WO2013031203A1 - 変倍光学系および撮像装置 - Google Patents

変倍光学系および撮像装置 Download PDF

Info

Publication number
WO2013031203A1
WO2013031203A1 PCT/JP2012/005428 JP2012005428W WO2013031203A1 WO 2013031203 A1 WO2013031203 A1 WO 2013031203A1 JP 2012005428 W JP2012005428 W JP 2012005428W WO 2013031203 A1 WO2013031203 A1 WO 2013031203A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
refractive power
variable magnification
Prior art date
Application number
PCT/JP2012/005428
Other languages
English (en)
French (fr)
Inventor
伸吉 池田
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013531094A priority Critical patent/JP5809277B2/ja
Priority to CN201280041685.3A priority patent/CN103765288B/zh
Publication of WO2013031203A1 publication Critical patent/WO2013031203A1/ja
Priority to US14/175,431 priority patent/US9235034B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145117Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +---+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/17Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +--

Definitions

  • the present invention relates to a variable magnification optical system and an imaging apparatus, and more specifically, a variable magnification optical system that can be used for a video camera, an electronic still camera, and the like, and can be suitably used particularly for a surveillance camera application, and the variable magnification optical system.
  • the present invention relates to an imaging apparatus provided.
  • CCTV Closed-circuit
  • imaging devices such as video cameras, electronic still cameras, and surveillance cameras that use an imaging device such as a CCD (Charge-Coupled Device) or CMOS (Complementary-Metal-Oxide-Semiconductor) as a recording medium.
  • CCD Charge-Coupled Device
  • CMOS Complementary-Metal-Oxide-Semiconductor
  • Variable Television has been developed.
  • a variable power optical system for CCTV a four-group structure has many advantages such as simplicity and ease of handling of the lens barrel / zoom mechanism, and many have been proposed (for example, the following patents). Reference 1-7).
  • Patent Document 8 in order from the object side, a first lens unit having a positive refractive power that is fixed at the time of zooming, a second lens unit having a negative refractive power that moves at the time of zooming, and at the time of zooming
  • a variable power optical system having a five-unit structure including a third lens unit having a negative refractive power for movement, a fourth lens unit having a negative refractive power for movement during zooming, and a fifth lens unit having a positive refractive power fixed during zooming.
  • a system has been proposed.
  • This variable magnification optical system divides the second lens group of the above-mentioned four-group variable magnification optical system so that the divided lens groups approach each other at the wide-angle end and the telephoto end and move away in the intermediate variable magnification range. ing. Although detailed lens data is not disclosed, there are many unclear points. However, in this lens configuration, there is no difference from the conventional four-group variable magnification optical system at the wide-angle end and the telephoto end. It cannot be resolved.
  • Patent Document 9 a variable power optical system with high magnification is proposed, but the diameter of the first lens group is large and the weight is heavy.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a variable magnification optical system having high optical performance while being small and lightweight, and an imaging device including the variable magnification optical system. It is.
  • variable power optical system of the present invention includes, in order from the object side, a first lens group having a positive refractive power that is fixed at the time of zooming, a second lens group having a negative refractive power, and a third lens having a negative refractive power. Group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power which is fixed at the time of zooming.
  • the distance between the first lens group and the second lens group always increases, the distance between the second lens group and the third lens group always increases, the distance between the third lens group and the fourth lens group changes, and the fourth lens
  • the second lens group, the third lens group, and the fourth lens group move so that the distance between the group and the fifth lens group changes.
  • the fourth lens group of the zoom optical system according to the present invention is configured to move once to the object side and then reverse to the image side when zooming from the wide angle end to the telephoto end.
  • the distance between the third lens group and the fourth lens group of the variable magnification optical system of the present invention is the smallest at the focal length from the wide angle than the telephoto end during the variable magnification, and the distance at the wide angle end is It is preferable that the distance is larger than the distance at the telephoto end.
  • the first lens group of the variable magnification optical system according to the present invention includes, in order from the object side, a first f lens group having two negative lenses and having negative refractive power, and a first m lens group having positive refractive power. And a first r lens group having a positive refractive power, and the first m lens group is preferably moved in the optical axis direction for focusing.
  • the first m lens group is preferably a cemented lens composed of a concave meniscus lens having a convex surface facing the object side in order from the object side and a biconvex lens.
  • the zoom optical system according to the present invention may be configured to satisfy the following conditional expression (1) when the focal length of the second lens group is f2 and the focal length of the third lens group is f3. preferable.
  • the second lens group of the variable magnification optical system according to the present invention includes only a concave meniscus lens having a convex surface facing the object side.
  • the number of lenses in the above is the number of lenses that are constituent elements. For example, when there is a cemented lens in which a plurality of single lenses of different materials are cemented, the number of single lenses constituting the cemented lens is counted.
  • the convex meniscus lens means a meniscus lens having a positive refractive power
  • the concave meniscus lens means a meniscus lens having a negative refractive power
  • the imaging apparatus of the present invention is characterized by including the above-described variable magnification optical system of the present invention.
  • variable power optical system of the present invention includes, in order from the object side, a first lens group having a positive refractive power that is fixed at the time of zooming, a second lens group having a negative refractive power, and a third lens having a negative refractive power. Group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power which is fixed at the time of zooming.
  • the distance between the first lens group and the second lens group always increases, the distance between the second lens group and the third lens group always increases, the distance between the third lens group and the fourth lens group changes, and the fourth lens
  • the second lens group, the third lens group, and the fourth lens group are moved so that the distance between the lens group and the fifth lens group changes, so that high optical performance is achieved while being small and lightweight. can do.
  • the imaging apparatus of the present invention includes the variable magnification optical system of the present invention, it is possible to obtain a high-quality image while being small and light.
  • FIGS. 1A to 1C are cross-sectional views showing a lens configuration of a variable magnification optical system (common to Example 1) according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views showing the lens configuration of the variable magnification optical system according to Example 2 of the present invention.
  • 3A to 3C are cross-sectional views showing the lens configuration of the variable magnification optical system according to Example 3 of the present invention.
  • 4A to 4C are cross-sectional views showing the lens configuration of a variable magnification optical system according to Example 4 of the present invention.
  • 5A to 5C are cross-sectional views showing the lens configuration of the variable magnification optical system according to Example 5 of the present invention.
  • FIGS. 6A to 6C are cross-sectional views showing the lens configuration of the variable magnification optical system according to Example 6 of the present invention.
  • FIGS. 7A to 7L are aberration diagrams of the variable magnification optical system according to Example 1 of the present invention.
  • FIGS. 8A to 8L are diagrams showing aberrations of the variable magnification optical system according to Example 2 of the present invention.
  • FIGS. 9A to 9L are diagrams showing aberrations of the variable magnification optical system according to Example 3 of the present invention.
  • FIGS. 10A to 10L are aberration diagrams of the variable magnification optical system according to Example 4 of the present invention.
  • FIGS. 11A to 11L are diagrams showing aberrations of the variable magnification optical system according to Example 5 of the present invention.
  • FIGS. 12A to 12L are diagrams showing aberrations of the variable magnification optical system according to Example 6 of the present invention.
  • 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the
  • FIG. 1A to FIG. 1C are cross-sectional views showing a configuration example of a variable magnification optical system according to an embodiment of the present invention.
  • the configuration examples shown in FIGS. 1A to 1C are the same as the configuration of the variable magnification optical system of Example 1 described later.
  • the left side is the object side
  • the right side is the image side.
  • the variable magnification optical system includes, in order from the object side along the optical axis Z, a first lens group G1 having a positive refractive power that is fixed at the time of variable magnification, a second lens group G2 having a negative refractive power, A third lens group G3 having negative refractive power, a fourth lens group G4 having negative refractive power, an aperture stop St fixed during zooming, and a fifth lens having positive refractive power fixed during zooming
  • the lens group G5 includes a lens group G5.
  • the distance between the first lens group G1 and the second lens group G2 is always larger than that at the wide-angle end, and the second lens group G2 and the second lens group G2
  • the distance between the third lens group G3 is always increased, the distance between the third lens group G3 and the fourth lens group G4 is changed, and the distance between the fourth lens group G4 and the fifth lens group G5 is changed.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 are configured to move.
  • the aperture stop St shown in FIG. 1 does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • FIG. 1 shows an example in which parallel plate-like optical members PP1 and PP2 assuming these are disposed between the fifth lens group G5 and the image plane Sim.
  • a first lens unit having a positive refractive power that is fixed during zooming a second lens unit having a negative refractive power that moves during zooming
  • zooming The conventional variable power optical system having a four-group structure consisting of a third lens unit having a negative refractive power that moves in time and a fourth lens group having a positive refractive power that is fixed at the time of zooming has a high magnification while maintaining high optical performance.
  • the outer diameter of the first lens group increases and the weight increases.
  • the negative refractive power of the second lens group becomes excessive, and the optical performance deteriorates.
  • Patent Document 8 in order from the object side, a first lens unit having a positive refractive power that is fixed at the time of zooming, a second lens unit having a negative refractive power that moves at the time of zooming, and at the time of zooming
  • a variable power optical system having a five-unit structure including a third lens unit having a negative refractive power for movement, a fourth lens unit having a negative refractive power for movement during zooming, and a fifth lens unit having a positive refractive power fixed during zooming.
  • a system has been proposed.
  • This variable magnification optical system divides the second lens group of the above-mentioned four-group variable magnification optical system so that the divided lens groups approach each other at the wide-angle end and the telephoto end and move away in the intermediate variable magnification range. ing. Although detailed lens data is not disclosed, there are many unclear points. However, in this lens configuration, there is no difference from the conventional four-group variable magnification optical system at the wide-angle end and the telephoto end. It cannot be resolved. In this Patent Document 8, it is considered that the main purpose is to improve the performance in the intermediate magnification range.
  • the second lens group of the variable magnification optical system having the above-described four-group configuration is divided, and the magnification between the divided lens groups is closer to the telephoto end than to the wide angle end during zooming.
  • the main purpose is to increase the zoom ratio, and the diameter of the first lens group is still large and heavy.
  • the second lens group of the zoom optical system having the four-group configuration is the same, but when zooming from the wide angle end to the telephoto end, The difference is that the distance between the lens groups divided by the wide-angle end (second lens group G2 and third lens group G3 in the variable-power optical system having a five-group structure) is always increased.
  • this configuration it is possible to suppress spherical aberration that tends to be overcorrected particularly on the telephoto side when the magnification is increased while maintaining a reduction in size.
  • the focal position will change.
  • the fourth lens group G4 of the variable magnification optical system temporarily moves to the object side before changing the image from the wide angle end to the telephoto end. It is configured to reversely move to the side.
  • the distance between the third lens group G3 and the fourth lens group G4 of the variable magnification optical system according to the embodiment of the present invention is minimum at the focal length from the telephoto end to the wide angle end during zooming, and at the wide angle end. Is configured to be wider than the distance at the telephoto end. As a result, it is possible to suppress fluctuations in field curvature in the intermediate zoom range.
  • variable magnification optical system is configured to satisfy the following conditional expression (1) when the focal length of the second lens group is f2 and the focal length of the third lens group is f3.
  • conditional expression (1) has been. If the lower limit of conditional expression (1) is not reached, the refractive power of the second lens group G2 becomes too high, leading to deterioration of astigmatism and distortion mainly at the wide-angle end. On the other hand, if the upper limit of conditional expression (1) is exceeded, the refractive power of the third lens group G3 will be too high, leading to deterioration of spherical aberration on the telephoto side.
  • the second lens group G2 of the variable magnification optical system includes only a concave meniscus lens L8 having a convex surface directed toward the object side. This makes it possible to keep the diameter of the first lens group G1 small while keeping the lens length of the second lens group G2 to a minimum and the entire lens length to a minimum.
  • the first lens group of the variable magnification optical system includes, in order from the object side, a first f lens group G1f having two negative lenses L1 and L2 and having negative refractive power, and a positive
  • the first m lens group G1m having refractive power and the first r lens group G1r having positive refractive power are configured to perform focusing by moving the first m lens group G1m in the optical axis direction.
  • the first f lens group G1f includes, in order from the object side, a concave meniscus lens L1 having a convex surface directed toward the object side and a negative lens L2.
  • the first m lens group G1m includes a cemented lens including a concave meniscus lens L3 having a convex surface directed toward the object side and a biconvex lens L4 in order from the object side.
  • the first r lens group G1r includes, in order from the object side, a positive first r1 lens L5 having a strong convex surface directed toward the object side, a biconvex first r2 lens L6, and a first meniscus first r3 lens having a convex surface directed toward the object side. L7.
  • conditional expression (3) may be satisfy
  • conditional expression (4) may be satisfy
  • the first f lens group G1f and the first r lens group G1r are each configured to have at least one aspheric surface.
  • an aspherical surface for the first f lens group G1f it is possible to prevent an increase in distortion at the wide angle end.
  • spherical aberration at the telephoto end can be suppressed by using an aspheric surface for the first r lens group G1r.
  • variable magnification optical system satisfies the following conditional expressions (1-1), (3-1), and (4-1) instead of the conditional expressions (1), (3), and (4), respectively. More preferred. By satisfying conditional expressions (1-1), (3-1), and (4-1), the effects obtained by satisfying conditional expressions (1), (3), and (4) are further enhanced. Can do. As a preferred embodiment, it is not always necessary to satisfy all of the conditional expressions (1-1), (3-1), and (4-1), but the conditional expressions (1-1), (3-1), ( Any one of 4-1) or any combination may be satisfied.
  • variable magnification optical system As the material disposed closest to the object side, specifically, glass is preferably used, or transparent ceramics may be used.
