WO2013031936A1 - 袋状セパレーター、それを用いた電池およびその製造方法 - Google Patents

袋状セパレーター、それを用いた電池およびその製造方法 Download PDF

Info

Publication number
WO2013031936A1
WO2013031936A1 PCT/JP2012/072122 JP2012072122W WO2013031936A1 WO 2013031936 A1 WO2013031936 A1 WO 2013031936A1 JP 2012072122 W JP2012072122 W JP 2012072122W WO 2013031936 A1 WO2013031936 A1 WO 2013031936A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
bag
electrode
shaped
insertion port
Prior art date
Application number
PCT/JP2012/072122
Other languages
English (en)
French (fr)
Inventor
康浩 松丸
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Publication of WO2013031936A1 publication Critical patent/WO2013031936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery in which a positive electrode or a negative electrode is accommodated in a bag-shaped separator, a bag-shaped separator, and a positive electrode and a negative electrode are opposed to each other, and a manufacturing method thereof.
  • a stacked secondary battery such as a lithium ion battery in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween increases the area of the positive electrode and the negative electrode or increases the number of stacked positive and negative electrodes per unit cell. Therefore, it is suitable for a battery having a large charge / discharge capacity.
  • Various separators are used for the separator disposed between the positive electrode and the negative electrode.
  • the positive electrode is reduced in area while the negative electrode is reduced in area, and the negative electrode is necessarily disposed on the opposite surface of the positive electrode.
  • the positive electrode is housed in a bag-like separator having the same outer size as the negative electrode, and laminated with the negative electrode, so that the stack is displaced and the relative position between the positive electrode and the negative electrode is increased. Deviation can be prevented.
  • a stacked battery in which a positive electrode is housed in a bag-shaped separator and stacked with a negative electrode to prevent positional displacement during stacking (see, for example, Patent Document 1).
  • FIG. 6 is a diagram illustrating a process of inserting a conventional battery electrode into a bag-shaped separator.
  • two long synthetic resin separators having the same width are stacked, and two synthetic resin separators are formed so that pockets capable of accommodating electrodes are formed at predetermined intervals.
  • the separator assembly 310 is formed by heat welding and continuously forming a bag-like separator.
  • the positive electrode is inserted from the electrode insertion opening into each bag-shaped separator of the separator assembly 310 prepared in advance.
  • the insertion hole of the electrode is sized so that the positive electrode can finally enter. It's not easy. Therefore, as shown in FIGS. 6B to 6D, the operation of successively inserting the positive electrode 100c using the gap between the separator surfaces generated as a result of inserting a part of the positive electrode 100b is repeated. It was a large number and took a lot of time.
  • An object of the present invention is to provide a bag-like separator that can quickly insert an electrode into a bag-like separator to increase the production efficiency of the battery, a battery using the same, and a method for producing the same.
  • the present invention solves the above-described problem, and is a bag-shaped separator having an electrode insertion port and having at least two sides coupled to each other, where a part of the separator of the electrode insertion port is opposed to the separator.
  • a small bag separator Further, the outer periphery of the electrode insertion opening is a straight line, and the separator on the small side is the bag-shaped separator positioned on the inner side of the outer periphery of the electrode insertion opening.
  • the separator on the small side has a concave portion formed in a linear or curved outer periphery, and a portion located inside the outer periphery of the electrode insertion port is present.
  • It is a laminated battery in which the bag-like separator containing the battery electrode and the battery electrode of the other polarity are laminated.
  • the stacked secondary battery is a lithium ion secondary battery.
  • part or all of the outer periphery of the electrode insertion port of one separator is from the outer periphery of the electrode insertion port of the other separator. Will also be located inside. As a result, the battery electrode can be smoothly inserted into the electrode insertion port.
  • FIG. 1 is a diagram illustrating a process of housing a bag-shaped separator and battery electrodes in the bag-shaped separator.
  • FIG. 2 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a process of housing a bag-shaped separator and battery electrodes in the bag-shaped separator.
  • FIG. 3 is a diagram illustrating a bag-like separator according to another embodiment of the present invention.
  • FIG. 4 is a diagram for explaining an example of a bag-shaped separator produced individually.
  • FIG. 5 is a diagram for explaining an embodiment of a laminated secondary battery sealed with the film-shaped exterior material of the present invention.
  • FIG. 5A is a front view
  • FIG. 5B is a cross-sectional view at the position A-A ′ in FIG. 5A.
  • FIG. 6 is a diagram illustrating a process of inserting a conventional battery electrode into a bag-shaped separator.
  • FIG. 1 is a diagram illustrating a process of housing the bag-shaped separator and the battery electrode in the bag-shaped separator.
  • FIG. 1A is a diagram illustrating a bag-shaped separator of the present invention.
  • the bag-shaped separator 300 is obtained by stacking two long synthetic resin film separators and heat-sealing them, and forms a separator assembly 310 in which a large number of bag-shaped separators 300 are connected. .
  • the separator assembly 310 is provided with a heat-bonding portion 340 that is continuous with one side surface in the length direction of the strip-shaped first surface separator 320 and the second strip-shaped separator 330 strip-shaped member. The separator and the separator on the second side are joined.
  • the electrode insertion port 360 of the bag-like separator 300 is located on the opposite side of the heat fusion part 340.
  • An electrode insertion opening 360 for inserting a battery electrode is provided between the separator 320 on the first surface and the separator 330 on the second surface, and a belt-like heat fusion part 350 provided at an interval corresponding to the width of the battery electrode to be inserted.
  • the separator 320 on the first surface and the separator 330 on the second surface are joined together.
  • the outer periphery of the electrode insertion port of the second surface separator is longer than the outer periphery of the electrode insertion port of the first surface separator, as shown in FIG. It is located only inside and is smaller than the opposing separator.
  • the outer periphery of the separator on the second surface can be arranged on the inner side of the outer periphery of the separator on the first surface by reducing the separator facing the electrode insertion port, which will be described below. Thus, it becomes easy to insert the battery electrode. That is, as shown in FIG.
  • the separator on the first surface when the separator on the first surface is placed on the placement table surface and the positive electrode 100 a is inserted from the electrode insertion port 360, it is more than the peripheral portion of the separator 320 on the first surface. Since the outer periphery of the separator 330 on the second surface is located on the bottom side of the bag-shaped separator 300, that is, on the side of the heat-sealed portion 340 on the side surface, the positive electrode 100 a is connected to the bag-shaped separator 300 from the electrode insertion port 360.
  • the separator on the first surface can be smoothly inserted into the space between the separator 320 on the second surface and the separator 330 on the second surface, and can be quickly mounted at a predetermined position as shown in FIG. 1C.
  • the positive electrode 100b is inserted into the adjacent bag-shaped separator in the same manner from the electrode insertion port 360, so that the positive electrode can be efficiently mounted at a predetermined position in the bag-shaped separator. It becomes possible.
  • the positive electrode accommodated in the bag-shaped separator 300 can be obtained by cutting the heat fusion part 350 after the positive electrode is accommodated in the individual bag-shaped separator 300 of the separator assembly 310.
  • the first surface separator on the electrode insertion port 360 side may be partially formed on the second surface separator 330 and the second surface separator 330.
  • the distance D that makes the outer periphery of the electrode insertion port of the separator on the second surface inside the outer periphery of the electrode insertion port of the separator on the first surface is 1 mm to 3 mm. preferable.
  • FIG. 2 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a process of housing a bag-shaped separator and a battery electrode in the bag-shaped separator.
  • a part of the outer periphery of the electrode insertion port of the separator 330 on the second surface has a linear recess that forms two sides of a triangle
  • the separator on the first surface 320 is a bag-like separator in which the concave portion exists inside the outer periphery of the electrode insertion port 360.
  • the first separator 320 is placed on a mounting table between the separator 320 on the first surface and the separator 330 on the second surface of the electrode insertion port 360.
  • the positive electrode 100a can be quickly inserted from the space and mounted at a predetermined position.
  • FIG. 2D after sequentially inserting the positive electrode into the bag-shaped separator 300, the heat fusion part 350 is cut to obtain the bag-shaped separator 300 with the positive electrode attached.
  • a triangular concave portion is illustrated in which a straight line extends from one end to the other end in the width direction of the bag separator (longitudinal direction of the long separator).
  • the positive electrode tab can also be provided in a part in the width direction.
  • a recess is provided on the side where the positive electrode extraction tab is not positioned, It is preferable to provide a concave portion that increases toward the side where the positive electrode extraction tab is not located. By doing so, a larger portion of the positive electrode pull-out tab can be accommodated inside the separator, so that when an external force is generated that causes the electrode to jump out of the bag-shaped separator, a short circuit between the positive electrode and the negative electrode occurs. The possibility can be reduced.
  • FIG. 3 is a diagram illustrating a bag-like separator according to another embodiment of the present invention.
  • a part of the outer periphery of the electrode insertion port 360 of the separator 330 on the second surface has a curved recess, and the electrode insertion port 360 of the separator 320 on the first surface.
  • It is a bag-shaped separator in which the said recessed part exists inside the outer periphery.
  • a part of the outer periphery of the electrode insertion port 360 of the separator 330 on the second surface has a curved concave portion, and one end of the outer peripheral portion of the concave portion serves as the heat fusion portion 350. It touches.
  • 3A and 3B are both positive electrodes from the space between the separator 320 on the first surface and the separator on the second surface of the electrode insertion port, similar to those shown in FIGS. Can be inserted smoothly.
  • the distance connecting both ends of the recess is preferably longer than 5 times the thickness of the positive electrode, and the depth of the recess is preferably longer than 10 times from the end of the electrode insertion port 360.
  • FIG. 2 and FIG. 3 show an embodiment of the present invention, and the concave portion is a part of the outer periphery of the electrode insertion port of the separator on the first surface, and the electrode of the separator on the second surface. If it is formed so that there is a portion that does not face the insertion port, that is, the outer periphery of the electrode insertion port of the separator on the second surface is located inside the outer periphery of the electrode insertion port of the separator on the first surface Good.
  • it is formed by a shape having a square or more polygons formed on the outer periphery of a straight line other than those shown in FIGS. 2 and 3, or a curved outer periphery (a side formed by a curve or a combination of a curve and a straight line). It may be a shape.
  • FIG. 4 is a diagram for explaining an example of a bag-shaped separator produced individually.
  • FIG. 4A shows the separator 320 on the first surface of the electrode insertion port 360, which has a bag-shaped separator 300 opposite to the electrode insertion port 360, that is, a bottom side heat fusion part 340 A and both side heat fusion parts 350 A and 350 B.
  • the outer periphery of the separator 330 on the second surface is on the inner side than the outer periphery.
  • the separator 320 on the first surface and the separator 330 on the second surface are joined together by a bottom side heat fusion part 340A and both side heat fusion parts 350A, 350B.
  • any one of the bottom side heat fusion part 340A and the both side heat fusion parts 350A, 350B is manufactured by bending the separator 320 on the first surface and the separator 330 on the second surface from one member. It may be what you did.
  • This bag-like separator can be mounted at a predetermined position by inserting a positive electrode similarly to the bag-like separator described in FIG.
  • the bag-like separator 300 shown in FIG. 4B has a joint opposite to the electrode insertion port 360, that is, a bottom side heat fusion part 340A and a side heat fusion part 350C, and only two sides form a heat fusion part.
  • the first surface separator 320 and the second surface separator 330 are not bonded to each other on the side surface 370 by heat fusion or the like, and the first surface separator and the second surface separator are open. It is characterized by. Further, in any one of the fusion part 340A and the thermal fusion part 350C, the separator 320 on the first surface and the separator 330 on the second surface may be bent from one member.
  • the electrode insertion port 360 of the individual separator shown in FIG. 4 is more similar to the one provided in the bag-like separator assembly shown in FIG. 1 than the outer periphery of the separator 320 on the first surface of the electrode insertion port 360.
  • Each separator is disposed in the same manner as the outer periphery of the separator 330 on the second surface is disposed on the inner side.
  • the outer periphery of the first separator and the second separator of the electrode insertion port 360 is not limited to this, and those manufactured in the same manner as described in FIGS. 2 and 3 can be used.
  • the bag-shaped separator containing the positive electrode described above can be laminated with the negative electrode to form a laminated battery.
  • a strip-shaped copper foil is placed on a negative electrode current collector, a carbon material that absorbs and releases lithium ions, a conductive material such as carbon black, a binder such as polyvinylidene fluoride, and the like.
  • a carbon material that absorbs and releases lithium ions a conductive material such as carbon black
  • a binder such as polyvinylidene fluoride, and the like.
  • -Dispersed in pyrrolidone to form a slurry and this slurry-like negative electrode mixture is intermittently applied on both sides of the negative electrode current collector, dried, and then compressed by a roller press or the like to be molded to form a negative electrode base
  • the negative electrode can be produced in the same manner as the positive electrode by cutting the material into a predetermined size after producing the material.
  • a battery can be manufactured by sealing the laminated body which laminated
  • FIG. 5 is a diagram for explaining an embodiment of a laminated secondary battery sealed with the film-shaped exterior material of the present invention.
  • 5A is a front view
  • FIG. 5B is a cross-sectional view taken along the line AA ′ in FIG.
  • the stacked secondary battery 1 forms a stacked body 400 in which a positive electrode 100 and a negative electrode 200 are stacked via a bag-shaped separator 300, and a positive electrode extraction tab 115 and a negative electrode extraction tab are formed in the same direction from the stacked body 400. 215 has been removed.
  • the positive electrode extraction tab 115 and the negative electrode extraction tab 215 connected to the negative electrode 200 are taken out from the sealing portion 510 of the film-shaped packaging material 500.
  • a material having good strength and heat resistance such as nylon and polyethylene terephthalate on the outer surface side of the aluminum foil, and a material having good heat fusion such as polypropylene and polyethylene on the inner surface side for the film-shaped exterior material
  • the exterior material of the laminated secondary battery is not limited to the film-like exterior material as described above, but may be a synthetic resin molded body having a recess, a metal exterior container, or the like.

Abstract

 効率的な電池の組み立てが可能な袋状セパレーターおよびそれを用いた電池を提供する。電極挿入口を備え、少なくとも2辺を結合してなる袋状セパレーターであって、前記電極挿入口のセパレーターの一部が対向するセパレーターよりも小さい袋状セパレーター、およびそれを用いた電池。

Description

袋状セパレーター、それを用いた電池およびその製造方法
 本発明は、袋状セパレーター、袋状セパレーターに正極電極、または負極電極を収納して正極電極と負極電極とを対向させた電池およびその製造方法に関する。
 正極電極と負極電極とをセパレーターを介して積層したリチウムイオン電池等の積層型二次電池は、正極、負極の面積を大きくしたり、積層する正極、負極の枚数を増加することによって単位電池当たりの容量を大きくすることが容易であるので、充放電容量が大きな電池として好適である。
 正極電極と負極電極との間に配置するセパレーターには、各種のものが用いられている。リチウムイオン電池では、正極電極の面積を負極電極の面積を小さくするとともに、正極電極の対向面には負極電極が必ず存在するように積層することが行われている。
 このような電池では、正極電極を負極電極と外形の大きさが同じ袋状セパレーター内に収納して、負極電極と積層することによって、積層体のずれや、正極と負極との相対的な位置ずれを防止することができる。
 袋状セパレーター内に正極電極を収納して、負極電極と積層することによって、積層時に位置ずれが生じない積層型電池が提案されている(例えば,特許文献1参照)。
特開平7-302616号公報
 図6は、従来の電池の電極を袋状セパレーターに挿入する工程を説明する図である。
 図6に示す方法は、幅が同じ2枚の長尺状の合成樹脂製のセパレーターを重ね、電極を収容可能なポケットが所定の間隔で形成されるように2枚の合成樹脂性のセパレータを熱溶着し、連続的に袋状セパレータを形成したセパレータ集合体310を用いたものである。
 図6Aに示すように、予め準備したセパレータ集合体310の個々の袋状セパレーター内に電極挿入口から正極電極を挿入する。ここで袋状セパレータの中で電極が動くのを極力防ぐために、電極の挿入口は、正極電極がようやく入るくらいの大きさになっていることから、電極挿入口から正極電極を挿入するのは容易ではない。そこで、図6B~図6Dに示すように、正極電極100bの一部を挿入した結果生じたセパレーター面間の空隙を利用して正極電極100cを次々に挿入する動作を繰り返すことになるが、工程数が多く、多くの時間を要すものであった。
 本発明は、袋状セパレーターへ電極を速やかに挿入して電池の製造効率を高めることが可能な袋状セパレーター、それを用いた電池およびその製造方法を提供することを課題とするものである。
 本発明は、上記課題を解決するものであって、電極挿入口を備え、少なくとも2辺を結合してなる袋状セパレーターであって、前記電極挿入口のセパレーターの一部が対向するセパレーターよりも小さい袋状セパレーターによって解決することができる。
 また、前記電極挿入口の外周辺が直線であって、前記の小さい側のセパレーターが前記電極挿入口の外周辺よりも内側に位置する前記の袋状セパレーターである。
 前記の小さい側のセパレーターが、直線または曲線状の外周辺で形成される凹部を有し、前記電極挿入口の外周辺よりも内側に位置する部分が存在する前記の袋状セパレーターである。
 電池電極を収納した前記の袋状セパレーターと他方の極性の電池電極とを積層した積層型電池である。
 リチウムイオン二次電池である前記の積層型二次電池である。
 2枚の長尺状の合成樹脂製のセパレーターを重ねて形成した袋状セパレータにおいて、一方のセパレータの電極挿入口の外周辺の一部または全部が、他方のセパレータの電極挿入口の外周辺よりも内側に位置するものとなる。その結果、前記電極挿入口への電池電極の挿入を円滑に行うことができる。
図1は、袋状セパレーター、および電池電極を袋状セパレーターへ収納する工程を説明する図である。 図2は、本発明の実施形態を説明する図であり、袋状セパレーター、および電池電極を袋状セパレーターへ収納する工程を説明する図である。 図3は、本発明の他の実施形態の袋状セパレーターを説明する図である。 図4は、個別に作製した袋状セパレーターの一実施例を説明する図である。 図5は、本発明のフィルム状外装材で封口した積層型二次電池の一実施形態を説明する図である。図5Aは、正面図を示し、図5Bは、図5AのA-A’の位置における断面図である。 図6は、従来の電池電極を袋状セパレーターに挿入する工程を説明する図である。
 以下に、図面を参照して本発明を説明するが、リチウムイオン二次電池を例に挙げて説明する。
 図1は、袋状セパレーターおよび電池電極を袋状セパレーターへ収納する工程を説明する図である。
 図1Aは、本発明の袋状セパレーターを説明する図である。
 袋状セパレーター300は、2枚の長尺状の合成樹脂製フィルム製のセパレーターを重ねて熱融着したものであって、多数の袋状セパレーター300を連結したセパレーター集合体310を形成している。
 セパレーター集合体310は、帯状の第一面のセパレーター320と帯状の第二面のセパレーター330帯状部材の長さ方向の一方の側面部に連続した熱融着部340を設けて、第一面のセパレーターと第二面のセパレーターは結合されている。また、熱融着部340の反対側には、袋状セパレーター300の電極挿入口360が位置している。
 第一面のセパレーター320と第二面のセパレーター330との間に電池電極を挿入する電極挿入口360を備えており、挿入する電池電極幅に相当する間隔で設けた帯状の熱融着部350において第一面のセパレーター320と第二面のセパレーター330は結合されている。図では、熱融着部340、350は帯状に連続したものである場合を示しているが、このように帯状の連続したものに限らず、間隔を設けて配置したものであっても良い。
 本発明のセパレーターは、前記第二面のセパレーターの前記電極挿入口の外周辺は、前記第一面のセパレーターの前記電極挿入口の外周辺よりも、図1Aに示すように、Dの長さだけ内側に位置しており、対向するセパレーターよりも小さいものである。
 このように、電極挿入口の対向するセパレーターを小さくすることで、第二面のセパレーターの外周辺を、第一面のセパレーターの外周辺よりも内側に配置することができるので、以下に説明するように、電池電極の挿入が行いやすくなる。
 すなわち、図1Bに示すように、第一面のセパレーターを載置台面に載置して、正極電極100aを電極挿入口360から挿入する際には、第一面のセパレーター320の周縁部よりも第二面のセパレーター330の外周辺は、袋状セパレーター300の底部側、すなわち側面の熱融着部340側に位置しているので、正極電極100aは、電極挿入口360から袋状セパレーター300の第一面のセパレーターを320と第二面のセパレーター330との間の空間に円滑に挿入することができ、図1Cに示すように速やかに所定の位置に装着することができる。
 次いで、図1Dに示すように、隣接する袋状セパレーターに正極電極100bを電極挿入口360から同様にして挿入することで、効率的に正極電極を袋状セパレーター内の所定の位置への装着が可能となる。
 以上の様にしてセパレーター集合体310の個々の袋状セパレーター300に正極電極を収納した後に、熱融着部350を切断することによって袋状セパレーター300に収納した正極電極を得ることができる。
 また、正極電極の挿入後には、電極挿入口360側の第一面のセパレーターを320と第二面のセパレーター330とに部分的に熱融着部を形成しても良い。
 本発明において、前記第二面のセパレーターの前記電極挿入口の外周辺を、前記第一面のセパレーターの前記電極挿入口の外周辺よりも、内側とする距離Dは1mm~3mmとすることが好ましい。
 図2は、本発明の実施形態を説明する図であり、袋状セパレーター、および電池電極を袋状セパレーターへ収納する工程を説明する図である。
 図2Aに示す袋状セパレーターは、前記第二面のセパレーター330の前記電極挿入口の外周辺の一部が、三角形の2辺を構成する直線状の凹部を有し、前記第一面のセパレーター320の前記電極挿入口360の外周辺よりも内側に前記凹部が存在する袋状セパレーターである。
 図2B、2Cに示すように、前記第一のセパレーター320を載置台上に載置した状態で、電極挿入口360の前記第一面のセパレーター320と前記第二面のセパレーター330との間の空間から速やかに正極電極100aを挿入して所定の位置に装着することができる。
 続いて、図2Dに示すように、順次、袋状セパレーター300に正極電極を挿入した後に、熱融着部350を切断して、正極電極を装着した袋状セパレーター300が得られる。
 図2A~図2Dにおいては、袋状セパレータの幅方向(長尺状セパレータの長手方向)の一端から他端に至るまでが直線になるような三角形状の凹部を図示しているが、凹部は幅方向の一部に設けることもできる。
 また、本例のように正極タブが幅方向の中心線に対して非対称の位置に形成されている場合、図2A~図2Dに示すように正極引出タブが位置しない側に凹部を設けるか、正極引出タブが位置しない側に向かって凹部が大きくなるように設けるかするのが好ましい。そうすることで正極引出タブのより多くの部分をセパレータ内部に収容することができるので、袋状セパレータから電極が飛び出そうとするような外力が生じたときに、正極と負極との短絡が生じる可能性を低減することができる。
 図3は、本発明の他の実施形態の袋状セパレーターを説明する図である。
 図3Aに示す袋状セパレーターは、前記第二面のセパレーター330の電極挿入口360の外周辺の一部が、曲線状の凹部を有し、前記第一面のセパレーター320の前記電極挿入口360の外周辺よりも内側に前記凹部が存在する袋状セパレーターである。
 図3Bに示す袋状セパレーターは、前記第二面のセパレーター330の電極挿入口360の外周辺の一部が、曲線状の凹部を有し、凹部の外周辺の一端が熱融着部350に接するものである。
 図3A、図3Bに示すものは、いずれも図1、図2で示したものと同様に、電極挿入口の前記第一面のセパレーター320と前記第二面のセパレーターの間の空間から正極電極を円滑に挿入することができる。また、いずれも、凹部の両端を結ぶ距離が、正極電極の厚みに対して5倍よりも長く、凹部の深さは電極挿入口360の端から10倍よりも長くすることが好ましい。
 図3Aまたは図3Bに示すような凹部を設ける場合、正極引出タブが位置しない箇所に凹部を設けるのが更に好ましい。そうすることで正極引出タブのより多くの部分をセパレータ内部に収容することができるので、袋状セパレータから電極が飛び出そうとするような外力が生じたときに、正極と負極との短絡が生じる可能性を低減することができる。
 以上の説明では、いずれも袋状セパレーター集合体を作製し、袋状セパレーター集合体の電極挿入口に電池電極を挿入する例について説明したが、以下の様に個別に作製した袋状セパレーターであっても良い。
 図2、図3の説明による凹部は本発明における一実施例を示すものであって、凹部は、第一面のセパレーターの電極挿入口の外周辺の一部が、第二面のセパレーターの電極挿入口と対向しない部分、すなわち、第一面のセパレーターの電極挿入口の外周辺よりも、第二面のセパレーターの電極挿入口の外周辺が内側に位置する部分が存在するように形成すればよい。すなわち、図2、図3に図示した以外の直線の外周辺で形成される四角あるいはそれ以上の多角を有する形状や、曲線状の外周辺(曲線または曲線と直線の組み合わせからなる辺)で形成される形状であってもよい。
 図4は、個別に作製した袋状セパレーターの一実施例を説明する図である。
 図4Aは、袋状セパレーター300の電極挿入口360とは反対側、すなわち底部側熱融着部340Aと両側熱融着部350A、350Bを有し、電極挿入口360の第一面のセパレーター320の外周辺よりも、前記第二面のセパレーター330の外周辺が内側に存在している。また、前記第一面のセパレーター320と前記第二面のセパレーター330は、底部側熱融着部340A、両側熱融着部350A、350Bによって結合している。
 また、底部側熱融着部340A、両側熱融着部350A、350Bのいずれかの結合部は、前記記第一面のセパレーター320と前記第二面のセパレーター330が一つの部材から折り曲げて作製したものであっても良い。
 この袋状セパレーターは、図1で説明した袋状セパレーターと同様に正極電極を挿入して所定の位置に装着することができる。
 図4Bで示す袋状セパレーター300は、電極挿入口360とは反対側、すなわち底部側熱融着部340Aと側面熱融着部350Cを有し、二辺のみが熱融着部を形成した接合したものであって、第一面のセパレーター320と第二面のセパレーター330は、側面370では熱融着等によって結合しておらず、第一面と第二面のセパレーターは開放していることを特徴とするものである。
 また、融着部340A、熱融着部350Cのいずれかにおいて、記第一面のセパレーター320と前記第二面のセパレーター330が一つの部材から折り曲げて作製したものであっても良い。
 また、図4で示す個別セパレーターの電極挿入口360は、図1で示す袋状セパレーター集合体に設けたものと同様に、電極挿入口360の第一面のセパレーター320の外周辺よりも、前記第二面のセパレーター330の外周辺を内側に配置したものと同様にそれぞれのセパレーターを配置したものである。
 電極挿入口360の第一のセパレーター、第二のセパレーターの外周辺は、これに限らず、図2,図3で説明したものと同様に作製したものを用いることができる。
 以上説明した正極電極を収納した袋状セパレーターは、負極電極と積層して積層電池とすることができる。
 負極電極としては、帯状の銅箔を負極集電体上に、リチウムイオンを吸蔵、放出する炭素材料、カーボンブラック等の導電性材料、ポリフッ化ビニリデン等の結着剤等をN-メチル-2-ピロリドンに分散させてスラリー状とし、このスラリー状の負極合剤を負極集電体上に間欠的に両面に塗布し、乾燥後、ローラープレス機等によって圧縮して成型を行って負極電極基材を製造した後に所定の大きさに切断することによって正極電極と同様の方法で負極電極を作製することができる。
 以上の様にして作製した正極電極を収納した袋状セパレーターと負極電極とを積層した積層体をフィルム状外装材で封口することによって電池を作製することができる。
 図5は、本発明のフィルム状外装材で封口した積層型二次電池の一実施形態を説明する図である。図5Aは、正面図を示し、図5Bは、図5AのA-A’の位置における断面図であって積層方向を拡大した図を示す。
 積層型二次電池1は、正極電極100と負極電極200が袋状セパレーター300を介して積層された積層体400を形成しており、積層体400から同一方向に正極引出タブ115および負極引出タブ215が取り出されている。フィルム状外装材500の封口部510から正極引出タブ115と負極電極200に接続した負極引出タブ215から取り出されている。また、フィルム状外装材には、アルミニウム箔の外面側にはナイロン、ポリエチレンテレフタレート等の強度、および耐熱性を有する部材を、内面側には、ポリプロピレン、ポリエチレン等の熱融着製が良好な材料をそれぞれ積層したものを用いることができる。
 積層型二次電池の外装材には、上記したようなフィルム状外装材に限らず、凹部を形成した合成樹脂の成形体、金属製の外装容器等を用いたものであってもよい。
 第一面のセパレーターと、前記第一面の多性部材と結合した第二面のセパレーターと、前記第一面のセパレーターと前記第二面のセパレーターとの間に電池電極を挿入可能な電極挿入口の外周辺は、前記第一面のセパレーターの前記電極挿入口の外周辺よりも、一部または全部が内側に位置するようにしたので、前記第一面のセパレーターと前記第二面のセパレーターとの間の空間へ電池電極の挿入を速やかに行うことができるので、電池の生産効率を高めることが可能となる。
 1・・・積層型二次電池、100,100a,100b・・・正極電極、115・・・正極引出タブ、200・・・負極電極、215・・・負極引出タブ、300・・・袋状セパレーター、310・・・セパレーター集合体、320・・・第一面のセパレーター、330・・・第二面のセパレーター、340・・・熱融着部,340A・・・底部側熱融着部、350・・・熱融着部、350A,350B・・・両側熱融着部、360・・・電極挿入口、370・・・側面、400・・・積層体、500・・・フィルム状外装材、510・・・封口部

Claims (5)

  1.  電極挿入口を備え、少なくとも2辺を結合してなる袋状セパレーターであって、
    前記電極挿入口のセパレーターの一部が対向するセパレーターよりも小さいことを特徴とする袋状セパレーター。
  2.  前記電極挿入口の外周辺が直線であって、前記の小さい側のセパレーターが前記電極挿入口の外周辺よりも内側に位置することを特徴とする請求項1記載の袋状セパレーター。
  3.  前記の小さい側のセパレーターが、直線または曲線状の外周辺で形成される凹部を有し、前記電極挿入口の外周辺よりも内側に位置する部分が存在することを特徴とする請求項1記載の袋状セパレーター。
  4.  電池電極を収納した前記の袋状セパレーターと他方の極性の電池電極とを積層したことを特徴とする積層型電池。
  5.  リチウムイオン二次電池であることを特徴とする請求項4記載の積層型二次電池。
PCT/JP2012/072122 2011-08-31 2012-08-31 袋状セパレーター、それを用いた電池およびその製造方法 WO2013031936A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188595 2011-08-31
JP2011188595 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031936A1 true WO2013031936A1 (ja) 2013-03-07

Family

ID=47756412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072122 WO2013031936A1 (ja) 2011-08-31 2012-08-31 袋状セパレーター、それを用いた電池およびその製造方法

Country Status (1)

Country Link
WO (1) WO2013031936A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482163A (zh) * 2017-07-11 2017-12-15 多氟多(焦作)新能源科技有限公司 一种电极组件单元、电极组件的制造方法及电池单体
WO2018139106A1 (ja) 2017-01-26 2018-08-02 Necエナジーデバイス株式会社 積層型電池の製造方法
EP3895245A4 (en) * 2018-12-13 2022-09-07 Do Fluoride Jiaozuo New Energy Tech Co Ltd ELECTRODE ASSEMBLY, MANUFACTURING PROCESS AND BATTERY CELL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026967A (ja) * 2005-07-20 2007-02-01 Shin Kobe Electric Mach Co Ltd 袋セパレータ入り電極板の製造方法
WO2008090824A1 (ja) * 2007-01-25 2008-07-31 Nec Corporation 袋状セパレータ、電極セパレータアセンブリ及び電極セパレータアセンブリの製造方法
JP2011155001A (ja) * 2010-01-27 2011-08-11 Sb Limotive Co Ltd 二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026967A (ja) * 2005-07-20 2007-02-01 Shin Kobe Electric Mach Co Ltd 袋セパレータ入り電極板の製造方法
WO2008090824A1 (ja) * 2007-01-25 2008-07-31 Nec Corporation 袋状セパレータ、電極セパレータアセンブリ及び電極セパレータアセンブリの製造方法
JP2011155001A (ja) * 2010-01-27 2011-08-11 Sb Limotive Co Ltd 二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139106A1 (ja) 2017-01-26 2018-08-02 Necエナジーデバイス株式会社 積層型電池の製造方法
CN107482163A (zh) * 2017-07-11 2017-12-15 多氟多(焦作)新能源科技有限公司 一种电极组件单元、电极组件的制造方法及电池单体
EP3895245A4 (en) * 2018-12-13 2022-09-07 Do Fluoride Jiaozuo New Energy Tech Co Ltd ELECTRODE ASSEMBLY, MANUFACTURING PROCESS AND BATTERY CELL

Similar Documents

Publication Publication Date Title
JP6041394B2 (ja) 非水電解液二次電池
JP5252937B2 (ja) 積層式電池及びその製造方法
CN102104132B (zh) 层叠电池
JP5586044B2 (ja) 積層型二次電池
JP5169166B2 (ja) 積層型二次電池
KR101421847B1 (ko) 적층형 전지 및 그 제조 방법
CN109326813B (zh) 蓄电装置以及绝缘保持器
US9847514B2 (en) Battery and method for manufacturing same
JP5326125B2 (ja) 非水電解質二次電池
JP2012513076A (ja) 二次電池の製造方法及び二次電池
US8530068B2 (en) Square battery and manufacturing method of the same
JP2007087922A (ja) フィルムパッケージ蓄電装置
WO2014058001A1 (ja) 袋詰電極、積層型電気デバイス、および袋詰電極の製造方法
KR101447064B1 (ko) 연결 신뢰성이 향상된 전지셀 및 이를 포함하는 전지팩
WO2016136550A1 (ja) 電極ユニット、及び電極ユニットの製造方法
JP2015199095A (ja) 超音波溶接装置、及び電池の製造方法
JP2012227117A (ja) 電池、電池製造方法および袋詰電極
JP2010033922A (ja) 積層型二次電池
JP6560877B2 (ja) ラミネート形電池及びその製造方法
WO2014141640A1 (ja) ラミネート外装電池
JP2013222602A (ja) 積層型電池および積層電極体の製造方法
WO2013031936A1 (ja) 袋状セパレーター、それを用いた電池およびその製造方法
WO2013031937A1 (ja) リチウムイオン二次電池
JP2015153513A (ja) ラミネート外装電池
JP4655554B2 (ja) 蓄電モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP