WO2013030991A1 - 太陽電池及びその製造方法 - Google Patents
太陽電池及びその製造方法 Download PDFInfo
- Publication number
- WO2013030991A1 WO2013030991A1 PCT/JP2011/069802 JP2011069802W WO2013030991A1 WO 2013030991 A1 WO2013030991 A1 WO 2013030991A1 JP 2011069802 W JP2011069802 W JP 2011069802W WO 2013030991 A1 WO2013030991 A1 WO 2013030991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving surface
- surface side
- side finger
- light receiving
- solar cell
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 50
- 238000007650 screen-printing Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022433—Particular geometry of the grid contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0684—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the present invention relates to a solar cell and a manufacturing method thereof.
- the double-sided incident solar cell includes a photoelectric conversion unit, a first electrode disposed on the light receiving surface of the photoelectric conversion unit, and a second electrode disposed on the back surface.
- the first electrode has a smaller area than the second electrode.
- the coefficient of thermal expansion differs between the photoelectric conversion part and the electrode constituting the solar cell. For this reason, when the temperature of the solar cell changes, stress is applied to the photoelectric conversion unit, and the photoelectric conversion unit may be warped. Warpage reduces the production yield. In particular, in recent years, since the photoelectric conversion portion has been made thinner, it is easy to warp, and it is necessary to make an effort to suppress warpage.
- the solar cell according to the present invention includes a photoelectric conversion unit, a light receiving surface electrode, and a back electrode.
- the photoelectric conversion unit has a light receiving surface and a back surface.
- the light receiving surface electrode is disposed on the light receiving surface.
- the back electrode is arranged on the back surface.
- the back surface electrode has a plurality of back surface side finger portions. At least one cross-sectional shape of the plurality of back surface side finger portions is a triangular shape.
- a method for manufacturing a solar cell according to the present invention includes a photoelectric conversion unit having a light receiving surface and a back surface, a light receiving surface electrode disposed on the light receiving surface, and a back electrode disposed on the back surface.
- An electrode is a manufacturing method of a solar cell which has a plurality of back side finger parts.
- the back side finger portions are formed by a screen printing method.
- FIG. 1 is a schematic plan view of a light receiving surface of the solar cell according to the first embodiment.
- FIG. 2 is a schematic plan view of the back surface of the solar cell according to the first embodiment.
- FIG. 3 is a schematic cross-sectional view of the solar cell according to the first embodiment.
- FIG. 4 is a schematic cross-sectional view of the back-side finger portion in the first embodiment.
- FIG. 5 is a schematic cross-sectional view of a solar cell according to the second embodiment.
- FIG. 6 is a schematic cross-sectional view of a solar cell according to the third embodiment.
- the solar cell 1 includes a photoelectric conversion unit 10.
- the photoelectric conversion unit 10 generates carriers such as electrons and holes when receiving light.
- the photoelectric conversion unit 10 has a light receiving surface 10a and a back surface 10b.
- the photoelectric conversion unit 10 includes, for example, a substrate made of a crystalline semiconductor, a p-type semiconductor layer disposed on one main surface of the substrate, and an n-type semiconductor layer disposed on the other main surface of the substrate. You may have.
- a substantially intrinsic i-type semiconductor layer is provided between each of the p-type semiconductor layer and the n-type semiconductor layer and the substrate. It may be done.
- a transparent conductive oxide layer may be disposed on each of the p-type semiconductor layer and the n-type semiconductor layer. That is, each of the light receiving surface 10a and the back surface 10b of the photoelectric conversion unit 10 may be configured by a transparent conductive oxide layer.
- the photoelectric conversion unit 10 may be configured by a substrate made of a crystalline semiconductor provided so that each of the p-type dopant diffusion region and the n-type dopant diffusion region is exposed on one main surface.
- the substrate made of a crystalline semiconductor can be made of, for example, crystalline silicon such as single crystal silicon or polycrystalline silicon.
- the p-type semiconductor layer can be made of, for example, p-type amorphous silicon.
- the n-type semiconductor layer can be made of, for example, n-type amorphous silicon.
- the i-type semiconductor layer can be composed of i-type amorphous silicon.
- a light receiving surface electrode 11 is disposed on the light receiving surface 10 a of the photoelectric conversion unit 10.
- a back electrode 12 is disposed on the back surface 10 b of the photoelectric conversion unit 10.
- One of the light receiving surface electrode 11 and the back surface electrode 12 collects holes, and the other collects electrons.
- Each of the light-receiving surface electrode 11 and the back surface electrode 12 can be made of an appropriate conductive material.
- Each of the light-receiving surface electrode 11 and the back surface electrode 12 can be made of, for example, a metal such as silver or copper, or an alloy containing at least one of these metals.
- the light receiving surface electrode 11 has a plurality of light receiving surface side finger portions 11a and at least one light receiving surface side bus bar portion 11b.
- Each of the plurality of light receiving surface side finger portions 11a extends along one direction (x direction).
- the plurality of light receiving surface side finger portions 11a are arranged at intervals from each other along another direction (y direction) intersecting one direction (x direction).
- Each of the light receiving surface side finger portions 11a has a width of about 40 ⁇ m to 150 ⁇ m and is arranged at intervals of about 1 mm to 3 mm.
- the plurality of light receiving surface side finger portions 11a are electrically connected to the light receiving surface side bus bar portion 11b.
- the light receiving surface side bus bar portion 11b extends along the y direction.
- a plurality of light receiving surface side bus bar portions 11b are provided. More specifically, two light receiving surface side bus bar portions 11b are provided, but the number is not limited to this, and the number of light receiving surface side bus bar portions 11b may be three or more.
- the back surface electrode 12 has a plurality of back surface side finger portions 12a and at least one back surface side bus bar portion 12b.
- Each of the plurality of back surface side finger portions 12a extends along the x direction.
- the plurality of back side finger portions 12a are arranged at intervals from each other along the y direction.
- Each of the back side finger portions 12a has a width of about 40 ⁇ m to 150 ⁇ m and is arranged at intervals of about 0.3 mm to 1 mm.
- the plurality of back surface side finger portions 12a are electrically connected to the back surface side bus bar portion 12b.
- the back side bus bar portion 12b extends along the y direction. In the present embodiment, a plurality of back side bus bar portions 12b are provided.
- backside bus bar portions 12b are provided, but the number is not limited to this, and the number of backside bus bar portions 12b may be three or more. In consideration of the ease of wiring, the number and position of the light receiving surface side bus bar portions 11b are often the same as those of the back surface side bus bar portions 12b.
- the light receiving surface electrode 11 has a smaller area than the back surface electrode 12 in order to reduce light receiving loss. Specifically, the number of the light receiving surface side finger portions 11a is smaller than the number of the back surface side finger portions 12a.
- the at least one cross-sectional shape of the plurality of back surface side finger portions 12a is a triangular shape. It is preferable that substantially all the cross-sectional shapes of the plurality of back-side finger portions 12a are triangular, and it is preferable that the cross-sectional shapes of all the back-side finger portions 12a are triangular. Moreover, it is preferable that all the cross-sectional shapes of the back surface side finger part 12a which has a triangular cross-sectional shape of a longitudinal direction (x direction) are a triangle shape, However, A shape other than a triangle shape is included in part. May be. Preferably, the cross-sectional shape of 80% or more in the longitudinal direction (x direction) is triangular, and more preferably, the cross-sectional shape of 90% or more in the longitudinal direction (x direction) is triangular.
- the “triangular shape” refers to a shape that tapers toward the tip, and the inclination continuously changes near the apex. Accordingly, the “triangular shape” includes a triangular shape in which the apex portion is chamfered or R-chamfered, a triangular shape in which the hypotenuse is curved, and the like.
- the cross-sectional shape of the back-side finger portion 12 a is such that the apex corner portion is an R chamfered shape, and the degree of width expansion along the y direction is large. It has a triangular shape that increases toward the back surface 10b.
- At least one cross-sectional shape of the plurality of light receiving surface side finger portions 11a is a quadrilateral shape. Specifically, at least one cross-sectional shape of the plurality of light receiving surface side finger portions 11a is a rectangular shape. More specifically, substantially all cross-sectional shapes of the plurality of light-receiving surface side finger portions 11a are rectangular, and more specifically, the cross-sectional shapes of all the plurality of light-receiving surface side finger portions 11a are It is rectangular.
- Each cross-sectional shape of the light-receiving surface side bus bar part 11b and the back surface side bus bar part 12b is not particularly limited.
- Each cross-sectional shape of the light-receiving surface side bus bar portion 11b and the back surface side bus bar portion 12b may be, for example, a quadrilateral shape or a triangular shape.
- the photoelectric conversion unit 10 When manufacturing the solar cell 1, first, the photoelectric conversion unit 10 is prepared.
- the photoelectric conversion part 10 can be produced by, for example, a known method.
- the back electrode 12 is preferably formed using a screen printing method. According to the screen printing method, by narrowing the width of the opening for forming the finger part provided in the screen printing plate, the finger part having a tapered cross section toward the tip side, such as a triangular shape, is formed. be able to. Therefore, the back surface side finger part 12a whose cross-sectional shape is a triangle shape can be produced suitably.
- the formation method of the light-receiving surface electrode 11 is not specifically limited.
- the light-receiving surface electrode 11 can be formed by, for example, a screen printing method or a plating method.
- the coefficient of thermal expansion differs between the photoelectric conversion unit and the electrode.
- the electrode expands and contracts relative to the photoelectric conversion unit.
- stress is applied to the photoelectric conversion unit, and the photoelectric conversion unit may be warped.
- the greater the amount of stress that the electrode exerts on the photoelectric conversion unit the more the photoelectric conversion unit warps. For this reason, it exists in the tendency for a photoelectric conversion part to warp easily, so that the cross-sectional area of a finger part is large.
- At least one cross-sectional shape of the plurality of back surface side finger portions 12a is triangular.
- the cross-sectional area of the back surface side finger part 12a is smaller than the cross-sectional area of the finger part of the cross-sectional quadrilateral shape with the same width
- the cross-sectional shape of the back surface side finger part 12a is triangular shape, the fall of the contact area of the photoelectric conversion part 10 and the back surface side finger part 12a can be suppressed.
- the increase in the contact resistance of the photoelectric conversion part 10 and the back surface side finger part 12a can be suppressed, it can suppress that a big characteristic fall arises.
- the fall of the contact area of the photoelectric conversion part 10 and the back surface side finger part 12a is suppressed, it can also suppress that the back surface side finger part 12a peels from the photoelectric conversion part 10.
- the amount of conductive material such as Ag required for forming the plurality of back surface side finger portions 12a can be reduced as compared with the quadrilateral shape. Therefore, the cost of the solar cell 1 can be reduced.
- the cross-sectional shape of the light-receiving surface side finger portion 11a is rectangular. For this reason, even if the number of the light receiving surface side finger portions 11a is reduced, an increase in resistance loss in the carrier traveling direction can be suppressed.
- the amount of electrode material used in the back-side finger portion 12a and the light-receiving surface-side finger can be made close to 1.
- the cross-sectional shape of the back surface side finger portion 12a may be a shape closer to a triangle than the cross sectional shape of the light receiving surface side finger portion 11a.
- FIGS. 1 and 2 are referred to in common with the first embodiment.
- FIG. 5 is a schematic cross-sectional view of the solar cell 2 according to the second embodiment.
- the solar cell 2 differs from the solar cell 1 according to the first embodiment in the cross-sectional shape of the light-receiving surface side finger portion 11a, and the other configuration is substantially the same as that of the solar cell 1.
- the cross-sectional shape of the light-receiving surface side finger part 11a is trapezoidal. For this reason, the cross-sectional area of the light-receiving surface side finger part 11a is small. Therefore, the stress which the light-receiving surface side finger part 11a exerts on the photoelectric conversion part 10 can be further reduced. Therefore, warpage of the photoelectric conversion unit 10 and occurrence of cracks in the photoelectric conversion unit 10 can be more effectively suppressed. Moreover, it can suppress more effectively that the back surface side finger part 12a peels from the photoelectric conversion part 10.
- FIG. 6 is a schematic cross-sectional view of a solar cell 3 according to the third embodiment.
- the solar cell 3 differs from the solar cell 1 according to the first embodiment in the cross-sectional shape of the light-receiving surface side finger portion 11a, and the other configuration is substantially the same as that of the solar cell 1.
- the cross-sectional shape of the light-receiving surface side finger part 11a is triangular. For this reason, the cross-sectional area of the light-receiving surface side finger part 11a is small. Therefore, the stress which the light-receiving surface side finger part 11a exerts on the photoelectric conversion part 10 can be further reduced. Therefore, warping of the photoelectric conversion unit 10 and occurrence of cracks in the photoelectric conversion unit 10 can be further effectively suppressed. Moreover, it can suppress further more effectively that the back surface side finger part 12a peels from the photoelectric conversion part 10.
- each bus bar portion of the light receiving surface electrode and the back surface electrode may be zigzag-shaped. At least one of the light receiving surface electrode and the back surface electrode may not include the bus bar portion, and may be configured only by a plurality of finger portions.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Sustainable Energy (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
光電変換部の反りが抑制された太陽電池を提供する。 太陽電池1は、光電変換部10と、受光面電極11と裏面電極12とを備えている。光電変換部10は、受光面10aと裏面10bとを有する。受光面電極11は、受光面10aの上に配されている。裏面電極12は、裏面10bの上に配されている。裏面電極12は、複数の裏面側フィンガー部12aを有する。複数の裏面側フィンガー部12aの少なくともひとつの横断面形状は、三角形状である。
Description
本発明は、太陽電池及びその製造方法に関する。
近年、環境負荷が小さなエネルギー源として、太陽電池が注目されている。太陽電池として、例えば特許文献1に記載されているように、両面入射型の太陽電池が知られている。両面入射型の太陽電池は、光電変換部と、光電変換部の受光面上に配された第1の電極と、裏面上に配された第2の電極とを有している。受光ロスを低減させるために、第1の電極は、第2の電極より小面積にされている。
一般的に、太陽電池を構成している光電変換部と電極とでは、熱膨張率が異なる。このため、太陽電池の温度が変化すると光電変換部に応力が加わり、光電変換部が反る場合がある。反りは、生産歩留まりを低下させる。特に、近年では、光電変換部の薄型化が進んできているため、反りやすくなっており、反りを抑制する取り組みが必要である。
本発明に係る太陽電池は、光電変換部と、受光面電極と裏面電極とを備えている。光電変換部は、受光面と裏面とを有する。受光面電極は、受光面の上に配されている。裏面電極は、裏面の上に配されている。裏面電極は、複数の裏面側フィンガー部を有する。複数の裏面側フィンガー部の少なくともひとつの横断面形状は、三角形状である。
本発明に係る太陽電池の製造方法は、受光面と裏面とを有する光電変換部と、受光面の上に配された受光面電極と、裏面の上に配された裏面電極とを備え、裏面電極が、複数の裏面側フィンガー部を有する太陽電池の製造方法である。本発明に係る太陽電池の製造方法では、裏面側フィンガー部をスクリーン印刷法により形成する。
本発明によれば、反りが抑制された太陽電池を提供することができる。
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
(第1の実施形態)
図1~図3に示されるように、太陽電池1は、光電変換部10を有する。光電変換部10は、受光した際に電子や正孔などのキャリアを生成する。光電変換部10は、受光面10aと裏面10bとを有する。光電変換部10は、例えば、結晶性半導体からなる基板と、基板の一主面の上に配されたp型半導体層と、基板の他主面の上に配されたn型半導体層とを備えていてもよい。p型半導体層及びn型半導体層のそれぞれと基板との間に、例えば数Å~250Å程度の実質的に発電に寄与しない程度の厚みであって、実質的に真性なi型半導体層が設けられていてもよい。また、p型半導体層及びn型半導体層のそれぞれの上に、透明導電性酸化物層が配されていてもよい。即ち、光電変換部10の受光面10a及び裏面10bのそれぞれは、透明導電性酸化物層により構成されていてもよい。
図1~図3に示されるように、太陽電池1は、光電変換部10を有する。光電変換部10は、受光した際に電子や正孔などのキャリアを生成する。光電変換部10は、受光面10aと裏面10bとを有する。光電変換部10は、例えば、結晶性半導体からなる基板と、基板の一主面の上に配されたp型半導体層と、基板の他主面の上に配されたn型半導体層とを備えていてもよい。p型半導体層及びn型半導体層のそれぞれと基板との間に、例えば数Å~250Å程度の実質的に発電に寄与しない程度の厚みであって、実質的に真性なi型半導体層が設けられていてもよい。また、p型半導体層及びn型半導体層のそれぞれの上に、透明導電性酸化物層が配されていてもよい。即ち、光電変換部10の受光面10a及び裏面10bのそれぞれは、透明導電性酸化物層により構成されていてもよい。
また、光電変換部10は、p型ドーパント拡散領域とn型ドーパント拡散領域とのそれぞれが一主面に露出するように設けられた結晶性半導体からなる基板により構成されていてもよい。
なお、結晶性半導体からなる基板は、例えば単結晶シリコンや多結晶シリコン等の結晶シリコンにより構成することができる。p型半導体層は、例えばp型アモルファスシリコンにより構成することができる。n型半導体層は、例えばn型アモルファスシリコンにより構成することができる。i型半導体層は、i型アモルファスシリコンにより構成することができる。
光電変換部10の受光面10aの上には、受光面電極11が配されている。一方、光電変換部10の裏面10bの上には、裏面電極12が配されている。これら受光面電極11及び裏面電極12のうちの一方が正孔を収集し、他方が電子を収集する。
受光面電極11及び裏面電極12のそれぞれは、適宜の導電材料により構成することができる。受光面電極11及び裏面電極12のそれぞれは、例えば、銀や銅などの金属、若しくはそれらの金属の少なくとも一種を含む合金により構成することができる。
受光面電極11は、複数の受光面側フィンガー部11aと、少なくともひとつの受光面側バスバー部11bとを有する。複数の受光面側フィンガー部11aのそれぞれは、一の方向(x方向)に沿って延びている。複数の受光面側フィンガー部11aは、一の方向(x方向)に対して交差する他の方向(y方向)に沿って相互に間隔をおいて配されている。夫々の受光面側フィンガー部11aは約40μm~150μmの幅を有し、およそ1mm~3mm間隔で配される。複数の受光面側フィンガー部11aは、受光面側バスバー部11bに電気的に接続されている。受光面側バスバー部11bは、y方向に沿って延びている。本実施形態では、受光面側バスバー部11bが複数設けられている。より具体的には、受光面側バスバー部11bが2本設けられているが、これに限られるものではなく、受光面側バスバー部11bの本数は3本以上であっても構わない。
裏面電極12は、複数の裏面側フィンガー部12aと、少なくともひとつの裏面側バスバー部12bとを有する。複数の裏面側フィンガー部12aのそれぞれは、x方向に沿って延びている。複数の裏面側フィンガー部12aは、y方向に沿って相互に間隔をおいて配されている。夫々の裏面側フィンガー部12aは約40μm~150μmの幅を有し、およそ0.3mm~1mm間隔で配される。複数の裏面側フィンガー部12aは、裏面側バスバー部12bに電気的に接続されている。裏面側バスバー部12bは、y方向に沿って延びている。本実施形態では、裏面側バスバー部12bが複数設けられている。より具体的には、裏面側バスバー部12bが2本設けられているが、これに限られるものではなく、裏面側バスバー部12bの本数は3本以上であっても構わない。尚、配線の容易さを考慮して、受光面側バスバー部11bの本数及び位置は、裏面側バスバー部12bと同じにされることが多い。
受光面電極11は、受光ロスを低減するために、裏面電極12より小面積にされている。具体的には、受光面側フィンガー部11aの本数が、裏面側フィンガー部12aの本数より少なくされている。
複数の裏面側フィンガー部12aの少なくともひとつの横断面形状は、三角形状である。複数の裏面側フィンガー部12aの実質的にすべての横断面形状が三角形状であることが好ましく、すべての裏面側フィンガー部12aの横断面形状が三角形状であることが好ましい。また、三角形状の横断面形状を有する裏面側フィンガー部12aは、長手方向(x方向)の全ての横断面形状が三角形状であることが好ましいが、一部に三角形状以外の形状を含んでいても良い。好ましくは、長手方向(x方向)の80%以上の横断面形状が三角形状であり、より好ましくは、長手方向(x方向)の90%以上の横断面形状が三角形状である。
ここで、「三角形状」とは、先端側に向かって先細る形状であり、頂点付近で傾きが連続的に変化する形状をいう。従って、「三角形状」には、頂角部が面取り状またはR面取り状である三角形状、斜辺が曲線状である三角形状等が含まれる。
具体的には、図4に示すように、本実施形態では、裏面側フィンガー部12aの横断面形状は、頂角部がR面取り状であり、かつ、y方向に沿った幅の拡がり度合いが裏面10b側に向かって大きくなっている三角形状である。
一方、複数の受光面側フィンガー部11aの少なくともひとつの横断面形状は、四辺形状である。具体的には、複数の受光面側フィンガー部11aの少なくともひとつの横断面形状は、矩形状である。より具体的には、複数の受光面側フィンガー部11aの実質的にすべての横断面形状が矩形状であり、さらに具体的には、すべての複数の受光面側フィンガー部11aの横断面形状が矩形状である。
受光面側バスバー部11b及び裏面側バスバー部12bのそれぞれの横断面形状は、特に限定されない。受光面側バスバー部11b及び裏面側バスバー部12bのそれぞれの横断面形状は、例えば四辺形状であってもよいし、三角形状であってもよい。
太陽電池1の製造に際しては、まず、光電変換部10を用意する。光電変換部10は、例えば公知の方法により作製することができる。