  • glass or plastic As the material of the lens on which the aspherical shape is formed, glass or plastic can be used. When plastic is used, it is possible to reduce weight and cost.
  • variable magnification optical system When the variable magnification optical system is used in harsh environments, a protective multilayer coating is preferably applied. Further, in addition to the protective coat, an antireflection coat for reducing ghost light during use may be applied.
  • the optical members PP1 and PP2 are disposed between the lens system and the image plane Sim.
  • a low-pass filter and various filters that cut a specific wavelength range are disposed.
  • these various filters may be arranged between the lenses, or a coating having the same action as the various filters may be applied to the lens surface of any lens.
  • FIGS. 1A, 1B, and 1C Lens arrangements at the wide-angle end, the intermediate focal length state, and the telephoto end of the variable magnification optical system of Example 1 are shown in FIGS. 1A, 1B, and 1C, respectively.
  • the optical member PP is also shown in FIGS. 1A to 1C.
  • the left side is the object side
  • the right side is the image side
  • the illustrated aperture stop St necessarily represents the size and shape. It is not a thing but shows the position on the optical axis Z.
  • FIGS. 2A, 2B, and 2C lens arrangements at the wide-angle end, intermediate focal length state, and telephoto end of the variable magnification optical system of Example 2 are shown in FIGS. 2A, 2B, and 2C, respectively.
  • FIG. 3A, FIG. 3B, and FIG. 3C show lens arrangements at the wide-angle end, the intermediate focal length state, and the telephoto end, respectively, of the variable magnification optical system 3 shown in FIG.
  • the lens arrangement at the wide-angle end, intermediate focal length state, and telephoto end of the system is shown in FIGS. 4 (A), 4 (B), and 4 (C), respectively.
  • the lens arrangement at the intermediate focal length state and the telephoto end are shown in FIGS. 5A, 5B, and 5C, respectively, and the wide-angle end, intermediate focal length state of the variable magnification optical system of Example 6, Lens arrangements at the telephoto end are shown in FIGS. 6 (A), 6 (B), and 6 (C), respectively.
  • Table 1 shows basic lens data of the zoom optical system of Example 1
  • Table 2 shows data related to zooming
  • Table 3 shows data related to focus
  • Tables 4 and 5 show aspheric data
  • Tables 6 to 30 show basic lens data, data on zooming, and data aspheric data on focus of the zooming optical systems of Examples 2 to 6, respectively.
  • the meaning of the symbols in the table will be described using the example 1 as an example, but the same applies to the examples 2 to 6.
  • the i-th (i 1, 2, 3,%) Surface number that sequentially increases toward the image side with the most object-side component surface being first in the column of Si.
  • the Ri column shows the radius of curvature of the i-th surface
  • the Di column shows the surface interval on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the Ndi column shows the refractive index for the d-line (wavelength 587.6 nm) of the medium between the i-th surface and the (i + 1) -th surface, and the most object side optical element is the first in the ⁇ dj column.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the basic lens data includes the aperture stop St and the optical member PP.
  • the phrase (aperture stop) is described together with the surface number.
  • DD [surface number] is described in the surface interval column where the interval changes at the time of zooming.
  • DD [4] is the distance between the first f lens group G1f and the first m lens group G1m
  • DD [7] is the distance between the first m lens group G1m and the first r lens group G1r.
  • DD [13] is the distance between the first lens group G1 and the second lens group G2
  • DD [15] is the distance between the second lens group G2 and the third lens group G3.
  • DD [23] Is the distance between the third lens group G3 and the fourth lens group G4, and DD [26] is the distance between the fourth lens group G4 and the aperture stop St.
  • the data on zooming in Table 2 includes zoom magnification (magnification ratio), focal length f, back focus Bf (air conversion distance), F number Fno. And the values of the total angle of view 2 ⁇ , DD [13], DD [15], DD [23], DD [26].
  • Table 3 shows the values of DD [4] and DD [7] at the wide-angle end, the intermediate focal length state, and the telephoto end, respectively.
  • the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
  • the aspheric surface data in Tables 4 and 5 shows the surface number Si of the aspheric surface and the aspheric coefficients related to these aspheric surfaces.
  • Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m (A)
  • Zd Depth of aspheric surface (length of perpendicular drawn from a point on the aspherical surface of height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C Reciprocal number KA of paraxial radius of curvature
  • Table 31 shows values corresponding to the conditional expressions (1) to (4) of the variable magnification optical systems of Examples 1 to 6.
  • the d-line is used as a reference wavelength, and the values shown in the above data table for zooming and the following table 31 are for this reference wavelength.
  • FIGS. 7A to 7L show aberration diagrams of the variable magnification optical system of Example 1.
  • FIG. FIGS. 7A, 7B, 7C, and 7D show spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the wide-angle end, respectively.
  • 7 (F), FIG. 7 (G), and FIG. 7 (H) respectively show spherical aberration, astigmatism, distortion (distortion), and lateral chromatic aberration in the intermediate focal length state.
  • FIGS. 7J, 7K, and 7L respectively show spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the telephoto end.
  • Each aberration diagram showing spherical aberration, astigmatism, and distortion shows aberrations with the d-line (wavelength 587.6 nm) as the reference wavelength.
  • the aberrations for the d-line (wavelength 587.6 nm), C-line (wavelength 656.3 nm), F-line (wavelength 486.1 nm), and g-line (wavelength 435.8 nm) are shown as solid lines. , Long broken line, short broken line, gray line.
  • the sagittal and tangential aberrations are indicated by a solid line and a broken line, respectively.
  • Fno Of spherical aberration diagram. Means F number, and ⁇ in other aberration diagrams means half angle of view.
  • FIGS. 8A to 8L Aberration diagrams at the wide-angle end, intermediate focal length state, and telephoto end of the variable power optical system of Example 2 are shown in FIGS. 8A to 8L, and the variable power optical system of Example 3 is shown.
  • Aberration diagrams at the wide-angle end, the intermediate focal length state, and the telephoto end are shown in FIGS. 9A to 9L, and each of the variable-power optical system of Example 4 at the wide-angle end, intermediate focal length state, and telephoto end is shown.
  • FIGS. 10 (A) to 10 (L) Aberration diagrams at the wide-angle end, intermediate focal length state, and telephoto end of the variable magnification optical system of Example 5 are shown in FIGS.
  • FIGS. 12A to 12L show aberration diagrams at the wide-angle end, the intermediate focal length state, and the telephoto end of the zoom optical system of Example 6 shown in FIG.
  • FIG. 13 shows a schematic configuration diagram of an imaging apparatus using the variable magnification optical system of the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
  • the imaging device include a monitoring camera, a video camera, and an electronic still camera that use a solid-state imaging device such as a CCD or CMOS as a recording medium.
  • An imaging apparatus 10 illustrated in FIG. 13 includes a variable power optical system 1, a filter 2 disposed on the image side of the variable power optical system 1, and an image sensor 3 that captures an image of a subject formed by the variable power optical system. And a signal processing unit 4 that performs arithmetic processing on an output signal from the image pickup device 3, and a zoom control unit 5 that performs zooming of the zoom optical system 1 and focus adjustment by the zooming.
  • the variable magnification optical system 1 includes, in order from the object side, a first lens group G1 having a positive refractive power that is fixed when changing magnification, a second lens group G2 having a negative refractive power that moves when changing magnification, and a variable magnification.
  • the fifth lens group G5 having refractive power.
  • FIG. 13 schematically shows each lens group.
  • the imaging device 3 converts an optical image formed by the variable magnification optical system 1 into an electric signal, and the imaging surface thereof is arranged so as to coincide with the image plane of the variable magnification optical system.
  • a CCD or a CMOS can be used as the imaging element 3.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens component are not limited to the values shown in the above numerical examples, and can take other values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

