WO2013031775A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2013031775A1
WO2013031775A1 PCT/JP2012/071713 JP2012071713W WO2013031775A1 WO 2013031775 A1 WO2013031775 A1 WO 2013031775A1 JP 2012071713 W JP2012071713 W JP 2012071713W WO 2013031775 A1 WO2013031775 A1 WO 2013031775A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat source
power generation
generation system
curie point
Prior art date
Application number
PCT/JP2012/071713
Other languages
English (en)
French (fr)
Inventor
允護 金
毅 芹澤
田中 裕久
中山 忠親
雅敏 武田
山田 昇
新原 晧一
恭平 小川
裕也 中田
将志 信田
諒 石澤
Original Assignee
ダイハツ工業株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011189970A external-priority patent/JP5855875B2/ja
Priority claimed from JP2011189971A external-priority patent/JP5855876B2/ja
Application filed by ダイハツ工業株式会社, 国立大学法人長岡技術科学大学 filed Critical ダイハツ工業株式会社
Priority to EP12828286.0A priority Critical patent/EP2752984B1/en
Priority to US14/241,324 priority patent/US20140217852A1/en
Publication of WO2013031775A1 publication Critical patent/WO2013031775A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a power generation system.
  • the power generation system of the present invention is characterized in that the power generation system of the present invention is -20 ° C to the Curie point with respect to the Curie point due to the heat source whose temperature rises and falls over time and the temperature change of the heat source.
  • the apparatus includes: a first device whose temperature is increased and decreased over time so as to include at least a part of a temperature range of + 10 ° C., and a second device for taking out electric power from the first device. It is said.
  • the temperature of the first device changes so as to include the Curie point.
  • the power generation system of the present invention comprises a heat source whose temperature rises and falls over time, an electrically polarizable matrix, and a dispersed material having a specific heat capacity lower than the specific heat capacity of the matrix, and changes the temperature of the heat source. It is characterized by comprising a first device for electric polarization and a second device for taking out electric power from the first device.
  • the power generation system of the present invention can improve power generation efficiency.
  • FIG. 1 is a schematic configuration diagram showing an embodiment (first embodiment) of the power generation system of the present invention.
  • pistons are repeatedly moved up and down in each cylinder.
  • an intake process, a compression process, an explosion process, an exhaust process, and the like are sequentially performed, and fuel is discharged. It is burned and power is output.
  • step excluding the exhaust process the amount of exhaust gas in the exhaust gas pipe is reduced, so the heat energy transferred by the exhaust gas pipe is reduced, and as a result, the temperature of the exhaust gas pipe decreases. To do.
  • the temperature of the internal combustion engine rises in the exhaust process and falls in the intake process, the compression process, and the explosion process, that is, rises and falls over time.
  • the exhaust gas pipe of each cylinder in the internal combustion engine periodically changes in temperature with the repetition cycle of each of the above steps. More specifically, the high temperature state and the low temperature state are periodically repeated.
  • the temperature of the light emitting device increases and decreases over time by turning on (emitting) and turning off over time.
  • the light-emitting device is a light-emitting device (blinking (flashing) type light-emitting device) in which lighting is turned on and off intermittently over time
  • the light-emitting device is turned on (light-emitting). Due to the thermal energy of the light, a temperature change periodically, more specifically, a high temperature state and a low temperature state are periodically repeated.
  • the heat source 2 is preferably an internal combustion engine.
  • the electric polarization referred to here is a phenomenon in which a potential difference occurs due to dielectric polarization due to displacement of positive and negative ions due to crystal distortion, such as a piezo effect and / or a phenomenon in which a dielectric constant changes due to a temperature change and a potential difference occurs, for example, pyroelectric It is defined as a phenomenon in which an electromotive force is generated in a material such as an effect and / or a phenomenon in which an electric charge is biased due to a temperature change, a temperature gradient, or the like, for example, a Seebeck effect.
  • the device that is electrically polarized by such a pyroelectric effect is not particularly limited, and a known pyroelectric element can be used.
  • the following description regarding the pyroelectric element is the same for the pyroelectric composite element described later.
  • Such pyroelectric elements are usually maintained in a heated state or a cooled state, and when the temperature becomes constant, the electric polarization is neutralized, and then cooled or heated again to be electrically polarized again. .
  • the Seebeck effect is an effect (phenomenon) in which, for example, when a temperature difference is generated between both ends of a metal or semiconductor, an electromotive force is generated in the metal or semiconductor according to the temperature difference.
  • the temperature of the heat source 2 periodically changes as described above and the high temperature state and the low temperature state are periodically repeated, the temperature at one end of the thermoelectric conversion element is periodically increased and decreased. Therefore, the magnitude of the electromotive force periodically fluctuates accordingly.
  • the first device 3 can be used, for example, arranged in the same plane.
  • the first device 3 is a pyroelectric element, or when only a thermoelectric conversion element made of a p-type semiconductor or a thermoelectric conversion element made of an n-type semiconductor is used,
  • the one device 3 is electrically polarized so that one side in contact with or close to the heat source 2 is a positive electrode or a negative electrode, and the other side separated from the heat source 2 is a negative electrode or a positive electrode (see FIG. 3A).
  • the side that contacts or approaches the heat source 2 of the first device 3 and the side that is separated from the heat source 2 of the other first device 3 are electrically connected.
  • thermoelectric conversion element made of a p-type semiconductor and the thermoelectric conversion element made of an n-type semiconductor are used as the first device 3 and they are alternately arranged
  • thermoelectric conversion made of a p-type semiconductor is used. Since the element and the thermoelectric conversion element made of an n-type semiconductor are electrically polarized in opposite directions, the positive electrode and the negative electrode are alternately arranged on one side of the first device 3 that is in contact with or close to the heat source 2.
  • the side that is in contact with or close to the heat source 2 of the first device 3 is electrically connected to the side that is in contact with or close to the heat source 2 of the other first device 3.
  • the side of the one device 3 that is separated from the heat source 2 and the side of the other first device 3 that is separated from the heat source 2 are electrically connected (see FIG. 3B).
  • the second device 4 is not particularly limited, but, for example, two electrodes (for example, a copper electrode, a silver electrode, etc.) disposed opposite to each other with the first device 3 interposed therebetween, for example, ., And the like, and are electrically connected to the first device 3.
  • two electrodes for example, a copper electrode, a silver electrode, etc.
  • the second device 4 is sequentially electrically connected to the booster 5, the AC / DC converter (AC-DC converter) 6, and the battery 7.
  • the temperature it is preferable to change the temperature so as to include the Curie point.
  • the temperature of the first device 3 changes particularly preferably in the range of ⁇ 20 ° C. with respect to the Curie point to + 10 ° C. with respect to the Curie point.
  • the temperature of the first device 3 is, for example, 30 to 1200 ° C., preferably 100 to 800 ° C., more preferably 300 to 350 ° C., further preferably 310 to 350 ° C.
  • the temperature in the low temperature state is 325 ° C., which is lower than the temperature in the high temperature state, and the temperature difference between the high temperature state and the low temperature state is, for example, 10 to 100 ° C., preferably 20 to 50 ° C.
  • the temperature of the first device 3 can be measured with an infrared radiation thermometer or the like.
  • the temperature of the heat source 2 is, for example, 500 to 1200 ° C., preferably 700 to 900 ° C. in the high temperature state, and the temperature in the low temperature state is less than the temperature in the high temperature state.
  • the temperature is 200 to 800 ° C., preferably 200 to 500 ° C.
  • the temperature difference between the high temperature state and the low temperature state is, for example, 10 to 600 ° C., preferably 20 to 500 ° C.
  • the repetition cycle between the high temperature state and the low temperature state is, for example, 10 to 400 cycles / second, preferably 30 to 100 cycles / second.
  • the electric power boosted by the booster 5 is converted into a DC voltage by the AC / DC converter 6 and then stored in the battery 7.
  • the heat source 2 is a heat source that periodically changes in temperature, electric power can be extracted as a waveform that fluctuates periodically, and as a result, it can be boosted and stored with higher efficiency.
  • the power generation efficiency can be improved.
  • the first device 3 is located with respect to the Curie point. As the temperature increases and decreases over time so as to include at least a part of the temperature range of ⁇ 20 ° C. to + 10 ° C. with respect to the Curie point, power can be generated with excellent efficiency even if the amount of change in temperature is small. it can.
  • the engine 16 is a four-cylinder type four-cycle engine, and an upstream end portion of a branch pipe 18 (described later) of the exhaust manifold 17 is connected to each cylinder.
  • the upstream end of the branch pipe 18 is connected to each cylinder of the engine 16, and the downstream end of the branch pipe 18 and the upstream end of the air collecting pipe 19 are connected to each other. It is connected. Further, the downstream end of the air collecting pipe 19 is connected to the upstream end of the catalyst mounting portion 12.
  • the branch pipe 18 of the exhaust manifold 17 in the internal combustion engine 11 is used as the heat source 2, and the first device 3 is arranged around the branch pipe 18.
  • the first device 3 includes known pyroelectric elements (for example, BaTiO 3 , CaTiO 3 , (CaBi) TiO 3 , BaNd 2 Ti 5 O 14 , BaSm 2 Ti 4 O 12 , zirconate titanate).
  • known pyroelectric elements for example, BaTiO 3 , CaTiO 3 , (CaBi) TiO 3 , BaNd 2 Ti 5 O 14 , BaSm 2 Ti 4 O 12 , zirconate titanate).
  • thermoelectric conversion elements for example, Bi—Te based thermoelectric conversion elements (for example, Bi 2 Te 3 , Bi 2 Te 3 / Sb 2 Te 3 ))
  • PbTe AgSbTe 2 / GeTe, NaCo 2 O 4 , CaCoO 3 , SrTiO 3 / SrTiO 3 : Nb, SiGe, ⁇ -FeSi 2 , Ba 8 Si 46 , Mg 2 Si, MnSi 1.73 , ZnSb, Zn 4 Sb 3, CeFe 3 CoSb 12, LaFe 3 CoSb 12, SrTiO 3 / SrTiO 3: Nb / SrT O 3, Si nanowire arrays, NaCo 2 O 4, (Ce 1-x La x) Ni 2, (Ce 1-x La x) In 3, etc.
  • Bi—Te based thermoelectric conversion elements for example, Bi 2 Te 3 , Bi 2 Te 3 / Sb 2 Te 3
  • PbTe AgSbTe 2
  • the Curie point of the first device 3 is, for example, ⁇ 30 to 1500 ° C., preferably ⁇ 10 to 1200 ° C., more preferably 10 to 1000 ° C.
  • thermoelectric conversion element When the 1st device 3 is a thermoelectric conversion element, the performance is shown by the following formula (1), for example.
  • ZT S 2 ⁇ T / ⁇ (1)
  • T an absolute temperature
  • S a Seebeck coefficient
  • electrical conductivity
  • thermal conductivity
  • thermoelectric conversion element since the thermoelectric conversion element generates power with a temperature difference inside the material, the lower the thermal conductivity, the higher the energy conversion efficiency. In this power generation system 1, both ends of the first device 3 (thermoelectric conversion element) are used. Therefore, the thermal conductivity of the first device 3 (thermoelectric conversion element) is not particularly limited.
  • the second device 4 includes two electrodes arranged opposite to each other with the first device 3 interposed therebetween, and a conductive wire connected to these electrodes.
  • positioned at one side of the 1st device 3 are arrange
  • the electrodes and the conductors arranged in (1) are exposed without contacting the branch pipe 18 (heat source 2).
  • the power generation system 1 is sequentially electrically connected to the booster 5, the AC / DC converter 6, and the battery 7.
  • the pistons are interlocked to perform the intake process, the compression process, the explosion process, and the exhaust process. , Implemented in phase.
  • the fuel is combusted and power is output, and high-temperature exhaust gas passes through the branch pipe 18a and the branch pipe 18c in the exhaust process.
  • the temperature of the branch pipe 18a and the branch pipe 18c rises in the exhaust process and falls in other processes (intake process, compression process, explosion process), so that it rises and falls over time according to the piston cycle,
  • intake process, compression process, explosion process so that it rises and falls over time according to the piston cycle.
  • the high temperature state and the low temperature state are periodically repeated.
  • the temperature of the branch pipe 18b and the branch pipe 18d rises in the exhaust process and falls in other processes (intake process, compression process, explosion process), so that it rises and falls over time according to the piston cycle,
  • intake process, compression process, explosion process so that it rises and falls over time according to the piston cycle.
  • the high temperature state and the low temperature state are periodically repeated.
  • This periodic temperature change has the same period but a different phase from the periodic temperature changes of the branch pipe 18a and the branch pipe 18c.
  • the 1st device 3 is arrange
  • the exhaust gas is supplied to the air collecting pipe 19, collected, then supplied to the catalyst mounting section 12, and purified by the catalyst provided in the catalyst mounting section 12. Thereafter, the exhaust gas is supplied to the exhaust pipe 13, silenced in the muffler 14, and then discharged to the outside air through the discharge pipe 15.
  • the temperature of the air collection pipe 19, the catalyst mounting portion 12, the exhaust pipe 13, the muffler 14 and the exhaust pipe 15 through which such exhaust gas whose temperature has been smoothed normally does not increase or decrease with time, It is constant.
  • the air collecting pipe 19 the catalyst mounting portion 12, the exhaust pipe 13, the muffler 14 or the exhaust pipe 15 is used as the heat source 2 and the first device 3 is arranged around the second device 4 around the heat source 2.
  • the electric power extracted from the first device 3 has a small voltage and is constant (DC voltage).
  • the first device 3 is periodically changed to a high temperature state or a low temperature due to a temperature change of the heat source 2 with time.
  • the first device 3 can be brought into a state by an effect (eg, piezo effect, pyroelectric effect, Seebeck effect, etc.) according to the device (eg, piezo element, pyroelectric element, thermoelectric conversion element, etc.) It can be periodically electrically polarized.
  • power can be extracted from each first device 3 as a waveform (for example, alternating current, pulsating current) that periodically varies from each first device 3 via the second device 4.
  • a waveform for example, alternating current, pulsating current
  • the electric power obtained as described above is periodically changed in the booster 5 connected to the second device 4 (for example, alternating current, pulse, etc.). And then the boosted power is converted into a DC voltage by the AC / DC converter 6 and then stored in the battery 7.