次に、受光面電極11及び裏面電極12を形成する。裏面電極12の形成は、スクリーン印刷法を用いて行うことが好ましい。スクリーン印刷法によれば、スクリーン印刷版に設けられたフィンガー部形成用の開口の幅を狭くすることにより、三角形状などの、先端側に向かって先細り状の横断面を有するフィンガー部を形成することができる。従って、横断面形状が三角形状である裏面側フィンガー部12aを好適に作製することができる。なお、受光面電極11の形成方法は特に限定されない。受光面電極11は、例えばスクリーン印刷法やめっき法により形成することができる。
ところで、光電変換部と電極とでは、熱膨張率が異なる。このため、太陽電池の温度が変化すると、電極が光電変換部に対して相対的に伸縮する。その結果、光電変換部に応力が加わり、光電変換部に反りが発生する場合がある。電極が光電変換部に及ぼす応力の大きさが大きいほど、光電変換部は反りやすい。このため、フィンガー部の横断面積が大きいほど、光電変換部が反りやすくなる傾向にある。
ここで、太陽電池1では、複数の裏面側フィンガー部12aの少なくともひとつの横断面形状が三角形状である。このため、裏面側フィンガー部12aの横断面積は、底面における幅が同じである横断面四辺形状のフィンガー部の横断面積よりも小さい。よって、裏面側フィンガー部12aが光電変換部10に及ぼす応力を小さくすることができる。従って、光電変換部10が反ること、光電変換部10にクラックが生じることを抑制することができる。また、裏面側フィンガー部12aの横断面形状が三角形状であるため、光電変換部10と裏面側フィンガー部12aの接触面積の低下を抑制できる。これにより、光電変換部10と裏面側フィンガー部12aの接触抵抗の増大を抑制できるので、大きな特性低下が生じることを抑制することができる。さらに、光電変換部10と裏面側フィンガー部12aの接触面積の低下が抑制されるので、光電変換部10から裏面側フィンガー部12aが剥離することも抑制することができる。
また、複数の裏面側フィンガー部12aの形成に要する、Ag等の導電材料の量を、四辺形状に比べ少なくすることができる。よって、太陽電池1のコストを低減することができる。
また、図3に示されるように、受光面側フィンガー部11aの横断面形状は矩形状である。このため、受光面側フィンガー部11aは、本数を少なくしてもキャリア走行方向の抵抗損失の増大を抑制できる。
さらに、受光面側フィンガー部11aの断面形状が矩形状であり、裏面側フィンガー部12aの断面形状が三角形状という組み合わせによれば、裏面側フィンガー部12aの電極材料使用量と、受光面側フィンガー部11aの電極材料使用量の比([裏面側フィンガー部12aの電極使用量]/[受光面側フィンガー部11aの電極使用量])を、1に近づけることができる。これにより、光電変換部と電極(受光面側フィンガー部や裏面側フィンガー部等)との熱膨張率の相違に起因して、光電変換部10の受光面側に加わる応力と、裏面側に加わる応力の差を小さくできるので、光電変換部10の反りをより一層抑制することができる。尚、この観点からは、裏面側フィンガー部12aの断面形状は、受光面側フィンガー部11aの断面形状よりも三角形に近い形状であれば良い。
以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。また、第2及び第3の実施形態のそれぞれにおいて、図1及び図2を第1の実施形態と共通に参照する。
(第2の実施形態)
図5は、第2の実施形態に係る太陽電池2の模式的断面図である。太陽電池2は、受光面側フィンガー部11aの横断面形状において第1の実施形態に係る太陽電池1と異なり、それ以外は、太陽電池1と実質的に同様の構成を有する。太陽電池2では、受光面側フィンガー部11aの横断面形状が台形状である。このため、受光面側フィンガー部11aの横断面積が小さい。よって、受光面側フィンガー部11aが光電変換部10に及ぼす応力をより小さくすることができる。従って、光電変換部10が反ること、光電変換部10にクラックが生じることをより効果的に抑制することができる。また、光電変換部10から裏面側フィンガー部12aが剥離することもより効果的に抑制することができる。
図5は、第2の実施形態に係る太陽電池2の模式的断面図である。太陽電池2は、受光面側フィンガー部11aの横断面形状において第1の実施形態に係る太陽電池1と異なり、それ以外は、太陽電池1と実質的に同様の構成を有する。太陽電池2では、受光面側フィンガー部11aの横断面形状が台形状である。このため、受光面側フィンガー部11aの横断面積が小さい。よって、受光面側フィンガー部11aが光電変換部10に及ぼす応力をより小さくすることができる。従って、光電変換部10が反ること、光電変換部10にクラックが生じることをより効果的に抑制することができる。また、光電変換部10から裏面側フィンガー部12aが剥離することもより効果的に抑制することができる。
(第3の実施形態)
図6は、第3の実施形態に係る太陽電池3の模式的断面図である。太陽電池3は、受光面側フィンガー部11aの横断面形状において第1の実施形態に係る太陽電池1と異なり、それ以外は、太陽電池1と実質的に同様の構成を有する。太陽電池3では、受光面側フィンガー部11aの横断面形状が三角形状である。このため、受光面側フィンガー部11aの横断面積が小さい。よって、受光面側フィンガー部11aが光電変換部10に及ぼす応力をさらに小さくすることができる。従って、光電変換部10が反ること、光電変換部10にクラックが生じることをさらに効果的に抑制することができる。また、光電変換部10から裏面側フィンガー部12aが剥離することもさらに効果的に抑制することができる。
図6は、第3の実施形態に係る太陽電池3の模式的断面図である。太陽電池3は、受光面側フィンガー部11aの横断面形状において第1の実施形態に係る太陽電池1と異なり、それ以外は、太陽電池1と実質的に同様の構成を有する。太陽電池3では、受光面側フィンガー部11aの横断面形状が三角形状である。このため、受光面側フィンガー部11aの横断面積が小さい。よって、受光面側フィンガー部11aが光電変換部10に及ぼす応力をさらに小さくすることができる。従って、光電変換部10が反ること、光電変換部10にクラックが生じることをさらに効果的に抑制することができる。また、光電変換部10から裏面側フィンガー部12aが剥離することもさらに効果的に抑制することができる。
尚、本発明はここでは記載していない様々な実施形態を含む。例えば、受光面電極及び裏面電極のそれぞれのバスバー部は、ジグザグ状であってもよい。受光面電極及び裏面電極の少なくとも一方は、バスバー部を有さず、複数のフィンガー部のみによって構成されていてもよい。
以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
1~3…太陽電池
10…光電変換部
10a…受光面
10b…裏面
11…受光面電極
11a…受光面側フィンガー部
11b…受光面側バスバー部
12…裏面電極
12a…裏面側フィンガー部
12b…裏面側バスバー部
10…光電変換部
10a…受光面
10b…裏面
11…受光面電極
11a…受光面側フィンガー部
11b…受光面側バスバー部
12…裏面電極
12a…裏面側フィンガー部
12b…裏面側バスバー部
Claims (5)
- 受光面と裏面とを有する光電変換部と、
前記受光面の上に配された受光面電極と、
前記裏面の上に配された裏面電極と、
を備え、
前記裏面電極は、複数の裏面側フィンガー部を有し、
前記複数の裏面側フィンガー部の少なくともひとつの横断面形状が三角形状である、太陽電池。 - 請求項1に記載の太陽電池であって、
前記受光面電極は、複数の受光面側フィンガー部を有し、
前記複数の受光面側フィンガー部の少なくともひとつの横断面形状が三角形状である。 - 請求項1に記載の太陽電池であって、
前記受光面電極は、複数の受光面側フィンガー部を有し、
前記受光面側フィンガー部の本数が前記裏面側フィンガー部の本数よりも少なく、
前記複数の受光面側フィンガー部の少なくともひとつの横断面形状が四辺形状である。 - 請求項3に記載の太陽電池であって、
前記受光面側フィンガー部の少なくともひとつの横断形状は、前記裏面側フィンガー部の横断形状より四辺形に近い形状を有し、
前記裏面側フィンガー部の少なくともひとつの横断形状は、前記受光面側フィンガー部の横断形状より三角形に近い形状を有する。 - 受光面と裏面とを有する光電変換部と、前記受光面の上に配された受光面電極と、前記裏面の上に配された裏面電極とを備え、前記裏面電極が、複数の裏面側フィンガー部を有する太陽電池の製造方法であって、
前記複数の裏面側フィンガー部の少なくともひとつの横断面形状が三角形状であり、
前記裏面側フィンガー部をスクリーン印刷法により形成する、太陽電池の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/069802 WO2013030991A1 (ja) | 2011-08-31 | 2011-08-31 | 太陽電池及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/069802 WO2013030991A1 (ja) | 2011-08-31 | 2011-08-31 | 太陽電池及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013030991A1 true WO2013030991A1 (ja) | 2013-03-07 |
Family
ID=47755540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069802 WO2013030991A1 (ja) | 2011-08-31 | 2011-08-31 | 太陽電池及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013030991A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400869A (zh) * | 2013-06-27 | 2013-11-20 | 北京大学深圳研究生院 | 一种太阳能电池正面电极和太阳能电池 |
CN104241417A (zh) * | 2014-07-16 | 2014-12-24 | 友达光电股份有限公司 | 太阳能电池 |
WO2023232057A1 (zh) * | 2022-06-02 | 2023-12-07 | 苏州太阳井新能源有限公司 | 一种栅线的制备方法、电池片的制备方法及光伏电池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001250967A (ja) * | 2000-03-03 | 2001-09-14 | Canon Inc | 光起電力素子及び光起電力素子の製造方法 |
JP2005536894A (ja) * | 2002-08-29 | 2005-12-02 | デイ4 エネルギー インコーポレイテッド | 光起電力電池用電極、光起電力電池および光起電力モジュール |
-
2011
- 2011-08-31 WO PCT/JP2011/069802 patent/WO2013030991A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001250967A (ja) * | 2000-03-03 | 2001-09-14 | Canon Inc | 光起電力素子及び光起電力素子の製造方法 |
JP2005536894A (ja) * | 2002-08-29 | 2005-12-02 | デイ4 エネルギー インコーポレイテッド | 光起電力電池用電極、光起電力電池および光起電力モジュール |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400869A (zh) * | 2013-06-27 | 2013-11-20 | 北京大学深圳研究生院 | 一种太阳能电池正面电极和太阳能电池 |
CN104241417A (zh) * | 2014-07-16 | 2014-12-24 | 友达光电股份有限公司 | 太阳能电池 |
WO2023232057A1 (zh) * | 2022-06-02 | 2023-12-07 | 苏州太阳井新能源有限公司 | 一种栅线的制备方法、电池片的制备方法及光伏电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5687506B2 (ja) | 太陽電池及び太陽電池モジュール | |
JP5874011B2 (ja) | 太陽電池及び太陽電池モジュール | |
JP3154145U (ja) | 電極構造 | |
EP2743991B1 (en) | Solar cell and solar cell module | |
EP2731147B1 (en) | Solar cell module | |
JP7146805B2 (ja) | 太陽電池およびその太陽電池を備えた電子機器 | |
WO2012090849A1 (ja) | 太陽電池ストリングおよび太陽電池モジュール | |
JP2013030601A (ja) | 太陽電池、太陽電池モジュール、太陽電池の製造方法 | |
WO2012090641A1 (ja) | 太陽電池 | |
WO2013030991A1 (ja) | 太陽電池及びその製造方法 | |
KR20150090606A (ko) | 태양 전지 및 이의 제조 방법 | |
WO2019181835A1 (ja) | 太陽電池およびその太陽電池を備えた電子機器 | |
WO2012114789A1 (ja) | 太陽電池及び太陽電池モジュール | |
WO2012132595A1 (ja) | 太陽電池 | |
JP2005260157A (ja) | 太陽電池セルおよび太陽電池モジュール | |
JP7270598B2 (ja) | 太陽電池およびその太陽電池を備えた電子機器 | |
JP7270597B2 (ja) | 太陽電池およびその太陽電池を備えた電子機器 | |
KR101212490B1 (ko) | 태양전지 셀의 제조 방법 | |
JP5906422B2 (ja) | 太陽電池及び太陽電池モジュール | |
EP3267492B1 (en) | Solar cell | |
WO2012124464A1 (ja) | 太陽電池 | |
JP7478063B2 (ja) | 太陽電池モジュール | |
KR101199591B1 (ko) | 태양전지 셀의 제조 방법 | |
JP2009081470A (ja) | 太陽電池セルおよび太陽電池モジュール | |
WO2014002256A1 (ja) | 太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |