WO2013041317A2 - Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs - Google Patents

Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs Download PDF

Info

Publication number
WO2013041317A2
WO2013041317A2 PCT/EP2012/066105 EP2012066105W WO2013041317A2 WO 2013041317 A2 WO2013041317 A2 WO 2013041317A2 EP 2012066105 W EP2012066105 W EP 2012066105W WO 2013041317 A2 WO2013041317 A2 WO 2013041317A2
Authority
WO
WIPO (PCT)
Prior art keywords
drive system
self
stator winding
battery
terminals
Prior art date
Application number
PCT/EP2012/066105
Other languages
English (en)
French (fr)
Other versions
WO2013041317A3 (de
Inventor
Urs BÖHME
Stefan VÖLKEL
Original Assignee
Siemens Aktiengesellschaft
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Daimler Ag filed Critical Siemens Aktiengesellschaft
Publication of WO2013041317A2 publication Critical patent/WO2013041317A2/de
Publication of WO2013041317A3 publication Critical patent/WO2013041317A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a drive system of a battery-powered vehicle according to the preamble of claim 1 or 2 and to a method for controlling the drive system according to claim 1 or 2 in the operating states "driving" and "loading".
  • variable-speed three-phase machines using self-commutated power converters also referred to as a pulse converter
  • this pulse-controlled converter is operated as an inverter.
  • each of the three stator windings of a three-phase machine is connected by means of a pulse-controlled half-bridge of the pulse converter with a positive or with a negative potential on the battery.
  • a control device measures and regulates the quantities required for the desired operation, such as engine speed and motor current.
  • Ladege ⁇ councils are used with electrical isolation.
  • Such a La ⁇ de réelle consists of a network-side converter, which is operated as a rectifier, which is followed by a DC / DC controller.
  • a rectangular voltage applied to the DC / DC controller is transmitted to the vehicle side by means of a potential-isolating transformer.
  • On the vehicle ⁇ side are made by means of another circuit voltage adjustment and current control according to the basic data of the battery.
  • the disadvantages here are the complex structure and the fact that these separate components are used only for charging the vehicle battery Kings ⁇ nen.
  • EP 0 849 112 A1 in particular the embodiment of a three-phase drive arrangement according to FIG. 2, discloses the use of the self-commutated power converter of a drive arrangement for charging the vehicle battery.
  • the self-commutated power converter of the drive assembly as a charger a regulated, power-friendly charge is possible.
  • For line current smoothing a mains choke between the three-phase network and the AC-side terminals of the self-commutated converter is arranged.
  • the Heidelbergungsan- order works according to the boost converter principle, since the
  • a voltage arrangement is required which can be achieved with the aid of a rotary Current transformer is designed isolated.
  • a DC / DC controller can be arranged between the battery and the DC-side connections of the self-commutated converter.
  • This circuit arrangement has the disadvantage that can arise in the event of a fault line-side DC fault currents, which can not be detected by means of the ⁇ used in the house installation RCD type A. For this reason, the type A residual current circuit breaker must be replaced by a type B all-current sensitive residual current circuit breaker, which is considerably more expensive than the type A residual current device. If no potential separation is used, compliance with leakage current limits must be observed difficult.
  • the disadvantage of using a three-phase transformer, which is used between the mains and the battery-powered vehicle, is that it is voluminous and heavy-weight.
  • EP 0 849 112 A1 discloses a rotary current drive arrangement of a battery-powered vehicle, which has a three-phase machine with two galvanically separated stator winding systems, by means of which the voltage adjustment takes place via its winding ratio. That is, the galvanic separation of battery and three-phase network during the operating state "charging" is carried out by the two galvanically isolated stator winding systems of the three-phase machine.
  • Mains connection terminals of the drive system of a battery-powered vehicle are electrically conductively connected to one of the two stator winding systems, wherein the other stator winding system can be connected to the vehicle battery by means of a self-commutated power converter.
  • a power supply is connected to power supply terminals of the drive system a battery opera ⁇ driven vehicle, so that these two stator winding systems galvanically separate operatively coupled transformer. Due to the winding ratio between the windings of the two stator winding systems is a mains voltage in the desired manner reduced. In the operating state "driving" only one of the two stator winding systems of the three-phase machine is used.
  • JP 09-298840 AI a drive system of a battery-powered vehicle with two self-commutated converters is known. These two self-commutated converters are connected on the DC side electrically parallel to terminals of the vehicle battery.
  • the three-phase machine uses a machine with two galvanically separated stator winding systems. One of the two stator winding systems is electrically connected to AC side terminals of a first self-commutated power converter, wherein the second stator winding system is associated with a switching device. By means of this switching device, the second stator winding system is connected on the one hand with AC side terminals of the second self-commutated power converter and on the other hand with power terminals of the on ⁇ operating system to which a supply network can be connected.
  • the first power converter during the operating states “driving” and “charging” is used, the second power converter, however, only during the operating state “driving".
  • the voltage adjustment takes place again via a winding ratio of the two galvanically and transformer-coupled stator winding systems.
  • the invention is based on the object, the known drive systems battery-powered vehicles einzu ⁇ form that both stator winding systems of the three-phase machine of the drive system are used during the operating state "driving".
  • the second stator winding system which is also referred to as a network-side stator winding system, by means of a first switching device with power terminals of the drive system or by means of a second switching device with AC side terminals of the self-commutated power converter connectable.
  • a first switching device with power terminals of the drive system
  • a second switching device with AC side terminals of the self-commutated power converter connectable.
  • the second stator winding system (netzsei- tig) with AC side terminals of the second self-commutated power converter connectable, this second self-commutated DC side DC connected by ei ⁇ ner third switching device with terminals of the battery of a battery-powered vehicle.
  • this network-side stator winding system of the three-phase machine of the drive system according to the invention of a battery-powered vehicle can be connected to mains connection terminals of the drive system by means of a first switching device.
  • the second self-commutated converters ⁇ is the DC voltage side disconnected from the battery during loading ⁇ operating state "Load" and the terminals of the line-side stator winding system of the three-phase machine, which are linked to the AC-side terminals of the second self-commutated converter are connected by means of the first switching device with power supply terminals of the drive system, to which a supply network is connected.
  • the two switching devices of a drive system according to the invention are controlled alternately. That is, either the first switching device is closed and the second switching device is open or the first switching device is open and the second switching device is closed.
  • one of the two switching devices may be referred to as a charging switching device and the other as a driving switching device.
  • a flow control device in response to a driving or charging signal.
  • Advantageous embodiments of the drive system according to claim 1. or 2 ⁇ are the sub-claims 3 to 13 be inferred from men.
  • FIG. 1 shows a basic circuit diagram of a known ⁇ drive system a battery-powered vehicle in which
  • FIG. 2 shows a block diagram of a generic An ⁇ drive system of a battery-powered vehicle is shown
  • FIG 3 shows the principle circuit diagram of a first exporting ⁇ approximate shape of a drive system according to the invention and in the FIG 4 is the block diagram of a second Ausure ⁇ tion form of a drive system according to the invention.
  • 2 shows a self-commutated power converter, 4 a three-phase machine, 6 a battery and 8 a DC / DC controller.
  • a three-phase machine 4 a permanent magnet synchronous motor or an induction motor with squirrel cage can be used. Of this three-phase machine 4, for clarity, only the stator winding system 10 is shown having three winding systems, which are connected in star.
  • This stand Wick ⁇ development system 10 is electrically conductively connected to AC-side terminals R, S, T of thesge gleich- th power converter 2 by means of a switching device 12th
  • this switching device 12 By means of this switching device 12 are power supply terminals U, V, W of the drive system of a battery-powered vehicle with ⁇ means of a choke circuit 14 with the AC-side terminals R, S and T of the self-commutated Stromrich- ters 2 connected.
  • a supply network for example a three-phase network with an amplitude of 400 V and a mains frequency of 50 Hz, is connected to these power supply terminals U, V and W of the drive system by means of a charging cable.
  • the self-commutated power converter 2 which is also referred to as a pulse converter, is designed in this illustration as an IGBT pulse converter. Since the rotary electric machine 4 is executed three ⁇ phase, has this IGBT pulse converter 2 six IGBTs as a 6-pulse bridge circuit 29al ⁇ tet. Two turn-off semiconductors, here an IGBT, are electrically connected in series, thus forming a half-bridge. Each connection point of two IGBTs connected electrically in series forms a robnapsseiti- gen terminal R or S or T, also referred to as Lindsayanschlüs ⁇ se the pulse converter. 2 These three half-bridges are electrically parallel to each other and to DC-side terminals P and N of the pulse current judge 2 switched.
  • DC voltage side terminals P and N are electrically connected in this embodiment of the drive ⁇ system by means of the DC / DC controller 8 with terminals P B and N B of the battery.
  • the DC / DC actuator 8 is used for a voltage adjustment between battery voltage U Bat and intermediate circuit voltage U zw of the pulse-controlled converter 2.
  • the battery 6 generates a battery voltage U Bat of a maximum of 400 V
  • the drive system shown in FIG 1 is in the operating state "driving", since the output terminals R, S, T of the pulse converter 2 by means of the switching device 12, which is also designed here in three phases, electrically lei ⁇ tend connected to the stator winding system 10 of the three-phase machine 4 are.
  • the operating state "charging” connects this switching device 12, the output terminals R, S, T of the pulse ⁇ converter 2 by means of the choke circuit 14 with the power supply terminals U, V, W of the drive system to which a supply network is connected by means of a charging cable.
  • a switching signal for the switching device 12 can be generated.
  • the pulse-controlled converter 2 of the drive system of a battery-operated vehicle is operated as a charging rectifier, with which a charging current can be set.
  • This double use of the pulse-controlled converter 2 as a Wech ⁇ inverter in the operating state “driving” and as a rectifier in the operating state “charging” no separate charger is needed more, which must always be carried on board.
  • a transformer for electrical isolation of supply network and drive system of a battery-powered vehicle in the operating state "La ⁇ den", a transformer, in particular a three-phase isolation transformer can be used. This is another component that is not negligible in terms of volume and weight.
  • FIG 2 is a schematic diagram of another known ⁇ th driving system of a battery-powered vehicle is provided ⁇ .
  • This drive system consisting of battery 6, self-commutated converter 2 and a three-phase machine 16 with two stator winding systems 18 and 20, is known from the aforementioned EP application.
  • These two stator coil systems 18 and 20 are galvanically separated from each other and winding ⁇ moderately mutually coupled.
  • the stator winding system 18 is electrically conductively connected to AC voltage side terminals R, S and T of the self-commutated pulse-controlled converter 2 and is therefore hereinafter also referred to as a stator side stator winding system 18 be ⁇ .
  • the stator winding system 20 of the three-phase machine 16 is electrically conductively connected to the mains connection terminals U, V, W of the drive system and is therefore also referred to below as the network-side stator winding system 20.
  • the network-side stator winding system 20 Depending on the configuration of the winding systems of the two stator winding systems 18 and 20, a desired gear ratio can be realized.
  • In the operating state "charging" both stator winding systems 18 and 20 of the three-phase machine 16 are used as a transformer.
  • Be ⁇ operating state “driving" only the converter-side Staen ⁇ derwicklungssystem 18 is used.
  • FIG 3 is a schematic diagram of a first exporting ⁇ approximate shape of a drive system of a battery-powered vehicle is shown according to the invention.
  • the first switching device S L is connected such in the drive system, that the mains connection ⁇ terminals U, V, W of the drive system with the network-side Stän- derwicklungssystem 20 of the rotary electric machine is connectable sixteenth
  • the second switching device S F is arranged in the drive system in such a way that, moreover, the line-side stator winding system 20 can be connected to the AC-side terminals R, S, T of the self-commutated power converter 2.
  • a flow control device 22 is provided, the genes ⁇ Center in response to a signal L L control signals SL and SF F for two switching devices S L and S F.
  • the drive system changes its operating state “driving" into the operating state "La ⁇ den” or vice versa.
  • the on ⁇ operating system in the operating state "Load”
  • the signal L is high. If the signal L low, so is the on ⁇ operating system is in the "drive”.
  • This high level of the signal L can be generated for example by plugging a Ladeka ⁇ lever in the power supply terminals U, V, W of the drive system of a battery-powered vehicle and in a socket ei ⁇ nes supply network. If the system is not connected Antriebssys ⁇ elekt ⁇ driven conductive by the charging cable to a utility grid, it is located in the Radiozu ⁇ stand “driving" and the signal L is low.
  • the network-side stator winding system 20 of the three-phase machine 16 is electrically connected to AC side terminals R, S, T of the self-guided power converter 2.
  • these two stator winding systems 18 and 20 are simultaneously energized by means of the self-commutated power converter 2 from the battery 6. That is, in the operating state "Fahr ⁇ ren" of the drive system, the network-side stator winding system 20 is shared. Even at a gear ratio other than one in the operating state "driving" supports the network-side stator winding system 20 at a torque, although due to the gear ratio unequal to one adjusts an asymmetrical current distribution.
  • This operation shows that only one switching device S L or S F is closed or opened by the two Druckeinrich obligations ⁇ S L and S F. That is, these two
  • Switching devices S L and S F are operated alternately.
  • FIG. 4 shows a block diagram of an advantageous embodiment of the drive system according to the invention of a battery-powered vehicle is shown. This advantageous embodiment of the drive system according to the invention differs from the embodiment of the invention
  • This self-commutated converter 24 is the DC voltage side by means of a drit ⁇ th switching device S F DC electrically in parallel with the battery 6 switchable. If this third switching means S F DC CLOSED ⁇ sen, the two self-commutated converter are driven in parallel elekt ⁇ 2 and 24 the DC voltage side to each other and to the battery. 6
  • the Kirspan ⁇ tion-side terminals R ', S' and T 'of the second self-guided power converter 24 can be connected by means of the first switching device S L with the power supply terminals U, V and W of the drive system of a battery-powered vehicle.
  • these AC side terminals R ', S' and T ' are with the network-side stator winding system 20 of the three-phase machine 16 electrically connected.
  • the converter-side stator winding system 18 is electrically connected to the AC-side terminals R, S and T of the first self-commutated power converter 2.
  • a flow control device 22 is provided for the control of these two switching devices S L and S F DC. Depending on the level of the signal L, the two switching devices S L and S FDC are driven alternately.
  • this advantageous embodiment of the drive system according to the invention comprises two self-commutated power converters 2 and 24, which are activated in the operating state "driving", the two stator winding systems 18 and 20 can be subjected to different voltages. With the help of the different voltages for the two stator winding systems 18 and 20, it is possible to actively influence the power distribution, while the power distribution in the embodiment of the drive system according to FIG 3 during driving purely passive and not influenced influenced.
  • a further advantage of this advantageous embodiment of the drive system according to the invention of a battery-operated vehicle is that this drive system can continue to be operated in the event of a self-commutated converter 2 or 24 failing, without switching from operating state "driving" to operating state "redundancy". Additional switching devices are needed. If, for example, the self-commutated converter 24 fails , the third switching device S F DC is opened so that it is disconnected from the battery 6. As a result, only the current-direction-side stator winding system 18 of the three-phase machine 16 is energized from the battery 6. If the self-commutated converter 2 ⁇ out only the network-side St Swick- development system 20 of the alternator 16 is supplied from the battery 6 with electricity. Thus, in the operating state "redundancy” an emergency operation during the operating state "driving" upright be obtained so that the battery-powered vehicle can drive on its own in a nearby workshop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung bezieht sich auf ein Antriebssystem eines bat- teriebetriebenen Fahrzeugs mit einem selbstgeführten Stromrichter (2), mit einer Batterie (6), die elektrisch parallel zu gleichspannungsseitigen Anschlüssen (P,N) des selbstgeführten Stromrichters (2) geschaltet ist, und mit einer Drehstrommaschine (16) mit zwei galvanisch getrennten Ständerwicklungssystemen (18, 20), wobei ein erstes Ständerwicklungssystem (18) mit wechselspannungsseitigen Anschlüssen (R,S,T) des selbstgeführten Stromrichters (2) verschaltet ist. Erfindungsgemäß ist ein zweites Ständerwicklungssystem (20) mittels einer ersten Schalteinrichtung (SL) mit Netzanschlussklemmen (U,V,W) des Antriebssystems oder mittels einer zweiten Schalteinrichtung (SF) mit wechselspannungsseitigen Anschlüssen (R,S,T) des selbstgeführten Stromrichters (2) jeweils verbindbar. Somit erhält man ein Antriebssystem eines batteriebetriebenen Fahrzeugs, bei dem beide galvanisch getrennten und wicklungsmäßig transformatorisch gekoppelten Ständerwicklungssysteme (18, 20) einer Drehstrommaschine (16) während des Betriebszustands "Fahren" verwendet werden, wodurch es für die beiden Ständerwicklungssysteme 18 und 20 möglich ist, die Stromaufteilung aktiv zu beeinflussen.

Description

Beschreibung
Antriebssystem und Steuerverfahren eines batteriebetriebenen Fahrzeugs
Die Erfindung bezieht sich auf ein Antriebssystem eines batteriebetriebenen Fahrzeugs gemäß Oberbegriff des Anspruchs 1 bzw. 2 und auf ein Verfahren zum Steuern des Antriebssystems gemäß Anspruch 1 bzw. 2 in die Betriebszustände "Fahren" und "Laden".
Das Prinzip der Ansteuerung drehzahlvariabler Drehstrommaschinen unter Verwendung von selbstgeführten Stromrichtern, auch als Pulsstromrichter bezeichnet, ist bekannt, wobei die- ser Pulsstromrichter als Wechselrichter betrieben wird. Dabei wird jede der drei Ständerwicklungen einer Drehstrommaschine mittels einer pulsgesteuerten Halbbrücke des Pulsstromrichters mit einem positiven oder mit einem negativen Potential an der Batterie verbunden. Eine Steuer- und Regeleinrichtung misst und regelt die für den gewünschten Betrieb erforderlichen Größen wie Motordrehzahl und Motorstrom.
Die im Fahrbetrieb relativ schnell verbrauchte Energie der Batterie muss zyklisch wieder am Netz aufgeladen werden.
Hierzu finden Ladegeräte mit ein- oder dreiphasiger Wechsel¬ stromeinspeisung Verwendung. Zum Nachladen der Batterie wird üblicherweise das vorhandene Energieversorgungssystem ge¬ nutzt. Wird die Batterie eines batteriegespeisten Fahrzeugs mittels eines Ladegeräts an eine einphasige Wechselstromein- Speisung angeschlossen, so werden für diesen Ladevorgang wenigstens sechs Stunden benötigt. Soll sich die Ladezeit we¬ sentlich verkürzen, muss die Batterie eines batteriegespeis¬ ten Fahrzeugs mittels eines Ladegeräts an eine dreiphasige Wechselstromeinspeisung angeschlossen werden. Beim Laden ei- nes Energiespeichers (Batterie) aus einem Stromversorgungs¬ netz sind folgende Aspekte zu beachten: - Die Spannungspegel von Netz und Batterie müssen anpassbar sein .
- Die geforderten Grenzwerte für Netzoberschwingungsströme und Ableitströme müssen eingehalten werden.
- Batterien benötigen zum Nachladen Gleichströme vorbestimmter Amplitude, welche mittels eines Gleichrichters aus ei¬ nem Wechselstromsystem gebildet werden müssen.
- Die Ausbildung von Gleichströmen im Wechselspannungsnetz muss verhindert werden, solange dieses Wechselspannungsnetz mit einem FI-Fehlerschutzschalter abgesichert ist.
Um diese Aspekte zu berücksichtigen, werden separate Ladege¬ räte mit galvanischer Trennung eingesetzt. Ein derartiges La¬ degerät besteht aus einem netzseitigen Stromrichter, der als Gleichrichter betrieben wird, dem ein DC/DC-Steller nachgeschaltet ist. Eine am DC/DC-Steller anstehende rechteckför- mige Spannung wird mittels eines potentialtrennenden Transformators auf die Fahrzeugseite übertragen. Auf der Fahrzeug¬ seite werden mittels einer weiteren Schaltung eine Spannungs- anpassung und eine Stromregelung entsprechend der Eckdaten der Batterie vorgenommen. Nachteilig sind hier die komplexe Struktur und die Tatsache, dass diese separaten Komponenten nur für das Laden der Fahrzeugbatterie verwendet werden kön¬ nen .
Die EP 0 849 112 AI, insbesondere die Ausführungsform einer Drehstromantriebsanordnung nach FIG 2, offenbart die Verwendung des selbstgeführten Stromrichters einer Antriebsanord¬ nung zum Laden der Fahrzeugbatterie. Durch die Verwendung des selbstgeführten Stromrichters der Antriebsanordnung als Ladesteller ist eine geregelte, netzfreundliche Ladung möglich. Zur Netzstromglättung ist eine Netzdrossel zwischen dem Drehstromnetz und den wechselspannungsseitigen Anschlüssen des selbstgeführten Stromrichters angeordnet. Die Schaltungsan- Ordnung arbeitet nach dem Hochsetzsteller-Prinzip, da die
Batteriespannung immer höher sein muss als der maximal zu erwartende Netzspannungs-Scheitelwert . Aus diesem Grund ist ei¬ ne Spannungsanordnung erforderlich, die mit Hilfe eines Dreh- Stromtransformators potentialgetrennt ausgeführt ist. An¬ stelle eines Drehstromtransformators kann zwischen Batterie und gleichspannungsseitigen Anschlüssen des selbstgeführten Stromrichters ein DC/DC-Steller angeordnet sein.
Diese Schaltungsanordnung hat den Nachteil, dass im Fehlerfall netzseitige DC-Fehlerströme entstehen können, die mit¬ tels dem in der Hausinstallation verwendeten FI-Schalter vom Typ A nicht erfasst werden können. Deshalb muss der FI-Schal- ter vom Typ A durch einen allstromsensitiven FI-Schutzschal- ter vom Typ B ersetzt werden, der wesentlich teuerer ist als der FI-Schalter vom Typ A. Wird keine Potentialtrennung verwendet, ist die Einhaltung von Grenzwerten für Ableitströme schwierig. Der Nachteil der Verwendung eines Drehstromtrans- formators, der zwischen Netz und batteriegespeistem Fahrzeug zum Einsatz kommt, besteht darin, dass dieser voluminös und schwergewichtig ausfällt.
Der EP 0 849 112 AI, insbesondere der FIG 5, ist eine Dreh- Stromantriebsanordnung eines batteriegespeisten Fahrzeugs entnehmbar, die eine Drehstrommaschine mit zwei galvanisch getrennten Ständerwicklungssystemen aufweist, mittels denen die Spannungsanpassung über dessen Wicklungsverhältnis erfolgt. Das heißt, die galvanische Trennung von Batterie und Drehstromnetz während des Betriebszustandes "Laden" erfolgt durch die beiden galvanisch getrennten Ständerwicklungssysteme der Drehstrommaschine. Netzanschlussklemmen des Antriebssystem eines batteriegespeisten Fahrzeugs sind mit einer von beiden Ständerwicklungssystemen elektrisch leitend verbunden, wobei das andere Ständerwicklungssystem mittels eines selbstgeführten Stromrichters mit der Fahrzeugbatterie verbindbar ist. Im Ladebetrieb ist ein Versorgungsnetz an Netzanschlussklemmen des Antriebssystems eines batteriebe¬ triebenen Fahrzeugs angeschlossen, so dass diese beiden gal- vanisch getrennten Ständerwicklungssysteme wirkungsmäßig transformatorisch gekoppelt sind. Aufgrund des Wicklungsverhältnisses zwischen den Wicklungen der beiden Ständerwicklungssysteme wird eine Netzspannung in der gewünschten Weise herabgesetzt. Im Betriebszustand "Fahren" wird nur eines der beiden Ständerwicklungssysteme der Drehstrommaschine benutzt.
Aus der JP 09-298840 AI ist ein Antriebssystem eines batte- riegespeisten Fahrzeugs mit zwei selbstgeführten Stromrichtern bekannt. Diese beiden selbstgeführten Stromrichter sind gleichspannungsseitig elektrisch parallel zu Anschlüssen der Fahrzeugbatterie geschaltet. Als Drehstrommaschine wird eine Maschine mit zwei galvanisch getrennten Ständerwicklungssys- temen verwendet. Eines der beiden Ständerwicklungssysteme ist mit wechselspannungsseitigen Anschlüssen eines ersten selbstgeführten Stromrichters elektrisch leitend verbunden, wobei das zweite Ständerwicklungssystem mit einer Umschalteinrichtung verknüpft ist. Mittels dieser Umschalteinrichtung ist das zweite Ständerwicklungssystem einerseits mit wechselspannungsseitigen Anschlüssen des zweiten selbstgeführten Stromrichters und andererseits mit Netzanschlussklemmen des An¬ triebssystems verbindbar, an das ein Versorgungsnetz anschließbar ist. Somit wird der erste Stromrichter während der Betriebszustände "Fahren" und "Laden" verwendet, der zweite Stromrichter hingegen nur während des Betriebszustands "Fahren". Die Spannungsanpassung erfolgt wieder über ein Wicklungsverhältnis der beiden galvanisch und transformatorisch gekoppelten Ständerwicklungssysteme .
Der Nachteil des Antriebssystems der EP 0 849 112 AI und des Antriebssystems der JP 09-298840 AI besteht darin, dass von den beiden Ständerwicklungssystemen der Drehstrommaschine nur eines während des Betriebszustands "Fahren" verwendet wird.
Der Erfindung liegt nun die Aufgabe zugrunde, die bekannten Antriebssysteme batteriegespeister Fahrzeuge derart weiterzu¬ bilden, dass während des Betriebszustands "Fahren" beide Ständerwicklungssysteme der Drehstrommaschine des Antriebs- Systems verwendet werden.
Diese Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 bzw. 2 erfindungsgemäß gelöst. Durch die Verwendung zweier zusätzlicher Schalteinrichtungen, die erfindungsgemäß im Antriebssystem verschaltet sind, wer¬ den beide Ständerwicklungssysteme der Drehstrommaschine des Antriebssystems eines batteriebetriebenen Fahrzeugs im Be¬ triebszustand "Fahren" verwendet. Selbst wenn ein Überset¬ zungsverhältnis ungleich Eins ist, wodurch sich eine unsym¬ metrische Stromaufteilung einstellt, unterstützt das zweite Ständerwicklungssystem bei einer Drehmomentbildung.
Bei einer ersten Ausführungsform des Antriebssystems nach der Erfindung ist das zweite Ständerwicklungssystem, das auch als netzseitiges Ständerwicklungssystem bezeichnet wird, mittels einer ersten Schalteinrichtung mit Netzanschlussklemmen des Antriebssystems oder mittels einer zweiten Schalteinrichtung mit wechselspannungsseitigen Anschlüssen des selbstgeführten Stromrichters verbindbar. Während der beiden Betriebszustände "Fahren" und "Laden" ist jeweils nur eine Schalteinrichtung geschlossen, während die andere Schalteinrichtung offen ist.
Bei einer zweiten Ausführungsform des Antriebssystems nach der Erfindung ist das zweite Ständerwicklungssystem (netzsei- tig) mit wechselspannungsseitigen Anschlüssen des zweiten selbstgeführten Stromrichters verbindbar, wobei dieser zweite selbstgeführte Stromrichter gleichspannungsseitig mittels ei¬ ner dritten Schalteinrichtung mit Anschlüssen der Batterie eines batteriebetriebenen Fahrzeugs verbunden ist. Außerdem ist dieses netzseitige Ständerwicklungssystem der Drehstrommaschine des erfindungsgemäßen Antriebssystems eines batte- riebetriebenen Fahrzeugs mittels einer ersten Schalteinrichtung mit Netzanschlussklemmen des Antriebssystems verbindbar.
Durch diese erfindungsgemäße Ausgestaltung des Antriebssys¬ tems eines batteriebetriebenen Antriebs wird jedes Ständer- wicklungssystem mittels eines eigenen selbstgeführten Stromrichters aus der Fahrzeugbatterie gespeist. Während des Be¬ triebszustands "Laden" ist der zweite selbstgeführte Strom¬ richter gleichspannungsseitig von der Batterie getrennt und die Anschlüsse des netzseitigen Ständerwicklungssystems der Drehstrommaschine, die mit den wechselspannungsseitigen Anschlüssen des zweiten selbstgeführten Stromrichters verknüpft sind, sind mittels der ersten Schalteinrichtung mit Netzan- schlussklemmen des Antriebssystems verbunden, an denen ein Versorgungsnetz angeschlossen ist.
Wie bereits erwähnt, werden die beiden Schalteinrichtungen eines erfindungsgemäßen Antriebssystems alternierend ange- steuert. Das heißt, entweder ist die erste Schalteinrichtung geschlossen und die zweite Schalteinrichtung offen, oder die erste Schalteinrichtung ist offen und die zweite Schalteinrichtung ist geschlossen. Somit kann eine der beiden Schalteinrichtungen als Lade-Schalteinrichtung und die andere als Fahr-Schalteinrichtung bezeichnet werden. Wann welche Schalteinrichtung geschlossen bzw. geöffnet wird, wird von einer AblaufSteuereinrichtung in Abhängigkeit eines Fahr- oder Ladesignals bestimmt. Vorteilhafte Ausführungsformen des Antriebssystems gemäß An¬ spruch 1 oder 2 sind den Unteransprüchen 3 bis 13 zu entneh- men .
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der zwei Ausführungsformen eines Antriebssystems nach der Erfindung schematisch veranschaulicht sind.
FIG 1 zeigt ein Prinzipschaltbild eines bekannten An¬ triebssystems eines batteriebetriebenen Fahrzeugs, in der
FIG 2 ist ein Prinzipschaltbild eines gattungsgemäßen An¬ triebssystems eines batteriebetriebenen Fahrzeugs dargestellt ;
FIG 3 zeigt das Prinzipschaltbild einer ersten Ausfüh¬ rungsform eines Antriebssystems nach der Erfindung und in der FIG 4 ist das Prinzipschaltbild einer zweiten Ausfüh¬ rungsform eines Antriebssystems nach der Erfindung dargestellt . In der FIG 1 ist mit 2 ein selbstgeführter Stromrichter, mit 4 eine Drehstrommaschine, mit 6 eine Batterie und mit 8 ein DC/DC-Steller bezeichnet. Als Drehstrommaschine 4 kann ein permanent erregter Synchronmotor oder ein Asynchronmotor mit Kurzschlussläufer verwendet werden. Von dieser Drehstromma- schine 4 ist aus Übersichtlichkeitsgründen nur das Ständerwicklungssystem 10 dargestellt, das drei Wicklungssysteme aufweist, die in Stern verschaltet sind. Dieses Ständerwick¬ lungssystem 10 ist mittels einer Umschalteinrichtung 12 mit wechselspannungsseitigen Anschlüssen R,S,T des selbstgeführ- ten Stromrichters 2 elektrisch leitend verbindbar. Mittels dieser Umschalteinrichtung 12 sind Netzanschlussklemmen U,V,W des Antriebssystems eines batteriebetriebenen Fahrzeugs mit¬ tels einer Drosselschaltung 14 auch mit den wechselspannungsseitigen Anschlüssen R, S und T des selbstgeführten Stromrich- ters 2 verbindbar. An diesen Netzanschlussklemmen U,V und W des Antriebssystems wird zum Zwecke der Ladung der Batterie 6 ein Versorgungsnetz, beispielsweise ein Drehstromnetz mit einer Amplitude von 400 V und einer Netzfrequenz von 50 Hz, mittels eines Ladekabels angeschlossen.
Der selbstgeführte Stromrichter 2, der auch als Pulsstromrichter bezeichnet wird, ist in dieser Darstellung als IGBT- Pulsstromrichter ausgeführt. Da die Drehstrommaschine 4 drei¬ phasig ausgeführt ist, weist dieser IGBT-Pulsstromrichter 2 sechs IGBTs auf, die als 6-pulsige Brückenschaltung verschal¬ tet sind. Jeweils zwei abschaltbare Halbleiter, hier ein IGBT, sind elektrisch in Reihe geschaltet, und bilden somit eine Halbbrücke. Jeder Verbindungspunkt zweier elektrisch in Reihe geschalteter IGBTs bildet einen wechselspannungsseiti- gen Anschluss R bzw. S bzw. T, die auch als Ausgangsanschlüs¬ se des Pulsstromrichters 2 bezeichnet werden. Diese drei Halbbrücken sind elektrisch parallel zueinander und zu gleichspannungsseitigen Anschlüssen P und N des Pulsstrom- richters 2 geschaltet. Diese gleichspannungsseitigen Anschlüsse P und N sind in dieser Ausführungsform des Antriebs¬ systems mittels des DC/DC-Stellers 8 mit Anschlüssen PB und NB der Batterie elektrisch leitend verbunden. Der DC/DC-Stel- 1er 8 wird für eine Spannungsanpassung zwischen Batteriespannung UBat und Zwischenkreisspannung Uzw des Pulsstromrichters 2 verwendet. Aus Kostengründen erzeugt die Batterie 6 eine Batteriespannung UBat von maximal 400 V, wogegen der Puls¬ stromrichter 2 mit handelsüblichen 1200V-IGBTs eine Zwischen- kreisspannung Uzw von wenigstens 670 V benötigt.
Das dargestellte Antriebssystem gemäß FIG 1 befindet sich in dem Betriebszustand "Fahren", da die Ausgangsanschlüsse R, S,T des Pulsstromrichters 2 mittels der Umschalteinrichtung 12, die hier ebenfalls dreiphasig ausgeführt ist, elektrisch lei¬ tend mit dem Ständerwicklungssystem 10 der Drehstrommaschine 4 verbunden sind. Im Betriebszustand "Laden" verbindet diese Umschalteinrichtung 12 die Ausgangsanschlüsse R,S,T des Puls¬ stromrichters 2 mittels der Drosselschaltung 14 mit den Netz- anschlussklemmen U,V,W des Antriebssystems, an denen ein Versorgungsnetz mittels eines Ladekabels angeschlossen ist.
Durch Stecken dieses Ladekabels kann ein Umschaltsignal für die Umschalteinrichtung 12 generiert werden. Im Betriebszu- stand "Laden" wird der Pulsstromrichter 2 des Antriebssystems eines batteriebetriebenen Fahrzeugs als Ladegleichrichter betrieben, mit dem ein Ladestrom eingestellt werden kann. Durch diese doppelte Verwendung des Pulsstromrichters 2 als Wech¬ selrichter im Betriebszustand "Fahren" und als Gleichrichter im Betriebszustand "Laden" wird kein separates Ladegerät mehr benötigt, das immer an Bord mitgeführt werden muss.
Aufgrund fehlender Potentialtrennung ist die Einhaltung von Grenzwerten für Ableitströme schwierig. Außerdem sollte vor- sichtshalber ein in der Hausinstallation verwendeter FI-
Schalter (Typ A) gegen einen allstromsensitiven FI-Schalter (Typ B) ausgetauscht werden, da im Fehlerfall netzseitige DC- Fehlerströme auftreten können, die vom FI-Schalter des Typs A nicht erfasst werden können.
Zur Potentialtrennung von Versorgungsnetz und Antriebssystem eines batteriebetriebenen Fahrzeugs im Betriebszustand "La¬ den" kann ein Transformator, insbesondere ein dreiphasiger Trenntransformator eingesetzt werden. Dabei handelt es sich um eine weitere Komponente, die volumen- und gewichtsmäßig nicht zu vernachlässigen ist.
In der FIG 2 ist ein Prinzipschaltbild eines weiteren bekann¬ ten Antriebssystems eines batteriebetriebenen Fahrzeugs dar¬ gestellt. Dieses Antriebssystem, bestehend aus Batterie 6, selbstgeführtem Stromrichter 2 und einer Drehstrommaschine 16 mit zwei Ständerwicklungssystemen 18 und 20, ist aus der eingangs genannten EP-Anmeldung bekannt. Diese beiden Ständerwicklungssysteme 18 und 20 sind galvanisch voneinander ge¬ trennt und wicklungsmäßig transformatorisch gekoppelt. Das Ständerwicklungssystem 18 ist elektrisch leitend mit wechsel- spannungsseitigen Anschlüssen R, S und T des selbstgeführten Pulsstromrichters 2 verbunden und wird deshalb im Folgenden auch als stromrichterseitiges Ständerwicklungssystem 18 be¬ zeichnet. Das Ständerwicklungssystem 20 der Drehstrommaschine 16 ist mit den Netzanschlussklemmen U,V,W des Antriebssystems elektrisch leitend verbunden und wird deshalb im Folgenden auch als netzseitiges Ständerwicklungssystem 20 bezeichnet. In Abhängigkeit der Ausgestaltung der Wicklungssysteme der beiden Ständerwicklungssysteme 18 und 20 kann ein gewünschtes Übersetzungsverhältnis realisiert werden. Im Betriebszustand "Laden" werden beide Ständerwicklungssysteme 18 und 20 der Drehstrommaschine 16 als Transformator verwendet. Im Be¬ triebszustand "Fahren" wird nur das stromrichterseitige Stän¬ derwicklungssystem 18 verwendet. In der FIG 3 ist ein Prinzipschaltbild einer ersten Ausfüh¬ rungsform eines Antriebssystems eines batteriebetriebenen Fahrzeugs nach der Erfindung dargestellt. Dieses Antriebssys¬ tem unterscheidet sich vom Antriebssystem der FIG 2 dadurch, dass zwei zusätzliche erste und zweite Schalteinrichtungen SL und SF vorgesehen sind. Die erste Schalteinrichtung SL ist derart im Antriebssystem verschaltet, dass die Netzanschluss¬ klemmen U,V,W des Antriebssystems mit dem netzseitigen Stän- derwicklungssystem 20 der Drehstrommaschine 16 verbindbar ist. Dagegen ist die zweite Schalteinrichtung SF derart in dem Antriebssystem angeordnet, dass außerdem das netzseitige Ständerwicklungssystem 20 mit den wechselspannungsseitigen Anschlüssen R,S,T des selbstgeführten Stromrichters 2 ver- bindbar ist. Außerdem ist eine AblaufSteuereinrichtung 22 vorgesehen, die in Abhängigkeit eines Signals L Steuersignale LSL und FSF für die beiden Schalteinrichtungen SL und SF gene¬ rieren .
In Abhängigkeit des Signals L wechselt das Antriebssystem seinen Betriebszustand "Fahren" in den Betriebszustand "La¬ den" bzw. umgekehrt. Beispielsweise befindet sich das An¬ triebssystem im Betriebszustand "Laden", wenn das Signal L high ist. Ist das Signal L low, so befindet sich das An¬ triebssystem im Betriebszustand "Fahren". Diese high-Pegel des Signals L kann beispielsweise durch Stecken eines Ladeka¬ bels in den Netzanschlussklemmen U,V,W des Antriebssystems eines batteriebetriebenen Fahrzeugs und in eine Steckdose ei¬ nes Versorgungsnetzes generiert werden. Ist das Antriebssys¬ tem nicht mittels Ladekabel mit einem Versorgungsnetz elekt¬ risch leitend verbunden, so befindet es sich im Betriebszu¬ stand "Fahren" und das Signal L ist low.
Ist das Signal L high, so sind außerdem das Signal LSL eben- falls high und das Signal FSF low. Dadurch wird die Schalt¬ einrichtung SL geschlossen und die zweite Schalteinrichtung SF geöffnet. Durch diese Schaltzustände der beiden Schaltein¬ richtungen SL und SF ist das netzseitige Ständerwicklungssys¬ tem 20 mit den Anschlussklemmen U,V,W des Antriebssystems elektrisch leitend verbunden, so das nur die beiden Ständerwicklungssysteme 18 und 20 der Drehstrommaschine 16 als
Transformator verwendet werden. Ist das Signal L low, so ist außerdem das Signal LSL low und das Signal FSF high. Dadurch wird die erste Schalteinrichtung SL geöffnet und die zweite Schalteinrichtung SF geschlossen, wodurch nun ebenfalls das netzseitige Ständerwicklungssystem 20 der Drehstrommaschine 16 mit wechselspannungsseitigen Anschlüssen R, S,T des selbst- geführten Stromrichters 2 elektrisch leitend verbunden ist. Dadurch werden diese beiden Ständerwicklungssysteme 18 und 20 gleichzeitig mittels des selbstgeführten Stromrichters 2 aus der Batterie 6 bestromt. Das heißt, im Betriebszustand "Fah¬ ren" des Antriebssystems wird das netzseitige Ständerwick- lungssystem 20 mitbenutzt. Selbst bei einem Übersetzungsverhältnis ungleich Eins im Betriebszustand "Fahren" unterstützt das netzseitige Ständerwicklungssystem 20 bei einer Drehmomentbildung, obwohl sich wegen des Übersetzungsverhältnisses ungleich Eins eine unsymmetrische Stromaufteilung einstellt.
Diese Betriebsweise zeigt, dass von den beiden Schalteinrich¬ tungen SL und SF immer nur eine Schalteinrichtung SL oder SF geschlossen bzw. geöffnet ist. Das heißt, diese beiden
Schalteinrichtungen SL und SF werden alternierend betrieben.
In der FIG 4 ist ein Prinzipschaltbild einer vorteilhaften Ausführungsform des erfindungsgemäßen Antriebssystems eines batteriebetriebenen Fahrzeugs dargestellt. Diese vorteilhafte Ausführungsform des erfindungsgemäßen Antriebssystems unter- scheidet sich von der Ausführungsform des erfindungsgemäßen
Antriebssystems der FIG 3 dadurch, dass ein zweiter selbstge¬ führter Stromrichter 24 vorgesehen ist. Dieser selbstgeführte Stromrichter 24 ist gleichspannungsseitig mittels einer drit¬ ten Schalteinrichtung S FDC elektrisch parallel zur Batterie 6 schaltbar. Ist diese dritte Schalteinrichtung S FDC geschlos¬ sen, sind die beiden selbstgeführten Stromrichter 2 und 24 gleichspannungsseitig zueinander und zur Batterie 6 elekt¬ risch parallel geschaltet. Außerdem sind die wechselspan¬ nungsseitigen Anschlüsse R', S' und T' des zweiten selbstge- führten Stromrichters 24 mittels der ersten Schalteinrichtung SL mit den Netzanschlussklemmen U,V und W des Antriebssystems eines batteriebetriebenen Fahrzeugs verbindbar. Zusätzlich sind diese wechselspannungsseitigen Anschlüsse R', S' und T' mit dem netzseitigen Ständerwicklungssystem 20 der Drehstrommaschine 16 elektrisch leitend verbunden. Das stromrichter- seitige Ständerwicklungssystem 18 ist elektrisch mit den wechselspannungsseitigen Anschlüssen R, S und T des ersten selbstgeführten Stromrichters 2 verbunden. Für die Steuerung dieser beiden Schalteinrichtungen SL und S FDC ist ebenfalls eine AblaufSteuereinrichtung 22 vorgesehen. In Abhängigkeit des Pegels des Signals L werden die beiden Schalteinrichtungen SL und S FDC alternierend angesteuert.
Da diese vorteilhafte Ausführungsform des erfindungsgemäßen Antriebssystems zwei selbstgeführte Stromrichter 2 und 24 aufweist, die im Betriebszustand "Fahren" angesteuert werden, können die beiden Ständerwicklungssysteme 18 und 20 mit un- terschiedlichen Spannungen beaufschlagt werden. Mit Hilfe der unterschiedlichen Spannungen für die beiden Ständerwicklungssysteme 18 und 20 ist es möglich, die Stromaufteilung aktiv zu beeinflussen, während sich die Stromaufteilung bei der Ausführungsform des Antriebssystems gemäß FIG 3 beim Fahren rein passiv und nicht beeinflussbar einstellt.
Ein weiterer Vorteil dieser vorteilhaften Ausführungsform des erfindungsgemäßen Antriebssystems eines batteriebetriebenen Fahrzeugs besteht darin, dass dieses Antriebssystem bei Aus- fall eines selbstgeführten Stromrichters 2 bzw. 24 weiter betrieben werden kann, ohne dass für die Umschaltung von Betriebszustand "Fahren" in den Betriebszustand "Redundanz" weitere Schalteinrichtungen benötigt werden. Fällt beispiels¬ weise der selbstgeführte Stromrichter 24 aus, so wird die dritte Schalteinrichtung S FDC geöffnet, so dass dieser von der Batterie 6 getrennt ist. Dadurch wird nur noch das stromrich- terseitige Ständerwicklungssystem 18 der Drehstrommaschine 16 aus der Batterie 6 bestromt. Fällt der selbstgeführte Strom¬ richter 2 aus, wird nur noch das netzseitige Ständerwick- lungssystem 20 der Drehstrommaschine 16 aus der Batterie 6 mit Strom versorgt. Somit kann im Betriebszustand "Redundanz" ein Notbetrieb während des Betriebszustands "Fahren" aufrecht erhalten werden, so dass das batteriebetriebene Fahrzeug aus eigener Kraft in eine nächste Werkstatt fahren kann.

Claims

Patentansprüche
1. Antriebssystem eines batteriebetriebenen Fahrzeugs mit einem selbstgeführten Stromrichter (2), mit einer Batterie (6), die elektrisch parallel zu gleichspannungsseitigen Anschlüssen (P,N) des selbstgeführten Stromrichters (2) geschaltet ist, und mit einer Drehstrommaschine (16) mit zwei galvanisch getrennten Ständerwicklungssystemen (18, 20), wobei ein erstes Ständerwicklungssystem (18) mit wechselspannungsseitigen Anschlüssen (R,S,T) des selbstgeführten Stromrichters (2) verschaltet ist,
d a d u r c h g e k e n n z e i c h n e t, dass ein zwei¬ tes Ständerwicklungssystem (20) mittels einer ersten Schalteinrichtung (SL) mit Netzanschlussklemmen (U,V,W) des An- triebssystems oder mittels einer zweiten Schalteinrichtung (SF) mit wechselspannungsseitigen Anschlüssen (R,S,T) des selbstgeführten Stromrichters (2) jeweils verbindbar ist.
2. Antriebssystem für ein batteriebetriebenes Fahrzeug mit zwei selbstgeführten Stromrichtern (2,24), die gleichspan- nungsseitig zueinander und zu einer Batterie (6) elektrisch parallel geschaltet sind, mit einer Drehstrommaschine (16) mit zwei galvanisch getrennten Ständerwicklungssystemen (18, 20), wobei ein erstes Ständerwicklungssystem (18) mit wech- selspannungsseitigen Anschlüssen (R,S,T) des ersten selbstgeführten Stromrichters (2) verschaltet ist, und mit einer ers¬ ten Schalteinrichtung (SL) , mittels der Netzanschlussklemmen (U,V,W) des Antriebssystems mit Anschlüssen (R',S',T') des zweiten Ständerwicklungssystems (24) elektrisch leitend ver- bindbar sind,
d a d u r c h g e k e n n z e i c h n e t, dass das zwei¬ te Ständerwicklungssystem (20) mit wechselspannungsseitigen Anschlüssen (R',S',T') des zweiten selbstgeführten Stromrichters (24) verschaltet ist, und dass der zweite Stromrich- ter (24) gleichspannungsseitig mittels einer dritten Schalt¬ einrichtung (S FDO mit Anschlüssen (PB,NB) der Batterie (6) verbindbar ist.
3. Antriebssystem nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t, dass die bei¬ den Schalteinrichtungen (SL, SF) steuerungsseitig mit Steuer¬ anschlüssen einer AblaufSteuereinrichtung (22) elektrisch leitend verbunden sind.
4. Antriebssystem nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t, dass die erste und dritte Schalteinrichtung (S L , SFDC) steuerungsseitig je weils mit Steueranschlüssen einer AblaufSteuereinrichtung (22) elektrisch leitend verknüpft sind.
5. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass das Wick- lungsverhältnis der beiden Ständerwicklungssysteme (18, 20) Eins ist.
6. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass das Wick- lungsverhältnis der beiden Ständerwicklungssysteme (18, 20) ungleich Eins ist.
7. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass die erste und zweite Schalteinrichtung (SL, SF) jeweils ein mehrphasi¬ ger Ein-/Aus-Schalter ist.
8. Antriebssystem nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t, dass die drit- te Schaltvorrichtung (SFDC) ein zweiphasiger Ein-/Aus-Schalter ist .
9. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass die Dreh- Strommaschine (16) ein permanenterregte Synchronmaschine ist.
10. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass die Dreh- Strommaschine (16) eine Asynchronmaschine ist.
11. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass j eder selbstgeführte Stromrichter (2, 24) ein IGBT-Pulsstromrichter ist .
12. Antriebssystem nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, dass zwischen
Batterie (6) und gleichspannungsseitigen Anschlüssen (P,N) des selbstgeführten Stromrichters (2) oder der selbstgeführten Stromrichter (2, 24) ein bidirektionaler DC/DC-Steller (8) angeordnet ist.
13. Antriebssystem nach Anspruch 12,
d a d u r c h g e k e n n z e i c h n e t, dass der bidi¬ rektionale DC/DC-Steller (8) ein Hoch-Tiefsetz-Steller ist.
14. Verfahren zum Steuern eines Antriebssystems nach Anspruch 1 in die Betriebszustände "Fahren" und "Laden", wobei im Be¬ triebszustand "Fahren" die erste und zweite Schalteinrichtung (SL, SF) derart angesteuert werden, dass die erste Schaltein- richtung (SL) geöffnet und die zweite Schalteinrichtung (SF) geschlossen ist, und wobei im Betriebszustand "Laden" diese beiden Schalteinrichtungen (SL, SF) alternierend zum Be¬ triebszustand "Fahren" angesteuert werden.
15. Verfahren zum Steuern eines Antriebssystems nach Anspruch 2 in die Betriebszustände "Fahren" und "Laden", wobei im Be¬ triebszustand "Fahren" die erste und dritte Schalteinrichtung (SL, SFDC) derart angesteuert werden, dass die erste Schalt¬ einrichtung (SL) geöffnet und die dritte Schalteinrichtung (SFDC) geschlossen ist, und wobei im Betriebszustand "Laden" diese beiden Schalteinrichtungen (SL, SFDC) alternierend zum Betriebszustand "Fahren" angesteuert werden.
PCT/EP2012/066105 2011-09-22 2012-08-17 Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs WO2013041317A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083212A DE102011083212A1 (de) 2011-09-22 2011-09-22 Antriebssystem und Steuerverfahren eines batteriebetriebenen Fahrzeugs
DE102011083212.2 2011-09-22

Publications (2)

Publication Number Publication Date
WO2013041317A2 true WO2013041317A2 (de) 2013-03-28
WO2013041317A3 WO2013041317A3 (de) 2013-07-18

Family

ID=46800167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/066105 WO2013041317A2 (de) 2011-09-22 2012-08-17 Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs

Country Status (2)

Country Link
DE (1) DE102011083212A1 (de)
WO (1) WO2013041317A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422560A (zh) * 2021-06-30 2021-09-21 北京理工大学 一种基于双三相永磁同步电机驱动系统的车载集成充电机驱动电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103858A1 (de) 2015-03-16 2016-09-22 Ipgate Ag Verfahren und Vorrichtung zur Druckregelung von elektrohydraulischen Systemen, insbesondere Druckregelverfahren für eine elektrohydraulische Bremsanlage
CN111645542B (zh) * 2016-10-05 2021-07-27 沃土电机股份有限公司 用于电动车辆的能量存储装置
DE102017203063B3 (de) * 2017-02-24 2017-12-14 Robert Bosch Gmbh Antriebssteuergerät und Verfahren zum Laden einer Batterie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298840A (ja) 1996-05-02 1997-11-18 Meidensha Corp 電気自動車の充電装置
EP0849112A1 (de) 1996-12-19 1998-06-24 ASK-Antriebs-, Steuerungs- und, industrielle Kommunikationssysteme GmbH Drehstromantriebsanordnung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69313744T2 (de) * 1992-06-10 1998-04-09 Fuji Electric Co Ltd Wechselstrom-Antriebseinrichting mit veränderbarer Geschwindigkeit und Elektrofahrzeug hierfür
JPH0775212A (ja) * 1993-08-31 1995-03-17 Hitachi Ltd 充電機能を有する回転電機駆動装置及び電動車両
US7932633B2 (en) * 2008-10-22 2011-04-26 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
DE102009007961A1 (de) * 2009-02-06 2010-08-19 Sew-Eurodrive Gmbh & Co. Kg Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
DE102010002154A1 (de) * 2010-02-19 2011-08-25 Robert Bosch GmbH, 70469 Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug und Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers in einem Fahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298840A (ja) 1996-05-02 1997-11-18 Meidensha Corp 電気自動車の充電装置
EP0849112A1 (de) 1996-12-19 1998-06-24 ASK-Antriebs-, Steuerungs- und, industrielle Kommunikationssysteme GmbH Drehstromantriebsanordnung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422560A (zh) * 2021-06-30 2021-09-21 北京理工大学 一种基于双三相永磁同步电机驱动系统的车载集成充电机驱动电路
CN113422560B (zh) * 2021-06-30 2022-11-11 北京理工大学 一种基于双三相永磁同步电机驱动系统的车载集成充电机驱动电路

Also Published As

Publication number Publication date
WO2013041317A3 (de) 2013-07-18
DE102011083212A1 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
EP3286033B1 (de) Leistungsschaltung zur stromversorgung in einem elektrisch angetriebenen fahrzeug und stationäres energieversorgungssystem
EP2385909B1 (de) Verfahren für die steuerung einer stromversorgungseinrichtung mit einem wechselrichter
EP2541755B1 (de) Antriebsvorrichtung für ein Fahrzeug
DE102016114101A1 (de) Transformatorloses stromisoliertes bordladegerät mit festkörper-schaltersteuerung
EP2673160B1 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102010039886B4 (de) Antriebssystem für ein batteriebetriebenes Fahrzeug
DE102019100088B4 (de) Motorantriebsvorrichtung mit stromspeichereinheit, und motorantriebssystem
DE102008063465A1 (de) Betriebsanordnung für ein elektrisch betriebenes Fahrzeug
EP2751918A2 (de) Wandlerschaltung und verfahren zum übertragen von elektrischer energie
EP2619874A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102016103041A1 (de) Leistungsumwandlungsvorrichtung
DE102017110126A1 (de) Fehlerschutz für elektrische Antriebssysteme
DE102010043397A1 (de) Duales Spannungsquellen-Wechselrichtersystem und -verfahren
DE102011003859A1 (de) System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
WO2013124012A2 (de) Ladevorrichtung eines elektrisch betriebenen fahrzeugs
DE102017222554A1 (de) Verfahren zur Übertragung von elektrischer Leistung von einer Ladebuchse an einen elektrischen Energiespeicher eines Fahrzeugbordnetzes, Verwenden einer elektrischen Maschine eines Fahrzeugs und Fahrzeugbordnetz
WO2018087073A1 (de) Kraftfahrzeug-bordnetz für ein elektrisch angetriebenes fahrzeug und verfahren zum betrieb eines kraftfahrzeug-bordnetzes
DE102020205494A1 (de) Elektrisches Leistungsumwandlungssystem für ein Fahrzeug und Steuerungsverfahren dafür
WO2016012300A1 (de) Elektrische maschine zur energieversorgung eines kraftfahrzeugbordnetzes
WO2017125207A1 (de) Verfahren zum regeln der zwischenkreisspannung eines hybrid- oder elektro-fahrzeugs nach abtrennen der hochvoltbatterie
DE102017101496B4 (de) Hybridfahrzeug
WO2013041317A2 (de) Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs
DE102021205265A1 (de) Fahrzeug-Spannungswandler und Fahrzeugbordnetz mit einem Spannungswandler
DE102017203063B3 (de) Antriebssteuergerät und Verfahren zum Laden einer Batterie
WO2012019665A2 (de) Kraftfahrzeugantriebssystem mit einer ladevorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755966

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12755966

Country of ref document: EP

Kind code of ref document: A2