  • the electric power stored in the battery 7 can be used as appropriate as the power of the automobile 10 and various electrical components mounted on the automobile 10.
  • the power generation efficiency can be improved.
  • the temperature of the first device 3 increases with time so that the first device 3 includes at least part of a temperature range of ⁇ 20 ° C. to the Curie point to + 10 ° C. Since it is moved up and down, it can generate electric power with excellent efficiency.
  • first device 3 If the first device 3 is used in a stacked arrangement and / or arranged in the same plane, a plurality of first devices 3 can be simultaneously electrically polarized and electrically connected in series. Compared with the case where the 1st device 3 is used independently, big electric power can be taken out.
  • the first device 3 is arranged around the branch pipe 18 (outer wall). However, in order to transmit the temperature change to the first device 3 without averaging, the inside of the branch pipe 18 (for example, it is preferable to arrange the first device 3 on the inner wall).
  • a composite element obtained by using a known piezo element (piezoelectric element) material as a matrix material, which will be described in detail later, instead of the piezo element, is provided.
  • a composite element obtained by using a known pyroelectric element material as a matrix material (hereinafter referred to as a pyroelectric composite element) can be used in place of the pyroelectric element, as will be described in detail later.
  • a composite element obtained by using a known thermoelectric conversion element material as a matrix material hereinafter referred to as a thermoelectric conversion composite element
  • the piezo-based composite element (described later) is used as the first device 3, the piezo-based composite element (described later) is, for example, in a state where the periphery thereof is fixed by a fixing member and volume expansion is suppressed, and the heat source 2 Are arranged in close proximity or in contact with each other via an electrode to be described later.
  • the fixing member is not particularly limited, and for example, a second device 4 (for example, an electrode) described later can be used.
  • the piezo composite element (described later) is pressed by the fixing member, and the piezo effect (piezoelectric effect) or the Curie point. Electrical polarization occurs due to phase transformation in the vicinity. Thereby, as will be described in detail later, power is taken out from the piezo composite element (described later) through the second device 4.
  • Such a piezoelectric composite element (described later) is usually maintained in a heated state or a cooled state, and when the temperature becomes constant (that is, a constant volume), the electric polarization is neutralized, and then cooled or heated. As a result, the electric polarization is again performed.
  • the piezoelectric composite element (described later) is periodically heated and cooled repeatedly. Therefore, the electric polarization and neutralization of the piezoelectric composite element (described later) are periodically repeated.
  • electric power is extracted as a waveform (for example, alternating current, pulsating flow) that periodically fluctuates by the second device 4 described later.
  • a waveform for example, alternating current, pulsating flow
  • the pyroelectric composite element (described later) is heated or cooled by the temperature change of the heat source 2 over time, and the electric polarization is caused by the pyroelectric effect (including the first effect and the second effect). To do. Thereby, as will be described in detail later, power is taken out from the pyroelectric composite element (described later) through the second device 4.
  • thermoelectric conversion system composite element (described later) only one end portion of the thermoelectric conversion system composite element (described later) is heated or cooled by the temperature change of the heat source 2 over time, and both ends of the thermoelectric conversion system composite element (described later). A temperature difference occurs between the one side end and the other side end. At this time, an electromotive force is generated in the thermoelectric conversion composite element (described later) due to the Seebeck effect. Thereby, although mentioned later in detail, electric power is taken out from the thermoelectric conversion system composite element (described later) through the second device 4.
  • thermoelectric conversion composite element Since it rises and falls periodically, the magnitude of the electromotive force rises and falls periodically accordingly.
  • the heat source 2 changes the temperature of the first device 3 over time, but unlike the first embodiment described above, the temperature does not depend on the Curie point of the first device 3.
  • the temperature of the heat source 2 is, for example, 500 to 1200 ° C., preferably 700 to 900 ° C. in the high temperature state, and the temperature in the low temperature state is the above-described temperature. Less than the temperature in the high temperature state, more specifically, for example, 200 to 800 ° C., preferably 200 to 500 ° C., and the temperature difference between the high temperature state and the low temperature state is, for example, 10 to 600 ° C., preferably 20 to 500 ° C.
  • the repetition cycle between the high temperature state and the low temperature state is, for example, 10 to 400 cycles / second, preferably 30 to 100 cycles / second.
  • Such a composite element can be obtained as a mixture of, for example, a powder of a matrix material for forming a matrix and a powder of a dispersion material, and dispersing the dispersion material in the matrix material. .
  • matrix materials include known pyroelectric element materials (for example, BaTiO 3 , CaTiO 3 , (CaBi) TiO 3 , BaNd 2 Ti 5 O 14 , BaSm 2 Ti 4 O 12 , lead zirconate titanate (PZT: Pb (Zr, Ti) O 3 )), known thermoelectric conversion element materials (for example, Bi—Te based thermoelectric conversion elements (for example, Bi 2 Te 3 , Bi 2 Te 3 / Sb 2 Te 3 )), PbTe , AgSbTe 2 / GeTe, NaCo 2 O 4 , CaCoO 3 , SrTiO 3 / SrTiO 3 : Nb, SiGe, ⁇ -FeSi 2 , Ba 8 Si 46 , Mg 2 Si, MnSi 1.73 , ZnSb, Zn 4 Sb 3 , CeFe 3 CoSb 12, LaFe 3 CoSb 12, SrTiO 3 / SrTiO
  • These matrix materials can be used alone or in combination of two or more.
  • a pyroelectric element material is used as the matrix material, a composite element that is electrically polarized by the pyroelectric effect (pyroelectric composite element) can be obtained. If a thermoelectric conversion element material is used, the matrix material is electrically polarized by the Seebeck effect. A composite element (thermoelectric conversion system composite element) is obtained, and if a piezo element material is used, a composite element (piezo system composite element) that is electrically polarized by the piezoelectric effect is obtained.
  • the average particle diameter of these matrix materials is, for example, 0.1 to 100 ⁇ m, preferably 0.5 to 10 ⁇ m.
  • the dispersion material is not particularly limited as long as it has a specific heat capacity lower than that of the matrix material and the matrix formed from the matrix material.
  • Ru ruthenium
  • Rh rhodium
  • Pd Palladium
  • Ag silver
  • Os osmium
  • Ir iridium
  • noble metals such as Pt (platinum), such as Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt)
  • transition metal simple substances such as Ni (nickel), Cu (copper), and Zn (zinc), and oxides, carbonates, nitrates, sulfates, diketone metal complexes, and hydride complexes thereof.
  • These dispersion materials can be used alone or in combination of two or more.
  • the dispersion material is preferably a dispersion material in a reduced state at 200 to 1000 ° C., more preferably at 200 to 500 ° C.
  • a dispersion material include Rh (rhodium), Pd (palladium), Ag (silver), Pt (platinum), Cr (chromium), Ni (nickel), and Cu (copper).
  • examples thereof include oxides, carbonates, nitrates, sulfates, diketone metal complexes, and hydride complexes.
  • the average particle size (measurement method: scanning electron microscope) of these dispersed materials is, for example, 0.002 to 10 nm, preferably 0.01 to 3 nm.
  • the specific heat capacity of the dispersion material is lower than the specific heat capacity of the matrix material and the matrix formed from the matrix material from the viewpoint of changing the temperature in the composite element in conjunction with a heat source given from the outside. Specifically, for example, it is 0.01 to 10 J / g ⁇ K, preferably 0.1 to 5 J / g ⁇ K.
  • the mixing ratio of the matrix material and the dispersion material is, for example, 0.01 to 50 parts by mass, preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the matrix material.
  • the composite element can be sintered as necessary.
  • the relative dielectric constant is, for example, 1 or more, preferably 100 or more. More preferably, it is 2000 or more.
  • the first device 3 (insulator (dielectric)) is electrically polarized by the temperature change of the heat source 2, and the electrical polarization may be any of electronic polarization, ionic polarization, and orientation polarization.
  • the ZT value (dimensionless figure of merit) is less than the above lower limit, the energy conversion efficiency is low, and the voltage of the obtained power may be low.
  • thermoelectric conversion composite element since the thermoelectric conversion composite element generates power with a temperature difference inside the material, the lower the thermal conductivity, the higher the energy conversion efficiency.
  • the first device 3 thermoelectric conversion system
  • the thermal conductivity of the first device 3 is not particularly limited.
  • the power generation efficiency can be improved.
  • first device 3 If the first device 3 is used in a stacked arrangement and / or arranged in the same plane, a plurality of first devices 3 can be simultaneously electrically polarized and electrically connected in series. Compared with the case where the 1st device 3 is used independently, big electric power can be taken out.
  • the first device 3 is arranged around the branch pipe 18 (outer wall). However, in order to transmit the temperature change to the first device 3 without averaging, the inside of the branch pipe 18 (for example, it is preferable to arrange the first device 3 on the inner wall).
  • the obtained piezoelectric element and silver electrode were heat-treated at 300 ° C. for 1 hour with an electric furnace to obtain a sample.
  • a heat gun was used as a heat source, the spray port was directed to the piezo element, and the heat gun and the piezo element were arranged so that the spray port was 5 cm away from the piezo element.
  • the temperature of the heat gun and hot air is raised and lowered over time, and this temperature change raises and lowers the temperature of the piezo element over time and electrically polarizes it.
  • the generated voltage (electric power) was taken out through the electrode and the conductive wire.
  • the temperature of the piezo element was measured with an infrared radiation thermometer, and the temperature was at least partly in the range of 295 ° C. ( ⁇ 20 ° C. relative to the Curie point) to 325 ° C. (+ 10 ° C. relative to the Curie point).
  • the hot air temperature was adjusted so that the temperature change amount was about 30 ° C.
  • Example 1 Comparative Example 1 Continuing from Example 1, the temperature of the piezo element was increased and decreased over time and was electrically polarized, and the generated voltage (electric power) was taken out via the electrode and the conductive wire.
  • the temperature of the piezo element is measured with an infrared radiation thermometer, and the temperature is 295 ° C. ( ⁇ 20 ° C. relative to the Curie point) to 325 ° C. (+ 10 ° C. relative to the Curie point). Further, the hot air temperature was adjusted so that the temperature change amount was about 150 ° C. so that the above range was not included.
  • the voltage change of the electric power taken out from the piezoelectric element was observed with the voltmeter.
  • the relationship between the generated voltage and the temperature change is shown in FIG. (Discussion) According to Example 1, in which the temperature of the piezo element is increased or decreased over time so as to include at least part of the temperature range of ⁇ 20 ° C. to the Curie point to + 10 ° C., about 30 ° C. Even when the temperature change amount is as small as that of Comparative Example 1 in which the temperature change amount is about 150 ° C. when the temperature is raised or lowered so as not to include the temperature range, power generation is performed with excellent efficiency. It was confirmed that it was possible.
  • Example 2 A sample was obtained in the same manner as in Example 1, and by the same method as in Example 1, the temperature of the piezo element of the sample was increased and decreased over time and electrically polarized. ) was taken out.
  • Example 3 Without heat-treating the piezo element, the temperature of the piezo element of the sample was raised and lowered over time and electrically polarized by the same method as in Example 2, and the generated voltage (electric power) was taken out through the electrode and the lead wire. .
  • Example 4 50 g of powder of aluminum oxide (Al 2 O 3 , average particle diameter (measured with a scanning electron microscope) 0.5 ⁇ m) and 12 g of powder of platinum oxide (PtO 2 , average particle diameter (measured with a scanning electron microscope) 2 nm) Were weighed and mixed using a ball mill.
  • the obtained mixed powder was put into a 25 mm ⁇ 25 mm ⁇ 1.2 mm mold, pressure-molded at 30 MPa, and then sintered at 1400 ° C. for 2 hours to obtain a composite element.
  • a silver paste was applied to the front and back surfaces of the obtained composite element so as to have a size of 20 mm ⁇ 20 mm ⁇ 0.1 mm, thereby forming a silver electrode.
  • a heat gun was used as a heat source, the spray port was directed to the composite element, and the heat gun and the composite element were arranged so that the spray port was 5 cm away from the composite element.
  • the temperature of the heat gun and hot air is raised and lowered over time, and this temperature change raises and lowers the temperature of the composite element over time and electrically polarizes it.
  • the generated voltage (electric power) was taken out through the electrode and the conductive wire.
  • Example 5 40 g of powder of aluminum oxide (Al 2 O 3 , average particle diameter (measured by scanning electron microscope) 0.5 ⁇ m), and copper oxide (CuO, average particle diameter (measured by scanning electron microscope) 1.5 nm) Except for mixing 7.8 g of the powder, the temperature of the composite element was raised and lowered over time and electrically polarized in the same manner as in Example 4, and the generated voltage (electric power) was taken out through the electrode and the conductive wire. .
  • Al 2 O 3 average particle diameter (measured by scanning electron microscope) 0.5 ⁇ m)
  • CuO average particle diameter (measured by scanning electron microscope) 1.5 nm
  • Comparative Example 2 Except that the platinum oxide powder was not mixed, the temperature of the device was increased and decreased over time and electrically polarized in the same manner as in Example 4, and the generated voltage (electric power) was taken out through the electrode and the conductive wire.
  • the displacement ( ⁇ V) of the generated voltage by the composite element of Example 4 is about 1.3 V (see FIG. 6), and the displacement ( ⁇ V) of the generated voltage by the composite element of Example 5 is about 2.0 V. (See FIG. 7).
  • the power generation system of the present invention is, for example, an internal combustion engine such as an automobile engine, a heat exchanger such as a boiler or an air conditioner, an electric engine such as a generator or a motor, and various energy utilization devices such as a light emitting device such as a lighting. Preferably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 発電システムは、温度が経時的に上下する熱源と、熱源の温度変化により、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下され、電気分極する第1デバイスと、第1デバイスから電力を取り出すための第2デバイスとを備える。

