WO2013027591A1 - 太陽電池及び太陽電池モジュール - Google Patents

太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
WO2013027591A1
WO2013027591A1 PCT/JP2012/070294 JP2012070294W WO2013027591A1 WO 2013027591 A1 WO2013027591 A1 WO 2013027591A1 JP 2012070294 W JP2012070294 W JP 2012070294W WO 2013027591 A1 WO2013027591 A1 WO 2013027591A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
thin wire
type
bus bar
Prior art date
Application number
PCT/JP2012/070294
Other languages
English (en)
French (fr)
Inventor
三島 孝博
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013529964A priority Critical patent/JP6028982B2/ja
Publication of WO2013027591A1 publication Critical patent/WO2013027591A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, and more particularly to a technique suitable for a back junction solar cell in which positive and negative electrodes are disposed on the back surface opposite to the light receiving surface.
  • a so-called back junction solar cell has been developed in which electrodes are not formed on the light receiving surface of a silicon substrate, but electrodes of different conductivity types are formed only on the back surface of the substrate.
  • an extraction electrode in which a p-type region and an n-type region are formed on the back surface of the substrate without forming an electrode on the light-receiving surface side of the solar cell, and both positive and negative carriers are extracted in a comb shape. What is taken out from the above has been proposed (see, for example, Patent Document 1).
  • an n-type electrode 116 and a p-type electrode 117 are formed on the back surface of the substrate 111 made of n-type silicon opposite to the light-receiving surface side.
  • the n-type electrode 116 is composed of an n-type thin wire electrode 116f and an n-type bus bar electrode 116b
  • the p-type electrode 117 is composed of a p-type thin wire electrode 117f and a p-type bus bar electrode 117b.
  • the p-type electrode 117 and the n-type electrode 116 are formed so as to cover substantially the entire substrate 111.
  • An n-type bus bar electrode 116b extending in a direction intersecting with the n-type thin wire electrode 116f is formed at one end on the back surface of the substrate 111.
  • the n-type thin wire electrode 116f and the n-type bus bar electrode 116b are n-type.
  • An electrode 116 is configured.
  • a p-type bus bar electrode 117b extending in a direction intersecting with the p-type thin wire electrode 117f is formed on the other end portion on the back surface of the silicon substrate 101, and the p-type thin wire electrode 117f and the p-type bus bar electrode 117b A mold electrode 117 is formed.
  • the substrate 11 in contact with the n-type electrode 116 and the p-type electrode 117 is provided with an n-type region and a p-type region formed so as to correspond to the respective regions.
  • An object of the present invention is to provide a solar cell with little variation in electrode film thickness.
  • the solar cell of the present invention is a solar cell having a light receiving surface and a back surface provided on the opposite side of the light receiving surface on a semiconductor substrate, and includes an electrode portion formed on one main surface of the substrate.
  • the electrode section includes a plurality of first thin wire electrodes formed on the one main surface, a plurality of second thin wire electrodes formed adjacent to the first thin wire electrode, and the plurality of first thin wire electrodes. Are connected to each other, and a plurality of second bus bar electrodes are connected to each other, and each end of each of the first thin wire electrode and the second thin wire electrode has two A portion where the sides intersect is formed in an arc shape.
  • the solar cell module of the present invention is a solar cell module including a plurality of electrically connected solar cells, and the solar cell includes a light receiving surface that receives sunlight on a semiconductor substrate, and a light receiving surface.
  • An electrode portion formed on one main surface of the substrate, and the electrode portion includes a plurality of first fine wire electrodes formed on the one main surface;
  • a bus bar electrode, and each electrode end of the first thin wire electrode and the second thin wire electrode is formed in a circular arc shape at a portion where two sides intersect.
  • the solar cell of the present invention can provide a solar cell with little variation in film thickness in the vicinity of the end portions of the first electrode and the second electrode.
  • light-receiving surface means a surface on which light is mainly incident in a solar cell or solar cell module
  • back surface means a surface opposite to the light-receiving surface
  • the solar cell 10 is formed by using a single crystal silicon wafer as the substrate 11 and laminating an amorphous silicon layer on the substrate 11. More specifically, the solar cell 10 includes a substantially intrinsic amorphous semiconductor 19, n-type amorphous silicon 20, silicon nitride, etc. on the light-receiving surface of an n-type single crystal silicon wafer that becomes the substrate 11. The protective films 21 are sequentially stacked. Further, on the back surface of the substrate 11, in the n region 12 corresponding to the n-type electrode 16, a substantially intrinsic amorphous semiconductor layer 12 1 , n-type amorphous semiconductor layer 12 2 , nitriding is formed on the substrate 11.
  • n-type electrode 16 are sequentially laminated, through a hole through the silicon layer 12 3 nitride has an n-type amorphous semiconductor layer 12 2 and the n-type electrode 16 is connected structure.
  • a substantially intrinsic amorphous semiconductor layer 13 1 , p-type amorphous semiconductor layer 13 2 , and p-type electrode 17 are sequentially stacked on the substrate 11. Have a structure.
  • the n-type electrode 16 in the n region 12 includes an n-type thin wire electrode 16f and an n-type bus bar electrode 16b
  • the p-type electrode 17 in the p region 13 includes a p-type thin wire electrode 17f and a p-type bus bar electrode 17b. Consists of.
  • the n-type electrode 16 and the p-type electrode 17 are formed in a comb shape at a predetermined interval from each other so as to substantially cover the entire back surface of the substrate 11. As a result, current generated by photoelectric conversion in many regions can be efficiently collected by generating a substantially constant electric field between the n-type electrode 16 and the p-type electrode 17.
  • the n-type bus bar electrode 16b is formed at one end on the back surface of the silicon substrate 11 so as to extend in a direction intersecting the n-type thin wire electrode 16f, and is connected to the n-type thin wire electrode 16f.
  • the p-type bus bar electrode 17b is formed at the other end on the back surface of the silicon substrate 11 so as to extend in a direction crossing the p-type thin line electrode 17f, and is connected to the p-type thin line electrode 17f.
  • These electrodes 16f, 16b, 17f, and 17b are formed by growing a metal such as copper on the base electrode by plating so that the current generated in the solar cell can be sufficiently extracted to the outside.
  • copper layers (plated layers) 16m and 17m are grown on the base electrodes 16a and 17a formed by sputtering or the like by plating.
  • the base electrodes 16a and 17a are made of copper.
  • a copper layer 16m is provided on the base electrode 16a by plating, and an n-type thin wire electrode 16f is formed.
  • a base electrode 17a is formed on the p-type region 13
  • a copper layer 17m is provided on the base electrode 17a by plating, and a p-type thin wire electrode 17f is formed.
  • the shape of the electrodes 16 and 17, which is a characteristic part of the present embodiment, particularly the end portion of the thin wire electrode 16 f will be described with reference to FIG. 3.
  • the arc-shaped portion 17bc ′ is formed so that the p-type electrode 17 has a substantially constant distance to the p-type electrode 17 formed in the vicinity of the thin wire electrode 16f so that a substantially constant electric field is generated. It was examined. However, in this case, there is a problem that the area of the p-type electrode 17 is increased, and an ineffective portion (a portion in FIG. 3) that does not contribute to power generation is increased.
  • the end of the fine wire electrode 16f is rectangular and the shape of the p-type electrode 17 is formed so that the distance to the p-type electrode 17 formed in the vicinity of the fine wire electrode 16f is substantially constant.
  • the formation of such an electric field was considered.
  • the p-type electrode 17 adjacent to the thin wire electrode 16f can be composed of the thin wire electrode 17f having a low resistance and a small area to be formed, and the bus bar electrode 17b having a low resistance and a small area to be formed.
  • the invalid portion that does not contribute to power generation can be reduced.
  • the rectangular shape there is a problem in that the current during plating is concentrated at the corners where the two sides are orthogonal to each other, resulting in variations in the film thickness of the electrodes.
  • the end of the thin wire electrode 16f has an arcuate portion 16r at the corner where the two sides intersect, and the tip of the thin wire electrode 16f has the arcuate portions 16r and 16r. It is set as the outline which has the linear edge 16c in between.
  • the bus bar electrode 17b and the fine wire electrode 17f are connected corresponding to the arc-shaped portion 16r, and an arc-shaped portion 17bc is formed at a portion where each side intersects.
  • the invalid area shown by a in FIG. 3 is reduced to improve carrier collection efficiency. Then, a portion where the two sides intersect with each other is formed into an arc-shaped portion 16r, current concentration during plating can be suppressed, variation in the film thickness of the thin wire electrode 16f can be reduced, and plating other than the processing region can be reduced. .
  • the end of the thin wire electrode 16f of the n-type electrode 16 and the shape of the p-type electrode 17 have been described. Similar effects can be obtained by replacing the p-type electrode 17 with the n-type electrode 16 at the end of the thin wire electrode 17f and the same configuration. For this reason, the end of the fine wire electrode 17f was formed on the n-type electrode 16 similarly to the p-type electrode 17 as well as the end of the fine wire electrode 16f.
  • the n-type bus bar electrode 16b and the p-type bus bar electrode 17b as well as the thin wire electrode 16f current concentrates at the corners during plating, and it is easier to plate than other processing areas, so the two sides intersect. The corners were arcuate parts.
  • the electrode pattern had a width (W) of 1000 ⁇ m.
  • the electrode pattern was formed by sputtering copper (Cu) with a film thickness of 0.2 ⁇ m as a base electrode and forming it into a predetermined shape by photolithography. Thereafter, copper was formed on the base electrode 16a by plating using phosphorus-containing copper (copper sulfate bath) as a plating solution under the condition of a current of 0.01 A / cm 2 .
  • the size of the radius R of the arcuate portion 16r at the end was changed from 2 ⁇ m to 100 ⁇ m, and the relationship between the plating film thicknesses was measured.
  • the measurement was performed by measuring the measurement position (Tmid) at the center at a distance of 3 W from the tip and the maximum film thickness portion (Tr) on the outer periphery of the arc-shaped portion 16r, and using the ratio (Tr / Tmid) of the two.
  • the value of the radius R of the arc-shaped portion 16r is 20 ⁇ m or more from the viewpoint of variations in the film thickness of the electrode.
  • the radius R of the arcuate portion 16r is more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the radius R of the arc-shaped portion 16r is 2% or more and 10% or less with respect to the width (W) of the thin wire electrode 16f.
  • the substrate 11 made of single crystal silicon is obtained by slicing an ingot of single crystal silicon.
  • the conductivity type of the substrate 11 may be n-type or p-type, but in this embodiment, a substrate made of n-type single crystal silicon was used. Further, the size and thickness of the substrate 11 can be appropriately changed. In this embodiment, a substrate having a thickness of 200 ⁇ m and a size of 100 mm square was used.
  • a substantially intrinsic amorphous semiconductor 19 On the light receiving surface of the substrate 11, a substantially intrinsic amorphous semiconductor 19, an n-type amorphous silicon 20, and a protective film 21 such as silicon nitride are sequentially stacked using a CVD (Chemical Vapor Deposition) apparatus.
  • a substantially intrinsic amorphous semiconductor layer 12 1 On the back surface of the substrate 11, in the n region 12 corresponding to the n-type electrode 16, a substantially intrinsic amorphous semiconductor layer 12 1 , n-type amorphous semiconductor layer 12 2 , and silicon nitride layer 12 3 are formed.
  • n-type amorphous semiconductor layer 12 2 is etched to expose. Further, in the p region 13 corresponding to the p-type electrode 17 on the substrate 11, laminated with sequential CVD apparatus substantially intrinsic amorphous semiconductor layer 13 1, p-type amorphous semiconductor layer 13 2 .
  • the base electrode 16a for the n-type thin wire electrode 16f and the n-type bus bar electrode 16b, the p-type thin wire electrode 17f and the bus bar electrode 17b are used.
  • a base electrode 17a was formed.
  • the base electrodes 16a and 17a are formed by sputtering copper using a metal mask.
  • the base electrodes 16a and 17a were each formed to have a thickness of 0.1 ⁇ m to 4 ⁇ m and a width of 0.2 mm.
  • the connecting portion between the bus bar electrode 17b (16b) and the thin wire electrode 17f (16f) also has a shape corresponding to the electrode 16 (17) in which the arc-shaped portion 17bc (16bc) corresponding to the arc-shaped portion 16r (17r) is formed.
  • the underlying electrodes 16a and 17a can be formed.
  • the base electrodes 16a and 17a Thereafter, electric field plating is performed on the base electrodes 16a and 17a while supplying power individually, plating layers 16m and 17m are formed, and the electrodes 16 and 17 are completed, whereby the solar cell 10 of the present embodiment is obtained.
  • phosphorous copper was used for the anode
  • the base electrode 16a or 17a was used for the cathode
  • the plating thickness was 10 ⁇ m to 30 ⁇ m, and in this embodiment, 10 ⁇ m.
  • the plating conditions were a plating current of 0.01 A / cm 2 , a plating solution of copper sulfate, a distance between electrodes of 5 cm, and a temperature of 40 ° C.
  • the thin area electrode 16f (17f) having the arc-shaped portion 16r (17r) and the linear end 16c (17c) reduces the ineffective area and improves the carrier collection efficiency.
  • intersect is made into the circular arc-shaped part 16r (17r), and while suppressing the current concentration at the time of plating, the dispersion
  • a solar cell module can be formed using a plurality of solar cells according to the embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing the connection between the solar cell and the wiring tab according to the embodiment of the present invention
  • FIG. 7 is a schematic sectional view showing the solar cell module using the solar cell according to the embodiment of the present invention. It is.
  • the solar cell module 60 includes a solar cell unit 60a in which a plurality of solar cells 10 are formed by wiring tabs 50 and crossover wiring (not shown) between a surface protection member 41 such as glass and a back surface protection member 42 such as resin. It has a structure laminated through a sealing material 43 having translucency such as EVA (Ethylene-Vinyl Acetate).
  • EVA Ethylene-Vinyl Acetate
  • a method for forming the solar cell module 60 will be described.
  • a plurality of solar cells 10 are first arranged so that the bus bar electrode 17b of the p-side electrode 17 of one solar cell 10 and the bus bar electrode 16b of the n-side electrode 16 of the other solar cell 10 are adjacent to each other.
  • the bus-bar electrode 17b of one solar cell 10 and the bus-bar electrode 16b of the other solar cell 10 are electrically connected using the wiring tab 50, and the string 60b is formed.
  • the solar cell 10 made into the string 60b connects the connecting wiring (not shown) which connects between strings, and forms the solar cell unit 60a.
  • the solar cell module 60 includes a surface protection member 41 such as glass, a light-transmitting sealing material 43 such as EVA, a solar cell unit 60 a, and a sealing material 43. Then, the back surface protection member 42 is laminated in this order, and is completed by laminating.
  • the solar cell module 60 according to the present embodiment can increase the power generation efficiency by using the solar cell 10 that can efficiently collect the generated power.
  • the solar cell concerning the said embodiment used the solar cell formed by laminating
  • the solar cell according to the above embodiment uses a back junction solar cell, but is not limited to this, and may be a solar cell in which electrodes are formed on both the light receiving surface and the back surface. If it forms, it is applicable similarly. Therefore, as shown in FIG. 8, an impurity region 13 of another conductivity type is provided on the front surface side of the semiconductor substrate 11 of one conductivity type, and the substrate 11, the electrode 16 of one conductivity type, and the through hole are provided on the back surface side of the substrate 11.
  • an insulating film 18 is formed between the electrode 17 and the substrate 11 so that the one conductivity type electrode 16 and the other conductivity type electrode 17 are not in contact with each other.
  • the electrode is formed by electrolytic plating, but may be formed by electroless plating.
  • a base electrode may be formed of a metal such as tin or nickel that has a higher ionization tendency than copper.
  • the electroless plating solution for example, a solution containing at least one of cupric sulfate, ethylenediaminetetraacetic acid, formaldehyde, and alkali hydroxide as a main component can be used.
  • a layer made of a vapor-deposited metal film such as copper is formed as a base electrode by sputtering.
  • the present invention is not limited to this.
  • an Ag paste that is a conductive resin is formed by screen printing and heated. The Ag paste can be cured and used as a base electrode.
  • ITO indium tin oxide
  • SnO 2 A transparent electrode made of tin oxide, ZnO (zinc oxide) or the like may be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、裏面接合型太陽電池の太陽電池の効率を向上させる。本発明の太陽電池は、基板11に、太陽光を受光する受光面と、受光面の反対側に設けられた裏面とを有する太陽電池であって、基板11の裏面上に形成された電極部16、17を備え、電極部は、裏面上に形成された複数のn型細線電極16fと、n型細線電極16fに隣接して形成された複数のp型細線電極17fと、複数のn型細線電極16fを互い接続するn型バスバー電極16bと、複数のp型細線電極17fを互い接続するp型バスバー電極17bと、を有し、細線電極16f、17fの電極端部は、二辺が交差する部分が円弧状に形成されている。

Description

太陽電池及び太陽電池モジュール
 本発明は、太陽電池に係り、特に、受光面と反対の裏面側に正負の電極が配置される裏面接合型太陽電池に好適な技術に関するものである。
 シリコン基板の受光面には電極を形成せずに、基板の裏面のみに異なる導電型の電極を形成するいわゆる裏面接合型太陽電池が開発されている。裏面接合型太陽電池としては、太陽電池の受光面側に電極を形成せずに、基板の裏面にp型領域、n型領域を形成し、正負両キャリアの取り出しを櫛型に形成した取り出し電極から取り出すものが提案されている(例えば、特許文献1参照)。
 図9に従い従来の裏面接合型太陽電池について説明する。裏面接合型太陽電池100は、n型のシリコンからなる基板111の受光面側とは反対側の裏面に、n型電極116、p型電極117が形成される。n型電極116は、n型細線電極116fとn型バスバー電極116bとで構成され、p型電極117は、p型細線電極117fとp型バスバー電極117bとで構成される。
 太陽電池の出力を向上させる観点から、p型電極117とn型電極116とが基板111の略全体を覆うように形成されている。そして、基板111の裏面上における一方の端部に、n型細線電極116fと交差する方向に延在するn型バスバー電極116bが形成され、n型細線電極116fとn型バスバー電極116bでn型電極116が構成される。また、シリコン基板101の裏面上における他方の端部に、p型細線電極117fと交差する方向に延在するp型バスバー電極117bが形成され、p型細線電極117fとp型バスバー電極117bでp型電極117が構成される。
 そして、n型電極116、及びp型電極117と接する基板11には、それぞれの領域に対応するように形成されたn型領域、p型領域が設けられる。
 この裏面接合型太陽電池の受光面に太陽光が入射すると、基板111の受光面近傍で生じたキャリアが裏面に形成されたpn接合まで到達し、n型細線電極116fおよびp型細線電極117fに電流として収集される。収集された電流は、バスバー電極116b、117bを介して外部に出力される。
特開2006-120944号
 ところで、裏面接合型太陽電池においては、太陽電池の出力を外部に無駄なく取り出すことができるように、メッキにより下地電極上に銅などを成長させ、低抵抗の電極を形成していた。しかし、メッキで電極を形成する場合、電極の先端に電流が集中し、端部分にメッキが厚く形成され、電極の膜厚にばらつきが発生する問題が生じる恐れがあった。
 本発明は、電極の膜厚のばらつきが少ない太陽電池の提供することを課題とする。
 本発明の太陽電池は、半導体基板に、受光面と、前記受光面の反対側に設けられた裏面とを有する太陽電池であって、前記基板の一主面上に形成された電極部を備え、前記電極部は、前記一主面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記複数の第1細線電極を互い接続する第1バスバー電極と、前記複数の第2細線電極を互い接続する第2バスバー電極と、を有し、前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状に形成されている。
 本発明の太陽電池モジュールは、電気的に接続されている複数の太陽電池を含む太陽電池モジュールであって、前記太陽電池は、半導体基板に、太陽光を受光する受光面と、前記受光面の反対側に設けられた裏面とを有し、前記基板の一主面上に形成された電極部を備え、前記電極部は、前記一主面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記複数の第1細線電極を互い接続する第1バスバー電極と、前記複数の第2細線電極を互い接続する第2バスバー電極と、を有し、前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状に形成されている。
 本発明の太陽電池は、第1電極、第2電極の端部近傍の膜厚のばらつきが少ない太陽電池を提供することができる。
本発明の実施形態にかかる太陽電池を示す平面図である。 本発明の実施形態にかかる太陽電池のA-A’線における概略断面図である。 本発明の実施形態にかかる太陽電池の細線電極部分を示す拡大平面図である。 本発明の実施形態にかかる太陽電池の細線電極の膜厚を測定した部分を示す模式的平面図である。 本発明の実施形態にかかる太陽電池の細線電極の円弧部の大きさと膜厚の関係を示す図である。 本発明の実施形態にかかる太陽電池の接続構造を示す模式的平面図である。 本発明にかかる太陽電池を用いた太陽電池モジュールを示す概略断面図である。 本発明が適用できる太陽電池の他の例を示す模式的断面図である。 従来の裏面接合型太陽電池を示す模式的平面図である。
 本発明の実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。
 尚、本願明細書において、「受光面」とは、太陽電池または太陽電池モジュールにおいて、光が主として入射する表面を意味し、「裏面」とは、受光面と反対側の表面を意味する。
 本実施形態では、図1及び図2に示すように、基板11として、単結晶シリコンウェハーを用い、その基板11の上にアモルファスシリコン層を積層して形成した太陽電池10とした。より具体的には、太陽電池10は、基板11となるn型の単結晶シリコンウェハーの受光面上に、実質的に真性な非晶質半導体19、n型非晶質シリコン20、窒化シリコンなどの保護膜21が順次積層された構成を有する。また、基板11の裏面においては、n型電極16に対応するn領域12では、基板11上に、実質的に真性な非晶質半導体層12、n型非晶質半導体層12、窒化シリコン層12、n型電極16が順次積層され、窒化シリコン層12を貫通する穴を介して、n型非晶質半導体層12とn型電極16とが接続された構造を有する。また、p型電極17に対応するp領域13では、基板11上に、実質的に真性な非晶質半導体層13、p型非晶質半導体層13、p型電極17が順次積層された構造を有する。
 また、n領域12のn型電極16は、n型細線電極16fとn型バスバー電極16bとで構成され、p領域13のp型電極17は、p型細線電極17fとp型バスバー電極17bとで構成される。
 太陽電池の出力を向上させる観点から、n型電極16とp型電極17とが基板11の裏面全体を略覆うように、互いに所定の間隔を隔てて櫛型形状に形成される。これにより、多くの領域で光電変換により生じた電流を、n型電極16とp型電極17との間で略一定の電界を発生させることで効率良く収集することができる。
 n型バスバー電極16bは、シリコン基板11の裏面上における一方の端部に、n型細線電極16fと交差する方向に延在して形成され、n型細線電極16fと接続されている。p型バスバー電極17bは、シリコン基板11の裏面上における他方の端部にp型細線電極17fと交差する方向で延在して形成され、p型細線電極17fと接続されている。
 これら電極16f、16b、17f、17bは、太陽電池に発生する電流を外部に十分に取り出すことができるように、メッキにより銅などの金属を下地電極上に成長させ、低抵抗の電極が形成される。
 本実施形態では、スパッタなどにより形成した下地電極16a、17a上にメッキにより銅層(メッキ層)16m、17mを成長させたものを用いる。下地電極16a、17aは、銅により構成される。
 そして、下地電極16a上にメッキにより銅層16mが設けられ、n型細線電極16fが形成される。p型領域13上に下地電極17aが形成され、その下地電極17a上にメッキにより銅層17mが設けられ、p型細線電極17fが形成される。
 以下に、図3を用いて本実施形態の特徴部分である電極16、17の形状、特に細線電極16fの端部について説明を行う。
 細線電極16fが有する端部の角においては、メッキ時に電流が集中し、他のメッキを処理する領域に比べてメッキされ易くなることがあった。これにより、メッキ膜厚が大きくなる他、処理領域以外の領域までメッキされてしまい、電極間のショート等の問題が生じていた。
 そこで、細線電極16fの端部を半円状に形成し、電流集中を抑制することを検討していた。しかし、細線電極16fの端部を半円状に形成した場合、この細線電極16fの端部に対向するp型電極17の面積が大きくなり、無効部分が多くなる新たな問題が生じていた。
 具体的には、細線電極16fの端部を丸くした場合、細線電極16fとこの細線電極16fに隣接するp型電極17までの距離が広くなり、生じる電界が弱くなり効率良く発生した電流を取り出せない問題点が生じる。そこで、p型電極17の形状を、細線電極16f付近に形成されるp型電極17までの距離を略一定となるように円弧状部17bc’を形成し、略一定の電界が生じるようにすることが検討された。しかし、この場合では、p型電極17の面積が大きくなり、発電に寄与しない無効部分(図3のa部部分)が大きくなってしまう問題があった。
 他方では、細線電極16fの端部を矩形形状とし、p型電極17の形状を、この細線電極16f付近に形成されるp型電極17までの距離を略一定となるように形成し、略一定の電界が生じるように形成することを検討していた。これにより、細線電極16fに隣接するp型電極17は、低抵抗で且つ形成される面積が小さい細線電極17fと、低抵抗で且つ形成される面積が小さいバスバー電極17bとで構成することできる。この結果、発電に寄与しない無効部分を狭くした構成とすることができる。しかしながら、矩形形状にすると、二辺が直交する角部にメッキ時の電流が集中し、電極の膜厚にばらつきが発生する問題があった。
 そこで、本発明は、図3に示すように、細線電極16fの端部を、二辺が交差する角部を円弧状部16rとし、細線電極16fの先端部は、円弧状部16r、16rの間に直線状の端辺16cを有する輪郭とする。
 また、p型電極17においては、この円弧状部16rに対応して、バスバー電極17bと細線電極17fが接続され、それぞれの辺が交差する部分は、円弧状部17bcが形成される。
 本実施形態によれば、図3のaで示す無効領域を減らして、キャリアの収集効率を向上させる。そして、二辺が交差する部分を円弧状部16rとし、メッキ時の電流集中を抑制し、細線電極16fの膜厚のばらつきを小さくするとともに、処理領域以外がメッキされることを減らすことができる。
 なお、上記の実施形態では、n型電極16の細線電極16fの端部及びp型電極17の形状について説明を行ったが、n型電極16の細線電極16fの端部をp型電極17の細線電極17fの端部に、またp型電極17をn型電極16に置き換え、同様な構成としても同様の作用効果を得ることができる。このため、細線電極16fの端部と同様に細線電極17fの端部を、またp型電極17と同様にn型電極16に形成を行った。加えて、n型バスバー電極16bとp型バスバー電極17bにおいても、細線電極16f同様、メッキ時に角部へ電流が集中し、他の処理領域に比べてメッキされ易くなるため、二辺が交差する角部を円弧状部とした。
 次に、円弧状部16rの半径の大きさとメッキ厚の関係につき、図4及び図5を参照して説明する。
 円弧状部16rの半径の大きさとメッキ厚の関係を調べるために、図4に示す電極パターンを用意した。電極パターンは、幅(W)を1000μmとした。電極パターンは、下地電極として膜厚0.2μmの銅(Cu)をスパッタリングで形成し、フォトリソグラフィで所定の形状に形成した。その後、含りん銅(硫酸銅浴)をメッキ液として用い、0.01A/cmの電流の条件で、下地電極16a上に銅をメッキで形成した。
 端部の円弧状部16rの半径Rの大きさを2μmから100μmに変化させて、それぞれのメッキ膜厚の関係を測定した。測定は、先端から3Wの距離の中央部の測定位置(Tmid)と円弧状部16rの外周の最大膜厚箇所(Tr)を測定し、両者の比(Tr/Tmid)を用いて評価した。
 その結果を、表1及び図5に示す。
Figure JPOXMLDOC01-appb-T000001
 表1、図5に示すように、円弧状部16rの半径Rが大きくなるにつれ、その比が1に近づき、中央部と円弧状部16rとの膜厚のばらつきが小さくなる。そして、その比が20%以下となるばらつきの大きさは、円弧状部16rの半径Rの値が20μm程度であった。局所的なストレスは、膜厚の変動幅が、概ね20%程度の範囲内であれば、電極の剥離等が発生しにくいことが、実際の装置でテストした結果、確認できている。したがって、電極の膜厚のばらつきの観点から、円弧状部16rの半径Rの値が20μm以上とすることが好ましい。また、円弧状部16rの半径Rを大きくすればするほど、ばらつきは少なくなるが、大きくするだけ、無効領域が増える。このことから、円弧状部16rの半径Rは20μm以上100μm以下とすることがより好ましい。
 これらのことを考慮すると、細線電極16fの幅(W)に対して円弧状部16rの半径Rは、2%以上10%以下とすることが好ましい。
 次に、上記の太陽電池10を製造する方法について、説明する。
 単結晶シリコンからなる基板11は、単結晶シリコンのインゴッドをスライスして得られる。基板11の導電型はn型でもp型でもよいが、この実施形態では、n型単結晶シリコンからなる基板を用いた。また、基板11の大きさや厚みについても適宜変更が可能である。この実施形態では、厚さ200μm、大きさ100mm角の基板を用いた。
 基板11の受光面上に、実質的に真性な非晶質半導体19、n型非晶質シリコン20、窒化シリコンなどの保護膜21を順次、CVD(Chemical Vapor Deposition)装置を用いて積層する。また、基板11の裏面においては、n型電極16に対応するn領域12では、実質的に真性な非晶質半導体層12、n型非晶質半導体層12、窒化シリコン層12を順次、CVD装置を用いて積層した後、弗硝酸及び弗酸を用いて、窒化シリコン層12を貫通し、n型非晶質半導体層12が露出するようにエッチングを行う。また、p型電極17に対応するp領域13では、基板11上に、実質的に真性な非晶質半導体層13、p型非晶質半導体層13を順次CVD装置を用いて積層する。
 続いて、基板11の裏面側のn型領域12、p型領域13に、n型細線電極16f用並びにn型バスバー電極16b用の下地電極16a、p型細線電極17f用並びにバスバー電極17b用の下地電極17aを形成した。この実施形態では、下地用電極16a、17aは、銅をスパッタ法によりメタルマスクを用いて形成した。下地用電極16a、17aは、各々厚み0.1μm~4μm、幅0.2mmに形成した。この時、メタルマスクを用いることにより、細線電極16f(17f)の端部の半径(R)が20μm以上の円弧状部16r(17r)の間に直線状の端部16c(17c)を有する輪郭を有して形成することができる。そして、バスバー電極17b(16b)と細線電極17f(16f)の接続部もこの円弧状部16r(17r)に対応した円弧状部17bc(16bc)が形成された電極16(17)に対応した形状の下地電極16a、17aを形成することができる。
 その後、下地電極16a、17aに対して、個別に給電しながら電界メッキを行い、メッキ層16m、17mを形成して、電極16、17を完成させ、本実施形態の太陽電池10が得られる。メッキは、アノードを含りん銅、カソードを下地電極16a又は17aとし、メッキ厚10μm~30μm、この実施形態では、10μmとした。メッキ条件は、メッキ電流は0.01A/cm、メッキ液は硫酸銅、電極間距離は5cm、温度は40℃とした。
 上記のように、円弧状部16r(17r)と直線状の端辺16c(17c)を有する細線電極16f(17f)により、無効領域を減らして、キャリアの収集効率を向上させる。そして、二辺が交差する部分を円弧状部16r(17r)とし、メッキ時の電流集中を抑制し、膜厚のばらつきを小さくすることができるとともに、処理領域以外がメッキされることを減らすことができる。
 なお、本発明の実施形態にかかる太陽電池を複数個用い、太陽電池モジュールを形成することができる。以下に、本発明の実施形態にかかる太陽電池を用いた太陽電池モジュールについて図6及び図7を参照して説明する。図6は、本発明の実施形態にかかる太陽電池と配線タブとの接続を示す模式的平面図、図7は、本発明の実施形態にかかる太陽電池を用いた太陽電池モジュールを示す概略断面図である。
 太陽電池モジュール60は、複数の太陽電池10を配線タブ50と渡り配線(図示しない)により形成した太陽電池ユニット60aを、ガラス等の表面保護部材41と樹脂等の裏面保護部材42の間に、EVA(Ethylene-Vinyl Acetate)等の透光性を有する封止材43を介して積層された構造を有する。
 次に、太陽電池モジュール60の形成方法について説明を行う。まず、初めに複数の太陽電池10を、一方の太陽電池10のp側電極17のバスバー電極17bと、他方の太陽電池10のn側電極16のバスバー電極16bと、が隣接するように配置する。そして、一方の太陽電池10のバスバー電極17bと、他方の太陽電池10のバスバー電極16bと、を配線タブ50を用いて電気的に接続し、ストリング60bを形成する。更に、ストリング60bとした太陽電池10は、ストリング間を接続する渡り配線(図示しない)を接続し、太陽電池ユニット60aを形成する。
 最後に、図7に示すように、太陽電池モジュール60は、受光面側からガラス等の表面保護部材41、EVA等の透光性を有する封止材43、太陽電池ユニット60a、封止材43、裏面保護部材42をこの順序で積層し、ラミネートすることにより完成する。
 本実施形態にかかる太陽電池モジュール60は、発電した電力を効率よく収集することができる太陽電池10を用いることにより、発電効率を高くすることができる。
 なお、上記の実施形態にかかる太陽電池は、基板11に非晶質シリコン膜などを積層して形成した太陽電池を用いたが、これに限られず、ドーパントを拡散して形成した太陽電池としてもよい。さらには、上記の実施形態にかかる太陽電池は、裏面接合型の太陽電池を用いたが、これに限られず、受光面と裏面の両方に電極を形成した太陽電池としてもよく、メッキにより電極を形成するものであれば同様に適用できる。したがって、図8に示すように、一導電型の半導体基板11の表面側に他導電型の不純物領域13を設け、基板11の裏面側に、基板11と一導電型の電極16と、スルーホール31を介して接続された他導電型の電極17を形成する場合にあっても同様に用いることができる。なお、この場合にあっては、電極17と基板11の間には、絶縁膜18が形成され、一導電型の電極16と他導電型の電極17とが接触しないように配置される。
 また、上記の実施形態においては、電極は、電解メッキを用いて形成しているが、無電解メッキで形成してもよい。なお、電極として無電解メッキで銅を析出させるためには、銅よりイオン化傾向の大きい錫やニッケルなどの金属で下地電極を形成すればよい。また、無電解メッキ液としては、例えば硫酸第二銅、エチレンジアミン四酢酸、ホルムアルデヒド、及び水酸化アルカリの少なくとも一つを主成分としているものを用いることができる。
 上記の実施形態は、スパッタ法により下地電極として銅などの蒸着金属膜からなる層を形成したが、これに限らず、例えば、導電性樹脂であるAgペーストをスクリーン印刷により形成し、加熱して、Agペーストを硬化させ、下地電極として用いることもできる。
 また、n領域12のn型非晶質半導体層12、またはp領域13のp型非晶質半導体層13、と下地電極との間には、ITO(酸化インジウム錫)、SnO(酸化錫)、ZnO(酸化亜鉛)等からなる透明電極を形成してもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記の実施形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 太陽電池
 11 基板
 12 n型領域
 13 p型領域
 16 n型電極
 16f n型細線電極
 16b n型バスバー電極
 16r 円弧状部
 17 p型電極
 17f p型細線電極
 17b p型バスバー電極
 17r 円弧状部

Claims (8)

  1.  半導体基板に、受光面と、前記受光面の反対側に設けられた裏面とを有する太陽電池であって、
     前記基板の一主面上に形成された電極部を備え、
     前記電極部は、
     前記一主面上に形成された複数の第1細線電極と、
     前記第1細線電極に隣接して形成された複数の第2細線電極と、
     前記複数の第1細線電極を互い接続する第1バスバー電極と、
     前記複数の第2細線電極を互い接続する第2バスバー電極と、
     を有し、
     前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状とされた円弧状部を二つ有するように形成されている、太陽電池。
  2.  前記第1細線電極及び第2細線電極の端部は、円弧状部に連なって直線状の端部が形成されている、請求項1に記載の太陽電池。
  3.  前記一主面は、基板の裏面である、請求項1又は請求項2に記載の太陽電池。
  4.  前記電極は、下地電極上にメッキにより形成された電極である、請求項1ないし請求項3のいずれか1項に記載の太陽電池。
  5.  少なくとも一方の細線電極の幅に対して円弧の半径が2%以上10%以下である、請求項4に記載の太陽電池。
  6.  前記下地電極は、蒸着金属膜又は導電性樹脂から選択されている、請求項4又は請求項5に記載の太陽電池。
  7.  前記第1バスバー電極及び前記第2バスバー電極の二辺が交差する部分は、円弧状に形成されている、請求項1に記載の太陽電池。
  8.  電気的に接続されている複数の太陽電池を含む太陽電池モジュールであって、
     前記太陽電池は、半導体基板に、太陽光を受光する受光面と、前記受光面の反対側に設けられた裏面とを有し、前記基板の一主面上に形成された電極部を備え、
     前記電極部は、
     前記一主面上に形成された複数の第1細線電極と、
     前記第1細線電極に隣接して形成された複数の第2細線電極と、
     前記複数の第1細線電極を互い接続する第1バスバー電極と、
     前記複数の第2細線電極を互い接続する第2バスバー電極と、
     を有し、
     前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状とされた円弧状部を二つ有するように形成されている、太陽電池モジュール。
PCT/JP2012/070294 2011-08-25 2012-08-09 太陽電池及び太陽電池モジュール WO2013027591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013529964A JP6028982B2 (ja) 2011-08-25 2012-08-09 太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011183712 2011-08-25
JP2011-183712 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027591A1 true WO2013027591A1 (ja) 2013-02-28

Family

ID=47746338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070294 WO2013027591A1 (ja) 2011-08-25 2012-08-09 太陽電池及び太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP6028982B2 (ja)
WO (1) WO2013027591A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053303A (ja) * 2013-09-05 2015-03-19 シャープ株式会社 太陽電池セル、太陽電池モジュール、および太陽電池セルの製造方法。
US11515436B2 (en) 2016-08-15 2022-11-29 Sharp Kabushiki Kaisha Photovoltaic device and photovoltaic unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259488A (ja) * 1992-03-11 1993-10-08 Hitachi Ltd シリコン太陽電池素子及び製造方法
JP2010095762A (ja) * 2008-10-16 2010-04-30 Fuji Electric Systems Co Ltd 電気めっき方法
JP2011155229A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
WO2012026358A1 (ja) * 2010-08-24 2012-03-01 三洋電機株式会社 太陽電池及びその製造方法
WO2012057077A1 (ja) * 2010-10-29 2012-05-03 シャープ株式会社 半導体装置、配線基板付き裏面電極型太陽電池セル、太陽電池モジュールおよび半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259488A (ja) * 1992-03-11 1993-10-08 Hitachi Ltd シリコン太陽電池素子及び製造方法
JP2010095762A (ja) * 2008-10-16 2010-04-30 Fuji Electric Systems Co Ltd 電気めっき方法
JP2011155229A (ja) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
WO2012026358A1 (ja) * 2010-08-24 2012-03-01 三洋電機株式会社 太陽電池及びその製造方法
WO2012057077A1 (ja) * 2010-10-29 2012-05-03 シャープ株式会社 半導体装置、配線基板付き裏面電極型太陽電池セル、太陽電池モジュールおよび半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053303A (ja) * 2013-09-05 2015-03-19 シャープ株式会社 太陽電池セル、太陽電池モジュール、および太陽電池セルの製造方法。
US11515436B2 (en) 2016-08-15 2022-11-29 Sharp Kabushiki Kaisha Photovoltaic device and photovoltaic unit

Also Published As

Publication number Publication date
JP6028982B2 (ja) 2016-11-24
JPWO2013027591A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
US9502590B2 (en) Photovoltaic devices with electroplated metal grids
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
US9773928B2 (en) Solar cell with electroplated metal grid
US8253213B2 (en) Photoelectric conversion element, photoelectric conversion element assembly and photoelectric conversion module
CN107710419B (zh) 太阳能电池和太阳能电池模块
US20090139570A1 (en) Solar cell and a manufacturing method of the solar cell
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
JP2015512563A (ja) 背面接触型太陽光発電モジュールの半導体ウエハのセル及びモジュール処理
US9123861B2 (en) Solar battery, manufacturing method thereof, and solar battery module
JP5241961B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
KR20110053465A (ko) 편 방향 접속부를 구비한 태양 전지 및 태양 전지 모듈
US10205040B2 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
JP6300712B2 (ja) 太陽電池および太陽電池の製造方法
EP2605285B1 (en) Photovoltaic device
JP2015207598A (ja) 太陽電池モジュール、太陽電池およびこれに用いられる素子間接続体
KR101038967B1 (ko) 태양 전지 및 그 제조 방법
WO2012128284A1 (ja) 裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュール
JP6028982B2 (ja) 太陽電池の製造方法
TW202018959A (zh) 切片太陽能電池及其製造方法及太陽能電池模組
JP2019179838A (ja) 太陽電池セル、及び、太陽電池セルの製造方法
TW201635568A (zh) 太陽能電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826326

Country of ref document: EP

Kind code of ref document: A1