【課題】変倍光学系において、小型かつ軽量でありながら、高い光学性能を実現する。 【解決手段】変倍光学系は、光軸(Z)に沿って、物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群(G1)と、負の屈折力を有する第2レンズ群(G2)と、負の屈折力を有する第3レンズ群(G3)、負の屈折力を有する第4レンズ群(G4)と、変倍時に固定されている開口絞り(St)と、変倍時固定で正の屈折力を有する第5レンズ群(G5)とからなり、広角端から望遠端に変倍する際に、広角端に較べて、第1レンズ群(G1)と第2レンズ群(G2)との間隔が常に広がり、第2レンズ群(G2)と第3レンズ群(G3)との間隔が常に広がり、第3レンズ群(G3)と第4レンズ群(G4)との間隔が変化し、第4レンズ群(G4)と第5レンズ群(G5)との間隔が変化するように、第2レンズ群(G2)、第3レンズ群(G3)、第4レンズ群(G4)が移動するように構成されている。

Description

変倍光学系および撮像装置
 本発明は、変倍光学系および撮像装置に関し、より詳しくは、ビデオカメラや電子スチルカメラ等に使用可能で、特に監視カメラ用途として好適に使用可能な変倍光学系および該変倍光学系を備えた撮像装置に関するものである。
 従来、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を記録媒体とするビデオカメラや電子スチルカメラ、監視カメラなどの撮像装置に用いられる光学系として、CCTV(Closed-circuit Television)用変倍光学系が開発されている。このようなCCTV用変倍光学系として、4群構成のものは、鏡胴・変倍機構の簡素さおよび扱い易さ等の利点が多く、多くのものが提案されている(例えば、下記特許文献1~7参照)。
 また、4群構成と比較して光学系の構成は複雑化するものの、高い光学性能を持たすために5群構成としたものについても、多くのものが提案されている(例えば、下記特許文献8、9参照)。
特開平9-258102号公報 特開2001-116993号公報 特開2001-228396号公報 特開2003-287678号公報 特開2004-109993号公報 特開2004-126631号公報 特開2005-84409号公報 特開平7-13075号公報 特開2011-81063号公報
 しかしながら、特許文献1~7で提案されているような、物体側から順に、変倍時固定の正の屈折力の第1レンズ群、変倍時移動の負の屈折力の第2レンズ群、変倍時移動の負の屈折力の第3レンズ群、変倍時固定の正の屈折力の第4レンズ群からなる4群構成の変倍光学系では、高い光学性能を維持したまま高倍率化しようとすると第1レンズ群の外径が大きくなり、重量が重くなるという欠点があった。逆に、小型化を達成しようとすると、第2レンズ群の負の屈折力が過大になって光学性能が低下するという欠点があった。
 それを解決する手段として、特許文献8では、物体側から順に、変倍時固定の正の屈折力の第1レンズ群、変倍時移動の負の屈折力の第2レンズ群、変倍時移動の負の屈折力の第3レンズ群、変倍時移動の負の屈折力の第4レンズ群、変倍時固定の正の屈折力の第5レンズ群からなる5群構成の変倍光学系が提案されている。この変倍光学系は上記4群構成の変倍光学系の第2レンズ群を分割し、分割されたレンズ群同士が広角端および望遠端において接近し、中間変倍域において遠ざかるように構成されている。詳細なレンズデータが開示されていないため不明な点が多いが、このレンズ構成では広角端、望遠端においては何ら従来の4群構成の変倍光学系と変わる点はないため、上記の問題を解消することはできない。
 また、特許文献9では、高倍率な変倍光学系が提案されているが、第1レンズ群の径が大きく重量が重くなる。
 本発明は、上記事情に鑑みてなされたもので、小型かつ軽量でありながら、高い光学性能を有する変倍光学系および該変倍光学系を備えた撮像装置を提供することを目的とするものである。
 本発明の変倍光学系は、物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、負の屈折力を有する第4レンズ群、変倍時固定で正の屈折力を有する第5レンズ群からなり、広角端から望遠端に変倍する際に、広角端に較べて、第1レンズ群と第2レンズ群との間隔が常に広がり、第2レンズ群と第3レンズ群との間隔が常に広がり、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と第5レンズ群との間隔が変化するように、第2レンズ群、第3レンズ群、第4レンズ群が移動することを特徴とするものである。
 本発明の変倍光学系の第4レンズ群は、広角端から望遠端に変倍する際に、一旦物体側に移動してから像側に反転移動するように構成することが好ましい。
 また、本発明の変倍光学系の第3レンズ群と第4レンズ群との間隔は、変倍中において望遠端よりも広角よりの焦点距離で最小となり、かつ、広角端での間隔が、望遠端での間隔よりも広くなるように構成することが好ましい。
 また、本発明の変倍光学系の第1レンズ群は、物体側から順に、2枚の負レンズからなり負の屈折力を有する第1fレンズ群と、正の屈折力を有する第1mレンズ群と、正の屈折力を有する第1rレンズ群とからなり、第1mレンズ群を光軸方向に移動させてフォーカシングを行うように構成することが好ましい。
 この場合、第1mレンズ群は、物体側から順に物体側に凸面を向けた凹メニスカスレンズと両凸レンズとからなる接合レンズとすることが好ましい。
 また、本発明の変倍光学系においては、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3としたとき、下記条件式(1)を満たすように構成することが好ましい。
   0.10<f2/f3<2.00 …(1)
 また、本発明の変倍光学系の第2レンズ群は、物体側に凸面を向けた凹メニスカスレンズのみから構成することが好ましい。
 この場合、凹メニスカスレンズの屈折率をLN2としたとき、下記条件式(2)を満たすように構成することが好ましい。
   2.0≦LN2 …(2)
 なお、上記における各レンズの屈折力の符号や面形状は、当該レンズが非球面レンズの場合は近軸領域におけるものとする。
 また、上記におけるレンズ枚数は、構成要素となるレンズの枚数である。例えば、材質の異なる複数の単レンズが接合された接合レンズがある場合は、この接合レンズを構成する単レンズの枚数で数えるものとする。
 また、凸メニスカスレンズとは正の屈折力を有するメニスカスレンズのことを意味し、凹メニスカスレンズとは負の屈折力を有するメニスカスレンズのことを意味する。
 本発明の撮像装置は、上記記載の本発明の変倍光学系を備えたことを特徴とするものである。
 本発明の変倍光学系は、物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、負の屈折力を有する第4レンズ群、変倍時固定で正の屈折力を有する第5レンズ群からなり、広角端から望遠端に変倍する際に、広角端に較べて、第1レンズ群と第2レンズ群との間隔が常に広がり、第2レンズ群と第3レンズ群との間隔が常に広がり、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と第5レンズ群との間隔が変化するように、第2レンズ群、第3レンズ群、第4レンズ群が移動するようにしているため、小型かつ軽量でありながら、高い光学性能を実現することができる。
 また、本発明の撮像装置は、本発明の変倍光学系を備えているため、小型かつ軽量でありながら、高画質の映像を得ることができる。
図1(A)~図1(C)は本発明の一実施形態にかかる変倍光学系(実施例1と共通)のレンズ構成を示す断面図 図2(A)~図2(C)は本発明の実施例2の変倍光学系のレンズ構成を示す断面図 図3(A)~図3(C)は本発明の実施例3の変倍光学系のレンズ構成を示す断面図 図4(A)~図4(C)は本発明の実施例4の変倍光学系のレンズ構成を示す断面図 図5(A)~図5(C)は本発明の実施例5の変倍光学系のレンズ構成を示す断面図 図6(A)~図6(C)は本発明の実施例6の変倍光学系のレンズ構成を示す断面図 図7(A)~図7(L)は本発明の実施例1の変倍光学系の各収差図 図8(A)~図8(L)は本発明の実施例2の変倍光学系の各収差図 図9(A)~図9(L)は本発明の実施例3の変倍光学系の各収差図 図10(A)~図10(L)は本発明の実施例4の変倍光学系の各収差図 図11(A)~図11(L)は本発明の実施例5の変倍光学系の各収差図 図12(A)~図12(L)は本発明の実施例6の変倍光学系の各収差図 本発明の実施形態にかかる撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1(A)~図1(C)に、本発明の一実施形態にかかる変倍光学系の構成例の断面図を示す。図1(A)~図1(C)に示す構成例は、後述の実施例1の変倍光学系の構成と共通である。図1(A)~図1(C)においては、左側が物体側、右側が像側である。
 この変倍光学系は、光軸Zに沿って、物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3、負の屈折力を有する第4レンズ群G4と、変倍時に固定されている開口絞りStと、変倍時固定で正の屈折力を有する第5レンズ群G5とからなり、広角端から望遠端に変倍する際に、広角端に較べて、第1レンズ群G1と第2レンズ群G2との間隔が常に広がり、第2レンズ群G2と第3レンズ群G3との間隔が常に広がり、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が変化するように、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4が移動するように構成されている。なお、図1に示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 この変倍光学系を撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、光学系と像面Simの間にカバーガラス、プリズム、赤外線カットフィルタやローパスフィルタなどの各種フィルタを配置することが好ましいため、図1では、これらを想定した平行平板状の光学部材PP1、PP2を第5レンズ群G5と像面Simとの間に配置した例を示している。
 特許文献1~7で提案されているような、物体側から順に、変倍時固定の正の屈折力の第1レンズ群、変倍時移動の負の屈折力の第2レンズ群、変倍時移動の負の屈折力の第3レンズ群、変倍時固定の正の屈折力の第4レンズ群からなる従来の4群構成の変倍光学系では、高い光学性能を維持したまま高倍率化しようとすると第1レンズ群の外径が大きくなり、重量が重くなるという欠点があった。逆に、小型化を達成しようとすると、第2レンズ群の負の屈折力が過大になって光学性能が低下するという欠点があった。
 それを解決する手段として、特許文献8では、物体側から順に、変倍時固定の正の屈折力の第1レンズ群、変倍時移動の負の屈折力の第2レンズ群、変倍時移動の負の屈折力の第3レンズ群、変倍時移動の負の屈折力の第4レンズ群、変倍時固定の正の屈折力の第5レンズ群からなる5群構成の変倍光学系が提案されている。この変倍光学系は上記4群構成の変倍光学系の第2レンズ群を分割し、分割されたレンズ群同士が広角端および望遠端において接近し、中間変倍域において遠ざかるように構成されている。詳細なレンズデータが開示されていないため不明な点が多いが、このレンズ構成では広角端、望遠端においては何ら従来の4群構成の変倍光学系と変わる点はないため、上記の問題を解消することはできない。この特許文献8では、中間変倍域での性能を向上させることが主目的と考えられる。
 また、特許文献9では、上記4群構成の変倍光学系の第2レンズ群を分割し、分割されたレンズ群同士の間隔が変倍中において広角端よりも望遠端の方が近い変倍位置で最小となるように構成されているが、これは変倍比を大きく取ることが主目的であると考えられ、依然として第1レンズ群の径は大きく重量が重いままである。
 本発明の実施形態にかかる変倍光学系においては、上記4群構成の変倍光学系の第2レンズ群を分割する点は同様であるが、広角端から望遠端に変倍する際に、広角端に較べて分割されたレンズ群(5群構成の変倍光学系における第2レンズ群G2と第3レンズ群G3)同士の間隔が常に広がるように構成した点で異なっている。このように構成したことにより、小型化を維持したまま高倍率化する際に特に望遠側で補正過剰となりやすい球面収差を押さえることが可能となる。
 変倍時において、第1レンズ群G1および第5レンズ群G5を像面に対して固定した状態で、第2レンズ群G2および第3レンズ群G3を移動させると、焦点位置が変動してしまう。このような焦点移動を補正するため、本発明の実施形態にかかる変倍光学系の第4レンズ群G4は、広角端から望遠端に変倍する際に、一旦物体側に移動してから像側に反転移動するように構成されている。
 また、本発明の実施形態にかかる変倍光学系の第3レンズ群G3と第4レンズ群G4の間隔は、変倍中において望遠端より広角よりの焦点距離で最小となり、かつ、広角端での間隔が、望遠端での間隔よりも広くなるように構成されている。これにより、中間変倍域での像面湾曲の変動を押さえることが可能となる。
 また、本発明の実施形態にかかる変倍光学系は、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3としたとき、下記条件式(1)を満たすように構成されている。この条件式(1)の下限を下回ると、第2レンズ群G2の屈折力が高くなり過ぎ、主に広角端での非点収差、歪曲収差の悪化を招く。逆に、条件式(1)の上限を上回ると、第3レンズ群G3の屈折力が高くなり過ぎ、望遠側での球面収差の悪化を招く。
   0.10<f2/f3<2.00 …(1)
 また、本発明の実施形態にかかる変倍光学系の第2レンズ群G2は、物体側に凸面を向けた凹メニスカスレンズL8のみから構成されている。これにより、第2レンズ群G2のレンズ長を最小限に押さえてレンズ全長を最小限に押さえつつ、第1レンズ群G1の径を小さく押さえることが可能になる。
 ここで、凹メニスカスレンズL8の屈折率をLN2としたとき、下記条件式(2)を満たすように構成されている。この条件式(2)を満たすことで、凹メニスカスレンズL8の曲率を小さくすることができ、望遠端での球面収差の拡大を抑えることができる。
   2.0≦LN2 …(2)
 また、本発明の実施形態にかかる変倍光学系の第1レンズ群は、物体側から順に、2枚の負レンズL1、L2からなり負の屈折力を有する第1fレンズ群G1fと、正の屈折力を有する第1mレンズ群G1mと、正の屈折力を有する第1rレンズ群G1rとからなり、第1mレンズ群G1mを光軸方向に移動させてフォーカシングを行うように構成されている。このように構成することにより、フォーカシングによる光線高の変動を押さえることができるため、フォーカスの最至近距離を短くすることが可能になる他、フォーカシングによる撮像範囲の変化を押さえることも可能になる。
 ここで、第1fレンズ群G1fは、物体側から順に、物体側に凸面を向けた凹メニスカスレンズL1と、負レンズL2により構成されている。このような構成とすることにより、広角側での歪曲収差の悪化や望遠端での高次の球面収差を抑えることが出来る。
 また、第1mレンズ群G1mは、物体側から順に物体側に凸面を向けた凹メニスカスレンズL3と両凸レンズL4とからなる接合レンズにより構成されている。このような構成とすることにより、フォーカシングレンズを軽量に押さえながらフォーカシング時の諸収差の変動を押さえることが出来る。
 また、第1rレンズ群G1rは、物体側より順に、物体側に強い凸面を向けた正の第1r1レンズL5、両凸の第1r2レンズL6、物体側に凸面を向けた凸メニスカスの第1r3レンズL7により構成されている。第1rレンズ群G1rをこのような構成とすることにより、変倍時の球面収差と非点収差の変動を押さえることが可能となる。
 また、正の第1r1レンズL5と両凸の第1r2レンズL6との平均屈折率をN1r12、平均アッベ数をν1r12、第1r3レンズL7の屈折率をN1r3、アッベ数をν1r3としたときに、下記条件式(3)を満たすように構成されている。この条件式(3)の下限を下回ると、広角端において周辺部の非点収差を抑えることが困難となる。
   0.20<N1r3-N1r12 …(3)
 また、正の第1r1レンズL5と両凸の第1r2レンズL6との平均屈折率をN1r12、平均アッベ数をν1r12、第1r3レンズL7の屈折率をN1r3、アッベ数をν1r3としたときに、下記条件式(4)を満たすように構成されている。この条件式(4)の下限を下回ると、広角端において中間画角と周辺画角の倍率の色収差をバランスさせることが困難となる。
   20<ν1r12-ν1r3 …(4)
 また、第1fレンズ群G1fと、第1rレンズ群G1rは、それぞれに少なくとも1面の非球面を有するように構成されている。第1fレンズ群G1fに非球面を用いることにより、広角端で歪曲収差が増大するのを防ぐことが出来る。また、第1rレンズ群G1rに非球面を用いることにより、望遠端の球面収差を押さえることが出来る。
 本変倍光学系は、上記条件式(1)、(3)、(4)それぞれに代えて下記条件式(1-1)、(3-1)、(4-1)それぞれを満たすことがより好ましい。条件式(1-1)、(3-1)、(4-1)それぞれを満たすことにより、条件式(1)、(3)、(4)それぞれを満たすことにより得られる効果をさらに高めることができる。なお、好ましい態様としては、必ずしも条件式(1-1)、(3-1)、(4-1)全てを同時に満たす必要はなく、条件式(1-1)、(3-1)、(4-1)のいずれか1つ、または任意の組合せを満たせばよい。
   0.20<f2/f3<1.60 …(1-1)
   0.29<N1r3-N1r12 …(3-1)
   40<ν1r12-ν1r3 …(4-1)
 本変倍光学系において、最も物体側に配置される材料としては、具体的にはガラスを用いることが好ましく、あるいは透明なセラミックスを用いてもよい。
 非球面形状が形成されるレンズの材料としては、ガラスを使用してもよいし、プラスチックを用いることも可能である。プラスチックを用いる場合には、軽量化および低コスト化を図ることが可能となる。
 本変倍光学系が厳しい環境において使用される場合には、保護用の多層膜コートが施されることが好ましい。さらに、保護用コート以外にも、使用時のゴースト光低減等のための反射防止コートを施すようにしてもよい。
 また、図1に示す例では、レンズ系と像面Simとの間に光学部材PP1、PP2を配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明の変倍光学系の数値実施例について説明する。実施例1の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図1(A)、図1(B)、図1(C)に示す。図1(A)~図1(C)においては、光学部材PPも合わせて示しており、左側が物体側、右側が像側であり、図示されている開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 同様に、実施例2の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図2(A)、図2(B)、図2(C)に示し、実施例3の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図3(A)、図3(B)、図3(C)に示し、実施例4の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図4(A)、図4(B)、図4(C)に示し、実施例5の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図5(A)、図5(B)、図5(C)に示し、実施例6の変倍光学系の広角端、中間焦点距離状態、望遠端でのレンズ配置をそれぞれ図6(A)、図6(B)、図6(C)に示す。
 実施例1の変倍光学系の基本レンズデータを表1に、変倍に関するデータを表2に、フォーカスに関するデータを表3に、非球面データを表4、表5に示す。同様に、実施例2~6の変倍光学系の基本レンズデータ、変倍に関するデータ、フォーカスに関するデータ非球面データをそれぞれ表6~表30に示す。以下では、表中の記号の意味について、実施例1のものを例にとり説明するが、実施例2~6のものについても基本的に同様である。
 表1の基本レンズデータにおいて、Siの欄には最も物体側の構成要素の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndiの欄にはi番目の面とi+1番目の面との間の媒質のd線(波長587.6nm)に対する屈折率を示し、νdjの欄には最も物体側の光学要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線に対するアッベ数を示し、θg,fの欄には各光学要素の部分分散比を示している。
 なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。基本レンズデータには、開口絞りSt、光学部材PPも含めて示している。開口絞りStに相当する面の面番号の欄には面番号とともに(開口絞り)という語句を記載している。
 表1の基本レンズデータにおいて、変倍時に間隔が変化する面間隔の欄にはそれぞれDD[面番号]と記載している。DD[4]は第1fレンズ群G1fと第1mレンズ群G1mとの間隔であり、DD[7]は第1mレンズ群G1mと第1rレンズ群G1rとの間隔である。また、DD[13]は第1レンズ群G1と第2レンズ群G2との間隔であり、DD[15]は第2レンズ群G2と第3レンズ群G3との間隔であり、DD[23]は第3レンズ群G3と第4レンズ群G4との間隔であり、DD[26]は第4レンズ群G4と開口絞りStとの間隔である。
 表2の変倍に関するデータに、広角端、中間焦点距離状態、望遠端それぞれにおける、ズーム倍率(変倍比)、焦点距離f、バックフォーカスBf(空気換算距離)、FナンバーFno.および全画角2ω、DD[13]、DD[15]、DD[23]、DD[26]の値を示す。
 表3のフォーカスに関するデータに、広角端、中間焦点距離状態、望遠端それぞれにおける、DD[4]、DD[7]の値を示す。
 基本レンズデータ、変倍に関するデータ、およびフォーカスに関するデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることもできる。
 表1のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。表4、表5の非球面データには、非球面の面番号Siと、これら非球面に関する非球面係数を示す。非球面係数は、以下の式(A)で表される非球面式における各係数KA、Am(m=3、4、5、…16)の値である。
   Zd=C・h/{1+(1-KA・C・h1/2}+ΣAm・h … (A)
   ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に
   下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
KA、Am:非球面係数(m=3、4、5、…16)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 実施例1~6の変倍光学系の条件式(1)~(4)に対応する値を表31に示す。なお、全実施例ともd線を基準波長としており、上記の変倍におけるデータの表および下記の表31に示す値はこの基準波長におけるものである。
Figure JPOXMLDOC01-appb-T000031
 実施例1の変倍光学系の各収差図を図7(A)~図7(L)に示す。図7(A)、図7(B)、図7(C)、図7(D)はそれぞれ広角端における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差を示し、図7(E)、図7(F)、図7(G)、図7(H)はそれぞれ中間焦点距離状態における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差を示し、図7(I)、図7(J)、図7(K)、図7(L)はそれぞれ望遠端における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差を示す。
 球面収差、非点収差、ディストーション(歪曲収差)を表す各収差図には、d線(波長587.6nm)を基準波長とした収差を示す。球面収差図および倍率色収差図にはd線(波長587.6nm)、C線(波長656.3nm)、F線(波長486.1nm)、g線(波長435.8nm)についての収差をそれぞれ実線、長破線、短破線、灰色線で示す。非点収差図にはサジタル方向、タンジェンシャル方向の収差をそれぞれ実線と破線で示す。球面収差図のFno.はFナンバー、その他の収差図のωは半画角を意味する。
 同様に、実施例2の変倍光学系の広角端、中間焦点距離状態、望遠端における各収差図を図8(A)~図8(L)に示し、実施例3の変倍光学系の広角端、中間焦点距離状態、望遠端における各収差図を図9(A)~図9(L)に示し、実施例4の変倍光学系の広角端、中間焦点距離状態、望遠端における各収差図を図10(A)~図10(L)に示し、実施例5の変倍光学系の広角端、中間焦点距離状態、望遠端における各収差図を図11(A)~図11(L)に示し、実施例6の変倍光学系の広角端、中間焦点距離状態、望遠端における各収差図を図12(A)~図12(L)に示す。
 以上のデータから、実施例1~6の変倍光学系は全て、条件式(1)~(4)を満たしており、小型かつ軽量でありながら、高い光学性能を有することがわかる。
 次に、本発明の実施形態にかかる撮像装置について説明する。図13に、本発明の実施形態の撮像装置の一例として、本発明の実施形態の変倍光学系を用いた撮像装置の概略構成図を示す。撮像装置としては、例えば、CCDやCMOS等の固体撮像素子を記録媒体とする監視カメラ、ビデオカメラ、電子スチルカメラ等を挙げることができる。
 図13に示す撮像装置10は、変倍光学系1と、変倍光学系1の像側に配置されたフィルタ2と、変倍光学系によって結像される被写体の像を撮像する撮像素子3と、撮像素子3からの出力信号を演算処理する信号処理部4と、変倍光学系1の変倍とその変倍によるフォーカス調整を行うためのズーム制御部5とを備える。
 変倍光学系1は、物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群G1と、変倍時移動で負の屈折力を有する第2レンズ群G2と、変倍時移動で負の屈折力を有する第3レンズ群G3、変倍時移動で負の屈折力を有する第4レンズ群G4と、変倍時固定の開口絞りStと、変倍時固定で正の屈折力を有する第5レンズ群G5とを有するものである。
 図13では各レンズ群を概略的に示している。撮像素子3は、変倍光学系1により形成される光学像を電気信号に変換するものであり、その撮像面は変倍光学系の像面に一致するように配置される。撮像素子3としては例えばCCDやCMOS等を用いることができる。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。

Claims (10)

  1. 物体側から順に、変倍時固定で正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、負の屈折力を有する第4レンズ群、変倍時固定で正の屈折力を有する第5レンズ群からなり、
    広角端から望遠端に変倍する際に、広角端に較べて、前記第1レンズ群と前記第2レンズ群との間隔が常に広がり、前記第2レンズ群と前記第3レンズ群との間隔が常に広がり、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が変化するように、前記第2レンズ群、前記第3レンズ群、前記第4レンズ群が移動することを特徴とする変倍光学系。
  2. 前記第4レンズ群は、広角端から望遠端に変倍する際に、一旦物体側に移動してから像側に反転移動することを特徴とする請求項1記載の変倍光学系。
  3. 前記第3レンズ群と前記第4レンズ群との間隔は、変倍中において望遠端よりも広角よりの焦点距離で最小となり、かつ、広角端での間隔が、望遠端での間隔よりも広いことを特徴とする請求項1または2記載の変倍光学系。
  4. 前記第1レンズ群は、物体側から順に、2枚の負レンズからなり負の屈折力を有する第1fレンズ群と、正の屈折力を有する第1mレンズ群と、正の屈折力を有する第1rレンズ群とからなり、
    前記第1mレンズ群を光軸方向に移動させてフォーカシングを行うことを特徴とする請求項1から3のいずれか1項記載の変倍光学系。
  5. 前記第1mレンズ群は、物体側から順に物体側に凸面を向けた凹メニスカスレンズと両凸レンズとからなる接合レンズであることを特徴とする請求項4記載の変倍光学系。
  6. 前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3としたとき、下記条件式(1)を満たすことを特徴とする請求項1から5のいずれか1項記載の変倍光学系。
    0.10<f2/f3<2.00 …(1)
  7. 下記条件式(1-1)を満たすことを特徴とする請求項6記載の変倍光学系。
    0.20<f2/f3<1.60 …(1-1)
  8. 前記第2レンズ群は、物体側に凸面を向けた凹メニスカスレンズのみから構成されていることを特徴とする請求項1から7のいずれか1項記載の変倍光学系。
  9. 前記凹メニスカスレンズの屈折率をLN2としたとき、下記条件式(2)を満たすことを特徴とする請求項8記載の変倍光学系。
    2.0≦LN2 …(2)
  10.  請求項1から9のいずれか1項に記載の変倍光学系を備えたことを特徴とする撮像装置。
     
     
PCT/JP2012/005428 2011-08-30 2012-08-29 変倍光学系および撮像装置 WO2013031203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013531094A JP5809277B2 (ja) 2011-08-30 2012-08-29 変倍光学系および撮像装置
CN201280041685.3A CN103765288B (zh) 2011-08-30 2012-08-29 可变放大倍率光学系统和成像设备
US14/175,431 US9235034B2 (en) 2011-08-30 2014-02-07 Variable magnification optical system and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011187419 2011-08-30
JP2011-187419 2011-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/175,431 Continuation US9235034B2 (en) 2011-08-30 2014-02-07 Variable magnification optical system and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013031203A1 true WO2013031203A1 (ja) 2013-03-07

Family

ID=47755732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005428 WO2013031203A1 (ja) 2011-08-30 2012-08-29 変倍光学系および撮像装置

Country Status (4)

Country Link
US (1) US9235034B2 (ja)
JP (1) JP5809277B2 (ja)
CN (1) CN103765288B (ja)
WO (1) WO2013031203A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052781A (ja) * 2013-08-08 2015-03-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015152798A (ja) * 2014-02-17 2015-08-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US20150241676A1 (en) * 2014-02-26 2015-08-27 Fujifilm Corporation Zoom lens and imaging apparatus
JP2017161566A (ja) * 2016-03-07 2017-09-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
EP3361301A1 (en) 2017-02-08 2018-08-15 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2019139253A (ja) * 2019-05-16 2019-08-22 キヤノン株式会社 ズームレンズおよび撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190081559A (ko) 2017-12-29 2019-07-09 한국전자통신연구원 카메라를 이용한 색료 조합 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084409A (ja) * 2003-09-09 2005-03-31 Fujinon Corp 広角ズームレンズ
JP2006349947A (ja) * 2005-06-15 2006-12-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011081063A (ja) * 2009-10-05 2011-04-21 Canon Inc ズームレンズ及びそれを有する撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713075A (ja) 1993-06-24 1995-01-17 Nikon Corp ズームレンズ
JP3301579B2 (ja) 1996-03-22 2002-07-15 富士写真光機株式会社 インナーフォーカシングタイプのズームレンズ
JP2000267003A (ja) * 1999-03-12 2000-09-29 Fuji Photo Optical Co Ltd ズームレンズ
JP4463909B2 (ja) 1999-10-19 2010-05-19 キヤノン株式会社 ズームレンズ
JP4502341B2 (ja) 2000-02-16 2010-07-14 フジノン株式会社 ズームレンズ
JP2003287678A (ja) 2002-03-27 2003-10-10 Fuji Photo Optical Co Ltd ズームレンズ
JP4208667B2 (ja) 2002-08-28 2009-01-14 キヤノン株式会社 ズームレンズおよび撮像装置
JP3950860B2 (ja) 2004-01-30 2007-08-01 キヤノン株式会社 ズームレンズ及びそれを有する撮影装置
JP5693321B2 (ja) * 2011-03-28 2015-04-01 キヤノン株式会社 ズームレンズ及び撮像装置
JP5738069B2 (ja) * 2011-05-24 2015-06-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6004829B2 (ja) * 2012-08-17 2016-10-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084409A (ja) * 2003-09-09 2005-03-31 Fujinon Corp 広角ズームレンズ
JP2006349947A (ja) * 2005-06-15 2006-12-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011081063A (ja) * 2009-10-05 2011-04-21 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052781A (ja) * 2013-08-08 2015-03-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015152798A (ja) * 2014-02-17 2015-08-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US20150241676A1 (en) * 2014-02-26 2015-08-27 Fujifilm Corporation Zoom lens and imaging apparatus
JP2017161566A (ja) * 2016-03-07 2017-09-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US10401600B2 (en) 2016-03-07 2019-09-03 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including same
EP3361301A1 (en) 2017-02-08 2018-08-15 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2018128572A (ja) * 2017-02-08 2018-08-16 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US10670845B2 (en) 2017-02-08 2020-06-02 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2019139253A (ja) * 2019-05-16 2019-08-22 キヤノン株式会社 ズームレンズおよび撮像装置

Also Published As

Publication number Publication date
CN103765288A (zh) 2014-04-30
CN103765288B (zh) 2016-09-28
JP5809277B2 (ja) 2015-11-10
JPWO2013031203A1 (ja) 2015-03-23
US20140177066A1 (en) 2014-06-26
US9235034B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6128387B2 (ja) ズームレンズおよび撮像装置
JP5785338B2 (ja) 撮像レンズおよび撮像装置
JP5798255B2 (ja) ズームレンズおよび撮像装置
JP5809278B2 (ja) 変倍光学系および撮像装置
JP4672755B2 (ja) 変倍光学系および撮像装置
JP5809277B2 (ja) 変倍光学系および撮像装置
JP6204852B2 (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
JP5860565B2 (ja) ズームレンズおよび撮像装置
WO2013175722A1 (ja) ズームレンズおよび撮像装置
WO2013031188A1 (ja) ズームレンズおよび撮像装置
JP2011075613A (ja) 変倍光学系および撮像装置
WO2013038610A1 (ja) 変倍光学系および撮像装置
WO2013031180A1 (ja) ズームレンズおよび撮像装置
JP5869725B2 (ja) ズームレンズおよび撮像装置
JP6066419B2 (ja) ズームレンズおよび撮像装置
JP5815715B2 (ja) 変倍光学系および撮像装置
WO2012176389A1 (ja) ズームレンズおよび撮像装置
JP5778276B2 (ja) ズームレンズおよび撮像装置
WO2013031185A1 (ja) ズームレンズおよび撮像装置
JP5785333B2 (ja) ズームレンズおよび撮像装置
WO2013031186A1 (ja) ズームレンズおよび撮像装置
WO2013031187A1 (ja) ズームレンズおよび撮像装置
WO2013031179A1 (ja) ズームレンズおよび撮像装置
WO2013157248A1 (ja) 変倍光学系および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828965

Country of ref document: EP

Kind code of ref document: A1