緩衝液、生理食塩水等に溶解させた溶液等が挙げられる。これらの処理溶液は、脱細胞化組織材料中の自由水と結合し、脱細胞化組織材料中の浸透圧の上昇並びにタンパク質の変性及び膨潤をもたらすことなく、脱細胞化組織材料から水分を適切に除去できる。これにより、脱細胞化組織材料の支持組織の変化が抑制される。このような処理溶液への浸漬を凍結乾燥前に行うことにより、凍結乾燥を経ても、脱細胞化組織材料の本来の構造の変化を抑制しながら、長期保存が可能となる。
 溶媒に浸漬する条件は、4℃~30℃で、30分~1日であってもよい。
 本発明における脱細胞化組織材料の由来となる動物は特に制限されないが、ブタ、ウシ、ウマ、ヤギ、ヒツジ、ウサギ、カンガルー、サル、ヒト等の哺乳類動物を挙げることができる。
 本発明における脱細胞化された組織としては特に制限されないが、角膜、心臓弁、血管、皮膚、軟骨、骨、腱、筋肉、膀胱、小腸、心臓、肝臓、肺、気管、食道、水晶体、硝子体、網膜、神経、脂肪組織、脳、硬膜、胸膜、横隔膜、尿管、腎臓、膵臓、胆のう、歯肉、歯根膜、歯、胎盤、生殖器等の器官を挙げることができる。
<液体>
 脱細胞化組織材料と接触させる含浸する液体は、接触時に液体であればよく、特に制限されない。溶液、スラリー液、分散液等の液体が使用できる。
 このような液体は、機能性付与剤を含んでもよい。機能性付与剤とは、生体の生理的機能に対して作用する物質を含む剤を指す。機能性付与剤としては特に限定されないが、例えば、低分子薬物(アスピリン等)、天然薬効物質(抗生物質等)、タンパク質(増殖因子等)、重合性モノマー、多糖類(ヘパリン、β-グルカン等)、核酸(プラスミド等)、合成高分子(ポリエチレングリコール(PEG)等)、脂質(コレステロール等)、界面活性剤等及びこれらの組み合わせが挙げられる。また、機能性付与剤は液体又は固体のいずれであってもよく、これらの混合物であってもよい。
 機能性付与剤として複数の反応性物質(重合性モノマー等)が含まれる場合は、脱細胞化組織材料への含浸後に、これらの反応性物質どうしを化学反応させることもできる。
 本発明の調製方法では、液体の物性に関わらず、脱細胞化組織材料中に液体を好ましく含浸できるため、例えば、粘度の高い物質(β-グルカン等)、脱細胞化組織材料との相溶性が悪い物質(例えば、ヘパリン等の疎水性物質)、高分子物質(ポリエチレングリコール等)を脱細胞化組織材料中に好ましく含浸できる。
<脱細胞化組織製品>
 脱細胞化組織材料中に液体が含浸した脱細胞化組織製品が得られたかどうかは、導入した液体に応じた指標を脱細胞化組織製品について測定することによってわかる。例えば、脱細胞化組織材料中に水溶液を含浸させた場合は、脱細胞化組織製品の含水率等を測定することによってわかる。また、特定の物質を含浸させた場合は、その物質を染色できる試薬で脱細胞化組織製品を染色することによってわかる。
<移植片>
 本発明の調製方法から得られる脱細胞化組織製品は、動物に移植される移植片の構成として有用である。すなわち、本発明の移植片は、前述の脱細胞化組織製品を備える。
<実施例1;凍結乾燥された脱細胞化角膜の復元-I>
[角膜の脱細胞化]
 ブタ眼球から角膜を採取し、PBS溶液で洗浄した。M199培地とMEMα培地とを1対1で混合した基礎培地(以下、「Mα培地」と言う)を作成し、10質量% グリセロールを加えた。この溶液とともに角膜をポリエチレン製フィルムの袋内に入れて湿潤させ、ヒートシーラーでシーリングした。この袋を、「Dr.CHEF」(株式会社神戸製鋼所製)のチャンバー内に載置し、温度を10℃に維持しつつ、6000気圧の超高静水圧を10分印加した。加圧/減圧速度は1200気圧/分とした。
 その後、印加後の角膜を滅菌カップ(200mL)に清潔環境下で移し、洗浄用Mα培地(Mα培地に0.02質量% Dnase、3.5質量% デキストランを加えた)を50mL入れ、23℃で24時間洗浄し、次いで、洗浄液を交換し、さらに23℃で24時間洗浄し、角膜内部の細胞を除去し、脱細胞化角膜を得た。
[脱細胞化角膜の凍結乾燥]
 上記の脱細胞化角膜を処理溶液(ショ糖を使用した)に、20℃で90分浸漬した。次いで、液体窒素を使用して脱細胞化角膜を凍結させた。凍結した脱細胞化角膜を、凍結乾燥機(東京理化器械株式会社製)を使用して真空状態にて乾燥し、凍結乾燥された脱細胞化角膜を得た。
[凍結乾燥された脱細胞化角膜の復元]
(浸漬による復元)
 上記の凍結乾燥された脱細胞化角膜を、生理食塩水に20℃で6時間浸漬した。
(含浸による復元)
 上記の凍結乾燥された脱細胞化角膜を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.09MPaにした。さらに、ステンレス真空管に生理食塩水を注入し、真空度を5分間維持した。ステンレス真空管を大気圧に開放し、脱細胞化角膜を生理食塩水とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化角膜に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(復元の評価)
 浸漬又は含浸によって復元した脱細胞化角膜をエオジン染色した。エオジンによって角膜を染色することにより、コラーゲン等の細胞外マトリックスが染色される。その結果を図1に示す。浸漬によって復元された脱細胞化角膜の断面は均一に染色されておらず、復元時に生理食塩水が均一に浸透しなかった。また、角膜のコラーゲン構造が崩れていた。一方、含浸によって復元された脱細胞化角膜は均一に染色され、復元時に生理食塩水が均一に浸透していた。また、角膜のコラーゲン構造の変化が抑制されていた。
<実施例2;凍結乾燥された脱細胞化大動脈の復元>
 動物由来組織としてブタ大動脈を使用した以外は、実施例1と同様に脱細胞化処理及び凍結乾燥を行い、凍結乾燥された脱細胞化大動脈を得た。
[凍結乾燥された脱細胞化大動脈の復元]
(浸漬による復元)
 上記の凍結乾燥された脱細胞化大動脈を、生理食塩水に室温で6時間浸漬した。
(含浸による復元)
 下記の3通りの方法で凍結乾燥された脱細胞化大動脈を生理食塩水で含浸した。
(1)減圧による含浸
 凍結乾燥された脱細胞化大動脈を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.09MPaにした。ステンレス真空管内に生理食塩水を注入し、真空度を5分間維持した。
(2)加圧による含浸
 凍結乾燥された脱細胞化大動脈を、生理食塩水とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化大動脈に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(3)減圧及び加圧による含浸
 凍結乾燥された脱細胞化大動脈を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.09MPaにした。次いで、ステンレス真空管に生理食塩水を注入し、真空度を5分間維持した。ステンレス真空管を大気圧に開放し、脱細胞化大動脈を生理食塩水とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化大動脈に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(エオジン染色による復元の評価)
 浸漬又は含浸によって復元した脱細胞化大動脈をエオジン染色した。その結果を図2(A)に示す。浸漬によって復元された脱細胞化大動脈は均一に染色されておらず、復元時に生理食塩水が均一に浸透していなかった。また、大動脈のコラーゲン構造が崩れていた。一方、含浸によって復元された脱細胞化大動脈は均一に染色され、復元時に生理食塩水が均一に浸透していた。また、大動脈のコラーゲン構造の変化が抑制されていた。特に、減圧及び加圧による含浸によって復元された脱細胞化大動脈は、均一に染色され、かつ、コラーゲン構造の空隙やきめが整っており、コラーゲン構造が極めて良好に維持されていた。
(含水率による復元の評価)
 浸漬又は含浸によって復元した脱細胞化大動脈の質量を、濾過紙で過剰な液体を除去した後に測定した。この測定値を「湿重量」と言う。次いで、各脱細胞化大動脈を真空中で凍結乾燥した後に質量を測定した。この測定値を「乾燥重量」と言う。各脱細胞化大動脈の含水率を、下記の式に基づいて算出した。
含水率(質量%)={(湿重量-乾燥重量)/湿重量}×100
 その結果を図2(B)に示す。含浸によって復元された脱細胞化大動脈の含水率は浸漬によって復元された脱細胞化大動脈の含水率と同等以上であった。特に、減圧及び加圧による含浸によって復元された脱細胞化大動脈の含水率はnativeの大動脈の含水率とほぼ変わらず、極めて良好に復元されていた。
<実施例3;凍結乾燥された脱細胞化皮膚の復元>
 動物由来組織としてブタ皮膚を使用した以外は、実施例1と同様に脱細胞化処理及び凍結乾燥を行い、凍結乾燥された脱細胞化皮膚を得た。
[凍結乾燥された脱細胞化皮膚の復元]
(浸漬による復元)
 上記の凍結乾燥された脱細胞化皮膚を、生理食塩水に室温で、30分間浸漬した。
(含浸による復元)
 凍結乾燥された皮膚を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.01MPa、-0.05MPa、又は-0.09MPaにした。ステンレス真空管内に生理食塩水を注入し、真空度を5分間維持した。次いで、凍結乾燥された皮膚を生理食塩水とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化皮膚に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(エオジン染色による復元の評価)
 実施例2と同様に、エオジン染色によって脱細胞化皮膚の復元を評価した。その結果を図3(A)に示す。浸漬によって復元された脱細胞化角膜はほとんど染色されておらず、復元時に生理食塩水が組織の内部に浸透していなかった。また、コラーゲン構造が崩れていた。一方、含浸によって復元された脱細胞化角膜はコラーゲンが染色され、復元時に生理食塩水が組織内部に浸透していた。また、コラーゲン構造の変化が抑制されていた。真空度を-0.09MPaにして含浸した場合は、コラーゲンが均一に染色され、かつ、コラーゲン構造の空隙やきめが整っており、コラーゲン構造が特に良好に維持されていた。
(含水率による復元の評価)
 実施例2と同様に、各脱細胞化皮膚の含水率を算出した。その結果を図3(B)に示す。含浸によって復元された脱細胞化皮膚の含水率は、浸漬によって復元された脱細胞化大動脈の含水率よりも高かった。真空度を-0.09MPaにして減圧した場合は、特に、含水率が高かった。
<実施例4;凍結乾燥された脱細胞化大動脈のヘパリン溶液による機能化-I>
 生理食塩水をヘパリン溶液とした以外は、実施例2と同様の処理を行い、機能化された脱細胞化大動脈を得た。得られた脱細胞化大動脈をトルイジンブルーで染色した。脱細胞化大動脈をトルイジンブルーで染色することにより、脱細胞化大動脈中のヘパリンの分布を可視化できる。その結果を図4に示す。浸漬によって機能化された脱細胞化大動脈においては、ヘパリンが浸透していなかった。一方、含浸によって機能化された脱細胞化大動脈では、ヘパリンが組織中に浸透していた。特に、減圧及び加圧による含浸によって機能化された脱細胞化大動脈においては、ヘパリンが組織の全体にわたって浸透していた。
<実施例5;凍結乾燥された脱細胞化大動脈のヘパリン溶液による機能化-II>
 生理食塩水をヘパリン溶液とした以外は、実施例2と同様に凍結乾燥された脱細胞化大動脈を得た。
[凍結乾燥された脱細胞化大動脈の機能化]
(浸漬による機能化)
 上記の凍結乾燥された脱細胞化大動脈を、ヘパリン溶液に室温で、30分間、又は12時間浸漬した。
(含浸による機能化)
 上記の凍結乾燥された脱細胞化大動脈を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.09MPaにした。次いで、ステンレス真空管にヘパリン溶液、又は生理食塩水を注入し、真空度を5分間維持した。ステンレス真空管を大気圧に開放し、脱細胞化大動脈をヘパリン溶液、又は生理食塩水とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化大動脈に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(ヘパリンの溶出試験)
 浸漬又は含浸によって機能化された脱細胞化大動脈を、生理食塩水に浸漬し、37℃で振とうした。振とう開始後、1時間後、3時間後、6時間後、9時間後、12時間後、24時間後の時点において生理食塩水を回収した。生理食塩水を回収するごとに、脱細胞化大動脈を新しい容器に移し、新たに生理食塩水を添加して溶出工程を繰り返した。
 回収した溶出液を用いて、Lee-White法による試験を行った。具体的には、滅菌済みのポリエチレンチューブ(製品名;VIOLAMO、アズワン株式会社製)にブタ全血(10mL)及び回収した各溶出液(1mL)を加え、37℃でインキュベーションした。インキュベーションの開始から血液の血塊形成までの時間を各溶出液について計測した。その結果を図5に示す。含浸によって機能化された脱細胞化大動脈は、長時間にわたって抗血栓性を示し、組織の内部までヘパリンが保持されていることが示された。ヘパリンは高分子量であり、脱細胞化大動脈との相溶性が低いが、本発明によれば、脱細胞化大動脈にヘパリンを好ましく含浸できる。
<実施例6;凍結乾燥された脱細胞化角膜のβ-グルカン溶液による機能化>
 実施例1と同様に凍結乾燥された脱細胞化角膜を得た。
[凍結乾燥された脱細胞化角膜の機能化]
(浸漬による機能化)
 上記の凍結乾燥された脱細胞化角膜を、1% β-グルカン溶液に室温で、6時間浸漬した。
(含浸による機能化)
 上記の凍結乾燥された脱細胞化角膜を、ステンレス真空管に入れ、真空ポンプを用いてステンレス真空管内の真空度を-0.09MPaにした。次いで、ステンレス真空管に1% β-グルカン溶液を注入し、真空度を5分間維持した。ステンレス真空管を大気圧に開放し、脱細胞化角膜を1% β-グルカン溶液とともにポリエチレンバッグに入れ、シーリングした。シーリングした脱細胞化角膜に冷間等方加圧装置(株式会社神戸製鋼製)を使用して、100気圧の高静水圧を25℃にて15分間印加した。
(カルコフロールホワイト染色による機能化の評価)
 浸漬又は含浸によって機能化された脱細胞化角膜を、カルコフロールホワイト(calcofluor white)で染色した。カルコフロールホワイトによる染色により、脱細胞化角膜中のβ-グルカンの分布を可視化できる。その結果を図6に示す。図6の破線は角膜の表面を示す。図6に示される通り、浸漬によって機能化された脱細胞化角膜においては、角膜の表面部にしかβ-グルカンが浸透していなかった。一方、含浸によって機能化された脱細胞化角膜では、組織の全体にわたってβ-グルカンが浸透していた。
<実施例7;復元された脱細胞化角膜の異種移植試験>
 実施例1と同様に含浸によって復元されたブタ由来の脱細胞化角膜を得た。得られた脱細胞化角膜を、マイクロケラトーム(株式会社ニデック製)を使用して厚さ160μmに薄切した。次いで、高静水圧処理(10℃、5000気圧、10分間)により脱細胞化角膜の滅菌を行った。移植直前に、清潔環境下にて、脱細胞化角膜を直径2mmのディスク状に加工し、移植片とした。日本白色家兎の角膜実質を切開後、層間剥離を行い、角膜移植用ポケットを作製した。このポケットに移植片を挿入した。移植1ヶ月後の角膜をヘマトキシリン-エオジン染色及びマッソントリクローム染色した。その結果をそれぞれ図7(A)及び(B)に示す。角膜をヘマトキシリン-エオジン染色又はマッソントリクローム染色することにより、移植片中のコラーゲン等が染色され、移植後の移植片の脱落等の有無がわかる。図7に示される通り、復元された脱細胞化角膜は、移植後に脱離及び拒絶反応等を生じることなく移植できた。
<実施例8;凍結乾燥された脱細胞化大動脈のローダミンラベル化PEG溶液による機能化>
 実施例2と同様に凍結乾燥された脱細胞化大動脈を得た。
[凍結乾燥された脱細胞化大動脈の機能化]
(浸漬による機能化)
 上記の凍結乾燥された脱細胞化大動脈を、ローダミン溶液又はローダミンラベル化PEG溶液に室温で15分間浸漬した。
(含浸による機能化)
 上記の凍結乾燥された脱細胞化大動脈を、真空加圧含浸装置(株式会社エフコム製)に入れ、当該装置内の真空度を-0.09MPaにした。次いで、当該装置にローダミンラベル化PEG溶液を注入し、真空度を30秒間維持した。次いで、当該装置内を昇圧し、3気圧で25℃にて15分間加圧した後に大気圧に開放した。
(蛍光色素(ローダミン)による蛍光顕微鏡を用いた機能化の評価)
 ローダミン溶液又はローダミンラベル化PEG溶液によって機能化された脱細胞化大動脈は、蛍光顕微鏡観察により、脱細胞化大動脈中のローダミンの分布を可視化できる。脱細胞化大動脈中のローダミンの分布を可視化させた結果を図8(右側の写真)に示す。図8(右側の写真)に示される通り、浸漬によって機能化された脱細胞化大動脈においては、組織の全体にわたってローダミンが浸透していたものの、ローダミンラベル化PEGは、大動脈の表面部にしか浸透していなかった。一方、含浸によって機能化された脱細胞化大動脈では、組織の全体にわたってローダミンラベル化PEGが浸透していた。なお、凍結時に、脱細胞化大動脈をフリーザー(日本フリーザー社製)にて緩徐乾燥させた場合、ローダミンラベル化PEGが組織の内部まで高濃度で含浸していた。
<実施例9;凍結乾燥された脱細胞化大動脈のヘパリン溶液による機能化-III>
 実施例2と同様に凍結乾燥された脱細胞化大動脈を得た。加えて、凍結時に、フリーザー(日本フリーザー社製)を使用して緩徐乾燥させることで凍結乾燥された脱細胞化大動脈を得た。
[凍結乾燥された脱細胞化大動脈の含浸による機能化]
 上記の凍結乾燥された脱細胞化大動脈を、真空加圧含浸装置(株式会社エフコム製)に入れ、当該装置内の真空度を-0.04MPaにした。次いで、当該装置にヘパリン溶液、又は生理食塩水を注入し、真空度を30秒間維持した。次いで、当該装置内を昇圧し、3気圧で25℃にて15分間加圧した後に大気圧に開放した。
(トルイジンブルー染色による機能化の評価)
 得られた脱細胞化大動脈をトルイジンブルーで染色した。その結果を図9に示す。含浸により、脱細胞化大動脈に、ヘパリンが組織中に浸透していた。特に、凍結時に、緩徐乾燥された脱細胞化大動脈は、ヘパリンが組織の内部まで高濃度で含浸していた。
<実施例10;凍結乾燥された脱細胞化角膜の復元-II>
 実施例1と同様に凍結乾燥された脱細胞化角膜を得た。
[凍結乾燥された脱細胞化角膜の含浸による復元]
 上記の凍結乾燥された脱細胞化角膜を、真空加圧含浸装置(株式会社エフコム製)に入れ、当該装置内の真空度を-0.09MPa又は-0.04MPaにした。次いで、当該装置に生理食塩水を注入し、真空度を30秒間維持した。次いで、当該装置内を昇圧し、3気圧で25℃にて15分間加圧した後に大気圧に開放した。
(復元の評価)
 含浸によって復元した脱細胞化角膜をエオジン染色した。その結果を図10に示す。含浸によって復元された脱細胞化角膜は均一に染色され、復元時に生理食塩水が均一に浸透していた。また、高い真空度(-0.09MPa)で含浸した組織の方が、組織間隙が少なく、角膜のコラーゲン構造の変化が抑制されていた。

Claims (7)

  1.  動物由来の脱細胞化組織材料と、液体と、を減圧条件下で接触させる減圧工程及び/又は加圧条件下で接触させる加圧工程を含む、脱細胞化組織製品の調製方法。
  2.  前記減圧工程は、0~-0.101MPaの真空度で行われる請求項1記載の調製方法。
  3.  前記減圧工程の後に、さらに前記加圧工程を含む請求項1又は2に記載の調製方法。
  4.  前記脱細胞化組織材料は、凍結乾燥された脱細胞化組織である請求項1~3いずれか1項に記載の調製方法。
  5.  前記脱細胞化組織材料は、処理溶液に浸漬した後に凍結乾燥された脱細胞化組織である請求項4記載の調製方法。
  6.  前記液体は機能性付与剤を含む請求項1~5いずれか1項に記載の調製方法。
  7.  動物に移植される移植片であって、
     請求項1~6いずれか1項に記載の調製方法で調製された脱細胞化組織製品を備える移植片。
PCT/JP2012/072374 2011-09-02 2012-09-03 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片 WO2013032009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280042750.4A CN103987392A (zh) 2011-09-02 2012-09-03 脱细胞化组织制品的制备方法、及具备脱细胞化组织制品的移植片
US14/342,293 US9901601B2 (en) 2011-09-02 2012-09-03 Method for preparing decellularized tissue product, and graft provided with decellularized tissue product
EP12827099.8A EP2752192B1 (en) 2011-09-02 2012-09-03 Method for preparing decellularized tissue product, and graft provided with decellularized tissue product
JP2013531452A JP6091414B2 (ja) 2011-09-02 2012-09-03 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191610 2011-09-02
JP2011-191610 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013032009A1 true WO2013032009A1 (ja) 2013-03-07

Family

ID=47756481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072374 WO2013032009A1 (ja) 2011-09-02 2012-09-03 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片

Country Status (5)

Country Link
US (1) US9901601B2 (ja)
EP (1) EP2752192B1 (ja)
JP (1) JP6091414B2 (ja)
CN (2) CN103987392A (ja)
WO (1) WO2013032009A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521611A (ja) * 2013-06-17 2016-07-25 ヴィデレゲン リミテッドVideregen Limited インプラント及びその製造方法
CN106132450A (zh) * 2014-03-17 2016-11-16 伊西康公司 去细胞化的胸膜基质
JP2017522315A (ja) * 2014-07-18 2017-08-10 ユービジョン バイオテック カンパニー リミテッド 層状角膜保存液
KR20170122178A (ko) * 2015-02-27 2017-11-03 가부시키가이샤 아데카 탈세포화 조직
JP2018185513A (ja) * 2017-04-26 2018-11-22 イービーエム株式会社 外科手術手技訓練用生体組織
WO2022075477A1 (ja) * 2020-10-08 2022-04-14 国立大学法人東京医科歯科大学 乾燥脱細胞化組織の製造方法、脱細胞化組織の保存前処理方法、及び、乾燥脱細胞化組織

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20211667T1 (hr) * 2016-09-12 2022-02-18 Gebauer-Klopotek Patent Verwaltungs-UG (haftungsbeschränkt) Lentikuli za intrastromalnu implantaciju rožnjače
BR112020019949B1 (pt) * 2018-04-02 2023-10-31 Bioaesthetics Corporation Enxertos permeados por polímero e métodos de produção e uso dos mesmos
CN111110917A (zh) * 2018-10-30 2020-05-08 上海微创心通医疗科技有限公司 一种制备脱细胞生物组织材料的方法
CA3153310A1 (en) * 2019-10-03 2021-04-08 William M. HEIM Polymer-permeated grafts and methods of making and using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078547A (ja) * 1993-06-29 1995-01-13 Asahi Optical Co Ltd 生体吸収性高分子含有焼結型骨補填材
JP2004505747A (ja) * 2000-08-22 2004-02-26 ジンテーズ アクチエンゲゼルシャフト クール 骨代用材料
JP2004267482A (ja) * 2003-03-10 2004-09-30 Terumo Corp 自己組織化促進機能を持つ移植医療用材料
WO2008011530A2 (en) 2006-07-19 2008-01-24 Sinewave Energy Technologies, Llc Sine wave lamp controller with active switch commutation and anti-flicker correction
JP2008532653A (ja) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ 組織が工作された心臓弁の製造
WO2008111530A1 (ja) 2007-03-09 2008-09-18 National University Corporation, Tokyo Medical And Dental University 脱細胞化軟組織の調製方法、移植片、及び培養部材
JP2010063910A (ja) * 2001-11-16 2010-03-25 Childrens Medical Center Corp 臓器の機能の増強
WO2010091188A1 (en) * 2009-02-04 2010-08-12 Yale University Tissue engineering of lung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162258A (en) * 1999-08-25 2000-12-19 Osteotech, Inc. Lyophilized monolithic bone implant and method for treating bone
AU2004238128B2 (en) * 2003-05-15 2008-10-30 Coretissue Bioengineering Inc. Method of removing cell
WO2005063314A1 (ja) * 2003-12-26 2005-07-14 Cardio Incorporated 脱細胞化組織およびその作成方法
CN101066471B (zh) * 2007-04-25 2010-05-19 中山大学中山眼科中心 一种脱细胞角膜基质及其制备方法
CZ301086B6 (cs) * 2007-10-17 2009-11-04 Bio-Skin, A. S. Sterilní autologní, allogenní nebo xenogenní implantát a zpusob jeho výroby
WO2010044777A1 (en) * 2008-10-14 2010-04-22 Alphatec Spine, Inc. Processes and systems for loading medical implants with simulative growth agents
AU2010284365B2 (en) * 2009-08-18 2015-01-29 Lifecell Corporation Method for processing tissues
WO2011031827A2 (en) * 2009-09-09 2011-03-17 Cook Biotech Incorporated Manufacture of extracellular matrix products using supercritical or near supercritical fluids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078547A (ja) * 1993-06-29 1995-01-13 Asahi Optical Co Ltd 生体吸収性高分子含有焼結型骨補填材
JP2004505747A (ja) * 2000-08-22 2004-02-26 ジンテーズ アクチエンゲゼルシャフト クール 骨代用材料
JP2010063910A (ja) * 2001-11-16 2010-03-25 Childrens Medical Center Corp 臓器の機能の増強
JP2004267482A (ja) * 2003-03-10 2004-09-30 Terumo Corp 自己組織化促進機能を持つ移植医療用材料
JP2008532653A (ja) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ 組織が工作された心臓弁の製造
WO2008011530A2 (en) 2006-07-19 2008-01-24 Sinewave Energy Technologies, Llc Sine wave lamp controller with active switch commutation and anti-flicker correction
WO2008111530A1 (ja) 2007-03-09 2008-09-18 National University Corporation, Tokyo Medical And Dental University 脱細胞化軟組織の調製方法、移植片、及び培養部材
WO2010091188A1 (en) * 2009-02-04 2010-08-12 Yale University Tissue engineering of lung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIO KISHIDA ET AL.: "Ko Atsuryoku Shori ni yoru Saisei Iryo-yo Sozai no Kaihatsu", MIRAI O HIRAKU KO ATSURYOKU KAGAKU GIJUTSU SEMINAR SERIES, vol. 33, 2008, pages 26 - 31, XP008173797 *
FUNAMOTO, S. ET AL.: "The use of high-hydrostatic pressure treatment to decellularize blood vessels", BIOMATERIALS, vol. 31, no. 13, 2010, pages 3590 - 3595, XP026928674 *
See also references of EP2752192A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521611A (ja) * 2013-06-17 2016-07-25 ヴィデレゲン リミテッドVideregen Limited インプラント及びその製造方法
CN106132450A (zh) * 2014-03-17 2016-11-16 伊西康公司 去细胞化的胸膜基质
JP2017522315A (ja) * 2014-07-18 2017-08-10 ユービジョン バイオテック カンパニー リミテッド 層状角膜保存液
KR20170122178A (ko) * 2015-02-27 2017-11-03 가부시키가이샤 아데카 탈세포화 조직
KR102501235B1 (ko) 2015-02-27 2023-02-16 가부시키가이샤 아데카 탈세포화 조직
JP2018185513A (ja) * 2017-04-26 2018-11-22 イービーエム株式会社 外科手術手技訓練用生体組織
WO2022075477A1 (ja) * 2020-10-08 2022-04-14 国立大学法人東京医科歯科大学 乾燥脱細胞化組織の製造方法、脱細胞化組織の保存前処理方法、及び、乾燥脱細胞化組織

Also Published As

Publication number Publication date
CN103987392A (zh) 2014-08-13
CN110841112A (zh) 2020-02-28
JPWO2013032009A1 (ja) 2015-03-23
EP2752192A1 (en) 2014-07-09
US20150157667A1 (en) 2015-06-11
US9901601B2 (en) 2018-02-27
EP2752192A4 (en) 2015-05-20
JP6091414B2 (ja) 2017-03-08
EP2752192B1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6091414B2 (ja) 脱細胞化組織製品の調製方法、及び脱細胞化組織製品を備える移植片
AU2019210597B2 (en) Adipose tissue matrices
US10828391B2 (en) Regenerative materials
US10610615B2 (en) Natural tissue scaffolds as tissue fillers
KR101668043B1 (ko) 비등방성 임플란트 및 그의 제조 방법
MX2008006461A (es) Material compuesto, especialmente para uso medico, y metodo para producir el material.
US20190015457A1 (en) Elastic tissue matrix derived hydrogel
US11065366B2 (en) Method for producing a fibrin-based bioartificial, primarily acellular construct, and the construct itself
KR20220018481A (ko) 조직 유도된 다공질 매트릭스 및 그의 제조 및 사용 방법
WO2014126196A1 (ja) コラーゲンスポンジ
WO2019229392A1 (fr) Matrice pour la preparation d'une composition de regeneration cellulaire, tissulaire et/ou osseuse
AU2012242694B2 (en) Regenerative materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012827099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14342293

Country of ref document: US