WO2013027507A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2013027507A1
WO2013027507A1 PCT/JP2012/067785 JP2012067785W WO2013027507A1 WO 2013027507 A1 WO2013027507 A1 WO 2013027507A1 JP 2012067785 W JP2012067785 W JP 2012067785W WO 2013027507 A1 WO2013027507 A1 WO 2013027507A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
shielding member
region
light receiving
Prior art date
Application number
PCT/JP2012/067785
Other languages
English (en)
French (fr)
Inventor
小野 修司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013529928A priority Critical patent/JP5525109B2/ja
Publication of WO2013027507A1 publication Critical patent/WO2013027507A1/ja
Priority to US14/177,683 priority patent/US9124876B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/615Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4" involving a transfer function modelling the optical system, e.g. optical transfer function [OTF], phase transfer function [PhTF] or modulation transfer function [MTF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout

Definitions

  • the present invention relates to an imaging apparatus, and more particularly to an imaging apparatus capable of simultaneously acquiring various images.
  • Patent Document 1 discloses a pixel in which a left half is opened in a semicircular shape on the front surface of a light receiving surface and a pixel on which a microlens is formed, and a light shielding mask in which a right half is opened in a semicircular shape on the front surface of the light receiving surface.
  • a focus detection optical system of a pupil division type phase difference detection system including a pair of focus detection pixels including pixels on which microlenses are formed is described.
  • the light beam that has passed through the imaging lens 100 is imaged on the light receiving surface of each cell of the image sensor 160 by the microlens M, but formed on the light receiving surface of the light receiving cell 160 a of the image sensor 160. Since the light shielding member 161a shields the light beam that has passed through the central region 100a of the imaging lens 100, only the light beam that has passed through the peripheral region 100b of the imaging lens 100 is imaged on the light receiving cell 160a. In addition, since the light shielding member 161b formed on the light receiving surface of the light receiving cell 160b of the image sensor 160 blocks the light beam that has passed through the peripheral region 100b of the imaging lens 100, the central region 100a of the imaging lens 100 is provided in the light receiving cell 160b. Only the passed light beam is imaged.
  • Forming different images by pupil division is used not only for focus detection but also for monocular stereoscopic imaging devices.
  • a monocular stereoscopic imaging device light that has passed through an imaging lens is divided into pupils, and subject images that have passed through different areas of the imaging lens are each formed on an imaging device to simultaneously acquire a plurality of images. Yes.
  • the invention and the monocular stereoscopic imaging device described in Patent Document 1 require a type of light shielding mask corresponding to the number of pupil divisions, and a large number of light shielding masks are necessary because all pixels are provided with a light shielding mask. Therefore, a large number of different types of shading masks must be manufactured and arranged with high accuracy.
  • a large number of different types of shading masks must be manufactured and arranged with high accuracy.
  • the structure of the image sensor becomes finer, it becomes difficult to process and manufacture with high accuracy corresponding to this, and the design and design of the light shielding part and various positions and shapes are changed. There is a problem that it is difficult to respond to a supply request of a product having a light shielding portion.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an imaging apparatus that can divide pupils with a simple configuration and can easily cope with various types.
  • an imaging apparatus of the present invention includes a first lens having a first characteristic and a second lens having a second characteristic different from the first characteristic.
  • An imaging element having a first light receiving element and a second light receiving element that are two-dimensionally arranged, a light shielding member that shields a light beam that has passed through the photographing lens, and imaging of the first light receiving element or the second light receiving element.
  • An image generation unit that generates an image of a subject from a signal, and the light shielding member is provided only for the first light receiving element so that the light beam that has passed through the second region does not enter the first light receiving element. Shield from light.
  • the light-shielding member that shields the light beam that has passed through the second region from entering the first light-receiving element is provided only for the first light-receiving element. That is, since the light-shielding member is not provided for the second light-receiving element, the type and number of light-shielding members can be reduced, and pupil division can be performed with a simple configuration. In addition, it becomes easy to deal with various types.
  • the light blocking member is provided for the first light receiving element, so that the light beam that has passed through the second region does not enter the first light receiving element. For this reason, when generating an image from the imaging signal of the first light receiving element, it is not necessary to perform image processing for removing the influence of the light flux that has passed through the second region.
  • the ratio of the second area to the exit pupil of the photographing lens is that the characteristics of the image of the subject and the second area of the exit pupil when the entire area of the exit pupil has the second characteristic. It may be determined so that the characteristics of the passed image are the same.
  • the characteristics of the two images are “same” not only when the characteristics are completely the same, but also when the characteristics of the two images are different so that they cannot be immediately identified when the user views the image. Including.
  • the ratio of the second exit area to the total exit pupil of the photographing lens is preferably larger than 75% (for example, 75.1%), and more than 80%. Is more preferable.
  • the image generation unit when generating an image of a subject from an imaging signal of the first light receiving element, whether or not to perform image processing for removing the influence of the light beam that has passed through the second region, and the second light receiving element
  • the image generation unit further includes an image processing selection unit that receives a selection as to whether or not to perform image processing that removes the influence of the light beam that has passed through the first region when generating an image of the subject from the imaging signal.
  • Image processing may be performed according to the selection received by the processing selection unit. By performing such image processing, it is possible to improve the image quality of the subject as necessary.
  • the light shielding member can be disposed between the photographing lens and the image sensor.
  • the light shielding member may be a light transmissive plate member having a light shielding portion formed on the surface thereof.
  • a light shielding member for example, a transparent glass plate having a light shielding material formed on the surface by etching can be used, and a small light shielding material can be accurately formed on the light shielding member.
  • the light shielding member may be fixed at a position away from the image sensor by a predetermined distance. Thereby, it is possible to block all the light beams that have passed through the predetermined area of the photographing lens.
  • the light shielding member may be arranged to be movable in the optical axis direction. Further, the light shielding member may be disposed so as to be movable along a plane orthogonal to the optical axis. Thereby, the effect of the light shielding member can be eliminated without removing the light shielding member. Therefore, ON / OFF of the light shielding member can be switched with a simple configuration.
  • the light shielding member may be a light shielding mask provided on the light receiving surface of the first light receiving element. Even with such a configuration, the effects of the present invention can be obtained.
  • the ratio of the first light receiving element to the total light receiving element of the imaging element is the ratio of the first area to the total area of the exit pupil of the photographing lens. You may arrange
  • the ratio of the first and second light receiving elements is not limited to the case where they are completely equal, and is slightly different depending on the purpose of the image to be acquired, the characteristics of the optical member, and the like (the ratio of the two light receiving elements). May be substantially equal).
  • the image generation unit performs a process of interpolating a missing pixel of the second light receiving element at a position where the first light receiving element is disposed when generating an image of the subject from the output signal of the second light receiving element. It may be. Thereby, the image quality of the image obtained from the light flux that has passed through the second region can be improved.
  • the photographic lens is composed of a region having a circular planar shape arranged around the optical axis and an annular region disposed on the outer edge of the circular region, the annular region being the first region,
  • the area may be the second area.
  • the first region may have a first focal length as a first characteristic
  • the second region may have a focal length longer than the first focal length as a second characteristic.
  • the image generation unit may further include a generation image selection unit that receives selection of which one of the first light receiving element and the second light receiving element is to generate an image.
  • an imaging apparatus that can divide pupils with a simple configuration and can easily cope with various types.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus 1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a photographic lens, a light shielding member, and an imaging element of the imaging apparatus 1.
  • FIG. 3 is a diagram illustrating a planar shape of the photographing lens.
  • FIG. 4 is a diagram illustrating an arrangement of photosensors of the image sensor.
  • FIG. 5 is a diagram schematically illustrating the light shielding member and the imaging element.
  • FIG. 6 is a diagram showing how to attach the light shielding member.
  • FIG. 7 is a view showing a modification of how to attach the light shielding member.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus 1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a photographic lens, a light shielding member, and an imaging element of the imaging apparatus 1.
  • FIG. 3 is a diagram illustrating a planar shape of the photographing lens
  • FIG. 8A is a diagram illustrating an example of movement of the light shielding member, and illustrates a case where the light shielding member is at a position closest to the imaging element.
  • FIG. 8B is a diagram illustrating an example of movement of the light shielding member, and illustrates a case where the light shielding member is moved to a position farthest from the imaging device.
  • FIG. 9A is a diagram illustrating another example of movement of the light shielding member, and illustrates a case where the light shielding member is in the basic position.
  • FIG. 9B is a diagram illustrating another example of movement of the light shielding member, and shows a case where the light shielding member is moved upward from the basic position.
  • FIG. 10 is a diagram schematically illustrating a photographic lens, a light shielding member, and an imaging element of an imaging apparatus according to the second embodiment of the present invention.
  • FIG. 11 is a diagram schematically illustrating an example of a conventional photographing lens, a light shielding member, and an image sensor.
  • FIG. 1 is a block diagram showing a configuration of an imaging apparatus 1 according to the first embodiment of the present invention.
  • the image pickup apparatus 1 records a picked-up image on a memory card 54, and the operation of the entire apparatus is centrally controlled by a central processing unit (CPU) 40.
  • CPU central processing unit
  • the imaging apparatus 1 is provided with an operation unit 38 such as a shutter button, a mode dial, a playback button, a MENU / OK key, a cross key, and a BACK key.
  • a signal from the operation unit 38 is input to the CPU 40, and the CPU 40 controls each circuit of the imaging apparatus 1 based on the input signal.
  • the shutter button is an operation button for inputting an instruction to start shooting, and is configured by a two-stroke switch having an S1 switch that is turned on when half-pressed and an S2 switch that is turned on when fully pressed.
  • the mode dial is a selection means for selecting one of an auto shooting mode for shooting a still image, a manual shooting mode, a scene position such as a person, a landscape, a night view, and a moving image mode for shooting a moving image.
  • the playback button is a button for switching to a playback mode in which a captured still image or moving image is displayed on the liquid crystal monitor 30.
  • the MENU / OK key is an operation key having both a function as a menu button for instructing to display a menu on the screen of the liquid crystal monitor 30 and a function as an OK button for instructing confirmation and execution of the selection contents. It is.
  • the cross key is an operation unit for inputting instructions in four directions, up, down, left, and right, and functions as a button (cursor moving operation means) for selecting an item from the menu screen or instructing selection of various setting items from each menu. To do.
  • the up / down key of the cross key functions as a zoom switch for shooting or a playback zoom switch in playback mode
  • the left / right key functions as a frame advance (forward / reverse feed) button in playback mode.
  • the BACK key is used to delete a desired object such as a selection item, cancel an instruction content, or return to the previous operation state.
  • the subject light is imaged on the light receiving surface of the CMOS type image pickup device 16 through the photographing lens 10, a diaphragm (not shown) and the light shielding member 12.
  • the diaphragm is composed of, for example, five diaphragm blades, and is controlled by the CPU 40, for example, in five increments in increments of 1AV from an aperture value of F2.8 to F11.
  • the image sensor 16 has a two-dimensional array of a large number of photosensors (light receiving elements) (see FIG. 4), and the subject image formed on the light receiving surface of each photosensor is an amount of signal corresponding to the amount of incident light. It is converted into voltage (or charge).
  • the light shielding member 12 is disposed in front of the image sensor 16, that is, between the photographic lens 10 and the image sensor 16, in parallel with the light receiving surface of the image sensor 16, that is, in parallel with the surface orthogonal to the optical axis.
  • FIG. 2 is a diagram schematically showing the photographic lens 10, the light shielding member 12, and the image sensor 16 in the present embodiment.
  • the photographing lens 10 is composed of a plurality of lenses
  • FIG. 2 schematically shows one lens.
  • two photosensors are illustrated as the image sensor 16, and the light shielding member 12 is illustrated in a size corresponding to the two photosensors, but these optical elements are not limited thereto. Needless to say, it has an arbitrary number and size of optical elements capable of photographing a subject.
  • the photographic lens 10 has an area that can be converged at a short focal length and can be macro-photographed (hereinafter referred to as a near-focus area), and an area that has a longer focal distance than the near-focus area and can be used for landscape photography (hereinafter referred to as far-focus).
  • the photographic lens 10 is divided into a circular region and a circular region around the periphery of the lens when viewed from the front (hereinafter referred to as a planar shape).
  • the focal region 10a, and the annular region is the near focal region 10b. In these areas, the ratio of the near focus area 10b to the total area of the exit pupil of the photographing lens 10 is 20%, and the ratio of the far focus area 10a is 80%.
  • the imaging device 16 includes a far-image light receiving cell 16a in which a light beam that has passed through the far-focus region 10a and the near-focus region 10b, that is, a light beam that has passed through all the exit pupils of the photographing lens 10, and a light beam that has passed through the near-focus region 10b. And a near-image light-receiving cell 16b into which only light is incident.
  • the near-image light-receiving cells 16 b are arranged at a ratio of 1 pixel to 9 pixels (3 ⁇ 3).
  • the ratio occupied by the near-image light-receiving cell 16b in all the photosensors of the image sensor 16 is the entire exit pupil of the photographing lens 10.
  • the near-image light receiving cells 16b being arranged so as to have a proportion corresponding to the proportion occupied by the near focus region 10b in the region (total of the far focus region 10a and the near focus region 10b).
  • the image obtained from the far-image light receiving cell 16a is the main image
  • the image obtained from the near-image light receiving cell 16b is the sub-image.
  • the ratio of the near-image light-receiving cell 16b is such that the ratio of the near-image light-receiving cell 16b in all the photosensors of the image sensor 16 is occupied by the near-focus area 10b in the entire area of the exit pupil of the photographing lens 10. You may make it become equal to a ratio.
  • the light shielding member 12 is a transparent glass plate having a thickness of about 10 ⁇ m to 100 ⁇ m.
  • a cover glass of the image sensor 16 can also be used.
  • the light shielding member 12 is not limited to glass, and a transparent film stretched on a plate-like frame can also be used.
  • the light shielding member 12 is provided with the light shielding member 12a so as to correspond to the near-image light-receiving cell 16b, that is, to be positioned in front of the near-image light-receiving cell 16b.
  • the light shield 12a is a black region formed by etching or the like on the surface of the light shield member 12, and has a diameter of about 5 ⁇ m. This 5 ⁇ m is a value determined so as to be approximately the same size as the diameter of each photosensor of the image sensor 16.
  • the interval between the light shield 12a and the light shield 12a is 15 ⁇ m.
  • the light shield 12a Since the light shield 12a is provided corresponding to the near-image light-receiving cell 16b, as shown in FIG. 2, the light shield 12a shields the light beam that has passed through the far-focus region 10a according to the principle of shadowing, and the near focus. Only the light beam that has passed through the region 10b enters the near-image light receiving cell 16b. With such a configuration, it is possible to cause the photosensor to receive only a light beam that has passed through a desired region of the photographing lens system without using a microlens.
  • the light shielding member 12a is provided to shield the light beam that has passed through the far focus region 10a from entering the near image light receiving cell 16b, and the light shielding member is provided to the far image light receiving cell 16a. Therefore, the types and number of light shielding members can be reduced, and pupil division becomes possible with a simple configuration. In addition, it becomes easy to deal with various types.
  • the distance in the optical axis direction between the image sensor 16 and the light shielding member 12 (light shielding object 12a) is important in order for the light shielding object 12a to shield all the light beams that have passed through the far focus region 10a.
  • a flange 17 is disposed so as to surround the image sensor 16, and the light shielding member 12 is disposed so as to abut on the end surface of the flange 17. Since the imaging element 16 and the flange 17 are each fixed to the same surface of the camera body 20, the light shielding member 12 is accurately positioned by bringing the light shielding member 12 into contact with the end surface of the flange 17.
  • the distance of the optical axis direction of the image pick-up element 16 and the light-shielding member 12 can be kept at an appropriate distance by setting the height of the flange 17 to an appropriate value.
  • the space between the image sensor 16 and the light shielding member 12 may be filled with air or an optical medium (liquid, adhesive, etc.).
  • FIG. 5 twelve photo sensors are illustrated as the image sensor 16 and four light shields 12 a are illustrated as the light shielding member 12, but these optical elements are not limited thereto. . Also in FIG. 6, the number of photosensors of the image sensor 16 and the number of light shielding portions 12 a of the light shielding member 12 are not limited to this.
  • the signal voltage (or charge) accumulated in the image sensor 16 is accumulated in the photosensor itself or an attached capacitor.
  • the stored signal voltage (or charge) is read by the sensor control unit 32 together with the selection of the pixel position using a technique of a MOS type image pickup device (so-called CMOS sensor) using the XY address method.
  • CMOS sensor MOS type image pickup device
  • the voltage signal read from the image sensor 16 is output from each pixel of the image sensor for the purpose of reducing correlated double sampling processing (noise (particularly thermal noise) included in the output signal of the image sensor).
  • the R, G, B signals for each pixel are sampled and held by the difference between the feedthrough component level and the pixel signal component level contained in the pixel signal to obtain accurate pixel data, and then A / D Added to the converter 21.
  • the A / D converter 21 converts R, G, and B signals that are sequentially input into digital R, G, and B signals and outputs them to the image input controller 22.
  • the digital signal processing unit 24 performs predetermined processing such as offset control, gain control processing including white balance correction and sensitivity correction, gamma correction processing, YC processing, etc., on the digital image signal input via the image input controller 22. Perform signal processing.
  • predetermined processing such as offset control, gain control processing including white balance correction and sensitivity correction, gamma correction processing, YC processing, etc.
  • the image data processed by the digital signal processing unit 24 is input to the VRAM 50.
  • the image data read from the VRAM 50 is encoded by the video encoder 28 and output to the liquid crystal monitor 30 provided on the back of the camera, whereby the subject image is displayed on the display screen of the liquid crystal monitor 30.
  • the CCD 40 When the shutter button of the operation unit 38 is pressed (half-pressed) in the first stage, the CCD 40 starts the AE operation, and the image data output from the A / D converter 21 when the shutter button is half-pressed is AE. It is captured by the detection unit 44.
  • the AE detection unit 44 integrates the G signals of the entire screen or integrates the G signals that are weighted differently in the central portion and the peripheral portion of the screen, and outputs the integrated value to the CPU 40.
  • the CPU 40 calculates the brightness of the subject (shooting Ev value) from the integrated value input from the AE detection unit 44, and sets the aperture value of the aperture and the electronic shutter (shutter speed) of the image sensor 16 based on the shooting Ev value.
  • the aperture is controlled via an aperture drive unit (not shown) based on the determined aperture value, and at the image sensor 16 via the sensor control unit 32 based on the determined shutter speed. To control the charge accumulation time.
  • the image data output from the A / D converter 21 in response to the press is sent from the image input controller 22 to the memory (SDRAM). 48 and temporarily stored.
  • the image data read from the far-image light-receiving cell 16a or the image data read from the near-image light-receiving cell 16b automatically or by the CPU 40 in accordance with a photographer's instruction via the operation unit 38.
  • the image data read from the far-image light-receiving cell 16a and the image data read from the near-image light-receiving cell 16b can be acquired.
  • the image data temporarily stored in the memory 48 is appropriately read out by the digital signal processing unit 24, where predetermined signal processing including generation processing (YC processing) of luminance data and color difference data of the image data is performed. .
  • YC processed image data (YC data) is stored in the memory 48 again.
  • the YC data is read from the memory 48 to the image processing unit 25, a far image (far distance image) is generated from the image data read from the far image light receiving cell 16a, and the near image light receiving cell 16b.
  • a near image (short distance image) such as a macro image is generated from the image data read out from.
  • the far-focus area 10a occupies 80% of the entire exit pupil area of the photographic lens 10. Therefore, the characteristics of the subject image and the far-focus area when the entire exit pupil area is the far-focus area.
  • the characteristics of the far-focus image generated from the light beam that has passed through 10a are substantially the same, and it is not necessary to perform image processing for removing the influence of the speed of light that has passed through the near-focus region 10b when generating the far-focus image. It has become.
  • image processing for example, blur correction or contrast correction
  • image processing that removes the influence of the speed of light that has passed through the near-focus region 10b may be performed to improve the image quality of the long-distance image as necessary.
  • a light shielding member 12 is provided for the near-image light-receiving cell 16b so that the light beam that has passed through the far-focus region 10a does not enter the near-image light-receiving cell 16b. For this reason, it is not necessary to perform image processing for removing the influence of the light beam that has passed through the far-focus region 10a when generating a short-distance image from the imaging signal of the near-image light receiving cell 16b.
  • the subject light that has passed through the far focus region 10a may slightly enter the near-image light receiving cell 16b, and such incident light becomes an error component. There is a possibility that image quality degradation such as blurring and contrast degradation may occur.
  • the selection as to whether or not to perform such image processing is accepted by a photographer's instruction via the operation unit 38, and the image processing unit 25 performs image processing according to the accepted selection.
  • image processing when generating a long-distance image will be described. However, such image processing can be similarly performed when generating a short-range image.
  • the blur correction process is performed on the image data read from the far-image light receiving cell 16a to correct the blur due to the mixing of the components of the macro image that has passed through the near focus region 10b.
  • various known methods such as a filtering process using a restoration filter can be applied.
  • the contrast of the subject image is clear, but the far-image light-receiving cell 16a has a far-focus region 10a and a near-focus region. Since the light beam that has passed through the focal region 10b is incident, the contrast of the image in the image becomes inconspicuous due to the subject light that has passed through the near focal region 10b, which causes a reduction in contrast. Therefore, the contrast correction process is performed on the image data read from the far-image light-receiving cell 16a, and the contrast deterioration due to the mixing of the macro image component that has passed through the near focus region 10b is corrected.
  • contrast correction processing for example, processing for emphasizing the difference between a bright portion and a dark portion, for example, converting RGB signals into YCrCb signals to obtain information on contrast, and then expanding the Y signal value at a certain ratio
  • various known methods such as a process of enlarging the Y signal distribution, that is, the brightness difference can be used.
  • contour enhancement processing see, for example, Japanese Patent Application Laid-Open No. 2011-124712 may be used.
  • the image sensor 16 since the image sensor 16 includes the near-image light-receiving cell 16b at a ratio of one pixel to nine pixels (3 ⁇ 3) (see FIG. 4), the image sensor 16 can obtain from the image data read from the far-image light-receiving cell 16a.
  • the generated long-distance image lacks pixel data in which the near-image light-receiving cell 16b exists. Therefore, for the missing pixels due to the presence of the near-image light receiving cell 16b, interpolation processing is performed based on the image data of the surrounding far-image light receiving cells 16a, and processing for filling in the missing pixels is performed (self-interpolation processing). Since the interpolation process is known, the description thereof is omitted. The number of columns used for interpolation and the weighting mode can be selected as appropriate.
  • the size of the near focus region 10b is smaller than the size of the far focus region 10a, and the near-image light-receiving cell 16b has a ratio and number of one pixel per nine pixels (3 ⁇ 3). Becomes darker. Therefore, a process of increasing the brightness of the image data read from the near-image light receiving cell 16b may be performed. However, this process is not essential.
  • the long-distance image and the macro image (short-distance image) obtained in this way are each output to the compression / decompression processing unit 26, and after performing a predetermined compression process such as JPEG (joint photographic experts group), Stored in the memory 48.
  • a predetermined compression process such as JPEG (joint photographic experts group)
  • a multi-picture file (MP file: a file in a format in which a plurality of images are connected) is generated, and the MP file is read by the media controller 52, Recorded in the memory card 54.
  • MP file a file in a format in which a plurality of images are connected
  • the image sensor 16 With a simple configuration in which a light shielding member is provided on the front surface of the image sensor, only the light beam that has passed through a predetermined region of the photographic lens can be incident on the photosensor. Directional characteristics can be obtained. In addition, since it is not necessary to use a microlens, the manufacturing cost can be reduced. Further, when the cover glass of the image sensor 16 is used as the light shielding member 12, the image sensor can be provided with directivity characteristics without increasing the number of members.
  • the light shielding member is a separate member from the image sensor, it is easy to remove the light shielding member. Therefore, even when the desired directivity characteristics cannot be obtained, the mounting position of the light shielding member can be easily corrected, and the manufacturing cost can be reduced. In addition, it is possible to cope with high-mix low-volume production and design changes without increasing costs.
  • the light shielding member is outside the image sensor, noise due to light diffracting at the end face of the light shielding portion or the like can be eliminated, and the image quality can be improved.
  • the microlens is not provided, but the microlens may be used when there is a space problem.
  • a light shielding member may be provided on the front surface of the microlens so that only light that has passed through the light shielding member enters the microlens.
  • FIG. 7 is a diagram illustrating a different method of positioning the light shielding member 12.
  • the light shielding member 13 is a glass plate, and a light shielding portion is formed on the surface by etching or the like.
  • the light shielding member 13 is transparent so that the light shielding portion faces the image sensor 16 and between the light shielding member 13 and the image sensor 16. It is provided so as to sandwich the spacer 14.
  • the size of the spacer 14 is several and high, and members such as beads used for maintaining the gap between the liquid crystal glasses can be used.
  • the position of the light shielding member in the optical axis direction is accurately determined by abutting and fixing the light shielding member to the end face of the flange. I can't.
  • a modification of the method for attaching the light shielding member will be described.
  • the first modification is a form in which the light shielding member is arranged to be movable in the optical axis direction.
  • the light shielding member 12 is disposed so as to be movable in the optical axis direction, and is moved in the optical axis direction by the light shielding member driving unit.
  • Various actuators can be used as the light shielding member driving unit.
  • a plurality of rod-like members are movably provided on the camera body 20 to which the back surface of the image sensor 16 is fixed, and the light-shielding member 12 is biased with a force in a direction in contact with the tip of the rod-like member. It is moved in the optical axis direction by the drive unit.
  • the position of the light shielding member 12 in the optical axis direction can be changed.
  • the rod-like member is the front side (side closer to the imaging lens 10) than the light receiving surface of the imaging element 16 even when it is most retracted (the side farther from the imaging lens 10, the right direction in FIGS. 8A and 8B). , Left direction in FIG. 8B).
  • positions the light shielding member 12 so that a movement in an optical axis direction is possible is not restricted to this.
  • FIG. 8A and 8B are diagrams schematically showing the photographing lens 10, the light shielding member 12, and the imaging element 16 in the present embodiment.
  • the photographing lens 10 is composed of a plurality of lenses, but in FIG. 8A and FIG. 8B, it is schematically shown as a single lens.
  • 8A and 8B two photosensors are illustrated as the image sensor 16, and the light shielding member 12 is also illustrated in a size corresponding to the two photosensors. It is needless to say that the optical elements are of any number and size capable of photographing a subject.
  • FIG. 8A shows a case where the light shielding member 12 is located closest to the image sensor 16. This is the same situation as the first embodiment (situation shown in FIG. 2) in terms of the geometric positional relationship between the photographing lens 10, the light shielding member 12, and the imaging element 16.
  • the light beam that has passed through the far focus region 10a and the near focus region 10b is a far image, as in the first embodiment. Only the light beam that has entered the light receiving cell 16a and passed through the near focal region 10b enters the light receiving cell 16b for near image.
  • FIG. 8B shows a case where the light shielding member 12 is moved to a position farthest from the image sensor 16. Since the distance between the imaging element 16 and the light shielding object 12a in the optical axis direction is not appropriate and the light shielding object 12a shields only a part of the light beam that has passed through the far focus region 10a, a part of the light beam that has passed through the far focus region 10a. Enters the near-image light receiving cell 16b. Therefore, the light beam that has passed through the far-focus region 10a and the near-focus region 10b enters the near-image light receiving cell 16b. As described above, the effect of the light shielding member 12 can be eliminated by changing the distance between the light shielding member 12 and the imaging element 16.
  • the near-image light-receiving cell 16b has a ratio of one pixel to nine pixels of the photosensor, which is not a problem.
  • the effect of the light shielding member can be eliminated without removing the light shielding member. Therefore, ON / OFF of the light shielding member can be switched with a simple configuration. In addition, when the effect of the light shielding member is eliminated, it is not necessary to perform self-interpolation processing, so that the time required for image processing can be shortened.
  • the light shielding member is disposed so as to be movable in the optical axis direction, but the method of attaching the light shielding member is not limited to this.
  • a second modification of the method for attaching the light shielding member is a form in which the light shielding member is arranged to be movable in a direction orthogonal to the optical axis direction.
  • the light shielding member 12 is disposed so that a wide surface, that is, the surface on which the light shielding portion 12a is formed is orthogonal to the optical axis and can be translated in the surface.
  • the light shielding member driving unit moves the light shielding member 12 vertically and horizontally within a plane orthogonal to the optical axis.
  • up, down, left, and right are the up-down direction (up-down direction in FIGS. 9A and 9B) and the left-right direction (perpendicular to the plane of FIG. 9A and FIG.
  • a so-called image blur correction device that detects a blur of the device and moves the image sensor in accordance with the blur is used. Can be applied. Since the image blur correction apparatus is already known, the description thereof is omitted.
  • FIG. 9A and FIG. 9B are diagrams schematically showing the photographing lens 10, the light shielding member 12, and the imaging element 16 in the present embodiment.
  • the photographing lens 10 is composed of a plurality of lenses, but is schematically shown as a single lens in FIGS. 9A and 9B.
  • two photosensors are shown as the image sensor 16, and the light shielding member 12 is also shown in a size corresponding to the two photosensors. It is needless to say that the optical elements are of any number and size capable of photographing a subject.
  • FIG. 9A shows a case where the light shielding member 12 is in the basic position. This is the same situation as the first embodiment (situation shown in FIG. 2) in terms of the geometric positional relationship between the photographing lens 10, the light shielding member 12, and the imaging element 16.
  • the light shield 12a is provided corresponding to the near-image light receiving cell 16b, that is, the light shield 12a is positioned in front of the near-image light receiving cell 16b. Therefore, the light beam that has passed through the far-focus region 10a and the near-focus region 10b is incident on the far-image light receiving cell 16a, and only the light beam that has passed through the near-focus region 10b is incident on the near-image light receiving cell 16b.
  • FIG. 9B shows a case where the light shielding member 12 is moved upward from the basic position.
  • the light shield 12a shields a part of the light beam that has passed through the focal region 10b incident on the far-image light receiving cell 16a, and shields a part of the light beam that has passed through the focal region 10b incident on the near-image light receiving cell 16b.
  • the light beam that has passed through the far-focus region 10a and the near-focus region 10b enters the near-image light receiving cell 16b. That is, the effect of the light shielding member 12 can be eliminated by moving the light shielding member 12 in a direction orthogonal to the optical axis.
  • the amount of subject light that has passed through the near-focus region 10b is reduced by the amount of light blocked by the light shield 12a. For this reason, blur and contrast deterioration due to mixing of macro image components are reduced, and the image quality can be improved.
  • the effect of the light shielding member can be eliminated without removing the light shielding member by moving the light shielding member in the direction orthogonal to the optical axis direction. Therefore, ON / OFF of the light shielding member can be switched with a simple configuration.
  • the effect of the light shielding member is eliminated, it is not necessary to perform self-interpolation processing, so that the time required for image processing can be shortened.
  • FIG. 10 is a diagram schematically showing the photographing lens 10 ′, the light shielding mask 12 b, and the image sensor 16 ′ according to the second embodiment. Since the configuration of the imaging apparatus other than these elements is the same as that of the imaging apparatus 1 according to the first embodiment, the description thereof is omitted.
  • a light-shielding mask 12b is disposed on the light-receiving surface of the near-image light-receiving cell 16b ′ in the image sensor 16 ′ to shield the light beam that has passed through the far-focus region 10a ′ of the image-capturing lens 10 ′. Therefore, only the light beam that has passed through the near-focus region 10b ′ enters the near-image light receiving cell 16b ′.
  • the types and number of light shielding members can be reduced, pupil division is possible with a simple configuration, and it is easy to deal with various types. .
  • the imaging apparatus 1 when an image is generated from the imaging signal of the far-image light-receiving cell 16a ′ or the near-image light-receiving cell 16b ′, the light is incident on the other light-receiving cell. It is possible to suppress the load and performance requirements on the image processing unit 25 without performing image processing for removing the influence of the luminous flux to be performed. As a result, the design / manufacturing cost of the imaging apparatus 1 can be reduced.
  • a microlens is not provided as in the first embodiment, but a microlens may be used when there is a problem in space.
  • the image sensor is not limited to the CMOS. Absent.
  • the present invention is also applicable to other image sensors such as a CCD.
  • a bifocal lens having a central circular far-focus region 10a and an annular near-focus region 10b is used as the photographing lens 10, but the photographing lens 10 is in this form.
  • a bifocal lens having a central circular short-distance region and an annular long-distance region may be used, or a bifocal lens having different focal lenses in the upper half and the lower half may be used.
  • a trifocal lens having different focal lengths in the circular region, the outer annular region, and the outer annular region may be used, or a multifocal lens having many different focal lengths. May be used.
  • the photographing lens 10 is not limited to a multifocal lens, and various various characteristic lenses such as a lens having a plurality of regions having different transmission wavelength regions can be used. Furthermore, a normal lens can be used as the photographing lens 10. In this case, an image having different MTF characteristics may be acquired in the central circular area and the outer annular area by utilizing the fact that the MTF (Modulation Transfer Function) differs depending on the position of the lens.
  • MTF Modulation Transfer Function
  • color filters having different colors in the central circular area and the outer annular area are added to the photographing lens 10 so that images having different colors in the central circular area and the outer annular area are acquired. May be.
  • the imaging element since the photographing lens is divided into two regions, the imaging element also has two different directivity characteristics. However, the photographing lens is divided into three or more regions. In such a case, it is necessary that the image sensor also has three different directional characteristics.
  • the present invention is not limited to an imaging apparatus capable of capturing a plurality of images having different characteristics, but also applied to a monocular stereoscopic imaging apparatus that captures a stereoscopic image with a single optical system by pupil division, and a phase difference focus detection apparatus. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 本発明の一の実施形態に係る撮像装置(1)において、撮影レンズ(10)は、全射出瞳の80%が遠焦点領域(10a)、20%が近焦点領域(10b)となっている。一方撮像素子(16)の前面に遮光部材が設けられ、遮光部材(12)には近画像用受光セル(16b)に対応するように遮光物(12a)が形成される。撮像素子(16)の遠画像用受光セル(16a)には遠焦点領域(10a)及び近焦点領域(10b)を通過した光束が入射し、撮像素子(16)の近画像用受光セル(16b)には近焦点領域(10b)を通過した光束が入射する。このような構成とすることで、遮光部材の種類や数を減らして簡単な構成で瞳分割を行うと共に多品種に容易に対応することができる。

Description

撮像装置
 本発明は撮像装置に係り、特に多様な画像を同時に取得可能な撮像装置に関する。
 特許文献1には、受光面の前面に左半分が半円状に開口された遮光マスク及びマイクロレンズが形成された画素と、受光面の前面に右半分が半円状に開口された遮光マスク及びマイクロレンズが形成された画素とからなる1対の焦点検出画素を含む瞳分割型位相差検出方式の焦点検出光学系が記載されている。
 図11に示すように撮像レンズ100を通過した光束は、マイクロレンズMにより撮像素子160の各セルの受光面に結像されるが、撮像素子160の受光セル160aの受光面上に形成された遮光部材161aが撮像レンズ100の中央領域100aを通過した光束を遮光するため、受光セル160aには撮像レンズ100の周縁領域100bを通過した光束のみが結像される。また、撮像素子160の受光セル160bの受光面上に形成された遮光部材161bが撮像レンズ100の周縁領域100bを通過した光束を遮光するため、受光セル160bには撮像レンズ100の中央領域100aを通過した光束のみが結像される。
 瞳分割により異なる画像を結像することは、焦点検出のみでなく、単眼立体撮像装置にも用いられる。単眼立体撮像装置においては、撮像レンズを通過した光を瞳分割し、撮影レンズの異なる領域を通過した被写体像をそれぞれ撮像素子に結像させ、複数枚の画像を同時に取得することが行われている。
特開2010-210903号公報
 しかしながら、特許文献1に記載の発明や単眼立体撮像装置では、瞳分割の数に対応した種類の遮光マスクが必要であるとともに、全ての画素に遮光マスクを設けているため多数の遮光マスクが必要であり、種類の異なる多数の遮光マスクを精度よく製造・配置しなくてはならない。しかしながらこのような構成では、撮像素子の構造が微細になるとこれに対応した高精度の加工・製造が困難になってくるとともに、遮光部の形状、位置の設計変更や、多様な位置や形状の遮光部を有する製品の供給要求への対応が難しいという問題がある。
 本発明はこのような事情に鑑みてなされたもので、簡単な構成で瞳分割が可能であり、かつ多品種への対応が容易な撮像装置を提供することを目的とする。
 上記目的を達成するために、本発明の撮像装置は、第1の特性を有する第1の領域と、第1の特性とは異なる第2の特性を有する第2の領域と、を有する撮影レンズと、2次元配列された第1の受光素子及び第2の受光素子を有する撮像素子と、撮影レンズを通過した光束を遮光する遮光部材と、第1の受光素子又は第2の受光素子の撮像信号から被写体の画像を生成する画像生成部と、を備え、遮光部材は第1の受光素子に対してのみ設けられ、第2の領域を通過した光束が第1の受光素子に入射しないように遮光する。
 本発明によれば、第2の領域を通過した光束が第1の受光素子に入射しないように遮光する遮光部材が第1の受光素子に対してのみ設けられている。即ち第2の受光素子に対しては遮光部材が設けられていないので、遮光部材の種類・数を減らすことができ、簡単な構成で瞳分割が可能となる。また、多品種への対応が容易となる。
 また本発明によれば、第1の受光素子に対して遮光部材が設けられることで、第2の領域を通過した光束が第1の受光素子に入射しないようになっている。このため、第1の受光素子の撮像信号から画像を生成する際に、第2の領域を通過した光束の影響を除去する画像処理を行わなくてよい。
 本発明において、撮影レンズの射出瞳のうち第2の領域が占める比率が、射出瞳の全領域が第2の特性を有するとした場合の被写体の画像の特性と射出瞳の第2の領域を通過した画像の特性とが同一となるように定められていてもよい。このような構成を採用すれば、第2の受光素子の撮像信号から画像を生成する際に、第1の領域を通過した光速の影響を除去する画像処理を行わなくてよい。
 ここで2つの画像の特性が「同一」とは、特性が完全に同一である場合だけでなく、2つの画像の特性がユーザが画像を見た際に直ちに識別できない程度に違っている場合をも含む。画像の相違をこのようにするには、撮影レンズの全射出瞳のうち第2の領域が占める比率を75%より大きくする(例えば、75.1%)ことが好ましく、80%以上にすることが更に好ましい。
 本発明において、第1の受光素子の撮像信号から被写体の画像を生成する際に第2の領域を通過した光束の影響を除去する画像処理を行うか否かの選択、及び第2の受光素子の撮像信号から被写体の画像を生成する際に第1の領域を通過した光束の影響を除去する画像処理を行うか否かの選択を受け付ける画像処理選択部を更に備え、画像生成部は、画像処理選択部が受け付けた選択に従って画像処理を行うようにしてもよい。このような画像処理を行うことで、必要に応じて被写体の画質の画像を向上させることができる。
 遮光部材は、撮影レンズと撮像素子との間に配置することができる。この場合遮光部材は、表面に遮光部が形成された光透過性の板状部材であってもよい。このような遮光部材としては、例えば表面に遮光物がエッチングにより形成された透明なガラス板を用いることができ、遮光部材に小さい遮光物を正確に形成することができる。
 遮光部材は、撮像素子から所定の距離だけ離れた位置に固定されてもよい。これにより、遮光物が撮影レンズの所定の領域を通過した光束全てを遮光することができる。
 遮光部材は、光軸方向に移動可能に配設されてもよい。また、遮光部材は、光軸と直交する面に沿って平行移動可能に配設されてもよい。これにより、遮光部材を取り外すことなく、遮光部材の効果を無くすことができる。そのため、簡単な構成で遮光部材のON/OFFを切り替えることができる。
 遮光部材は、第1の受光素子の受光面に設けられた遮光マスクであってもよい。このような構成でも本発明の効果を得ることができる。
 第1の受光素子及び第2の受光素子は、撮像素子の有する全受光素子のうち第1の受光素子が占める割合が、撮影レンズの射出瞳の全領域のうち第1の領域が占める割合に等しくなるように配置されていてもよい。このようにすることで、第2の受光素子の撮像信号から生成した画像の画質低下を抑制することができる。なお本発明において第1,第2の受光素子の割合は完全に等しい場合に限定されるものではなく、取得する画像の目的や光学部材の特性等に応じて若干異なる(2つの受光素子の割合が略等しくなる)ようにしてもよい。
 画像生成部は、第2の受光素子の出力信号から被写体の画像を生成する際に、第1の受光素子が配設された位置における第2の受光素子の画素欠落を補間する処理を行うようにしてもよい。これにより、第2の領域を通過した光束から得られる画像の画質を向上させることができる。
 撮影レンズは、光軸を中心として配置された平面形状が円形の領域と、円形の領域の外縁に配置された環状の領域と、からなり、環状の領域が第1の領域であり、円形の領域が第2の領域であるようにしてもよい。これにより、第1の領域を通過した光束から得られる画像の画質を向上させることができる。
 第1の領域は第1の特性として第1の焦点距離を有し、第2の領域は第2の特性として第1の焦点距離よりも長い焦点距離を有するようにしてもよい。これにより、遠距離画像と近距離画像等の、被写体の距離が異なる画像を得ることができる。
 画像生成部が第1の受光素子及び第2の受光素子のうちいずれの受光素子の撮像信号から画像を生成するか、の選択を受け付ける生成画像選択部を更に備えるようにしてもよい。このように構成することで、撮影者が必要とする画像を提供することができる。
 本発明によれば、簡単な構成で瞳分割が可能であり、かつ多品種への対応が容易な撮像装置を提供することができる。
図1は、本発明の第1の実施の形態に係る撮像装置1の構成を示すブロック図である。 図2は、撮像装置1の撮影レンズ、遮光部材及び撮像素子を模式的に示す図である。 図3は、撮影レンズの平面形状を示す図である。 図4は、撮像素子のフォトセンサの配列を示す図である。 図5は、遮光部材と撮像素子とを模式的に示す図である。 図6は、遮光部材の取り付け方を示す図である。 図7は、遮光部材の取り付け方の変形例を示す図である。 図8Aは、遮光部材の移動例を示す図であり、遮光部材が撮像素子に最も近い位置にある場合を示す。 図8Bは、遮光部材の移動例を示す図であり、遮光部材が撮像素子から最も遠い位置に移動された場合を示す。 図9Aは、遮光部材の他の移動例を示す図であり、遮光部材が基本位置にある場合を示す。 図9Bは、遮光部材の他の移動例を示す図であり、遮光部材が基本位置から上方向に移動された場合を示す。 図10は、本発明の第2の実施の形態に係る撮像装置の撮影レンズ、遮光部材及び撮像素子を模式的に示す図である。 図11は、従来の撮影レンズ、遮光部材及び撮像素子の例を模式的に示す図である。
 以下、添付図面に従って本発明に係る撮像装置を実施するための形態について詳細に説明する。
 <第1の実施形態>
 図1は本発明の第1の実施形態に係る撮像装置1の構成を示すブロック図である。この撮像装置1は、撮像した画像をメモリカード54に記録するもので、装置全体の動作は、中央処理装置(CPU)40によって統括制御される。
 撮像装置1には、シャッタボタン、モードダイヤル、再生ボタン、MENU/OKキー、十字キー、BACKキー等の操作部38が設けられている。この操作部38からの信号はCPU40に入力され、CPU40は入力信号に基づいて撮像装置1の各回路を制御し、例えば、レンズ駆動制御、絞り駆動制御、撮影動作制御、画像処理制御、画像データの記録/再生制御、立体表示用の液晶モニタ30の表示制御などを行う。
 シャッタボタンは、撮影開始の指示を入力する操作ボタンであり、半押し時にONするS1スイッチと、全押し時にONするS2スイッチとを有する二段ストローク式のスイッチで構成されている。モードダイヤルは、静止画を撮影するオート撮影モード、マニュアル撮影モード、人物、風景、夜景等のシーンポジション、及び動画を撮影する動画モードのいずれかを選択する選択手段である。
 再生ボタンは、撮影記録した静止画又は動画を液晶モニタ30に表示させる再生モードに切り替えるためのボタンである。MENU/OKキーは、液晶モニタ30の画面上にメニューを表示させる指令を行うためのメニューボタンとしての機能と、選択内容の確定及び実行などを指令するOKボタンとしての機能とを兼備した操作キーである。十字キーは、上下左右の4方向の指示を入力する操作部であり、メニュー画面から項目を選択したり、各メニューから各種設定項目の選択を指示したりするボタン(カーソル移動操作手段)として機能する。また、十字キーの上/下キーは撮影時のズームスイッチあるいは再生モード時の再生ズームスイッチとして機能し、左/右キーは再生モード時のコマ送り(順方向/逆方向送り)ボタンとして機能する。BACKキーは、選択項目など所望の対象の消去や指示内容の取消し、あるいは1つ前の操作状態に戻らせるときなどに使用される。
 撮影モード時において、被写体光は、撮影レンズ10、絞り(図示せず)及び遮光部材12を介してCMOS型の撮像素子16の受光面に結像される。
 絞りは、例えば、5枚の絞り羽根からなり、CPU40により、例えば絞り値F2.8 ~F11まで1AV刻みで5段階に絞り制御される。
 撮像素子16は、多数のフォトセンサ(受光素子)が2次元配列されており(図4参照)、各フォトセンサの受光面に結像された被写体像は、その入射光量に応じた量の信号電圧(又は電荷)に変換される。
 撮像素子16の前側、すなわち撮影レンズ10と撮像素子16の間には、撮像素子16の受光面と平行に、すなわち光軸と直交する面と平行に遮光部材12が配設される。
 図2は、本実施の形態における撮影レンズ10、遮光部材12及び撮像素子16を模式的に示す図である。なお、撮影レンズ10は複数枚のレンズにより構成されるが、図2においては模式的に1枚のレンズで示している。また、図2においては、撮像素子16として2個のフォトセンサが図示され、遮光部材12も2個のフォトセンサに対応した大きさで図示されているが、これらの光学要素はこれに限定されるものではなく、被写体を撮影可能な任意の数や大きさの各光学要素を有することはいうまでもない。
 撮影レンズ10は、短い焦点距離で収束しマクロ撮影が可能な領域(以下、近焦点領域という)と、近焦点領域より長い焦点距離を有し風景等の撮影が可能な領域(以下、遠焦点領域という)を有する2焦点レンズである。撮影レンズ10は、図3に示すように、正面から見た形状(以下、平面形状という)が円形の領域と、その周縁の環状の領域とに分割されており、中央の円形の領域が遠焦点領域10aであり、環状の領域が近焦点領域10bである。これらの領域は、撮影レンズ10の射出瞳の全領域のうち近焦点領域10bが占める割合が20%、遠焦点領域10aが占める割合が80%となっている。
 撮影レンズ10の遠焦点領域10a、近焦点領域10bを通過した光束は、撮像素子16の各フォトセンサに入射する。撮像素子16は、遠焦点領域10a及び近焦点領域10bを通過した光束、すなわち撮影レンズ10の射出瞳全てを通過した光束が入射する遠画像用受光セル16aと、近焦点領域10bを通過した光束のみが入射する近画像用受光セル16bとを有する。本実施形態において近画像用受光セル16bは、図4に示すように、9画素(3×3)に1画素の割合で配置されている。これは、撮像素子16の全フォトセンサ(遠画像用受光セル16aと近画像用受光セル16bとの合計)のうちの近画像用受光セル16bの占める割合が、撮影レンズ10の射出瞳の全領域(遠焦点領域10aと近焦点領域10bとの合計)のうちの近焦点領域10bの占める割合に応じた割合となるように近画像用受光セル16bが配置された結果である。本実施の形態では、遠画像用受光セル16aから得られる画像が主画像であり、近画像用受光セル16bから得られる画像が副画像であるが、撮影レンズの面積比に応じて遠画像用受光セル16aを多くすることで主画像の画質劣化を防止することができる。
 なお近画像用受光セル16bの比率は、撮像素子16の全フォトセンサのうちの近画像用受光セル16bの占める割合が、撮影レンズ10の射出瞳の全領域のうちの近焦点領域10bの占める割合と等しくなるようにしてもよい。
 遮光部材12は、厚さが10μm~100μm程度の透明なガラス板が用いられる。遮光部材12としては、撮像素子16のカバーガラスを用いることも可能である。遮光部材12はガラスに限らず、透明なフィルムを板状の枠に張設したものを用いることもできる。
 図5に示すように、遮光部材12には、遮光物12aが近画像用受光セル16bに対応するように、すなわち近画像用受光セル16bの前面に位置するように設けられる。遮光物12aは、遮光部材12の表面にエッチング等により形成された黒色の領域であり、直径は5μm程度である。この5μmとは、撮像素子16の各フォトセンサの直径と略同一の大きさとなるように決定された値である。本実施の形態では、近画像用受光セル16bが9画素(3×3)に1画素の割合で配置されるため、遮光物12aと遮光物12aとの間隔は15μmである。エッチングにより遮光物12aを生成することで、5μm程度と小さい遮光物12aを狭い間隔で正確に形成することができる。
 遮光物12aが近画像用受光セル16bに対応して設けられているため、図2に示すように、影絵の原理により、遮光物12aが遠焦点領域10aを通過した光束を遮光し、近焦点領域10bを通過した光束のみが近画像用受光セル16bに入射する。このような構成とすることで、マイクロレンズを用いることなく、撮影レンズ系の所望の領域を通過した光束のみをフォトセンサに受光させることができる。
 また本実施形態では、遠焦点領域10aを通過した光束が近画像用受光セル16bに入射しないように遮光する遮光部材12a設けられており、遠画像用受光セル16aに対しては遮光部材が設けられていないので、遮光部材の種類・数を減らすことができ、簡単な構成で瞳分割が可能となる。また、多品種への対応が容易となる。
 遮光物12aが遠焦点領域10aを通過した光束全てを遮光するためには、撮像素子16と遮光部材12(遮光物12a)との光軸方向の距離が重要となる。図6に示すように、撮像素子16を囲むようにフランジ17が配設され、遮光部材12はフランジ17の端面に当接するように配設される。撮像素子16及びフランジ17は、背面がそれぞれカメラボディ20の同一面に固定されているため、遮光部材12をフランジ17の端面に当接させることで、遮光部材12が正確に位置決めされる。このため、フランジ17の高さを適切な値とすることにより、撮像素子16と遮光部材12との光軸方向の距離を適切な距離に保つことができる。撮像素子16と遮光部材12との間の空間は、空気で満たしても良いし、光学媒体(液体、接着剤等)で満たしても良い。
 なお、図5においては、撮像素子16として12個のフォトセンサが図示され、遮光部材12として4個の遮光物12aが図示されているが、これらの光学要素はこれに限定されるものではない。また、図6においても、撮像素子16のフォトセンサの数や遮光部材12の遮光部12aの数もこれに限定されるものではない。
 撮像素子16に蓄積された信号電圧(又は電荷)は、フォトセンサそのものもしくは付設されたキャパシタで蓄えられる。蓄えられた信号電圧(又は電荷)は、センサ制御部32により、X-Yアドレス方式を用いたMOS型撮像素子(いわゆるCMOSセンサ)の手法を用いて、画素位置の選択とともに読み出される。
 撮像素子16から読み出された電圧信号は、相関二重サンプリング処理(撮像素子の出力信号に含まれるノイズ(特に熱雑音)等を軽減することを目的として、撮像素子の1画素毎の出力信号に含まれるフィードスルー成分レベルと画素信号成分レベルとの差をとることにより正確な画素データを得る処理)により各画素毎のR、G、B信号がサンプリングホールドされ、増幅されたのちA/D変換器21に加えられる。A/D変換器21は、順次入力するR、G、B信号をデジタルのR、G、B信号に変換して画像入力コントローラ22に出力する。
 デジタル信号処理部24は、画像入力コントローラ22を介して入力するデジタルの画像信号に対して、オフセット処理、ホワイトバランス補正及び感度補正を含むゲイン・コントロール処理、ガンマ補正処理、YC処理等の所定の信号処理を行う。
 デジタル信号処理部24で処理され画像データは、VRAM50に入力される。VRAM50から読み出された画像データはビデオ・エンコーダ28においてエンコーディングされ、カメラ背面に設けられている液晶モニタ30に出力され、これにより被写体像が液晶モニタ30の表示画面上に表示される。
 操作部38のシャッタボタンの第1段階の押下(半押し)があると、CCD40は、AE動作を開始させ、シャッタボタンの半押し時にA/D変換器21から出力される画像データは、AE検出部44に取り込まれる。
 AE検出部44では、画面全体のG信号を積算し、又は画面中央部と周辺部とで異なる重みづけをしたG信号を積算し、その積算値をCPU40に出力する。CPU40は、AE検出部44から入力する積算値より被写体の明るさ(撮影Ev値)を算出し、この撮影Ev値に基づいて絞りの絞り値及び撮像素子16の電子シャッタ(シャッタスピード)を所定のプログラム線図に従って決定し、その決定した絞り値に基づいて絞り駆動部(不図示)を介して絞りを制御するとともに、決定したシャッタスピードに基づいてセンサ制御部32を介して撮像素子16での電荷蓄積時間を制御する。
 AE動作が終了し、シャッタボタンの第2段階の押下(全押し)があると、その押下に応答してA/D変換器21から出力される画像データが画像入力コントローラ22からメモリ(SDRAM)48に入力され、一時的に記憶される。本実施の形態では、操作部38を介した撮影者の指示により又はCPU40が自動で、遠画像用受光セル16aから読み出された画像データ、近画像用受光セル16bから読み出された画像データのいずれか、又は遠画像用受光セル16aから読み出された画像データ及び近画像用受光セル16bから読み出された画像データを取得することができる。
 メモリ48に一時的に記憶された画像データは、デジタル信号処理部24により適宜読み出され、ここで画像データの輝度データ及び色差データの生成処理(YC処理)を含む所定の信号処理が行われる。YC処理された画像データ(YCデータ)は、再びメモリ48に記憶される。
 続いて、YCデータがメモリ48から画像処理部25に読み出されて、遠画像用受光セル16aから読み出された画像データから遠画像(遠距離画像)を生成し、近画像用受光セル16bから読み出された画像データからマクロ画像等の近画像(近距離画像)を生成する。以下、これら画像生成の際に画像処理部25で行う処理について説明する。
 本実施形態では撮影レンズ10の射出瞳の全領域のうち遠焦点領域10aが80%を占めているので、射出瞳の全領域が遠焦点領域である場合の被写体の画像の特性と遠焦点領域10aを通過した光束から生成した遠焦点画像の特性とが略同一であり、遠焦点画像生成の際に、近焦点領域10bを通過した光速の影響を除去する画像処理を行わなくてもよいようになっている。しかしながら、遠画像用受光セル16aには近焦点領域10bを通過した光束と遠焦点領域10aを通過した光束とが入射するため、遠画像用受光セル16aの撮像信号から遠距離画像を生成する際に、近焦点領域10bを通過した光速の影響を除去する画像処理(例えばボケ補正やコントラスト補正)を行うことで、必要に応じ遠距離画像の画質を向上させるようにしてもよい。
 一方、近画像用受光セル16bに対しては遮光部材12が設けられており、遠焦点領域10aを通過した光束が近画像用受光セル16bに入射しないようになっている。このため、近画像用受光セル16bの撮像信号から近距離画像を生成する際に遠焦点領域10aを通過した光束の影響を除去する画像処理を行わなくてもよいようになっている。しかしながら、遮光部材12の加工・配置精度等によっては、遠焦点領域10aを通過した被写体光が若干近画像用受光セル16bに入射することも考えられ、そのような入射光が誤差成分となってボケ劣化、コントラスト劣化などの画質低下が生じる可能性がある。そこで、近画像用受光セル16bの撮像信号から近距離画像を生成する際に、遠焦点領域10aを通過した光速の影響を除去する画像処理を行うことで、必要に応じ近距離画像の画質を向上させるようにしてもよい。
 このような画像処理を行うか否かの選択は、操作部38を介した撮影者の指示により受け付けられ、受け付けた選択に従って画像処理部25が画像処理を行う。なお、以下では遠距離画像生成の際の画像処理について説明するが、このような画像処理は近距離画像生成の際にも同様に行うことができる。
 遠画像用受光セル16aに入射する被写体光が遠焦点領域10aを通過した光束のみであれば、被写体像は点像となるが、遠画像用受光セル16aには遠焦点領域10a及び近焦点領域10bを通過した光束が入射するため、近焦点領域10bを通過した被写体光がボケ成分となりボケた画像(大きな点像)となってしまう。したがって、遠画像用受光セル16aから読み出された画像データに対してボケ補正処理を行い、近焦点領域10bを通過したマクロ画像の成分が混入したことによるボケを補正する。ボケ補正処理としては、例えば、復元フィルタによるフィルタリング処理等の様々な公知の方法を適用することができる。
 また、遠画像用受光セル16aに入射する被写体光が遠焦点領域10aを通過した光束のみであれば、被写体像のコントラストがはっきりするが、遠画像用受光セル16aには遠焦点領域10a及び近焦点領域10bを通過した光束が入射するため、近焦点領域10bを通過した被写体光により画像中の明暗差が目立たなくなり、コントラストを低下させる要因となる。したがって、遠画像用受光セル16aから読み出された画像データに対してコントラスト補正処理を行い、近焦点領域10bを通過したマクロ画像の成分が混入したことによるコントラスト劣化を補正する。コントラスト補正処理としては、明るい部分と暗い部分の差を強調する処理、例えばRGB信号をYCrCb信号に変換して明暗差の情報を得た上で、このY信号の値を一定の比率で拡大することで、Y信号の分布すなわち明度差を拡大する処理等の様々な公知の方法を用いることができる。また、コントラスト劣化を補正する方法として、輪郭強調処理(例えば、特開2011-124712号公報参照)を用いてもよい。
 また、撮像素子16には近画像用受光セル16bが9画素(3×3)に1画素の割合で含まれる(図4参照)ため、遠画像用受光セル16aから読み出された画像データから生成した遠距離画像は、近画像用受光セル16bが存在する画素のデータが欠落している。したがって、近画像用受光セル16bの存在による欠落画素については、周囲の遠画像用受光セル16aの画像データに基づいて補間処理を行い、欠落画素を埋める処理を行う(自己補間処理)。補間処理については公知であるため、説明を省略する。なお、補間に用いる列数や重みづけの態様は適宜選択可能である。
 更に、近焦点領域10bの大きさは遠焦点領域10aの大きさに比べて小さい上、近画像用受光セル16bは、9画素(3×3)に1画素の割合と数が少ないため、画像が暗くなる。したがって、近画像用受光セル16bから読み出された画像データの明るさを明るくする処理を行うようにしてもよい。ただし、この処理は必須ではない。
 このようにして得られた遠距離画像及びマクロ画像(近距離画像)は、それぞれ圧縮伸張処理部26に出力され、JPEG (joint photographic experts group)などの所定の圧縮処理が実行されたのち、再びメモリ48に記憶される。
 メモリ48に記憶されたYCデータ(圧縮データ)から、マルチピクチャファイル(MPファイル:複数の画像が連結された形式のファイル)が生成され、そのMPファイルは、メディア・コントローラ52により読み出され、メモリカード54に記録される。
 本実施の形態によれば、撮像素子の前面に遮光部材を設けるという簡単な構成で、撮影レンズの所定の領域を通過した光束のみをフォトセンサに入射させることができる、すなわち撮像素子に所望の指向特性を得ることができる。また、マイクロレンズを使用する必要がないため、製造コストを下げることができる。また、遮光部材12として撮像素子16のカバーガラスを用いた場合には、部材を増やすことなく、撮像素子に指向特性を持たせることができる。
 また、本実施の形態によれば、遮光部材が撮像素子と別部材であるため、遮光部材の取り外しが容易である。したがって、所望の指向特性が得られなかった場合においても、遮光部材の取り付け位置の修正が容易であり、製造コストを下げることができる。また、多品種少量生産や設計変更にもコスト増なく対応することができる。
 また、本実施の形態によれば、遮光部材が撮像素子の外側であるため、遮光部の端面等で光が回折することによるノイズをなくし、画質を向上させることができる。
 なお、本実施の形態では、マイクロレンズを設けていないが、スペース上の問題等がある場合にはマイクロレンズを用いるようにしてもよい。この場合には、マイクロレンズの前面に遮光部材を設け、遮光部材を通過した光のみがマイクロレンズに入射するようにすれば良い。
 また、本実施の形態では、撮像素子16及びフランジ17をカメラボディ20に固定し、遮光部材12をフランジ17の端面に当接させることで、遮光部材12を位置決めしたが、遮光部材の位置決めの方法はこれに限られない。図7は、遮光部材12の位置決めの異なる方法を示す図である。
 遮光部材13は、ガラス板であり、表面に遮光部がエッチング等により形成されている。撮像素子16と遮光部材12との光軸方向の距離を確実に決めるため、遮光部材13は、遮光部が撮像素子16と対向するように、かつ遮光部材13と撮像素子16と間に透明なスペーサ14を挟むように設けられる。スペーサ14の大きさは数・高ナあり、液晶のガラス間のギャップを保つのに用いられるビーズ等の部材を用いることができる。
 <第1の変形例>
 本発明の第1の実施形態では、遮光部材をフランジの端面に当接させて固定することで、遮光部材の光軸方向の位置を正確に位置決めしたが、遮光部材の取り付け方法はこれに限られない。以下、遮光部材の取り付け方法の変形例について説明する。
 第1の変形例は、遮光部材を光軸方向に移動可能に配設する形態である。第1の変形例では遮光部材12は光軸方向に移動可能に配設され、遮光部材駆動部により光軸方向に移動される。遮光部材駆動部としては様々なアクチュエータを使用することができる。例えば、撮像素子16の背面が固定されたカメラボディ20に複数の棒状部材が移動可能に設けられ、遮光部材12に棒状部材の先端に当接する方向の力が付勢され、棒状部材は遮光部材駆動部により光軸方向に移動される。このような構成とすることで、遮光部材12の光軸方向の位置を変えることができる。なお、棒状部材は、最も後退(撮像レンズ10から遠くなる側、図8A,図8Bの右方向)した場合においても撮像素子16の受光面よりも前側(撮像レンズ10に近くなる側、図8A,図8Bの左方向)になるように配設される。ただし、遮光部材12を光軸方向に移動可能に配設する構成はこれに限られるものではない。
 図8A,図8Bは、本実施の形態における撮影レンズ10、遮光部材12及び撮像素子16を模式的に示す図である。なお、撮影レンズ10は複数枚のレンズにより構成されるが、図8A,図8Bにおいては模式的に1枚のレンズで示している。また、図8A,図8Bにおいては、撮像素子16として2個のフォトセンサが図示され、遮光部材12も2個のフォトセンサに対応した大きさで図示されているが、これらの光学要素はこれに限定されるものではなく、被写体を撮影可能な任意の数や大きさの各光学要素を有することはいうまでもない。
 図8Aは、遮光部材12が撮像素子16に最も近い位置にある場合である。これは、撮影レンズ10、遮光部材12及び撮像素子16との幾何学的な位置関係が第1の実施の形態(図2に示す状況)と同様の状況である。この場合には、撮像素子16と遮光物12aとの光軸方向の距離と適切であるため、第1の実施の形態と同様、遠焦点領域10a及び近焦点領域10bを通過した光束が遠画像用受光セル16aに入射し、近焦点領域10bを通過した光束のみが近画像用受光セル16bに入射する。
 それに対し、図8Bは、遮光部材12が撮像素子16から最も遠い位置に移動された場合を示す。撮像素子16と遮光物12aとの光軸方向の距離が適切ではなく、遮光物12aが遠焦点領域10aを通過した光束の一部しか遮光されないため、遠焦点領域10aを通過した光束の一部は近画像用受光セル16bに入射する。したがって、遠焦点領域10a及び近焦点領域10bを通過した光束が近画像用受光セル16bに入射することとなる。このように、遮光部材12と撮像素子16との距離を変えることで、遮光部材12の効果を無くすことができる。
 なお、遮光物12aにより遮光される分、遠焦点領域10aを通過した被写体光の光量が減るが、近画像用受光セル16bはフォトセンサ9画素に1画素の割合であり、問題とはならない。
 本変形例1によれば、遮光部材を光軸方向に移動させることで、遮光部材を取り外すことなく、遮光部材の効果を無くすことができる。したがって、簡単な構成で遮光部材のON/OFFを切り替えることができる。また、遮光部材の効果をなくした場合には、自己補間処理を行う必要がないため、画像処理に要する時間を短くすることができる。
 <第2の変形例>
 上記第1の変形例では、遮光部材を光軸方向に移動可能に配設したが、遮光部材の取り付け方法はこれに限られない。
 遮光部材の取り付け方法の第2の変形例は、遮光部材を光軸方向と直交する方向に移動可能に配設する形態である。第2の変形例では、遮光部材12は、広い面、すなわち遮光部12aが形成された面が光軸と直交し、かつその面内を平行移動可能に配設される。遮光部材駆動部は、遮光部材12を光軸と直交する面内を上下左右に移動させる。ここでいう上下左右は、撮影レンズ10側から遮光部材12を見たときの上下方向(図9A,図9Bの上下方向)及び左右方向(図9A,図9Bの紙面に対して直交方向)を指す。遮光部材駆動部としては様々なアクチュエータを使用することができる。なお、遮光部材12と撮像素子16との光軸方向の距離は、第1の実施の形態(図2に示す状況)と同様である。
 なお、遮光部材12を光軸と直交する面内を平行移動可能に配設する方法としては、例えば、装置のブレを検出してそのブレに応じて撮像素子を移動させるいわゆる像ブレ補正装置を適用することができる。像ブレ補正装置については既に公知であるため、説明を省略する。
 図9A,図9Bは、本実施の形態における撮影レンズ10、遮光部材12及び撮像素子16を模式的に示す図である。なお、撮影レンズ10は複数枚のレンズにより構成されるが、図9A,図9Bにおいては模式的に1枚のレンズで示している。また、図9A,図9Bにおいては、撮像素子16として2個のフォトセンサが図示され、遮光部材12も2個のフォトセンサに対応した大きさで図示されているが、これらの光学要素はこれに限定されるものではなく、被写体を撮影可能な任意の数や大きさの各光学要素を有することはいうまでもない。
 図9Aは、遮光部材12が基本位置にある場合を示す。これは、撮影レンズ10、遮光部材12及び撮像素子16との幾何学的な位置関係が第1の実施の形態(図2に示す状況)と同様の状況である。この場合には、遮光物12aが近画像用受光セル16bに対応して設けられる、すなわち遮光物12aが近画像用受光セル16bの前面に位置する。したがって、遠焦点領域10a及び近焦点領域10bを通過した光束が遠画像用受光セル16aに入射し、近焦点領域10bを通過した光束のみが近画像用受光セル16bに入射する。
 それに対し、図9Bは、遮光部材12が基本位置から上方向に移動された場合を示す。遮光物12aは、遠画像用受光セル16aに入射する焦点領域10bを通過した光束の一部を遮光するとともに、近画像用受光セル16bに入射する焦点領域10bを通過した光束の一部を遮光する。したがって、遠焦点領域10a及び近焦点領域10bを通過した光束が近画像用受光セル16bに入射することとなる。すなわち、遮光部材12を光軸と直交する方向に移動させることで、遮光部材12の効果を無くすことができる。
 なお、遮光物12aにより遮光される分、近焦点領域10bを通過した被写体光の光量が減る。そのため、マクロ画像の成分が混入したことによるボケやコントラスト劣化も少なくなり、画質を向上させることができる。
 第2の変形例によれば、遮光部材を光軸方向と直交する方向に移動させることで、遮光部材を取り外すことなく、遮光部材の効果を無くすことができる。したがって、簡単な構成で遮光部材のON/OFFを切り替えることができる。また、遮光部材の効果をなくした場合には、自己補間処理を行う必要がないため、画像処理に要する時間を短くすることができる。
 <第2の実施形態>
 上述した第1の実施形態、及び第1、第2の変形例では、撮影レンズ10と撮像素子16の間に遮光部材12を配設する場合について説明している。しかしながら本発明において遮光部材の配置はこれらに限られず、本第2の実施形態で説明するように、受光セルの受光面上に遮光部材を配設するようにしてもよい。
 図10は、第2の実施形態における撮影レンズ10’、遮光マスク12b、及び撮像素子16’を模式的に示す図である。なおこれら要素以外の撮像装置の構成は第1の実施形態に係る撮像装置1と同様であるので、その説明は省略する。
 第2の実施形態では、撮像素子16’のうち近画像用受光セル16b’の受光面上に遮光マスク12bが配設され、撮像レンズ10’の遠焦点領域10a’を通過した光束を遮光するので、近焦点領域10b’を通過した光束のみが近画像用受光セル16b’に入射する。これにより第2の実施形態では第1の実施形態と同様に、遮光部材の種類・数を減らすことができ、簡単な構成で瞳分割が可能となるとともに、多品種への対応が容易となる。
 また第2の実施形態では上述した第1の実施形態と同様に、遠画像用受光セル16a’又は近画像用受光セル16b’の撮像信号から画像を生成する際に、他方の受光セルに入射する光束の影響を除去する画像処理を行わず画像処理部25への負荷や性能要求を抑制することが可能であり、その結果撮像装置1の設計・製造コストを低減することができる。
 なお本実施の形態でも、第1の実施形態と同様にマイクロレンズを設けていないが、スペース上の問題等がある場合にはマイクロレンズを用いるようにしてもよい。
 上述した第1の実施形態(第1、第2の変形例を含む)及び第2の実施形態では、撮像素子にCMOSを用いた例で説明したが、撮像素子はCMOSに限定されるものではない。本発明は、CCD等他のイメージセンサにも適用可能である。
 また、第1の実施形態及び第2の実施形態では、撮影レンズ10として中央の円形の遠焦点領域10aと環状の近焦点領域10bを有する2焦点レンズを使用したが、撮影レンズ10はこの形態に限られない。例えば、中央の円形の近距離領域と環状の遠距離領域を有する2焦点レンズを用いてもよいし、上半分と下半分とで異なる焦点レンズを有する2焦点レンズを用いてもよいし、中央の円形の領域と、その外側の環状の領域と、更にその外側の環状の領域とで全て異なる焦点距離を有する3焦点レンズを用いてもよいし、更に多くの異なる焦点距離を有する多焦点レンズを用いてもよい。
 また、撮影レンズ10は多焦点レンズに限られず、透過波長域が異なる複数の領域を有するレンズ等、様々な多様特性レンズを用いることができる。更に、撮影レンズ10として通常のレンズを用いることもできる。この場合には、レンズの位置によってMTF(Modulation Transfer Function)が異なることを利用し、中央の円形の領域と外側の環状の領域とでMTF特性の異なる画像を取得するようにしても良い。
 また、撮影レンズ10に中央の円形の領域と外側の環状の領域とで色の異なるカラーフィルタを追加し、中央の円形の領域と外側の環状の領域とで色の異なる画像を取得するようにしても良い。
 なお、第1の実施形態及び第2の実施形態では、撮影レンズが2つの領域に分割されていたため、撮像素子も2つの異なる指向特性を有したが、撮影レンズが3つ以上の領域に分割される場合には、撮像素子も3種類の異なる指向特性を有するようにする必要がある。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。本発明は、特に、特性の異なる複数枚の画像を撮影可能な撮像装置に限らず、瞳分割により1つの光学系で立体画像を撮影する単眼立体撮像装置や、位相差焦点検出装置にも適用可能である。
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1:撮像装置、10,10’:撮影レンズ、12:遮光部材、16,16’:撮像素子、25:画像処理部、32:センサ制御部、40:CPU

Claims (16)

  1.  第1の特性を有する第1の領域と、前記第1の特性とは異なる第2の特性を有する第2の領域と、を有する撮影レンズと、
     2次元配列された第1の受光素子及び第2の受光素子を有する撮像素子と、
     前記撮影レンズを通過した光束を遮光する遮光部材と、
     前記第1の受光素子又は第2の受光素子の撮像信号から被写体の画像を生成する画像生成部と、
     を備え、
     前記遮光部材は前記第1の受光素子に対してのみ設けられ、前記第2の領域を通過した光束が前記第1の受光素子に入射しないように遮光する、
     撮像装置。
  2.  前記撮影レンズの射出瞳のうち前記第2の領域が占める比率が、前記射出瞳の全領域が前記第2の特性を有するとした場合の前記被写体の画像の特性と前記射出瞳の前記第2の領域を通過した光束から生成した画像の特性とが同一となるように定められた、請求項1に記載の撮像装置。
  3.  前記第1の受光素子の撮像信号から被写体の画像を生成する際に前記第2の領域を通過した光束の影響を除去する画像処理を行うか否かの選択、及び前記第2の受光素子の撮像信号から被写体の画像を生成する際に前記第1の領域を通過した光束の影響を除去する画像処理を行うか否かの選択を受け付ける画像処理選択部をさらに備え、
     前記画像生成部は、前記画像処理選択部が受け付けた選択に従って画像処理を行う、請求項1又は2に記載の撮像装置。
  4.  前記遮光部材は前記撮影レンズと前記撮像素子との間に配置された、請求項1から3のいずれかに記載の撮像装置。
  5.  前記遮光部材は、表面に遮光部が形成された光透過性の板状部材である、請求項1から4のいずれかに記載の撮像装置。
  6.  前記遮光部材は前記撮像素子から所定の距離離れた位置に固定される、請求項1から5のいずれかに記載の撮像装置。
  7.  前記遮光部材は前記撮影レンズの光軸方向に移動可能に配置された、請求項1から5のいずれかに記載の撮像装置。
  8.  前記遮光部材は前記撮影レンズの光軸方向と直交する面に沿って平行移動可能に配置された、請求項1から5のいずれかに記載の撮像装置。
  9.  前記遮光部材は、前記第1の受光素子の受光面に設けられた遮光マスクである、請求項1から3のいずれかに記載の撮像装置。
  10.  前記第1及び第2の受光素子は、前記撮像素子が有する全受光素子のうち前記第1の受光素子が占める割合が、前記撮影レンズの射出瞳の全領域のうち前記第1の領域が占める割合と等しくなるように配置された、請求項1から9のいずれかに記載の撮像装置。
  11.  前記画像生成部は、前記第2の受光素子の出力信号から被写体の画像を生成する際に、前記第1の受光素子が配設された位置における前記第2の受光素子の画素欠落を補間する処理を行う、請求項1から10のいずれかに記載の撮像装置。
  12.  前記撮影レンズは、光軸を中心として配置された平面形状が円形の領域と、前記円形の領域の外縁に配置された環状の領域と、からなり、
     前記環状の領域が前記第1の領域であり、
     前記円形の領域が前記第2の領域である、請求項1から11のいずれかに記載の撮像装置。
  13.  前記第1の領域は前記第1の特性として第1の焦点距離を有し、前記第2の領域は前記第2の特性として前記第1の焦点距離よりも長い焦点距離を有する、請求項1から12のいずれかに記載の撮像装置。
  14.  前記撮影レンズの全射出瞳のうち前記第2の領域が占める比率が75%より高い、請求項1から13のいずれかに記載の撮像装置。
  15.  前記撮影レンズの全射出瞳のうち前記第2の領域が占める比率が80%以上である、請求項1から14のいずれかに記載の撮像装置。
  16.  前記画像生成部が前記第1の受光素子及び第2の受光素子のうちいずれの受光素子の撮像信号から画像を生成するか、の選択を受け付ける生成画像選択部をさらに備える、請求項1から15のいずれかに記載の撮像装置。
PCT/JP2012/067785 2011-08-23 2012-07-12 撮像装置 WO2013027507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013529928A JP5525109B2 (ja) 2011-08-23 2012-07-12 撮像装置
US14/177,683 US9124876B2 (en) 2011-08-23 2014-02-11 Pupil-dividing imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-181832 2011-08-23
JP2011181832 2011-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/177,683 Continuation US9124876B2 (en) 2011-08-23 2014-02-11 Pupil-dividing imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013027507A1 true WO2013027507A1 (ja) 2013-02-28

Family

ID=47746258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067785 WO2013027507A1 (ja) 2011-08-23 2012-07-12 撮像装置

Country Status (3)

Country Link
US (1) US9124876B2 (ja)
JP (1) JP5525109B2 (ja)
WO (1) WO2013027507A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080088A1 (ja) * 2014-11-18 2016-05-26 富士フイルム株式会社 撮像装置及びその制御方法
US10122950B2 (en) 2014-11-20 2018-11-06 Fujifilm Corporation Imaging device, imaging method, and image processing program
US10142569B2 (en) 2014-11-20 2018-11-27 Fujifilm Corporation Imaging device, imaging method, and image processing program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141007A1 (ja) * 2012-03-21 2013-09-26 富士フイルム株式会社 撮像装置
JP6372983B2 (ja) * 2013-09-02 2018-08-15 キヤノン株式会社 焦点検出装置およびその制御方法、撮像装置
TWM503575U (zh) 2015-03-20 2015-06-21 Largan Precision Co Ltd 攝影光學鏡片組、取像裝置及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378119A (ja) * 1986-09-22 1988-04-08 Olympus Optical Co Ltd 内視鏡光学系
JP2003309723A (ja) * 2002-02-12 2003-10-31 Ribaaberu:Kk 画像改質処理方法およびその装置、プログラム、並びにデータ記録媒体
JP2007306406A (ja) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 画像処理装置
JP2010147143A (ja) * 2008-12-17 2010-07-01 Nikon Corp 固体撮像素子及びその製造方法、並びに撮像装置
JP2010212649A (ja) * 2009-02-13 2010-09-24 Nikon Corp 撮像素子
JP2011095027A (ja) * 2009-10-28 2011-05-12 Kyocera Corp 撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410804A (en) * 1981-07-13 1983-10-18 Honeywell Inc. Two dimensional image panel with range measurement capability
DE3927334C1 (ja) * 1989-08-18 1991-01-10 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
US6795120B2 (en) * 1996-05-17 2004-09-21 Sony Corporation Solid-state imaging apparatus and camera using the same
JP2007312311A (ja) 2006-05-22 2007-11-29 Matsushita Electric Ind Co Ltd 画像処理装置
US20080158531A1 (en) 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8908151B2 (en) 2008-02-14 2014-12-09 Nikon Corporation Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system
JP5050928B2 (ja) 2008-02-28 2012-10-17 ソニー株式会社 撮像装置および撮像素子
JP5161702B2 (ja) * 2008-08-25 2013-03-13 キヤノン株式会社 撮像装置、撮像システム、及び焦点検出方法
JP2010128122A (ja) 2008-11-27 2010-06-10 Olympus Corp 撮像装置
JP2010210903A (ja) 2009-03-10 2010-09-24 Nikon Corp 撮像装置
JP5437781B2 (ja) 2009-12-09 2014-03-12 富士フイルム株式会社 画像処理装置、方法およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378119A (ja) * 1986-09-22 1988-04-08 Olympus Optical Co Ltd 内視鏡光学系
JP2003309723A (ja) * 2002-02-12 2003-10-31 Ribaaberu:Kk 画像改質処理方法およびその装置、プログラム、並びにデータ記録媒体
JP2007306406A (ja) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 画像処理装置
JP2010147143A (ja) * 2008-12-17 2010-07-01 Nikon Corp 固体撮像素子及びその製造方法、並びに撮像装置
JP2010212649A (ja) * 2009-02-13 2010-09-24 Nikon Corp 撮像素子
JP2011095027A (ja) * 2009-10-28 2011-05-12 Kyocera Corp 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080088A1 (ja) * 2014-11-18 2016-05-26 富士フイルム株式会社 撮像装置及びその制御方法
JP2016100607A (ja) * 2014-11-18 2016-05-30 富士フイルム株式会社 撮像装置及びその制御方法
US10122950B2 (en) 2014-11-20 2018-11-06 Fujifilm Corporation Imaging device, imaging method, and image processing program
US10142569B2 (en) 2014-11-20 2018-11-27 Fujifilm Corporation Imaging device, imaging method, and image processing program

Also Published As

Publication number Publication date
JP5525109B2 (ja) 2014-06-18
US9124876B2 (en) 2015-09-01
US20140176681A1 (en) 2014-06-26
JPWO2013027507A1 (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5180407B2 (ja) 立体撮像装置および視差画像復元方法
JP5507764B2 (ja) 撮像装置
JP5525107B2 (ja) 撮像装置
JP5361535B2 (ja) 撮像装置
US8773549B2 (en) Image processing apparatus, image processing method, image pickup apparatus, and display device
WO2015045829A1 (ja) 撮像装置及び撮像方法
JP5451894B2 (ja) 立体撮像装置およびシェーディング補正方法
JP5470458B2 (ja) 撮像装置、画像処理装置および画像処理方法
JP5525109B2 (ja) 撮像装置
JP5507761B2 (ja) 撮像装置
JP2015087401A (ja) 撮像装置
JP5666402B2 (ja) 撮像装置
JP6964806B2 (ja) 撮像素子、撮像装置、画像データ処理方法、及びプログラム
JPWO2012127700A1 (ja) カラー撮像素子、撮像装置、及び撮像プログラム
JP2011146889A (ja) 撮像装置
JP2012124650A (ja) 撮像装置および撮像方法
JP2011203331A (ja) 立体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825625

Country of ref document: EP

Kind code of ref document: A1