WO2013029827A2 - Wandlerschaltung und verfahren zum übertragen von elektrischer energie - Google Patents

Wandlerschaltung und verfahren zum übertragen von elektrischer energie Download PDF

Info

Publication number
WO2013029827A2
WO2013029827A2 PCT/EP2012/061840 EP2012061840W WO2013029827A2 WO 2013029827 A2 WO2013029827 A2 WO 2013029827A2 EP 2012061840 W EP2012061840 W EP 2012061840W WO 2013029827 A2 WO2013029827 A2 WO 2013029827A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter circuit
voltage
electrical energy
sink
voltage source
Prior art date
Application number
PCT/EP2012/061840
Other languages
English (en)
French (fr)
Other versions
WO2013029827A3 (de
Inventor
Hans Geyer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2014527535A priority Critical patent/JP2014525728A/ja
Priority to EP12731358.3A priority patent/EP2751918A2/de
Priority to KR1020147005263A priority patent/KR20140057298A/ko
Priority to CN201280041885.9A priority patent/CN103765747A/zh
Priority to US14/241,124 priority patent/US20140225432A1/en
Publication of WO2013029827A2 publication Critical patent/WO2013029827A2/de
Publication of WO2013029827A3 publication Critical patent/WO2013029827A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/14Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using DC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/46DC to AC converters with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a converter circuit for transmitting electrical energy by means of an electromagnetic transmission unit.
  • the present invention relates to a method for transmitting electrical energy by means of a converter circuit of the type described above.
  • the present invention relates to an automotive vehicle electrical system with a converter circuit for transmitting electrical energy of the above
  • High voltage electrical system to provide a low voltage electrical system with a DC voltage of 12 volts, in which at least one low-voltage supply battery is provided to supply the low-voltage electrical system with electrical energy.
  • US 2007/0276556 A1 discloses a voltage electrical system of an electrically driven motor vehicle in which electrical energy is exchanged between a high-voltage on-board electrical system and a low-voltage electrical system by means of a DC-DC converter.
  • a disadvantage of the known systems is that each of the vehicle electrical system or each of the batteries are assigned separate charging devices and a flexible exchange of electrical energy between the on-board networks and an external electrical
  • the present invention therefore provides a converter circuit for transmitting electrical energy, in particular for use in a motor vehicle electrical system, having an electromagnetic transmission unit which has at least three electromagnetic transmission elements which are used to transmit electrical energy
  • first electromagnetic transmission member is connected to a first bidirectional converter circuit having a firstmatsungsanschlußpolcontract (80) for connecting a
  • electromagnetic transmission member (64) is connected to a rectifier converter circuit, which is connected on the output side to an electrical energy store (88), and wherein the third electromagnetic transfer member (66) is connected to a second bidirectional converter circuit which has a second pair of voltage poles (96) for Connecting a DC voltage source and / or sink (98), and with a control unit which is connected to the first bidirectional converter circuit, the second bidirectional converter circuit and the rectifier converter circuit to the exchange of electrical energy between the AC voltage source and / or sink to control the DC voltage source and / or sink and / or the electrical energy storage.
  • the invention therefore provides a method for transmitting electrical energy by means of a converter circuit of the type described above, wherein the electrical energy between the AC voltage source and / or sink, the DC voltage source and / or sink and / or the electrical energy storage is replaced.
  • the present invention therefore provides an automotive vehicle electrical system with a converter circuit of the type described above.
  • Energy flow directions can be adjusted, whereby the exchange of electrical energy within the vehicle and with an external power source can be flexibly implemented.
  • the first bidirectional converter circuit comprises an electronic H-bridge circuit or a four-quadrant controller, an inverter and a rectifier, wherein between the inverter and the
  • Rectifier can be switched depending on the power flow direction.
  • AC power source and / or sink are connected and electrical energy is transmitted from the external source to the electromagnetic transmission unit and are transmitted from the electromagnetic transmission unit electrical energy to the external power source.
  • Reactive power compensation circuit is connected.
  • the reactive power removed from the alternating voltage source and / or sink can be reduced, as this causes the entire converter circuit to act like a resistive load.
  • Converter circuit an electronic H-bridge circuit or a
  • the DC voltage are converted and the converted DC voltage can be adapted to the voltage of the connected electrical system. It is further preferred if the electromagnetic transmission unit is designed as a transformer and the electromagnetic transmission elements are designed as coils.
  • the converter circuit is designed to supply electrical power from the AC voltage source and / or sink or from the DC voltage source and / or sink to the two respective other components connected to the electromagnetic transmission unit or one of the two other components transfer.
  • High-voltage battery is connected and the electrical energy storage a
  • Low-voltage battery of the low-voltage electrical system can be exchanged.
  • Polyphase inverter is connected to provide a multi-phase AC voltage.
  • first bidirectional converter circuit and / or the second bidirectional converter circuit is designed as a resonant converter.
  • control unit is connected to the converters via an on-board vehicle network.
  • cabling effort can be reduced with appropriate control lines and the controlled components of the converter circuit at any
  • Fig. 1 shows in schematic form a motor vehicle with a hybrid powertrain and with a high voltage electrical system and a low voltage electrical system;
  • Fig. 2 shows in schematic form a converter circuit for exchanging electrical energy between an external voltage source and / or sink and the high voltage electrical system and the low voltage electrical system of the motor vehicle.
  • a motor vehicle is shown schematically and generally designated 10.
  • the motor vehicle 10 has a drive train 12, which in the present case an electric machine 14 and an internal combustion engine 16 for the provision of
  • the powertrain 12 is for driving driven wheels 18 L, 18 R of the vehicle 10.
  • the engine 16 is connectable to the electric machine 14 via a crankshaft 20, the engine 16 and the electric machine 14 providing an output shaft 22 with a torque t rotating at an adjustable speed.
  • the output shaft 22 is connectable to a transmission unit 24 for transmitting the torque t to the driven wheels 18R, 18L.
  • the crankshaft 20 and the output shaft 22 in the present case each have a coupling 26, 28 in order to connect the internal combustion engine 16 with the electric machine 14 or the electric machine 14 with the transmission unit 24.
  • the powertrain 12 may be configured to drive the vehicle 10 solely by means of the electric machine 16 (electric vehicle). Alternatively, the electric machine 16 may be part of a hybrid powertrain 12, as in the present case.
  • the crankshaft 20 is connected by means of the clutch 26 to a rotor of the electric machine 14 or connectable to transmit a rotational speed or a torque to the electric machine 14.
  • the rotor of the electric machine 14 is connected to the output shaft 22 to transmit the torque t to the transmission unit 24.
  • the torque t is determined by the sum of the
  • Engine 16 and the electric machine 14 provided individual torques.
  • the electric machine 14 During engine operation, the electric machine 14 generates a drive torque that assists the engine 16, for example in an acceleration phase. In generator or recuperation operation, the electric machine 14 generates electrical energy, which is generally provided to the vehicle 10.
  • the engine 16 is fueled by a fuel tank 30.
  • the electric machine 14 may be single-phase or multi-phase and is controlled by means of a power electronics 32 or an inverter 32 and supplied with electrical energy.
  • the power electronics 32 is connected to a power supply unit 34 such as a DC power supply (eg battery) 34 of the vehicle 10 and serves to provide a voltage provided by the power supply unit 34 in alternating current in general or in a number of phase currents for the phases of the electric To rebuild machine 14.
  • the power supply unit 34 is connected to a battery control device 36 that is adapted to the Power supply of the electric machine 14 via the power electronics 32 and to control the state of charge of the power supply unit 34.
  • the power electronics 32 is further configured to charge the power supply unit 34 by the electric power generated by the electric machine 14 in the recuperation operation of the electric machine 14.
  • the power supply unit 34, the power electronics 32 and the battery control unit 36 are part of a high voltage electrical system 38 of the motor vehicle 10.
  • the motor vehicle 10 further includes a low voltage power supply unit 40 (e.g., battery) which supplies a low voltage vehicle electrical system 42 of the motor vehicle 10 with a corresponding voltage.
  • the high-voltage on-board network 38 is connected by means of a converter 50 to the low-voltage on-board network 42 in order to exchange electrical energy between the two on-board networks 38, 42.
  • the converter 50 is further connected to an external unit by means of a connection unit 52
  • This external energy source and / or sink 54 connectable.
  • This external energy source and / or sink is preferably a public alternating voltage network 54, which can transmit electrical energy via the converter 50 into the voltage supply network 38, 42 and into which electrical energy can be transmitted from the voltage on-board networks 38, 42.
  • excess energy can be dissipated from the motor vehicle 10 or the power supply units 34, 40 can be charged via the electrical energy source and / or sink.
  • arbitrary electrical energy can thus be exchanged between the three energy networks 38, 40, 54.
  • Fig. 2 shows in schematic form an embodiment of the transducer 50 for
  • the transducer 50 includes an electromagnetic transmission unit 60 having three electromagnetic transmission members 62, 64, 66.
  • the electromagnetic transmission members 62, 64, 66 are each formed by a coil 62, 64, 66 and electromagnetically coupled together, preferably via an iron core 68th
  • the first coil 62 is connected to an electronic H-bridge circuit 70, which may also be designed as a four-quadrant controller 70.
  • the H bridge circuit 70 converts a DC voltage to an AC voltage and is configured to transmit electrical energy in both directions.
  • the H bridge circuit provides an AC voltage to the first coil 62 and can convert an AC spanning from the coil 62 to a DC voltage.
  • the H-bridge circuit 70 is connected to a DC link capacitor 72 and provides this to the DC voltage.
  • the DC link capacitor is with a
  • Inverter 74 and connectable to a reactive power compensation circuit 76, depending on the transmission direction of the electrical energy of the
  • Reactive power compensation circuit 76 is connected.
  • Reactive power compensation circuit 76 is further connected via a rectifier 78 to a pair of alternating voltage poles 80.
  • the inverter 74 is also connected to the Kirpolpolpan 80 or connectable.
  • the alternating voltage pole pair 80 corresponds in principle to the connection unit 52 and can be connected to an external voltage source and / or sink, which is preferably formed by the public AC voltage network 54.
  • the AC voltage at the AC voltage terminals 80 is converted into a DC voltage by means of the rectifier 78.
  • the entire transducer 50 acts like a resistive load and the reactive power can be absorbed by it
  • Reactive power compensation circuit 76 can be prevented.
  • Reactive power compensation circuit 76 is in this case via the
  • DC link capacitor 72 is connected to the H bridge circuit 70 to convert the DC voltage into an AC voltage that is transmitted to the first coil 62. So can electrical energy from the public
  • Transmission unit 60 are transmitted.
  • the DC link capacitance 72 is decoupled from the reactive power compensation circuit 76 and with the inverter 74th connected.
  • the inverter 74 is connected to the AC pole pair 80.
  • the H-bridge circuit 70 converts the AC voltage provided by the first coil 62 into a DC voltage, wherein the
  • DC voltage is converted by the inverter 74 into an AC voltage and is transmitted to the AC pole pair 80.
  • electrical energy can be both switched on and out.
  • the second electromagnetic transmission member 64 is formed as a coil 64 and connected to an inverter 82, the output side via a
  • the DC link capacitor 84 and a filter 86 is connected to an electrical energy storage 88.
  • the rectifier 82 converts the AC voltage provided by the second coil 64 into a DC voltage and transmits the DC voltage via the DC link capacitor 84 and the filter 86 to the electrical energy storage 88 in order to charge it accordingly.
  • the energy store 88 is preferably as
  • Low-voltage battery 88 is formed and substantially corresponds to the
  • Low-voltage supply unit 40 of FIG. 1 Due to the system, only electrical energy can be transferred from the second coil 64 to the electrical energy store 88, but not in the opposite direction.
  • the rectifier 82 is formed as an electronic H-bridge circuit or four-quadrant, so that also electrical energy from the
  • Energy storage 88 can be transferred to the electromagnetic transmission unit 60 and corresponding to the other components.
  • the third electromagnetic transmission member 66 is formed as a third coil 66 and connected to a second electronic H-bridge circuit 90, which may also be formed as a four-quadrant 90. On the output side, the H-bridge circuit 90 via a DC link capacitance 92 with a
  • the DC-DC converter 94 is connected.
  • the DC-DC converter 94 is connected to a DC pole pair 96.
  • an electrical energy storage 98 is connected, preferably as
  • High-voltage battery 98 is formed.
  • Gleichthesespolcru 96 may further via a corresponding rectifier or a corresponding
  • Power electronics such as the power electronics 32, the electric machine 14 may be connected.
  • the H-bridge circuit 90 and the DC-DC converter 94 electrical energy from the Gleichwoodspolcru 96 to the third coil 66 is transferable and in the opposite direction from the third coil 66 to the DC voltage pole pair 96 transferable.
  • electrical energy can be transmitted both from the high-voltage battery 98 or the connected electric machine 14 to the electromagnetic transmission unit 60 and the connected components, as well as electrical energy from the electromagnetic
  • the converter 50 further includes a control unit 100 connected to the inverter 74, the reactive power compensation circuit 76, the H-bridge circuit 70, the filter 86, the rectifier 82, the H-bridge circuit 90, and the DC-DC converter 94.
  • the control unit 100 is thus able to control all the components of the transducer 50 in order to exchange electrical energy as desired between the components.
  • electrical energy is transmitted from the public grid or the external AC voltage source and / or sink 54 to the high-voltage battery 98 in order to charge them accordingly.
  • a second setting electric power is supplied from the
  • High voltage battery 98 transferred to the low-voltage battery 88 to charge them. Further, in a third setting, electrical energy from the external AC power source 54 and / or sink is transferred to both the high voltage battery 98 and the low voltage battery 88 to charge these energy stores. Further, in a fourth setting, electric power is supplied from the
  • Low-voltage battery 88 Low-voltage battery 88 and transferred to the public network 54 and fed into this. Further, at a fifth setting, electric power is transmitted from the high-voltage battery 98 to the public network 54, or fed into the public network 54.
  • the converter circuit 10 according to the invention is basically not in three
  • electromagnetic transmission members 62, 64, 66 limited.
  • the electromagnetic transmission unit 60 may also have more transmission members 62, 64, 66 connected to responsive converter circuits for receiving or supplying electrical energy from the transmission unit 60.
  • the converter can alternatively be coupled to any direct voltage and / or alternating voltage sources such as solar systems, fuel cells, Quick Charger units or the like, bypassing multi-stage lossy inverter or intermediate converter.
  • the Kirpolpolcru 80 can be connected to any voltage networks worldwide.
  • the overall principle can also be applied to multiple transformers in order to achieve a high partial load efficiency. Accordingly, the control effort for the control unit 100 would have to be adjusted.
  • the coils 62, 64, 66 can also be connected to a resonant converter in order to increase the efficiency accordingly.
  • the control unit 100 is preferably connected to the respective components via a vehicle communication network (LEN, CAN, Flexray or the like).
  • vehicle communication network LEO, CAN, Flexray or the like.
  • microcontroller for the system controlling and
  • the sum of the partial power flows through the transducers 70, 82, 90 or the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Wandlerschaltung (50) zum Übertragen von elektrischer Energie, insbesondere zur Anwendung in einem Kraftfahrzeugbordnetz (38, 42), mit einer elektromagnetischen Übertragungseinheit (60), die drei elektromagnetische Übertragungsglieder (62, 64, 66) aufweist, die zur Übertragung von elektromagnetischer Energie elektromagnetisch miteinander koppelbar sind, wobei das erste elektromagnetische Übertragungsglied (62) mit einer ersten bidirektionalen Wandlerschaltung verbunden ist, die ein erstes Spannungsanschlusspolpaar (80) zum Anschließen einer Wechselspannungsquelle und/oder -senke (54) aufweist, wobei das zweite elektromagnetische Übertragungsglied (64) mit einer Gleichrichter- Wandlerschaltung verbunden ist, die ausgangsseitig mit einem elektrischen Energiespeicher (88) verbunden ist, und wobei das dritte elektromagnetische Übertragungsglied (66) mit einer zweiten bidirektionalen Wandlerschaltung verbunden ist, die ein zweites Spannungspolpaar (96) zum Anschließen einer Gleichspannungsquelle und/oder -senke (98) aufweist, und mit einer Steuereinheit (100), die mit der ersten bidirektionalen Wandlerschaltung, der zweiten bidirektionalen Wandlerschaltung und der Gleichrichter-Wandlerschaltung verbunden ist, um den Austausch von elektrischer Energie zwischen der Wechselspannungsquelle und/oder -senke (54), der Gleichspannungsquelle und/oder -senke (98) und/oder dem elektrischen Energiespeicher (88) zu steuern.

Description

Beschreibung Titel
Wandlerschaltung und Verfahren zum Übertragen von elektrischer Energie
Die vorliegende Erfindung betrifft eine Wandlerschaltung zum Übertragen von elektrischer Energie mittels einer elektromagnetischen Übertragungseinheit.
Ferner betrifft die vorliegende Erfindung ein Verfahren zum Übertragen von elektrischer Energie mittels einer Wandlerschaltung der oben beschriebenen Art.
Schließlich betrifft die vorliegende Erfindung ein Kraftfahrzeugspannungsbordnetz mit einer Wandlerschaltung zum Übertragen von elektrischer Energie der oben
beschriebenen Art.
Stand der Technik Auf dem Gebiet der Kraftfahrzeugantriebstechnik ist es allgemein bekannt, eine elektrische Maschine als Antrieb zu verwenden und diese elektrische Maschine mit einer Hochspannungsbatterie mit elektrischer Energie zu versorgen. Dabei ist üblicherweise die Hochspannungsbatterie einem Hochspannungsbordnetz zugeordnet, das eine Spannung von mehr als 120 Volt aufweist. Es ist ferner allgemein bekannt, parallel zu dem
Hochspannungsbordnetz ein Niederspannungsbordnetz mit einer Gleichspannung von 12 Volt vorzusehen, in dem wenigstens eine Niederspannungsversorgungsbatterie vorgesehen ist, um das Niederspannungsbordnetz mit elektrischer Energie zu versorgen.
Ferner ist es allgemein bekannt, die Hochvoltbatterie und/oder die Niedervoltbatterie eines Kraftfahrzeugs über ein öffentliches Energienetz mit elektrischer Energie zu versorgen und dadurch die entsprechende Batterie aufzuladen.
Aus der US 2007/0276556 A1 ist ein Spannungsbordnetz eines elektrisch angetriebenen Kraftfahrzeugs bekannt, bei dem mittels eines Gleichspannungswandlers elektrische Energie zwischen einem Hochspannungsbordnetz und einem Niederspannungsbordnetz ausgetauscht wird. Nachteilig bei den bekannten Systemen ist es, dass jedem der Bordnetze bzw. jeder der Batterien separate Ladevorrichtungen zugeordnet sind und ein flexibler Austausch von elektrischer Energie zwischen den Bordnetzen und einer externen elektrischen
Energiequelle nicht oder mit erhöhtem technischen Aufwand realisiert werden kann.
Offenbarung der Erfindung
Die vorliegende stellt daher eine Wandlerschaltung zum Übertragen von elektrischer Energie, insbesondere zur Anwendung in einem Kraftfahrzeugbordnetz, bereit, mit einer elektromagnetischen Übertragungseinheit, die wenigstens drei elektromagnetische Übertragungsglieder aufweist, die zur Übertragung von elektrischer Energie
elektromagnetisch miteinander koppelbar sind, wobei das erste elektromagnetische Übertragungsglied mit einer ersten bidirektionalen Wandlerschaltung verbunden ist, die ein erstes Spannungsanschlusspolpaar (80) zum Anschließen einer
Wechselspannungsquelle und/oder -senke (54) aufweist, wobei das zweite
elektromagnetische Übertragungsglied (64) mit einer Gleichrichter-Wandlerschaltung verbunden ist, die ausgangsseitig mit einem elektrischen Energiespeicher (88) verbunden ist, und wobei das dritte elektromagnetische Übertragungsglied (66) mit einer zweiten bidirektionalen Wandlerschaltung verbunden ist, die ein zweites Spannungspolpaar (96) zum Anschließen einer Gleichspannungsquelle und/oder -senke (98) aufweist, und mit einer Steuereinheit, die mit der ersten bidirektionalen Wandlerschaltung, der zweiten bidirektionalen Wandlerschaltung und mit der Gleichrichterwandlerschaltung verbunden ist, um den Austausch von elektrischer Energie zwischen der Wechselspannungsquelle und/oder -senke, der Gleichspannungsquelle und/oder -senke und/oder dem elektrischen Energiespeicher zu steuern.
Ferner wird erfindungsgemäß daher ein Verfahren zum Übertragen von elektrischer Energie mittels einer Wandlerschaltung der oben beschriebenen Art bereitgestellt, wobei die elektrische Energie zwischen der Wechselspannungsquelle und/oder -senke, der Gleichspannungsquelle und/oder -senke und/oder dem elektrischen Energiespeicher ausgetauscht wird.
Schließlich stellt die vorliegende Erfindung daher ein Kraftfahrzeug-Spannungsbordnetz mit einer Wandlerschaltung der oben beschriebenen Art bereit. Vorteile der Erfindung
Durch die gemeinsame elektromagnetische Übertragungseinheit können bestimmte Komponenten gemeinsam genutzt werden und separate aufwändige Wandlereinheiten eingespart werden, wodurch der technische Aufwand, Kosten und Gewicht des
Kraftfahrzeugs reduziert werden können. Ferner können durch die Steuerung der unterschiedlichen Komponenten der Wandlerschaltung unterschiedliche
Energieflussrichtungen eingestellt werden, wodurch der Austausch von elektrischer Energie innerhalb des Fahrzeugs und mit einer externen Spannungsquelle flexibel realisiert werden kann.
Es ist von besonderem Vorzug, wenn die erste bidirektionale Wandlerschaltung eine elektronische H-Brückenschaltung bzw. einen Vierquadrantensteller, einen Wechselrichter und einen Gleichrichter aufweist, wobei zwischen dem Wechselrichter und dem
Gleichrichter je nach Leistungsflussrichtung umschaltbar ist.
Dadurch kann die elektromagnetische Übertragungseinheit mit einer externen
Wechselspannungsquelle und/oder -senke verbunden werden und elektrische Energie von der externen Quelle auf die elektromagnetische Übertragungseinheit übertragen werden und von der elektromagnetischen Übertragungseinheit elektrische Energie an die externe Energiequelle übertragen werden.
Dabei ist es von besonderem Vorzug, wenn der Gleichrichter mit einer
Blindleistungskompensationsschaltung verbunden ist.
Dadurch kann die von der Wechselspannungsquelle und/oder -senke entnommene Blindleistung reduziert werden, da dadurch die gesamte Wandlerschaltung wie eine ohmsche Last wirkt. Von besonderem Vorzug ist es weiterhin, wenn die zweite bidirektionale
Wandlerschaltung eine elektronische H-Brückenschaltung bzw. einen
Vierquadrantensteller und einen Gleichspannungswandler aufweist.
Dadurch kann mit einfachen Mitteln bidirektional eine Wechselspannung in eine
Gleichspannung gewandelt werden und die so gewandelte Gleichspannung an die Spannung des angeschlossenen Bordnetzes angepasst werden. Es ist weiterhin bevorzugt, wenn die elektromagnetische Übertragungseinheit als Transformator ausgebildet ist und die elektromagnetischen Übertragungsglieder als Spulen ausgebildet sind.
Dadurch kann mit einfachen Mitteln elektrische Energie in beliebiger Richtung von einem der Übertragungsglieder auf ein oder zwei der anderen Übertragungsglieder übertragen werden. Es ist weiterhin allgemein bevorzugt, wenn die Wandlerschaltung dazu ausgebildet ist, elektrische Leistung von der Wechselspannungsquelle und/oder -senke oder von der Gleichspannungsquelle und/oder -senke auf die beiden jeweiligen anderen an der elektromagnetischen Übertragungseinheit angeschlossenen Komponenten oder eine der beiden anderen Komponenten zu übertragen.
Dadurch kann je nach Bedarf und Verfügbarkeit elektrische Energie von einer beliebigen Komponente auf eine oder zwei andere Komponenten übertragen werden, wodurch im Allgemeinen die Flexibilität der Gesamtwandlerschaltung erhöht ist. Es ist ferner bevorzugt, wenn das erste Spannungspolpaar mit einer
Hochspannungsbatterie verbunden ist und der elektrische Energiespeicher eine
Niederspannungsbatterie ist.
Dadurch kann mittels der Wandlerschaltung mit einfachen Mitteln elektrische Energie zwischen der Hochspannungsbatterie des Hochspannungsbordnetzes und der
Niederspannungsbatterie des Niederspannungsbordnetzes ausgetauscht werden.
Es ist ferner bevorzugt, wenn das erste Spannungspolpaar mit einem
Mehrphasenwechselrichter verbunden ist, um eine Mehrphasenwechselspannung bereitzustellen.
Dadurch können auch Mehrphasenverbraucher, wie z.B. Drehstrommschinen von der Wandlerschaltung mit elektrischer Energie versorgt werden und es können ferner hohe Teillast-Wirkungsgrade realisiert werden. Es ist weiterhin bevorzugt, wenn die erste bidirektionale Wandlerschaltung und/oder die zweite bidirektionale Wandlerschaltung als Resonanzwandler ausgebildet ist.
Dadurch kann der Wirkungsgrad der entsprechenden Wandlerschaltungen erhöht werden.
Weiterhin ist es bei dem Kraftfahrzeug-Spannungsbordnetz gemäß der vorliegenden Erfindung von besonderem Vorzug, wenn die Steuereinheit über ein Kraftfahrzeug- Bordnetzwerk mit den Wandlern verbunden ist. Dadurch kann der Verkabelungsaufwand mit entsprechenden Steuerleitungen reduziert werden und die angesteuerten Komponenten der Wandlerschaltung an beliebigen
Positionen im Kraftfahrzeug verbaut werden, ohne dass sich der Verkabelungsaufwand erhöht. Es versteht sich, dass die Merkmale, Eigenschaften und Vorteile der erfindungsgemäßen Wandlerschaltung auch entsprechend auf das erfindungsgemäße Verfahren zutreffen bzw. anwendbar sind.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt in schematischer Form ein Kraftfahrzeug mit einem Hybridantriebstrang und mit einem Hochspannungsbordnetz und einem Niederspannungsbordnetz;
Fig. 2 zeigt in schematischer Form eine Wandlerschaltung zum Austauschen von elektrischer Energie zwischen einer externen Spannungsquelle und/oder -senke und dem Hochspannungsbordnetz und dem Niederspannungsbordnetz des Kraftfahrzeugs.
Ausführungsformen der Erfindung In Fig. 1 ist ein Kraftfahrzeug schematisch dargestellt und allgemein mit 10 bezeichnet. Das Kraftfahrzeug 10 weist einen Antriebsstrang 12 auf, der im vorliegenden Fall eine elektrische Maschine 14 und einen Verbrennungsmotor 16 zur Bereitstellung von
Antriebsleistung beinhaltet. Der Antriebsstrang 12 dient zum Antreiben von angetriebenen Rädern 18L, 18R des Fahrzeugs 10. Der Verbrennungsmotor 16 ist über eine Kurbelwelle 20 mit der elektrischen Maschine 14 verbunden bzw. verbindbar, wobei der Verbrennungsmotor 16 und die elektrische Maschine 14 an einer Abtriebswelle 22 ein Drehmoment t bereitstellen, die mit einer einstellbaren Drehzahl dreht. Die Abtriebswelle 22 ist mit einer Getriebeeinheit 24 verbunden bzw. verbindbar, um das Drehmoment t auf die angetriebenen Räder 18R, 18L zu übertragen. Die Kurbelwelle 20 und die Abtriebswelle 22 weisen im vorliegenden Fall jeweils eine Kupplung 26, 28 auf, um den Verbrennungsmotor 16 mit der elektrischen Maschine 14 bzw. die elektrische Maschine 14 mit der Getriebeeinheit 24 zu verbinden. Der Antriebsstrang 12 kann dazu eingerichtet sein, das Fahrzeug 10 alleine mittels der elektrischen Maschine 16 anzutreiben (Elektrofahrzeug). Alternativ kann die elektrische Maschine 16 wie in dem vorliegenden Fall Teil eines Hybrid-Antriebsstrangs 12 sein.
Die Kurbelwelle 20 ist mittels der Kupplung 26 mit einem Rotor der elektrischen Maschine 14 verbunden bzw. verbindbar, um eine Drehzahl bzw. ein Drehmoment auf die elektrische Maschine 14 zu übertragen. Der Rotor der elektrischen Maschine 14 ist mit der Abtriebswelle 22 verbunden, um das Drehmoment t auf die Getriebeeinheit 24 zu übertragen. Das Drehmoment t wird dabei durch die Summe der von dem
Verbrennungsmotor 16 und der elektrischen Maschine 14 bereitgestellten einzelnen Drehmomente gebildet.
Im motorischen Betrieb erzeugt die elektrische Maschine 14 ein Antriebsmoment, das den Verbrennungsmotor 16, zum Beispiel in einer Beschleunigungsphase, unterstützt. Im generatorischen bzw. Rekuperationsbetrieb erzeugt die elektrische Maschine 14 elektrische Energie, die im Allgemeinen dem Fahrzeug 10 zur Verfügung gestellt wird.
Der Verbrennungsmotor 16 wird durch einen Kraftstofftank 30 mit Kraftstoff versorgt.
Die elektrische Maschine 14 kann ein- oder mehrphasig ausgebildet sein und wird mittels einer Leistungselektronik 32 bzw. eines Inverters 32 angesteuert und mit elektrischer Energie versorgt. Die Leistungselektronik 32 ist mit einer Energieversorgungseinheit 34 wie einer Gleichspannungsversorgung (z.B. Akkumulator bzw. Batterie) 34 des Fahrzeugs 10 verbunden und dient dazu, eine von der Energieversorgungseinheit 34 bereitgestellte Spannung in Wechselstrom im Allgemeinen bzw. in eine Anzahl von Phasenströmen für die Phasen der elektrischen Maschine 14 umzurichten. Die Energieversorgungseinheit 34 ist mit einem Batteriesteuergerät 36 verbunden, das dazu ausgebildet ist, die Energieversorgung der elektrischen Maschine 14 über die Leistungselektronik 32 und den Ladezustand der Energieversorgungseinheit 34 zu steuern. Die Leistungselektronik 32 ist ferner dazu ausgebildet, im Rekuperationsbetrieb der elektrischen Maschine 14, die Energieversorgungseinheit 34 durch die von der elektrischen Maschine 14 erzeugte elektrische Energie aufzuladen.
Die Energieversorgungseinheit 34, die Leistungselektronik 32 und das Batteriesteuergerät 36 sind Teil eines Hochspannungsbordnetzes 38 des Kraftfahrzeugs 10. Das Kraftfahrzeug 10 weist ferner eine Niederspannungsversorgungseinheit 40 (z.B. Batterie) auf, die ein Niederspannungsbordnetz 42 des Kraftfahrzeugs 10 mit einer entsprechenden Spannung versorgt. Das Hochspannungsbordnetz 38 ist mittels eines Wandlers 50 mit dem Niederspannungsbordnetz 42 verbunden, um elektrische Energie zwischen den beiden Bordnetzen 38, 42 auszutauschen.
Der Wandler 50 ist ferner mittels einer Verbindungseinheit 52 mit einer externen
Energiequelle und/oder -senke 54 verbindbar. Diese externe Energiequelle und/oder -senke ist vorzugsweise ein öffentliches Wechselspannungsnetz 54, das elektrische Energie über den Wandler 50 in die Spannungsbordnetze 38, 42 übertragen kann und in das elektrische Energie aus den Spannungsbordnetzen 38, 42 übertragen werden kann. Dadurch kann überschüssige Energie aus dem Kraftfahrzeug 10 abgeführt werden oder die Energieversorgungseinheiten 34, 40 können über die elektrische Energiequelle und/oder -senke aufgeladen werden. Im Ergebnis kann somit zwischen den drei Energienetzen 38, 40, 54 beliebig elektrische Energie ausgetauscht werden.
Fig. 2 zeigt in schematischer Form eine Ausführungsform des Wandlers 50 zum
Übertragen von elektrischer Energie.
Der Wandler 50 weist eine elektromagnetische Übertragungseinheit 60 auf, die drei elektromagnetische Übertragungsglieder 62, 64, 66 aufweist. Die elektromagnetischen Übertragungsglieder 62, 64, 66 sind jeweils durch eine Spule 62, 64, 66 gebildet und elektromagnetisch miteinander gekoppelt, vorzugsweise über einen Eisenkern 68. Die erste Spule 62 ist verbunden mit einer elektronischen H-Brückenschaltung 70, die auch als Vierquadrantensteller 70 ausgebildet sein kann. Die H-Brückenschaltung 70 wandelt eine Gleichspannung in eine Wechselspannung und ist dazu ausgebildet, elektrische Energie in beide Richtungen zu übertragen. Demnach stellt die H- Brückenschaltung der ersten Spule 62 eine Wechselspannung bereit und kann eine Wechselspanning von der Spule 62 in eine Gleichspannung wandeln. Die H- Brückenschaltung 70 ist mit einem Zwischenkreiskondensator 72 verbunden und stellt diesem die Gleichspannung bereit. Der Zwischenkreiskondensator ist mit einem
Wechselrichter 74 und mit einer Blindleistungskompensationsschaltung 76 verbindbar, wobei je nach Übertragungsrichtung der elektrischen Energie der
Zwischenkreiskondensator 72 mit dem Wechselrichter 74 oder der
Blindleistungskompensationsschaltung 76 verbunden ist. Die
Blindleistungskompensationsschaltung 76 ist ferner über einen Gleichrichter 78 mit einem Wechselspannungspolpaar 80 verbunden. Der Wechselrichter 74 ist ebenfalls mit dem Wechselspannungspolpaar 80 verbunden bzw. verbindbar.
Das Wechselspannungspolpaar 80 entspricht im Prinzip der Verbindungseinheit 52 und ist verbindbar mit einer externen Spannungsquelle und/oder -senke, die vorzugsweise durch das öffentliche Wechselspannungsnetz 54 gebildet ist.
Sofern elektrische Energie von dem öffentlichen Netz 54 auf den Wandler 50 bzw. auf angeschlossene Komponenten übertragen werden soll, wird die Wechselspannung an den Wechselspannungsklemmen 80 mittels des Gleichrichters 78 in eine Gleichspannung gewandelt. Durch die Blindleistungskompensationsschaltung wirkt der gesamte Wandler 50 wie eine ohmsche Last und die Aufnahme von Blindleistung kann durch diese
Blindleistungskompensationsschaltung 76 verhindert werden. Die
Blindleistungskompensationsschaltung 76 ist in diesem Fall über den
Zwischenkreiskondensator 72 mit der H-Brückenschaltung 70 verbunden, um die Gleichspannung in eine Wechselspannung zu wandeln, die auf die erste Spule 62 übertragen wird. So kann elektrische Energie von dem öffentlichen
Wechselspannungsnetz 54 auf den Wandler 50 bzw. die elektromagnetische
Übertragungseinheit 60 übertragen werden.
Sofern elektrische Energie von der elektromagnetischen Übertragungseinheit 60 auf das öffentliche Netz 54 übertragen werden soll, wird die Zwischenkreiskapazität 72 von der Blindleistungskompensationsschaltung 76 entkoppelt und mit dem Wechselrichter 74 verbunden. Der Wechselrichter 74 ist mit dem Wechselspannungspolpaar 80 verbunden. In diesem Fall wandelt die H-Brückenschaltung 70 die Wechselspannung, die von der ersten Spule 62 bereitgestellt wird, in eine Gleichspannung um, wobei die
Gleichspannung von dem Wechselrichter 74 in eine Wechselspannung gewandelt wird und auf das Wechselspannungspolpaar 80 übertragen wird. Somit kann elektrische Energie sowohl ein- als auch ausgekoppelt werden.
Das zweite elektromagnetische Übertragungsglied 64 ist als Spule 64 ausgebildet und verbunden mit einem Wechselrichter 82, der ausgangsseitig über eine
Zwischenkreiskapazität 84 und einen Filter 86 mit einem elektrischen Energiespeicher 88 verbunden ist. Der Gleichrichter 82 wandelt die von der zweiten Spule 64 bereitgestellte Wechselspannung in eine Gleichspannung und überträgt die Gleichspannung über den Zwischenkreiskondensator 84 und den Filter 86 auf den elektrischen Energiespeicher 88, um diesen entsprechend zu laden. Der Energiespeicher 88 ist vorzugsweise als
Niederspannungsbatterie 88 ausgebildet und entspricht im Wesentlichen der
Niederspannungsversorgungseinheit 40 aus Fig. 1. Systembedingt kann von der zweiten Spule 64 lediglich elektrische Energie auf den elektrischen Energiespeicher 88 übertragen werden, jedoch nicht in die entgegengesetzte Richtung. In einer alternativen
Ausführungsform ist der Gleichrichter 82 als elektronische H-Brückenschaltung oder Vierquadrantensteller ausgebildet, so dass auch elektrische Energie von dem
Energiespeicher 88 auf die elektromagnetische Übertragungseinheit 60 und entsprechend auf die anderen Komponenten übertragen werden kann.
Das dritte elektromagnetische Übertragungsglied 66 ist als dritte Spule 66 ausgebildet und mit einer zweiten elektronischen H-Brückenschaltung 90 verbunden, die auch als Vierquadrantensteller 90 ausgebildet sein kann. Ausgangsseitig ist die H- Brückenschaltung 90 über eine Zwischenkreiskapazität 92 mit einem
Gleichspannungswandler 94 verbunden. Der Gleichspannungswandler 94 ist mit einem Gleichspannungspolpaar 96 verbunden. An dem Gleichspannungspolpaar 96 ist ein elektrischer Energiespeicher 98 angeschlossen, der vorzugsweise als
Hochspannungsbatterie 98 ausgebildet ist. An dem Gleichspannungspolpaar 96 kann ferner über einen entsprechenden Gleichrichter bzw. eine entsprechende
Leistungselektronik, wie z.B. die Leistungselektronik 32, die elektrische Maschine 14 angeschlossen sein. Durch die H-Brückenschaltung 90 und den Gleichspannungswandler 94 ist elektrische Energie von dem Gleichspannungspolpaar 96 auf die dritte Spule 66 übertragbar und in entgegengesetzter Richtung von der dritten Spule 66 auf das Gleichspannungspolpaar 96 übertragbar. Dadurch kann elektrische Energie sowohl von der Hochspannungsbatterie 98 bzw. der angeschlossenen elektrischen Maschine 14 auf die elektromagnetische Übertragungseinheit 60 und die angeschlossenen Komponenten übertragen werden als auch elektrische Energie von der elektromagnetischen
Übertragungseinheit 60 auf das Gleichspannungspolpaar 96 und die angeschlossene Hochspannungsbatterie 98 bzw. die angeschlossene elektrische Maschine 14 übertragen werden.
Der Wandler 50 weist ferner eine Steuereinheit 100 auf, die mit dem Wechselrichter 74, der Blindleistungskompensationsschaltung 76, der H-Brückenschaltung 70, dem Filter 86, dem Gleichrichter 82, der H-Brückenschaltung 90 und dem Gleichspannungswandler 94 verbunden ist. Die Steuereinheit 100 ist somit dazu in der Lage, sämtliche Komponenten des Wandlers 50 zu steuern, um entsprechend elektrische Energie beliebig zwischen den Komponenten auszutauschen. Insbesondere wird in einer ersten Einstellung elektrische Energie von dem öffentlichen Netz bzw. der externen Wechselspannungsquelle und/oder -senke 54 auf die Hochspannungsbatterie 98 übertragen, um diese entsprechend aufzuladen. Ferner wird in einer zweiten Einstellung elektrische Energie von der
Hochspannungsbatterie 98 auf die Niederspannungsbatterie 88 übertragen, um diese aufzuladen. Ferner wird in einer dritten Einstellung elektrische Energie von der externen Wechselspannungsquelle 54 und/oder -senke sowohl auf die Hochspannungsbatterie 98 als auch auf die Niederspannungsbatterie 88 übertragen, um diese Energiespeicher aufzuladen. Ferner wird in einer vierten Einstellung elektrische Energie von der
Hochspannungsbatterie 98 oder der elektrischen Maschine 14 sowohl auf die
Niederspannungsbatterie 88 als auch auf das öffentliche Netz 54 übertragen bzw. in dieses eingespeist. Ferner wird bei einer fünften Einstellung elektrische Energie von der Hochspannungsbatterie 98 auf das öffentliche Netz 54 übertragen bzw. in das öffentliche Netz 54 eingespeist.
Somit kann mittels des Wandlers 50 elektrische Energie beliebig zwischen den einzelnen Komponenten ausgetauscht werden.
Die erfindungsgemäße Wandlerschaltung 10 ist grundsätzlich nicht auf drei
elektromagnetische Übertragungsglieder 62, 64, 66 beschränkt. In einer Ausführungsform kann die elektromagnetische Übertragungseinheit 60 auch mehr Übertragungsglieder 62, 64, 66 aufweisen, die mit einsprechenden Wandlerschaltungen verbunden sind, um elektrische Energie von der Übertragungseinheit 60 aufzunehmen oder dieser zuzuführen. Durch Anschluss entsprechender Adaptermodule an die elektromagnetische
Übertragungseinheit 60 oder die entsprechenden Spannungspolpaare 80, 96 kann der Wandler alternativ an beliebige Gleichspannungs- und/oder Wechselspannungsquellen wie Solaranlagen, Brennstoffzellen, Quick-Charger-Ladeeinheiten oder ähnliches unter Umgehung vielstufiger verlustbehafteter Wechselrichter oder Zwischenwandler angekoppelt werden. Durch entsprechende Auslegung des Wandlers 50 kann das Wechselspannungspolpaar 80 an beliebige Spannungsnetze weltweit angeschlossen werden.
Ferner ist das Gesamtprinzip auch auf Mehrfachwandler übertragbar, um einen hohen Teillastwirkungsgrad zu erzielen. Entsprechend müsste der Steueraufwand für die Steuereinheit 100 angepasst werden. Grundsätzlich können die Spulen 62, 64, 66 auch mit einem Resonanzwandler verbunden werden, um den Wirkungsgrad entsprechend zu erhöhen.
Die Steuereinheit 100 ist mit den entsprechenden Komponenten vorzugsweise über ein Fahrzeugkommunikationsnetz (LEN, CAN, Flexray oder Ähnliches) verbunden. Entsprechend leistungsfähige MikroController für das System-Controlling und
gleichzeitiges Ausführung von Online-Regelungsaufgaben können eingesetzt werden, so dass mit geringem Hardwareaufwand die Gesamtsteuerung dargestellt werden kann. Ebenso sind steuereinheitsseitig Kraftfahrzeugtypische Maßnahmen bezüglich der Sicherheit sowie Reset- und Wiederanlauf vorzuhalten. Die Stromversorgung der Controllereinheit erfolgt über das Bordnetz und die galvanisch entkoppelte Ansteuerung der einzelnen Halbleiterschalter erfolgt über handelsübliche, isolierende Gatetreiber.
Die Summe der Teilleistungsflüsse durch die Wandler 70, 82, 90 bzw. die
angeschlossenen Spulen 62, 64, 66 ist immer kleiner als ein vordefinierter Wert, der durch die Systemauslegung bestimmt ist. Folglich bleibt die Summe der Leistungsflüsse immer kleiner als der vordefinierte Maximalwert.

Claims

Ansprüche 1 . Wandlerschaltung (50) zum Übertragen von elektrischer Energie, insbesondere zur Anwendung in einem Kraftfahrzeugbordnetz (38, 42), mit
einer elektromagnetischen Übertragungseinheit (60), die wenigstens drei
elektromagnetische Übertragungsglieder (62, 64, 66) aufweist, die zur Übertragung von elektromagnetischer Energie elektromagnetisch miteinander koppelbar sind, wobei das erste elektromagnetische Übertragungsglied (62) mit einer ersten bidirektionalen
Wandlerschaltung verbunden ist, die ein erstes Spannungsanschlusspolpaar (80) zum Anschließen einer Wechselspannungsquelle und/oder -senke (54) aufweist, wobei das zweite elektromagnetische Übertragungsglied (64) mit einer Gleichrichter- Wandlerschaltung verbunden ist, die ausgangsseitig mit einem elektrischen
Energiespeicher (88) verbunden ist, und wobei das dritte elektromagnetische
Übertragungsglied (66) mit einer zweiten bidirektionalen Wandlerschaltung verbunden ist, die ein zweites Spannungspolpaar (96) zum Anschließen einer Gleichspannungsquelle und/oder -senke (98) aufweist, und mit einer Steuereinheit (100), die mit der ersten bidirektionalen Wandlerschaltung, der zweiten bidirektionalen Wandlerschaltung und der Gleichrichter-Wandlerschaltung verbunden ist, um den Austausch von elektrischer Energie zwischen der Wechselspannungsquelle und/oder -senke (54), der
Gleichspannungsquelle und/oder -senke (98) und/oder dem elektrischen Energiespeicher (88) zu steuern.
2. Wandlerschaltung nach Anspruch 1 , wobei die erste bidirektionale Wandlerschaltung eine elektronische H-Brückenschaltung (70) bzw. einen Vierquadrantensteller (70), einen Wechselrichter (74) und einen Gleichrichter (78) aufweist, wobei zwischen dem
Wechselrichter (74) und dem Gleichrichter (78) je nach Leistungsflussrichtung
umschaltbar ist.
3. Wandlerschaltung nach Anspruch 2, wobei der Gleichrichter (78) mit einer
Blindleistungskompensationsschaltung (76) verbunden ist.
4. Wandlerschaltung nach einem der Ansprüche 1 bis 3, wobei die zweite bidirektionale Wandlerschaltung eine elektronische H-Brückenschaltung (90) bzw. einen
Vierquadrantensteller (90) und einen Gleichspannungswandler (94) aufweist.
5. Wandlerschaltung nach einem der Ansprüche 1 bis 4, wobei die elektromagnetische Übertragungseinheit (60) als Transformator (60) ausgebildet ist und die
elektromagnetischen Übertragungsglieder (62, 64, 66) als Spulen (62, 64, 66) ausgebildet sind.
6. Wandlerschaltung nach einem der Ansprüche 1 bis 5, wobei die Wandlerschaltung dazu ausgebildet ist, elektrische Leistung von der Wechselspannungsquelle und/oder -senke (54) oder von der Gleichspannungsquelle und/oder -senke (98) auf die beiden jeweils anderen an der elektromagnetischen Übertragungseinheit (60) angeschlossenen Komponenten (54, 88, 98) oder eine der beiden anderen Komponenten (54, 88, 98) zu übertragen.
7. Wandlerschaltung nach einem der Ansprüche 1 bis 6, wobei das zweite
Spannungspolpaar (96) mit einer Hochspannungsbatterie (98) verbunden ist und wobei der elektrische Energiespeicher (88) eine Niederspannungsbatterie (88) ist.
8. Wandlerschaltung nach einem der Ansprüche 1 bis 7, wobei das zweite
Spannungspolpaar (96) mit einem Mehrphasenwechselrichter verbunden ist, um eine Mehrphasenwechselspannung bereitzustellen.
9. Wandlerschaltung nach einem der Ansprüche 1 bis 8, wobei die erste bidirektionale Wandlerschaltung (70) und/oder die zweite bidirektionale Wandlerschaltung als
Resonanzwandler ausgebildet ist.
10. Verfahren zum Übertragen von elektrischer Energie mittels einer Wandlerschaltung (50) nach einem der Ansprüche 1 bis 9, wobei die elektrische Energie zwischen der Wechselspannungsquelle und/oder -senke (54), der Gleichspannungsquelle und/oder -senke (98) und/oder dem elektrischen Energiespeicher (88) ausgetauscht wird.
1 1. Kraftfahrzeug-Spannungsbordnetz (38, 42) mit einer Wandlerschaltung (50) nach einem der Ansprüche 1 bis 9.
12. Kraftfahrzeug-Spannungsbordnetz nach Anspruch 1 1 , wobei die Steuereinheit (100) über ein Kraftfahrzeug-Bordnetzwerk mit den Wandlerschaltungen (70, 82, 90) verbunden ist.
PCT/EP2012/061840 2011-08-29 2012-06-20 Wandlerschaltung und verfahren zum übertragen von elektrischer energie WO2013029827A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014527535A JP2014525728A (ja) 2011-08-29 2012-06-20 電気エネルギーを伝達するための変換器回路、および方法
EP12731358.3A EP2751918A2 (de) 2011-08-29 2012-06-20 Wandlerschaltung und verfahren zum übertragen von elektrischer energie
KR1020147005263A KR20140057298A (ko) 2011-08-29 2012-06-20 전기 에너지를 전달하기 위한 컨버터 회로 및 방법
CN201280041885.9A CN103765747A (zh) 2011-08-29 2012-06-20 用于传输电能的变换器电路和方法
US14/241,124 US20140225432A1 (en) 2011-08-29 2012-06-20 Converter circuit and method for transferring electrical energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011081720.4 2011-08-29
DE102011081720A DE102011081720A1 (de) 2011-08-29 2011-08-29 Wandlerschaltung und Verfahren zum Übertragen von elektrischer Energie

Publications (2)

Publication Number Publication Date
WO2013029827A2 true WO2013029827A2 (de) 2013-03-07
WO2013029827A3 WO2013029827A3 (de) 2013-11-21

Family

ID=46456525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061840 WO2013029827A2 (de) 2011-08-29 2012-06-20 Wandlerschaltung und verfahren zum übertragen von elektrischer energie

Country Status (7)

Country Link
US (1) US20140225432A1 (de)
EP (1) EP2751918A2 (de)
JP (1) JP2014525728A (de)
KR (1) KR20140057298A (de)
CN (1) CN103765747A (de)
DE (1) DE102011081720A1 (de)
WO (1) WO2013029827A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003543A1 (de) * 2011-02-02 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung für einen elektrischen Energiespeicher in einem Kraftfahrzeug
FR2993728A1 (fr) * 2012-07-20 2014-01-24 Ies Synergy Convertisseur reversible
DE102014200379A1 (de) * 2014-01-13 2015-07-16 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung für ein elektrisch angetriebenes Fahrzeug
DE102014216993A1 (de) * 2014-08-26 2016-03-03 Conti Temic Microelectronic Gmbh Kommunikationssystem für Kraftfahrzeug mit Elektroantrieb
WO2017014648A1 (en) * 2015-07-20 2017-01-26 Auckland Uniservices Limited An integrated multi-source ipt system
EP3159998A1 (de) * 2015-10-20 2017-04-26 AmbiBox GmbH Stellglied, system mit stellgiled, energieversorgungseinheit für ein fahrzeug-bordnetz, klimegerät, spannungsversorgung für elektronische schaltungen, system zur energieversorgung von rechenzentrumseinhelten, gleichspannungsladegerät für elektrofahrzeuge
FR3042920A1 (fr) * 2015-10-23 2017-04-28 Peugeot Citroen Automobiles Sa Procede de commande d’un dispositif electrique multifonction
DE102016105542A1 (de) 2016-03-24 2017-09-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines elektrischen Netzes
EP3290254A1 (de) * 2016-08-31 2018-03-07 Siemens Aktiengesellschaft Bidirektionaler bordnetzumrichter und verfahren zu dessen betrieb
DE102017207102A1 (de) * 2017-03-13 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Stationärspeicher zum Zwischenspeichern von elektrischer Energie in einem elektrischen Versorgungsnetz sowie Betriebsverfahren und Nachrüstmodul für den Stationärspeicher
DE102017110708A1 (de) 2017-05-17 2018-11-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines elektrischen Netzes
DE102017110709A1 (de) 2017-05-17 2018-11-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines elektrischen Netzes
EP3915179B1 (de) * 2019-05-24 2023-07-26 Huawei Digital Power Technologies Co., Ltd. Integriertes ladegerät und motorsteuerungssystem mit einem transformator und mehrstufigen stromrichtern
US11949330B2 (en) * 2021-10-19 2024-04-02 Volvo Car Corporation Integrated power conversion topology for electric vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276556A1 (en) 2004-03-04 2007-11-29 Tm4 Inc. System and Method for Starting a Combustion Engine of a Hybrid Vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317508A (ja) * 1995-05-17 1996-11-29 Nippondenso Co Ltd 電気自動車用充電装置
JPH0965509A (ja) * 1995-06-14 1997-03-07 Toyota Autom Loom Works Ltd 電気自動車用電池の充電方法及び電気自動車用充電器
DE19921450C5 (de) * 1999-05-08 2006-08-03 Daimlerchrysler Ag Elektrischer Fahrzeugantrieb
US6452815B1 (en) * 2001-02-22 2002-09-17 Lizhi Zhu Accelerated commutation for passive clamp isolated boost converters
JP4263736B2 (ja) * 2006-10-31 2009-05-13 Tdk株式会社 スイッチング電源装置
JP4400632B2 (ja) * 2007-02-20 2010-01-20 Tdk株式会社 スイッチング電源装置
JP4770798B2 (ja) * 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
JP5551342B2 (ja) * 2008-03-26 2014-07-16 富士重工業株式会社 充電装置
JP5461113B2 (ja) * 2009-08-28 2014-04-02 富士重工業株式会社 双方向コンバータ及びこれを用いた電気自動車の制御装置
KR101031217B1 (ko) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 고정 시비율로 동작하는 llc 공진 컨버터를 사용한 2단 방식 절연형 양방향 dc/dc 전력변환기
DE102010006125A1 (de) * 2010-01-29 2011-08-04 Volkswagen AG, 38440 Ladegerät und Verfahren zur Energieübertragung in einem Elektro- oder Hybridfahrzeug
CN102069721A (zh) * 2010-12-30 2011-05-25 西安交通大学苏州研究院 一种基于超级电容的电动汽车混合动力控制系统
CN102064702B (zh) * 2010-12-31 2013-09-11 刘闯 双向隔离式的串联谐振dc/dc变换器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276556A1 (en) 2004-03-04 2007-11-29 Tm4 Inc. System and Method for Starting a Combustion Engine of a Hybrid Vehicle

Also Published As

Publication number Publication date
DE102011081720A1 (de) 2013-02-28
US20140225432A1 (en) 2014-08-14
JP2014525728A (ja) 2014-09-29
EP2751918A2 (de) 2014-07-09
KR20140057298A (ko) 2014-05-12
CN103765747A (zh) 2014-04-30
WO2013029827A3 (de) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2013029827A2 (de) Wandlerschaltung und verfahren zum übertragen von elektrischer energie
EP3286033B1 (de) Leistungsschaltung zur stromversorgung in einem elektrisch angetriebenen fahrzeug und stationäres energieversorgungssystem
EP2541755B1 (de) Antriebsvorrichtung für ein Fahrzeug
WO2010091899A1 (de) Anordnung zum betreiben von verbrauchern in einem schienenfahrzeug mit elektrischer energie, wahlweise aus einem energieversorgungsnetz oder aus einer motor-generator-kombination
DE102010006125A1 (de) Ladegerät und Verfahren zur Energieübertragung in einem Elektro- oder Hybridfahrzeug
DE102017110126A1 (de) Fehlerschutz für elektrische Antriebssysteme
EP2673160A1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102017202346A1 (de) Ladesystem unter verwendung eines synchronmotors mit gewickeltem rotor
WO2014140068A2 (de) Verfahren und vorrichtung zum betreiben eines bordnetzes
WO2016012300A1 (de) Elektrische maschine zur energieversorgung eines kraftfahrzeugbordnetzes
DE102012220107A1 (de) Drehmomentrippelkompensation
WO2016041711A1 (de) Elektrisches system für ein elektrisch antreibbares fahrzeug
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102013011104A1 (de) Elektrische Energieverteilungseinrichtung für ein elektrisch angetriebenes Fahrzeug sowie Verfahren zum Betrieb der Energieverteilungseinrichtung
DE102017203063B3 (de) Antriebssteuergerät und Verfahren zum Laden einer Batterie
EP2790956B1 (de) Kraftfahrzeug
DE102013205413A1 (de) Verfahren zum Betreiben einer Energieversorgungseinheit für ein Kraftfahrzeugbordnetz
DE102013017419A1 (de) Ladeschaltung für einen On-Board-Lader eines Fahrzeugs
WO2013041317A2 (de) Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs
WO2017186392A1 (de) Elektrische maschine mit zwei angeschlossenen wechselrichtern
DE102011077709A1 (de) Anordnung zur Übertragung von elektrischer Energie
DE102012014673A1 (de) Antriebssystem und Verfahren zum Betreiben des Antriebssystems
DE102017201350B4 (de) Verfahren zum Übertragen elektrischer Energie zwischen einem fahrzeugseitigen Energiespeicher und einer Anschlussstation sowie Fahrzeugbordnetz
DE102012201617A1 (de) Vorrichtung zum transformatorischen Übertragen von elektrischer Energie, elektrisch angetriebenes Kraftfahrzeug sowie entsprechendes Verfahren und Verwendung
DE102015101093A1 (de) Elektrische Maschine

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012731358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012731358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241124

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147005263

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014527535

Country of ref document: JP

Kind code of ref document: A