Description

発電システム
 本発明は、発電システムに関する。
 従来、自動車エンジンなどの内燃機関や、ボイラー、空調設備などの熱交換器、発電機、モータなどの電動機関、照明などの発光装置などの各種エネルギー利用装置では、例えば、排熱、光などとして、多くの熱エネルギーが放出および損失されている。
 近年、省エネルギー化の観点から、放出される熱エネルギーを回収し、エネルギー源として再利用することが要求されており、このような方法として、焦電素子を用いた熱電変換発電が、知られている。
 具体的には、例えば、複数の焦電素子のそれぞれの温度を上昇させる加熱源と、それら焦電素子のそれぞれの温度を低下させる冷却源と、加熱源および冷却源、および/または、焦電素子を移動させる移動手段とを備える発電装置を用い、加熱源および冷却源により焦電素子の温度を周期的に上昇および下降させることによって、焦電素子から直流電力または交流電力を取り出す方法が、提案されている(例えば、下記特許文献1参照。)。
特開平11-332266号公報
 一方、このような発電方法としては、より一層優れた効率で発電することが要求されている。
 本発明の目的は、より優れた効率で発電することのできる発電システムを提供することにある。
 上記目的を達成するため、本発明の発電システムは、本発明の発電システムは、温度が経時的に上下する熱源と、前記熱源の温度変化により、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下され、電気分極する第1デバイスと、前記第1デバイスから電力を取り出すための第2デバイスとを備えることを特徴としている。
 また、本発明の発電システムでは、前記第1デバイスが、そのキュリー点を含むように温度変化することが好適である。
 また、本発明の発電システムは、温度が経時的に上下する熱源と、電気分極可能なマトリクス、および、前記マトリクスの比熱容量よりも低い比熱容量を有する分散材料からなり、前記熱源の温度変化により電気分極する第1デバイスと、前記第1デバイスから電力を取り出すための第2デバイスとを備えることを特徴としている。
 また、本発明の発電システムでは、前記分散材料が、200~500℃において、還元状態にあることが好適である。
 本発明の発電システムによれば、発電効率の向上を図ることができる。
図1は、本発明の発電システムの一実施形態を示す概略構成図である。 図2は、図1に示す第1デバイスの一実施形態を示す概略構成図である。 図3は、図1に示す第1デバイスの他の実施形態を示す概略構成図である。 図4は、本発明の発電システムが車載された一実施形態を示す概略構成図である。 図5は、図4に示す発電システムの要部拡大図である。 図6は、実施例1および比較例1における発電電圧と温度変化との関係を示すグラフである。 図7は、実施例2および実施例3における発電電圧と温度変化との関係を示すグラフである。 図8は、実施例4における発電電圧と温度変化との関係を示すグラフである。 図9は、実施例5における発電電圧と温度変化との関係を示すグラフである。 図10は、比較例2における発電電圧と温度変化との関係を示すグラフである。
発明の実施形態
<第1実施形態>
 以下において、本発明の第1実施形態について詳述する。
 図1は、本発明の発電システムの一実施形態(第1実施形態)を示す概略構成図である。
 図1において、発電システム1は、温度が経時的に上下する熱源2と、熱源2の温度変化により電気分極する第1デバイス3と、第1デバイス3から電力を取り出すための第2デバイス4とを備えている。
 熱源2としては、温度が経時的に上下する熱源であれば、特に制限されないが、例えば、内燃機関、発光装置などの各種エネルギー利用装置が挙げられる。
 内燃機関は、例えば、車両などの動力を出力する装置であって、例えば、単気筒型または多気筒型が採用されるとともに、その各気筒において、多サイクル方式(例えば、2サイクル方式、4サイクル方式、6サイクル方式など)が採用される。
 このような内燃機関では、各気筒において、ピストンの昇降運動が繰り返されており、これにより、例えば、4サイクル方式では、吸気工程、圧縮工程、爆発工程、排気工程などが順次実施され、燃料が燃焼され、動力が出力されている。
 このような内燃機関において、排気工程では、高温の排気ガスが、排気ガス管を介して排気される。このとき、排気ガス管は、排気ガスの熱エネルギーを授受し、温度上昇する。
 一方、その他の工程(排気工程を除く工程)では、排気ガス管中の排気ガス量が低減されるため、排気ガス管の授受する熱エネルギーが低減され、その結果、排気ガス管の温度が低下する。
 このように、内燃機関の温度は、排気工程において上昇し、吸気工程、圧縮工程および爆発工程において下降し、つまり、経時的に上下する。
 とりわけ、上記の各工程は、ピストンサイクルに応じて、周期的に順次繰り返されるため、内燃機関における各気筒の排気ガス管は、上記の各工程の繰り返しの周期に伴って、周期的に温度変化、より具体的には、高温状態と低温状態とが、周期的に繰り返される。
 発光装置は、点灯(発光)時には、例えば、赤外線、可視光などの光の熱エネルギーにより温度上昇し、一方、消灯時には温度低下する。そのため、発光装置は、経時的に、点灯(発光)および消灯することにより、その温度が経時的に上下する。
 とりわけ、例えば、発光装置が、経時的に照明の点灯および消灯が断続的に繰り返される発光装置(明滅(点滅)式の発光装置)である場合には、その発光装置は、点灯(発光)時における光の熱エネルギーにより、周期的に温度変化、より具体的には、高温状態と低温状態とが、周期的に繰り返される。
 また、熱源2としては、さらに、例えば、複数の熱源を備え、それら複数の熱源間の切り替えにより、温度変化を生じることもできる。
 より具体的には、例えば、熱源として、低温熱源(冷却材など)と、その低温熱源より温度の高い高温熱源(例えば、加熱材など)との2つの熱源を用意し、経時的に、それら低温熱源および高温熱源を、交互に切り替えて用いる形態が挙げられる。
 これにより、熱源としての温度を、経時的に上下させることができ、とりわけ、低温熱源および高温熱源の切り替えを、周期的に繰り返すことにより、周期的に温度変化させることができる。
 切り替え可能な複数の熱源を備える熱源2としては、特に制限されないが、例えば、燃焼用低温空気供給系、蓄熱式熱交換器、高温ガス排気系、および、供給/排気切替弁を備えた高温空気燃焼炉(例えば、再公表96-5474号公報に記載される高温気体発生装置)、例えば、高温熱源、低温熱源および水素吸蔵合金を用いた海水交換装置(水素吸蔵合金アクチュエータ式海水交換装置)などが挙げられる。
 これら熱源2としては、上記熱源を単独使用または2種類以上併用することができる。
 熱源2として、好ましくは、経時により周期的に温度変化する熱源が挙げられる。
 また、熱源2として、好ましくは、内燃機関が挙げられる。
 第1デバイス3は、熱源2の温度変化に応じて電気分極するデバイスである。
 ここでいう電気分極とは、結晶の歪みにともなう正負イオンの変位により誘電分極し電位差が生じる現象、例えばピエゾ効果、および/または、温度変化により誘電率が変化し電位差が生じる現象、例えば焦電効果、および/または、温度変化や温度勾配などにより電荷に偏りが発生し電位差が生まれる現象、例えばゼーベック効果などのように、材料に起電力が発生する現象と定義する。
 このような第1デバイス3として、より具体的には、例えば、ピエゾ効果により電気分極するデバイス、焦電効果により電気分極するデバイス、ゼーベック効果により電気分極するデバイスなどが挙げられる。
 ピエゾ効果は、応力または歪みが加えられたときに、その応力または歪みの大きさに応じて電気分極する効果(現象)である。
 このようなピエゾ効果により電気分極する第1デバイス3としては、特に制限されず、例えば、薄膜型、バルク型などの、公知のピエゾ素子(圧電素子)を用いることができる。なお、以下のピエゾ素子に関する説明は、後述するピエゾ系複合素子についても同様である。
 第1デバイス3としてピエゾ素子が用いられる場合には、ピエゾ素子は、例えば、その周囲が固定部材により固定され、体積膨張が抑制された状態において、熱源2に対して、近接、または、後述する電極を介して接触するように、配置される。固定部材としては、特に制限されず、例えば、後述する第2デバイス4(例えば、電極など)を用いることもできる。
 そして、このような場合には、ピエゾ素子は、熱源2の経時的な温度変化により、加熱または冷却され、これにより、膨張または収縮する。
 このとき、ピエゾ素子は、固定部材により体積膨張が抑制されているため、ピエゾ素子は、固定部材に押圧され、ピエゾ効果(圧電効果)、または、キュリー点付近での相変態により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、熱電変換素子から電力が取り出される。
 また、このようなピエゾ素子は、通常、加熱状態または冷却状態が維持され、その温度が一定(すなわち、体積一定)になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、ピエゾ素子が周期的に繰り返し加熱および冷却されるため、ピエゾ素子の電気分極およびその中和が、周期的に繰り返される。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 焦電効果は、例えば、絶縁体(誘電体)などを加熱および冷却する時に、その温度変化に応じて絶縁体が電気分極する効果(現象)であって、第1効果および第2効果を含んでいる。
 第1効果は、絶縁体の加熱時および冷却時において、その温度変化により自発分極し、絶縁体の表面に、電荷を生じる効果とされている。
 また、第2効果は、絶縁体の加熱時および冷却時において、その温度変化により結晶構造に圧力変形が生じ、結晶構造に加えられる応力または歪みにより、圧電分極を生じる効果(ピエゾ効果、圧電効果)とされている。
 このような焦電効果により電気分極するデバイスとしては、特に制限されず、公知の焦電素子を用いることができる。なお、以下の焦電素子に関する説明は、後述する焦電系複合素子についても同様である。
 第1デバイス3として焦電素子が用いられる場合には、焦電素子は、例えば、熱源2に対して、近接、または、後述する電極を介して接触するように、配置される。
 このような場合において、焦電素子は、熱源2の経時的な温度変化により、加熱または冷却され、その焦電効果(第1効果および第2効果を含む)により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、焦電素子から電力が取り出される。
 また、このような焦電素子は、通常、加熱状態または冷却状態が維持され、その温度が一定になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、焦電素子が周期的に繰り返し加熱および冷却されるため、焦電素子の電気分極およびその中和が、周期的に繰り返される。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 ゼーベック効果は、例えば、金属または半導体の両端に温度差を生じさせると、その温度差に応じて、金属または半導体に起電力が生じる効果(現象)である。
 このようなゼーベック効果により電気分極するデバイスとしては、特に制限されず、公知の熱電変換素子を用いることができる。なお、以下の熱電変換素子に関する説明は、後述する熱電変換系複合素子についても同様である。
 第1デバイス3として熱電変換素子が用いられる場合には、熱電変換素子は、例えば、その一方側端部が、熱源2に対して、近接、または、後述する電極を介して接触するとともに、他方側端部が熱源2から離間するように配置される。
 このような場合において、熱電変換素子は、その一方側端部のみが、熱源2の経時的な温度変化により、加熱または冷却され、その熱電変換素子の両端(一方側端部および他方側端部の間)に、温度差が生じる。このとき、ゼーベック効果により、熱電変換素子に起電力が生じる。これにより、詳しくは後述するが、第2デバイス4を介して、熱電変換素子から電力が取り出される。
 また、このような熱電変換素子は、その両端における温度差が大きい場合には、起電力が高くなり、高電力を取り出すことができ、一方、温度差が小さい場合には、起電力が小さくなり、取り出される電力が低下する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、熱電変換素子の一方側端部の温度が、周期的に繰り返し上下するため、それに応じて、起電力の大きさの度合いが、周期的に上下する。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 これら第1デバイス3は、単独使用または2種類以上併用することができる。
 図2は、図1に示す第1デバイスの一実施形態(第1実施形態)を示す概略構成図である。
 上記の第1デバイス3は、図2に示すように、例えば、積層配置して用いることもできる。
 このような場合には、複数の第1デバイス3(好ましくは、焦電素子)の間に、後述する第2デバイス4(例えば、電極、導線など)を介在させ、これにより、各第1デバイス3を、電気分極時において電気的に直列となるように接続する。
 そして、このようにして得られる第1デバイス3の積層体を、図1に示すように、熱源2に接触または近接するように配置し、積層される各第1デバイス3を、同時に加熱または冷却する。
 これにより、複数の第1デバイス3を同時に電気分極させ、それらを電気的に直列接続することができ、その結果、第1デバイス3を単独で(単層として)用いる場合に比べ、大きな電力を取り出すことができる。
 図3は、図1に示す第1デバイスの他の実施形態を示す概略構成図である。
 上記の第1デバイス3は、図3に示すように、例えば、同一面状に整列配置して用いることもできる。
 このような場合には、複数の第1デバイス3の間を、後述する第2デバイス4(例えば、電極、導線など)により、電気分極時において電気的に直列となるように接続する。
 そして、このようにして整列配置された複数の第1デバイス3を、図1に示すように、熱源2に接触または近接するように配置し、整列配置される各第1デバイス3を、同時に加熱または冷却する。
 これにより、複数の第1デバイス3を同時に電気分極させ、それらを電気的に直列接続することができ、その結果、第1デバイス3を単独で用いる場合に比べ、大きな電力を取り出すことができる。
 なお、このとき、例えば、第1デバイス3が焦電素子である場合や、p型半導体からなる熱電変換素子、または、n型半導体からなる熱電変換素子のみを使用する場合などには、各第1デバイス3は、熱源2に接触または近接する一方側が、いずれも正極または負極となり、熱源2から離間する他方側が、いずれも負極または正極となるように電気分極する(図3(a)参照)。
 そのため、このような場合には、第1デバイス3の熱源2に接触または近接する側と、他の第1デバイス3の熱源2から離間する側とが、電気的に接続される。
 一方、例えば、第1デバイス3として、p型半導体からなる熱電変換素子、および、n型半導体からなる熱電変換素子を用い、それらを交互に配置する場合などには、p型半導体からなる熱電変換素子と、n型半導体からなる熱電変換素子とが逆方向に電気分極するため、各第1デバイス3の熱源2に接触または近接する一方側において、正極および負極が交互に整列配置される。
 そのため、このような場合には、第1デバイス3の熱源2に接触または近接する側と、他の第1デバイス3の熱源2に接触または近接する側とが電気的に接続され、また、第1デバイス3の熱源2から離間する側と、他の第1デバイス3の熱源2から離間する側とが、電気的に接続される(図3(b)参照)。
 図1において、第2デバイス4は、第1デバイス3から電力を取り出すために設けられる。
 このような第2デバイス4は、より具体的には、特に制限されないが、例えば、上記の第1デバイス3を挟んで対向配置される2つの電極(例えば、銅電極、銀電極など)、例えば、それら電極に接続される導線などを備えており、第1デバイス3に電気的に接続されている。
 そして、図1に示す発電システム1では、その第2デバイス4が、昇圧器5、交流/直流変換器(AC-DCコンバーター)6およびバッテリー7に、順次、電気的に接続されている。
 このような発電システム1により、発電するには、例えば、まず、熱源2の温度を経時的に上下、好ましくは、周期的に温度変化させ、その温度変化に応じて、上記した第1デバイス3を、経時的に、好ましくは、周期的に温度変化させ、電気分極させる。
 その後、第2デバイス4を介することにより、電力を、第1デバイス3の周期的な電気分極に応じて周期的に変動する波形(例えば、交流、脈流など)として、取り出す。
 より具体的には、発電システム1において、熱源2は、第1デバイス3を、そのキュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように、経時的に温度変化させる。
 すなわち、発電システム1において、第1デバイス3は、その高温状態における温度が、低温状態における温度を超過し、キュリー点に対して-20℃以上になるように、かつ、その低温状態における温度が、上記の高温状態における温度未満であり、キュリー点に対して+10℃以下になるように、温度変化する。
 また、好ましくは、第1デバイス3は、そのキュリー点に対して-18℃~キュリー点に対して+8℃の温度範囲の少なくとも一部を含むように、さらに好ましくは、キュリー点に対して-15℃~キュリー点に対して+5℃の温度範囲の少なくとも一部を含むように、経時的に温度変化させる。
 このような第1デバイス3は、そのキュリー点を含まないように温度変化することができる。
 具体的には、第1デバイス3は、例えば、高温状態における温度および低温状態における温度のいずれもがキュリー点を超過するとともに、低温状態における温度がキュリー点に対して+10℃以下となるように、温度変化することができる。また、第1デバイス3は、例えば、高温状態における温度および低温状態における温度のいずれもがキュリー点未満であるとともに、高温状態における温度がキュリー点に対して-20℃以上となるように、温度変化することもできる。
 さらに、第1デバイス3は、そのキュリー点を含むように、すなわち、高温状態における温度がキュリー点を超過し、かつ、低温状態における温度がキュリー点未満となるように、温度変化することができる。
 第1デバイス3として、好ましくは、そのキュリー点を含むように温度変化することが挙げられる。
 このような発電システム1では、通常、第1デバイス3の温度の変化量が大きいほど、大きな電圧を取り出すことができるが、第1デバイス3が、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下される場合には、温度の変化量が小さくても、大きな電圧を取り出すことができ、優れた効率で発電することができる。
 第1デバイス3の温度として、具体的には、その低温状態における温度が、例えば、キュリー点に対して-40℃以上、好ましくは、キュリー点に対して-30℃以上、さらに好ましくは、キュリー点に対して-20℃以上であり、高温状態における温度が、キュリー点に対して+30℃以下、好ましくは、キュリー点に対して+20℃以下、さらに好ましくは、キュリー点に対して+10℃以下である。
 すなわち、第1デバイス3は、とりわけ好ましくは、キュリー点に対して-20℃~キュリー点に対して+10℃の範囲において、温度変化する。
 このような場合において、第1デバイス3の温度は、高温状態における温度が、例えば、30~1200℃、好ましくは、100~800℃、より好ましくは、300~350℃、さらに好ましくは、310~325℃であり、低温状態における温度が、上記の高温状態における温度未満であって、高温状態と低温状態との温度差が、例えば、10~100℃、好ましくは、20~50℃である。
 また、それら高温状態と低温状態との繰り返し周期は、例えば、10~400サイクル/秒、好ましくは、30~100サイクル/秒である。
 なお、第1デバイス3の温度は、赤外線放射温度計などにより測定することができる。
 そして、熱源2の温度は、第1デバイス3を上記範囲で温度変化させることができる範囲に設定される。
 より具体的には、熱源2の温度は、高温状態における温度が、例えば、500~1200℃、好ましくは、700~900℃であり、低温状態における温度が、上記の高温状態における温度未満、より具体的には、例えば、200~800℃、好ましくは、200~500℃であり、高温状態と低温状態との温度差が、例えば、10~600℃、好ましくは、20~500℃である。
 また、それら高温状態と低温状態との繰り返し周期は、例えば、10~400サイクル/秒、好ましくは、30~100サイクル/秒である。
 そして、このようにして発電システム1により取り出された電力を、第2デバイス4に接続される昇圧器5において、周期的に変動する波形(例えば、交流、脈流など)の状態で昇圧する。昇圧器5としては、交流電圧を、例えば、コイル、コンデンサなどを用いた簡易な構成により、優れた効率で昇圧できる昇圧器が、用いられる。
 次いで、昇圧器5において昇圧された電力を、交流/直流変換器6において直流電圧に変換した後、バッテリー7に蓄電する。
 このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出し、DC-DCコンバーターで変換する場合に比べて、優れた効率で昇圧して、蓄電することができる。
 また、熱源2が、周期的に温度変化する熱源であれば、電力を、周期的に変動する波形として取り出すことができ、その結果、より優れた効率で昇圧して、蓄電することができる。
 とりわけ、このような発電システム1によれば、発電効率の向上を図ることができる。
 すなわち、このような発電システム1では、通常、第1デバイス3の温度の変化量が大きいほど、大きな電圧を取り出すことができるが、この発電システム1では、第1デバイス3が、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下されるので、温度の変化量が小さくても、優れた効率で発電することができる。
 図4は、本発明の発電システムが車載された一実施形態(第1実施形態)を示す概略構成図である。
 図4において、自動車10は、内燃機関11、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15を備えている。
 内燃機関11は、エンジン16、および、エキゾーストマニホールド17を備えている。
 エンジン16は、4気筒型4サイクル方式のエンジンであって、各気筒に、エキゾーストマニホールド17の分岐管18(後述)の上流側端部が接続されている。
 エキゾーストマニホールド17は、エンジン16の各気筒から排出される排気ガスを収束するために設けられる排気多岐管であって、エンジン16の各気筒に接続される複数(4つ)の分岐管18(これらを区別する必要がある場合には、図4の上側から順に、分岐管18a、分岐管18b、分岐管18cおよび分岐管18dと称する。)と、それら分岐管18の下流側において、各分岐管18を1つに統合する集気管19とを備えている。
 このようなエキゾーストマニホールド17では、分岐管18の上流側端部が、それぞれ、エンジン16の各気筒に接続されるとともに、分岐管18の下流側端部と集気管19の上流側端部とが接続されている。また、集気管19の下流側端部は、触媒搭載部12の上流側端部に接続されている。
 触媒搭載部12は、例えば、触媒担体およびその担体上にコーティングされる触媒を備えており、内燃機関11から排出される排気ガスに含まれる炭化水素(HC)、窒素酸化物(NO)、一酸化炭素(CO)などの有害成分を浄化するために、内燃機関11(エキゾーストマニホールド17)の下流側端部に接続されている。
 エキゾーストパイプ13は、触媒搭載部12において浄化された排気ガスをマフラー14に案内するために設けられており、上流側端部が触媒搭載部12に接続されるとともに、下流側端部がマフラー14に接続されている。
 マフラー14は、エンジン16(とりわけ、爆発工程)において生じる騒音を、静音化すために設けられており、その上流側端部がエキゾーストパイプ13の下流側端部に接続されている。また、マフラー14の下流側端部は、排出パイプ15の上流側端部に接続されている。
 排出パイプ15は、エンジン16から排出され、エキゾーストマニホールド17、触媒搭載部12、エキゾーストパイプ13およびマフラー14を順次通過し、浄化および静音化された排気ガスを、外気に放出するために設けられており、その上流側端部がマフラー14の下流側端部に接続されるとともに、その下流側端部が、外気に開放されている。
 そして、この自動車10は、図4において点線で示すように、発電システム1を搭載している。
 図5は、図4に示す発電システムの要部拡大図である。
 図5において、発電システム1は、上記したように、熱源2、第1デバイス3および第2デバイス4を備えている。
 この発電システム1では、熱源2として、内燃機関11におけるエキゾーストマニホールド17の分岐管18が用いられており、その分岐管18の周囲に、第1デバイス3が配置されている。
 第1デバイス3としては、上記したように、公知の焦電素子(例えば、BaTiO、CaTiO、(CaBi)TiO、BaNdTi14、BaSmTi12、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)など)、公知の熱電変換素子(例えば、Bi-Te系熱電変換素子(例えば、BiTe、BiTe/SbTeなど))、PbTe、AgSbTe/GeTe、NaCo、CaCoO、SrTiO/SrTiO:Nb、SiGe、β-FeSi、BaSi46、MgSi、MnSi1.73、ZnSb、ZnSb、CeFeCoSb12、LaFeCoSb12、SrTiO/SrTiO:Nb/SrTiO、Siナノワイヤー・アレイ、NaCo、(Ce1-xLa)Ni、(Ce1-xLa)In、CeInCu、NaV、Vなど)、公知のピエゾ素子(例えば、水晶(SiO)、酸化亜鉛(ZnO)、ロッシェル塩(酒石酸カリウム-ナトリウム)(KNaC)、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、リチウムテトラボレート(Li)、ランガサイト(LaGaSiO14)、窒化アルミニウム(AlN)、電気石(トルマリン)、ポリフッ化ビニリデン(PVDF)など)などを用いることができる。
 このような第1デバイス3のキュリー点は、例えば、-30~1500℃、好ましくは、-10~1200℃、より好ましくは、10~1000℃である。
 また、第1デバイス3が、焦電素子および/またはピエゾ素子(絶縁体(誘電体))である場合には、その比誘電率は、例えば、1以上、好ましくは、100以上、より好ましくは、2000以上である。
 このような発電システム1では、第1デバイス3(絶縁体(誘電体))の比誘電率が高いほど、エネルギー変換効率が高く、高電圧で電力を取り出すことができるが、第1デバイス3の比誘電率が上記下限未満であれば、エネルギー変換効率が低く、得られる電力の電圧が低くなる場合がある。
 なお、第1デバイス3(絶縁体(誘電体))は、熱源2の温度変化によって電気分極するが、その電気分極は、電子分極、イオン分極および配向分極のいずれでもよい。
 例えば、配向分極によって分極が発現する材料(例えば、液晶材料など)では、その分子構造を変化させることにより、発電効率の向上を図ることができるものと期待されている。
 第1デバイス3が、熱電変換素子である場合には、その性能は、例えば、下記式(1)により示される。
        ZT=SσT/κ     (1)
(式中、Zは、性能指数を示し、Tは、絶対温度を示し、Sは、ゼーベック係数を示し、σは、電気伝導率を示し、κは、熱伝導率を示す。)
 このような第1デバイス3(熱電変換素子)において、そのZT値(無次元性能指数)は、例えば、0.3以上である。
 ZT値(無次元性能指数)が上記下限未満である場合には、エネルギー変換効率が低く、得られる電力の電圧が低くなる場合がある。
 また、通常、熱電変換素子は、材料内部の温度差で発電するため、熱伝導率が低いほど、エネルギー変換効率が高くなるが、この発電システム1では、第1デバイス3(熱電変換素子)両端の温度差が必要なく、そのため、第1デバイス3(熱電変換素子)の熱伝導率は、特に制限されない。
 第2デバイス4は、第1デバイス3を挟んで対向配置される2つの電極、および、それら電極に接続される導線を備えている。なお、第1デバイス3の一方側面に配置される電極および導線は、第1デバイス3と分岐管18(熱源2)との間に介在するように配置されており、第1デバイス3の他方側面に配置される電極および導線は、分岐管18(熱源2)に接触することなく、露出されている。
 また、発電システム1は、図4に示すように、昇圧器5、交流/直流変換器6およびバッテリー7に、順次、電気的に接続されている。
 そして、このような自動車10では、エンジン16の駆動により、各気筒において、ピストンの昇降運動が繰り返され、吸気工程、圧縮工程、爆発工程および排気工程が順次実施される。
 より具体的には、例えば、分岐管18aに接続される気筒、および、分岐管18cに接続される気筒の2つの気筒において、ピストンが連動し、吸気工程、圧縮工程、爆発工程および排気工程が、同位相で実施される。これにより、燃料が燃焼され、動力が出力されるとともに、高温の排気ガスが、分岐管18aおよび分岐管18cの内部を排気工程において通過する。
 このとき、分岐管18aおよび分岐管18cの温度は、排気工程において上昇し、その他の工程(吸気工程、圧縮工程、爆発工程)において下降するので、ピストンサイクルに応じて、経時的に上下し、高温状態と低温状態とが、周期的に繰り返される。
 一方、それら2つの気筒とはタイミングを異にして、分岐管18bに接続される気筒、および、分岐管18dに接続される気筒の2つの気筒において、ピストンが連動し、吸気工程、圧縮工程、爆発工程および排気工程が、同位相で実施される。これにより、燃料が燃焼され、動力が出力されるとともに、分岐管18aおよび分岐管18cとは異なるタイミングにおいて、高温の排気ガスが、分岐管18bおよび分岐管18dの内部を排気工程において通過する。
 このとき、分岐管18bおよび分岐管18dの温度は、排気工程において上昇し、その他の工程(吸気工程、圧縮工程、爆発工程)において下降するので、ピストンサイクルに応じて、経時的に上下し、高温状態と低温状態とが、周期的に繰り返される。
 この周期的な温度変化は、分岐管18aおよび分岐管18cの周期的な温度変化とは、周期が同じである一方、位相が異なる。
 そして、この発電システム1では、各分岐管18(熱源2)に、第1デバイス3が配置されている。
 そのため、各分岐管18(熱源2)の経時的な温度変化により、第1デバイス3を、周期的に高温状態または低温状態にすることができ、第1デバイス3を、その素子(例えば、ピエゾ素子、焦電素子、熱電変換素子など)に応じた効果(例えば、ピエゾ効果、焦電効果、ゼーベック効果など)により、電気分極させることができる。
 そのため、この発電システム1では、第2デバイス4を介して、各第1デバイス3から電力を周期的に変動する波形(例えば、交流、脈流など)として、取り出すことができる。
 また、この発電システム1では、分岐管18aおよび分岐管18cの温度と、分岐管18bおよび分岐管18dの温度とが、同じ周期、かつ、異なる位相で周期的に変化するため、電力を、周期的に変動する波形(例えば、交流、脈流など)として、連続的に取り出すことができる。
 そして、排気ガスは、各分岐管18を通過した後、集気管19に供給され、集気された後、触媒搭載部12に供給され、その触媒搭載部12に備えられる触媒により浄化される。その後、排気ガスは、エキゾーストパイプ13に供給され、マフラー14において静音化された後、排出パイプ15を介して、外気に排出される。
 このとき、各分岐管18内を通過する排気ガスは、集気管19において集気されるので、集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15を順次通過する排気ガスは、その温度が、平滑化されている。
 そのため、温度が平滑化されたこのような排気ガスを通過させる集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14および排出パイプ15の温度は、通常、経時的に上下することなく、ほぼ一定である。
 そのため、集気管19、触媒搭載部12、エキゾーストパイプ13、マフラー14または排出パイプ15を熱源2として用い、その周囲に、上記した第1デバイス3を、第2デバイス4を介して配置する場合には、第1デバイス3から取り出される電力は、その電圧が小さく、また、一定(直流電圧)である。
 そのため、このような方法では、得られる電力を、簡易な構成で効率良く昇圧することができず、蓄電効率に劣るという不具合がある。
 一方、上記したように、内燃機関11(分岐管18)を熱源2として採用する発電システム1では、その熱源2の経時的な温度変化により、第1デバイス3を、周期的に高温状態または低温状態にすることができ、第1デバイス3を、そのデバイス(例えば、ピエゾ素子、焦電素子、熱電変換素子など)に応じた効果(例えば、ピエゾ効果、焦電効果、ゼーベック効果など)により、周期的に電気分極させることができる。
 そのため、この発電システム1では、第2デバイス4を介して、各第1デバイス3から電力を周期的に変動する波形(例えば、交流、脈流など)として、取り出すことができる。
 その後、この方法では、例えば、図4において点線で示すように、上記により得られた電力を、第2デバイス4に接続される昇圧器5において、周期的に変動する波形(例えば、交流、脈流など)の状態で昇圧し、次いで、昇圧された電力を、交流/直流変換器6において直流電圧に変換した後、バッテリー7に蓄電する。バッテリー7に蓄電された電力は、自動車10や、自動車10に搭載される各種電気部品の動力などとして、適宜、用いることができる。
 とりわけ、このような発電システム1によれば、発電効率の向上を図ることができる。
 すなわち、このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出し、DC-DCコンバーターで変換する場合に比べて、優れた効率で昇圧して、蓄電することができる。
 とりわけ、このような発電システム1によれば、第1デバイス3が、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下されるので、優れた効率で発電することができる。
 なお、詳しくは図示しないが、第1デバイス3は、その素子の種類や、必要および用途に応じて、図2に示すように、積層配置して用いることができ、さらには、図3に示すように、同一面状に整列配置して用いることもできる。
 第1デバイス3を、積層配置および/または同一面状に整列配置して用いれば、複数の第1デバイス3を同時に電気分極させるとともに、それらを電気的に直列接続することができ、その結果、第1デバイス3を単独で用いる場合に比べ、大きな電力を取り出すことができる。
 なお、上記した説明では、分岐管18の周囲(外側壁)に、第1デバイス3を配置したが、温度変化を平均化することなく第1デバイス3に伝達させるため、分岐管18の内部(例えば、内側壁)に第1デバイス3を配置することが好ましい。
<第2実施形態>
 以下において、本発明の第2実施形態について詳述する。
 なお、上記した第1実施形態を説明する各図については、第2実施形態についても同様である。
 また、上記した第1実施形態と同様の部材および原理については、その詳細な説明を省略する。
 この第2実施形態では、上記した第1デバイス3として、複合素子(後述)が用いられる。
 具体的には、この第2実施形態では、ピエゾ素子に代えて、詳しくは後述するが、公知のピエゾ素子(圧電素子)材料をマトリクス材料として得られる複合素子(以下、ピエゾ系複合素子)を用いることができる。また、焦電素子に代えて、詳しくは後述するが、公知の焦電素子材料をマトリクス材料として得られる複合素子(以下、焦電系複合素子)を用いることができる。また、熱電変換素子に代えて、詳しくは後述するが、公知の熱電変換素子材料をマトリクス材料として得られる複合素子(以下、熱電変換系複合素子)を用いることができる。
 第1デバイス3としてピエゾ系複合素子(後述)が用いられる場合には、ピエゾ系複合素子(後述)は、例えば、その周囲が固定部材により固定され、体積膨張が抑制された状態において、熱源2に対して、近接、または、後述する電極を介して接触するように、配置される。固定部材としては、特に制限されず、例えば、後述する第2デバイス4(例えば、電極など)を用いることもできる。
 そして、このような場合には、ピエゾ系複合素子(後述)は、熱源2の経時的な温度変化により、加熱または冷却され、これにより、膨張または収縮する。
 このとき、ピエゾ系複合素子(後述)は、固定部材により体積膨張が抑制されているため、ピエゾ系複合素子(後述)は、固定部材に押圧され、ピエゾ効果(圧電効果)、または、キュリー点付近での相変態により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、ピエゾ系複合素子(後述)から電力が取り出される。
 また、このようなピエゾ系複合素子(後述)は、通常、加熱状態または冷却状態が維持され、その温度が一定(すなわち、体積一定)になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、ピエゾ系複合素子(後述)が周期的に繰り返し加熱および冷却されるため、ピエゾ系複合素子(後述)の電気分極およびその中和が、周期的に繰り返される。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 第1デバイス3として焦電系複合素子(後述)が用いられる場合には、焦電系複合素子(後述)は、例えば、熱源2に対して、近接、または、後述する電極を介して接触するように、配置される。
 このような場合において、焦電系複合素子(後述)は、熱源2の経時的な温度変化により、加熱または冷却され、その焦電効果(第1効果および第2効果を含む)により、電気分極する。これにより、詳しくは後述するが、第2デバイス4を介して、焦電系複合素子(後述)から電力が取り出される。
 また、このような焦電系複合素子(後述)は、通常、加熱状態または冷却状態が維持され、その温度が一定になると、電気分極が中和され、その後、冷却または加熱されることにより、再度、電気分極する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、焦電系複合素子(後述)が周期的に繰り返し加熱および冷却されるため、焦電系複合素子(後述)の電気分極およびその中和が、周期的に繰り返される。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 第1デバイス3として熱電変換系複合素子(後述)が用いられる場合には、熱電変換系複合素子(後述)は、例えば、その一方側端部が、熱源2に対して、近接、または、後述する電極を介して接触するとともに、他方側端部が熱源2から離間するように配置される。
 このような場合において、熱電変換系複合素子(後述)は、その一方側端部のみが、熱源2の経時的な温度変化により、加熱または冷却され、その熱電変換系複合素子(後述)の両端(一方側端部および他方側端部の間)に、温度差が生じる。このとき、ゼーベック効果により、熱電変換系複合素子(後述)に起電力が生じる。これにより、詳しくは後述するが、第2デバイス4を介して、熱電変換系複合素子(後述)から電力が取り出される。
 また、このような熱電変換系複合素子(後述)は、その両端における温度差が大きい場合には、起電力が高くなり、高電力を取り出すことができ、一方、温度差が小さい場合には、起電力が小さくなり、取り出される電力が低下する。
 そのため、上記したように熱源2が周期的に温度変化し、高温状態と低温状態とが周期的に繰り返される場合などには、熱電変換系複合素子(後述)の一方側端部の温度が、周期的に繰り返し上下するため、それに応じて、起電力の大きさの度合いが、周期的に上下する。
 その結果、後述する第2デバイス4により、電力が、周期的に変動する波形(例えば、交流、脈流など)として取り出される。
 このような発電システム1において、熱源2は、第1デバイス3を経時的に温度変化させるが、上記した第1実施形態と異なり、その温度は第1デバイス3のキュリー点に依存しない。
 具体的には、このような発電システム1において、熱源2の温度は、高温状態における温度が、例えば、500~1200℃、好ましくは、700~900℃であり、低温状態における温度が、上記の高温状態における温度未満、より具体的には、例えば、200~800℃、好ましくは、200~500℃であり、高温状態と低温状態との温度差が、例えば、10~600℃、好ましくは、20~500℃である。
 また、それら高温状態と低温状態との繰り返し周期は、例えば、10~400サイクル/秒、好ましくは、30~100サイクル/秒である。
 そして、このようにして発電システム1により取り出された電力を、第2デバイス4に接続される昇圧器5において、周期的に変動する波形(例えば、交流、脈流など)の状態で昇圧する。昇圧器5としては、交流電圧を、例えば、コイル、コンデンサなどを用いた簡易な構成により、優れた効率で昇圧できる昇圧器が、用いられる。
 次いで、昇圧器5において昇圧された電力を、交流/直流変換器6において直流電圧に変換した後、バッテリー7に蓄電する。
 このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出し、DC-DCコンバーターで変換する場合に比べて、優れた効率で昇圧して、蓄電することができる。
 そして、上記の第1デバイス3は、電気分極可能なマトリクス、および、そのマトリクスの比熱容量よりも低い比熱容量を有する分散材料からなる複合素子であって、マトリクス中に、分散材料が分散されることにより、形成される。
 このような複合素子は、例えば、マトリクスを形成するためのマトリクス材料の粉末と、分散材料の粉末とを混合し、分散材料をマトリクス材料中に分散させることにより、それらの混合物として得ることができる。
 マトリクス材料としては、例えば、公知の焦電素子材料(例えば、BaTiO、CaTiO、(CaBi)TiO、BaNdTi14、BaSmTi12、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)など)、公知の熱電変換素子材料(例えば、Bi-Te系熱電変換素子(例えば、BiTe、BiTe/SbTeなど))、PbTe、AgSbTe/GeTe、NaCo、CaCoO、SrTiO/SrTiO:Nb、SiGe、β-FeSi、BaSi46、MgSi、MnSi1.73、ZnSb、ZnSb、CeFeCoSb12、LaFeCoSb12、SrTiO/SrTiO:Nb/SrTiO、Siナノワイヤー・アレイ、NaCo、(Ce1-xLa)Ni、(Ce1-xLa)In、CeInCu、NaV、Vなど)、公知のピエゾ素子材料(例えば、水晶(SiO)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、ロッシェル塩(酒石酸カリウム-ナトリウム)(KNaC)、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O)、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、リチウムテトラボレート(Li)、ランガサイト(LaGaSiO14)、窒化アルミニウム(AlN)、電気石(トルマリン)、ポリフッ化ビニリデン(PVDF)など)が挙げられる。
 これらマトリクス材料は、単独使用または2種類以上併用することができる。
 なお、マトリックス材料として、焦電素子材料を用いれば、焦電効果により電気分極する複合素子(焦電系複合素子)が得られ、また、熱電変換素子材料を用いれば、ゼーベック効果により電気分極する複合素子(熱電変換系複合素子)が得られ、さらに、ピエゾ素子材料を用いれば、ピエゾ効果により電気分極する複合素子(ピエゾ系複合素子)が得られる。
 これらマトリックス材料の平均粒子径(測定法:走査型電子顕微鏡)は、例えば、0.1~100μm、好ましくは、0.5~10μmである。
 これは、マトリックス材料の粒径が上記範囲未満になると、結晶粒界の分率が高まるために誘電率の温度依存性が大きくなり、利用できる温度域が狭まるためであり、また、逆にマトリックス材料の粒径が上記範囲を超過すると、マトリックス材料の破壊源寸法が大きくなるために材料の強度が低下するためである。
 また、マトリクス材料、および、そのマトリクス材料から形成されるマトリクスの比熱容量は、例えば、0.01~10J/g・K、好ましくは、0.1~5J/g・Kである。
 これは、マトリクス材料、および、そのマトリクス材料から形成されるマトリクスの比熱容量が低すぎると、熱源からの熱で直ちに材料全体の温度が上昇してしまい、材料と電極などとの界面での熱応力が著しく高くなり、電極が剥離する可能性があり、一方、熱容量が高すぎると、外部からの熱変化に対して材料内部の温度変化が鈍くなるために、本発明で目的とする温度変化を利用した発電が困難になるからである。
 分散材料としては、マトリクス材料、および、そのマトリクス材料から形成されるマトリクスの比熱容量より低い比熱容量を有していれば、特に制限されないが、例えば、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)などの貴金属単体、例えば、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)などの遷移金属単体、および、それらの酸化物、炭酸塩、硝酸塩、硫酸塩、ジケトン金属錯体、ヒドリド錯体などが挙げられる。
 これら分散材料は、単独使用または2種類以上併用することができる。
 分散材料として、好ましくは、200~1000℃、より好ましくは、200~500℃において還元状態にある分散材料が挙げられる。そのような分散材料として、具体的には、例えば、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Pt(白金)、Cr(クロム)、Ni(ニッケル)、Cu(銅)などの、例えば、酸化物、炭酸塩、硝酸塩、硫酸塩、ジケトン金属錯体、ヒドリド錯体などが挙げられる。
 このような分散材料を用いれば、マトリックスの焼結時(後述)にこれら分散材料が還元により分解されるため、微細な分散相を構成することができる。
 これら分散材料の平均粒子径(測定法:走査型電子顕微鏡)は、例えば、0.002~10nm、好ましくは、0.01~3nmである。
 これは、分散相が小さくなりすぎると、マトリックスの焼結(後述)を阻害してしまい、分散相が大きくなりすぎると、マトリックスと分離しやすくなり、複合化による電気伝導性、熱伝導性、機械的特性の効果が減少するためである。
 また、分散材料の比熱容量は、複合素子内の温度を外部から与えられた熱源に連動して変化させる観点から、上記したマトリクス材料、および、そのマトリクス材料から形成されるマトリクスの比熱容量より低く、具体的には、例えば、0.01~10J/g・K、好ましくは、0.1~5J/g・Kである。
 マトリクス材料と分散材料との混合割合は、マトリクス材料100質量部に対して、分散材料が、例えば、0.01~50質量部、好ましくは、0.1~40質量部である。
 そして、この方法では、マトリクス材料と分散材料とを、例えば、乾式混合、湿式混合などの公知の混合方法により混合し、必要により、金型などを用いて成形(例えば、プレス成形)することにより、マトリクス中に分散材料が分散された複合素子を得ることができる。
 また、この方法では、必要により、複合素子を焼結することができる。
 焼結条件としては、例えば、不活性ガス雰囲気下において、加熱温度が、例えば、500~1800℃、好ましくは、800~1500℃であり、加熱時間が、例えば、0.1~24時間、好ましくは、0.5~4時間である。なお、これらの条件は、複合素子の密度が最も向上するように、試料の体積や形状によって、適宜最適化される。
 そして、このような第1デバイス3、詳しくは、電気分極可能なマトリクス、および、マトリクスの比熱容量よりも低い比熱容量を有する分散材料からなる第1デバイス3を用いれば、第1デバイス3として単に電気分極可能なデバイスを用いる場合に比べて、優れた効率で発電することができる。
 また、第1デバイス3が、焦電系複合素子および/またはピエゾ系複合素子(絶縁体(誘電体))である場合には、その比誘電率は、例えば、1以上、好ましくは、100以上、より好ましくは、2000以上である。
 このような発電システム1では、第1デバイス3(絶縁体(誘電体))の比誘電率が高いほど、エネルギー変換効率が高く、高電圧で電力を取り出すことができるが、第1デバイス3の比誘電率が上記下限未満であれば、エネルギー変換効率が低く、得られる電力の電圧が低くなる場合がある。
 なお、第1デバイス3(絶縁体(誘電体))は、熱源2の温度変化によって電気分極するが、その電気分極は、電子分極、イオン分極および配向分極のいずれでもよい。
 例えば、配向分極によって分極が発現する材料(例えば、液晶材料など)では、その分子構造を変化させることにより、発電効率の向上を図ることができるものと期待されている。
 第1デバイス3が、熱電変換系複合素子である場合には、その性能は、例えば、下記式(1)により示される。
        ZT=SσT/κ     (1)
(式中、Zは、性能指数を示し、Tは、絶対温度を示し、Sは、ゼーベック係数を示し、σは、電気伝導率を示し、κは、熱伝導率を示す。)
 このような第1デバイス3(熱電変換系複合素子)において、そのZT値(無次元性能指数)は、例えば、0.3以上である。
 ZT値(無次元性能指数)が上記下限未満である場合には、エネルギー変換効率が低く、得られる電力の電圧が低くなる場合がある。
 また、通常、熱電変換系複合素子は、材料内部の温度差で発電するため、熱伝導率が低いほど、エネルギー変換効率が高くなるが、この発電システム1では、第1デバイス3(熱電変換系複合素子)両端の温度差が必要なく、そのため、第1デバイス3(熱電変換系複合素子)の熱伝導率は、特に制限されない。
 そして、このような発電システム1によれば、温度が経時的に上下する熱源2を用いるため、変動する電圧(例えば、交流電圧)を取り出すことができ、その結果、一定電圧(直流電圧)として取り出し、DC-DCコンバーターで変換する場合に比べて、優れた効率で昇圧して、蓄電することができる。
 とりわけ、このような発電システム1によれば、発電効率の向上を図ることができる。
 すなわち、このような発電システム1によれば、電気分極可能なマトリクス、および、マトリクスの比熱容量よりも低い比熱容量を有する分散材料からなる第1デバイス3を用いるので、第1デバイス3として単に電気分極可能なデバイスを用いる場合に比べて、優れた効率で発電することができる。
 なお、詳しくは図示しないが、第1デバイス3は、その素子の種類や、必要および用途に応じて、図2に示すように、積層配置して用いることができ、さらには、図3に示すように、同一面状に整列配置して用いることもできる。
 第1デバイス3を、積層配置および/または同一面状に整列配置して用いれば、複数の第1デバイス3を同時に電気分極させるとともに、それらを電気的に直列接続することができ、その結果、第1デバイス3を単独で用いる場合に比べ、大きな電力を取り出すことができる。
 なお、上記した説明では、分岐管18の周囲(外側壁)に、第1デバイス3を配置したが、温度変化を平均化することなく第1デバイス3に伝達させるため、分岐管18の内部(例えば、内側壁)に第1デバイス3を配置することが好ましい。
 以下において、本発明を実施例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
<第1実施形態>
  実施例1
 バルク型のピエゾ素子(構造:NbおよびSn添加PZT(Nb/Sn/Pb(Zr,Ti)O)、キュリー点315℃、比誘電率:約2500、製番:H5C、住友金属エレクトロデバイス製)を、25mm×25mm×1.2mmサイズにカットし、その表面および裏面に、銀ペーストを20mm×20mm×0.1mmの大きさとなるように塗布し、銀電極を形成した。
 次いで、得られたピエゾ素子および銀電極を、電気炉によって300℃で1時間熱処理し、サンプルを得た。
 その後、20mm×20mmのアルミテープを用いて、2つの導線(リード線)の一方側を各銀電極上に貼着させるとともに、他方側をデジタルマルチメータに接続した。
 熱源としてヒートガンを用い、その噴射口をピエゾ素子に向けるとともに、噴射口がピエゾ素子から5cm離間するように、ヒートガンおよびピエゾ素子を、それぞれ配置した。
 ヒートガンから熱風を噴き出し、経時的にヒートガンのON/OFFを切り替えることにより、ヒートガンおよび熱風の温度を経時的に上下させ、この温度変化により、ピエゾ素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 なお、ピエゾ素子の温度を赤外線放射温度計により測定し、その温度が、295℃(キュリー点に対して-20℃)~325℃(キュリー点に対して+10℃)の範囲の少なくとも一部を含み、また、その温度変化量が約30℃となるように、熱風温度を調整した。また、加熱と放冷とは、加熱/放冷=5s/10s周期で切り替えた。
 そして、ピエゾ素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図6に示す。
  比較例1
 実施例1から引き続き、ピエゾ素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 なお、ヒートガンによる加熱および冷却では、ピエゾ素子の温度を赤外線放射温度計により測定し、その温度が、295℃(キュリー点に対して-20℃)~325℃(キュリー点に対して+10℃)の範囲を含まないように、さらに、その温度変化量が約150℃となるように、熱風温度を調整した。
 また、加熱と放冷とは、加熱/放冷=12.5s/12.5s周期で切り替えた、
 そして、ピエゾ素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図6に示す。
(考察)
 ピエゾ素子が、キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下されている実施例1によれば、約30℃という僅かな温度変化量であっても、上記温度範囲を含まないように温度が上下されている場合の、温度変化量が約150℃である比較例1と同程度に、優れた効率で発電できることが確認された。
  実施例2
 実施例1と同様にしてサンプルを得て、実施例1と同様の方法により、そのサンプルのピエゾ素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 なお、ヒートガンによる加熱および冷却においては、ピエゾ素子の高温状態における温度と低温状態における温度との中間温度が、140~335℃の範囲で変化するように、熱風温度および噴き付け周期を調整した。また、ピエゾ素子の温度変化量は、30℃とした。
 そして、ピエゾ素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図7に示す。
  実施例3
 ピエゾ素子を熱処理することなく、実施例2と同様の方法により、そのサンプルのピエゾ素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 そして、ピエゾ素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図7に併せて示す。
(考察)
 熱処理されたピエゾ素子、および、熱処理されていないピエゾ素子のいずれにおいても、高温状態における温度と低温状態における温度との中間温度が、295℃(キュリー点-20℃)~325℃(キュリー点+10℃)の範囲であれば、優れた効率で発電できることが確認された。
 また、高温状態における温度と低温状態における温度との中間温度が、315℃(キュリー点)付近であれば、とりわけ優れた発電効率を得られることが確認された。
 一方、高温状態における温度と低温状態における温度との中間温度が、325℃(キュリー点+10℃)を超過すると、発電性能の低下が確認された。これは、ポーリング効果の低下によるものであると推察される。
<第2実施形態>
  実施例4
 酸化アルミニウム(Al、平均粒子径(走査型電子顕微鏡による測定)0.5μm)の粉末50gと、酸化白金(PtO、平均粒子径(走査型電子顕微鏡による測定)2nm)の粉末12gとを秤量し、それらを、ボールミルを用いて混合した。
 次いで、得られた混合粉末を、25mm×25mm×1.2mmの金型に入れ、30MPaで圧力成形した後、1400℃で2時間焼結し、複合素子を得た。
 次いで、得られた複合素子の表面および裏面に、銀ペーストを20mm×20mm×0.1mmの大きさとなるように塗布し、銀電極を形成した。
 次いで、得られた複合素子および銀電極を、常圧焼結炉によって400℃で2時間熱処理し、サンプルを得た。
 その後、20mm×20mmのアルミテープを用いて、2つの導線(リード線)の一方側を各銀電極上に貼着させるとともに、他方側をデジタルマルチメータに接続した。
 熱源としてヒートガンを用い、その噴射口を複合素子に向けるとともに、噴射口が複合素子から5cm離間するように、ヒートガンおよび複合素子を、それぞれ配置した。
 ヒートガンから熱風を噴き出し、経時的にヒートガンのON/OFFを切り替えることにより、ヒートガンおよび熱風の温度を経時的に上下させ、この温度変化により、複合素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 なお、複合素子の温度を赤外線放射温度計により測定し、その温度が、270℃~380℃となるように、熱風温度を調整した。
 そして、複合素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図6に示す。
  実施例5
酸化アルミニウム(Al、平均粒子径(走査型電子顕微鏡による測定)0.5μm)の粉末40gと、と、酸化銅(CuO、平均粒子径(走査型電子顕微鏡による測定)1.5nm)の粉末7.8gとを混合した以外は、実施例4と同様にして、複合素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 そして、複合素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図7に示す。
  比較例2
 酸化白金の粉末を混合しなかった以外は、実施例4と同様にして、素子の温度を経時的に上下させるとともに電気分極させ、電極および導線を介して、発電電圧(電力)を取り出した。
 そして、素子から取り出された電力の電圧変化を電圧計により観測した。発電電圧と温度変化との関係を、図8に示す。
(考察)
 実施例4の複合素子による発電電圧の変位(ΔV)は、約1.3Vであり(図6参照)、また、実施例5の複合素子による発電電圧の変位(ΔV)は、約2.0Vである(図7参照)。
 これらに対して、比較例2の素子による発電電圧の変位(ΔV)は、各実施例における変位(ΔV)よりも低い約1.0Vである(図8参照)。
 これにより、電気分極可能なマトリクス、および、マトリクスの比熱容量よりも低い比熱容量を有する分散材料からなる複合素子を用いれば、単に電気分極可能な素子を用いる場合に比べて、優れた効率で発電できることが確認された。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
 本発明の発電システムは、例えば、自動車エンジンなどの内燃機関や、ボイラー、空調設備などの熱交換器、発電機、モータなどの電動機関、照明などの発光装置などの各種エネルギー利用装置などにおいて、好適に用いられる。

Claims (4)

  1.  温度が経時的に上下する熱源と、
     前記熱源の温度変化により、
      キュリー点に対して-20℃~キュリー点に対して+10℃の温度範囲の少なくとも一部を含むように経時的に温度が上下され、電気分極する第1デバイスと、
     前記第1デバイスから電力を取り出すための第2デバイスと
    を備えることを特徴とする、発電システム。
  2.  前記第1デバイスが、そのキュリー点を含むように温度変化することを特徴とする、請求項1に記載の発電システム。
  3.  温度が経時的に上下する熱源と、
     電気分極可能なマトリクス、および、前記マトリクスの比熱容量よりも低い比熱容量を有する分散材料からなり、前記熱源の温度変化により電気分極する第1デバイスと、
     前記第1デバイスから電力を取り出すための第2デバイスと
    を備えることを特徴とする、発電システム。
  4.  前記分散材料が、200~500℃において、還元状態にあることを特徴とする、請求項3に記載の発電システム。
PCT/JP2012/071713 2011-08-31 2012-08-28 発電システム WO2013031775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12828286.0A EP2752984B1 (en) 2011-08-31 2012-08-28 Power generation system
US14/241,324 US20140217852A1 (en) 2011-08-31 2012-08-28 Power-generating system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-189971 2011-08-31
JP2011189970A JP5855875B2 (ja) 2011-08-31 2011-08-31 発電システム
JP2011-189970 2011-08-31
JP2011189971A JP5855876B2 (ja) 2011-08-31 2011-08-31 発電システム

Publications (1)

Publication Number Publication Date
WO2013031775A1 true WO2013031775A1 (ja) 2013-03-07

Family

ID=47756259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071713 WO2013031775A1 (ja) 2011-08-31 2012-08-28 発電システム

Country Status (3)

Country Link
US (1) US20140217852A1 (ja)
EP (1) EP2752984B1 (ja)
WO (1) WO2013031775A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249193B2 (ja) * 2019-04-03 2023-03-30 株式会社東芝 発電素子、発電モジュール、発電装置、発電システム、及び、発電素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005474A1 (fr) 1994-08-10 1996-02-22 Nippon Furnace Kogyo Kabushiki Kaisha Generateur de gaz a haute temperature
JPH11332266A (ja) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd 発電装置
JP2007288923A (ja) * 2006-04-17 2007-11-01 Toyota Industries Corp 発電装置、及び発電方法
JP2008156201A (ja) * 2006-03-22 2008-07-10 Tdk Corp 圧電磁器組成物および積層型圧電素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149246A (en) * 1958-10-10 1964-09-15 Bell Telephone Labor Inc Thermoelectric generators
US3073974A (en) * 1959-06-17 1963-01-15 Itt Energy converter
US4405029A (en) * 1980-01-02 1983-09-20 Hunt Hugh S Hybrid vehicles
US4425540A (en) * 1981-06-03 1984-01-10 Power Conversion Technology, Inc. Apparatus and method for pyroelectric power conversion
US4620262A (en) * 1984-09-13 1986-10-28 Olsen Randall B Pyroelectric energy converter element comprising vinylidene fluoride-trifluoroethylene copolymer
DE3938890C1 (ja) * 1989-11-24 1990-10-18 Feldmuehle Ag, 4000 Duesseldorf, De
US5644184A (en) * 1996-02-15 1997-07-01 Thermodyne, Inc. Piezo-pyroelectric energy converter and method
CA2355314C (en) * 1998-12-14 2005-08-02 Her Majesty, The Queen, In Right Of Canada As Represented By The Ministe R Of Natural Resources Pyroelectric conversion system
KR100386472B1 (ko) * 2000-11-16 2003-06-02 한국에너지기술연구원 자동차배열을 이용한 열전발전장치
DE60335035D1 (de) * 2002-12-26 2010-12-30 Toyota Motor Co Ltd Abgasanlage
TWI231644B (en) * 2003-06-12 2005-04-21 Tung Chiou Yue Application of low-temperature solid-state type thermo-electric power converter
US7098547B1 (en) * 2004-02-20 2006-08-29 Phillip Burns Method and apparatus for converting energy to electricity
US7397169B2 (en) * 2004-03-19 2008-07-08 Lawrence Livermore National Security, Llc Energy harvesting using a thermoelectric material
US7465871B2 (en) * 2004-10-29 2008-12-16 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
DE102009016209B4 (de) * 2009-04-03 2014-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer pyroelektrischen Polymerzusammensetzung sowie pyroelektrisches Bauteil und Verwendungszwecke
DE102009002596B4 (de) * 2009-04-23 2012-11-08 Ford Global Technologies, Llc Verbrennungsmotor mit thermoelektrischem Generator
US8035274B2 (en) * 2009-05-14 2011-10-11 The Neothermal Energy Company Apparatus and method for ferroelectric conversion of heat to electrical energy
DE102009032038A1 (de) * 2009-07-07 2011-01-13 Emcon Technologies Germany (Augsburg) Gmbh Abgasbehandlungsvorrichtung
DE102010011472A1 (de) * 2010-03-15 2011-09-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Abgaswärmenutzung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005474A1 (fr) 1994-08-10 1996-02-22 Nippon Furnace Kogyo Kabushiki Kaisha Generateur de gaz a haute temperature
JPH11332266A (ja) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd 発電装置
JP2008156201A (ja) * 2006-03-22 2008-07-10 Tdk Corp 圧電磁器組成物および積層型圧電素子
JP2007288923A (ja) * 2006-04-17 2007-11-01 Toyota Industries Corp 発電装置、及び発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752984A4

Also Published As

Publication number Publication date
EP2752984A1 (en) 2014-07-09
EP2752984A4 (en) 2015-12-02
EP2752984B1 (en) 2017-11-15
US20140217852A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2013031774A1 (ja) 発電システム
US9190597B2 (en) Power-generating system
JP5160784B2 (ja) 熱電変換素子モジュール
EP2916451B1 (en) Electricity-generating system
EP2763201B1 (en) Power generating system
JP5855876B2 (ja) 発電システム
JP5759865B2 (ja) 発電システム
WO2013031775A1 (ja) 発電システム
JP5829876B2 (ja) 発電システム
JP5855875B2 (ja) 発電システム
JP5829877B2 (ja) 発電システム
JP6355379B2 (ja) 発電システム
WO2017111161A1 (ja) 発電材料、発電素子および発電システム
JP5968698B2 (ja) 発電システム
WO2015045840A1 (ja) 発電システム
JP6150677B2 (ja) 発電システム
JP2015070747A (ja) 発電システム
JP2020054200A (ja) 発電システム
JP2018125919A (ja) 発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828286

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012828286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241324

Country of ref document: US

Ref document number: 2012828286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE