WO2013027506A1 - 操舵角センサ - Google Patents

操舵角センサ Download PDF

Info

Publication number
WO2013027506A1
WO2013027506A1 PCT/JP2012/067597 JP2012067597W WO2013027506A1 WO 2013027506 A1 WO2013027506 A1 WO 2013027506A1 JP 2012067597 W JP2012067597 W JP 2012067597W WO 2013027506 A1 WO2013027506 A1 WO 2013027506A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
driven gear
angle sensor
steering angle
driven
Prior art date
Application number
PCT/JP2012/067597
Other languages
English (en)
French (fr)
Inventor
祐也 市川
昌也 江藤
猛 石政
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to US14/240,071 priority Critical patent/US9297670B2/en
Priority to EP12825919.9A priority patent/EP2749839B1/en
Priority to CN201280051663.5A priority patent/CN103975219B/zh
Publication of WO2013027506A1 publication Critical patent/WO2013027506A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/28The target being driven in rotation by additional gears
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a steering angle sensor for generating rotation angle information of a steering wheel of an automobile.
  • FIG. 7 shows an exploded view of the conventional steering angle sensor 100.
  • the steering angle sensor 100 includes an annular drive gear 101 that rotates with rotation of a steering wheel (not shown), a first driven gear 103 and a second driven gear 105 that mesh with the annular drive gear 101 and are driven to rotate. It has. Magnets 104 and 106 are integrally provided on the first driven gear 103 and the second driven gear 105, respectively.
  • the steering angle sensor 100 is provided with a circuit board 110, and elements 111 and 113 for detecting changes in the magnetic field based on the rotation of the magnets 104 and 106 are mounted on the circuit board 110. (For example, see Patent Document 1).
  • the annular drive gear 101 is molded using a resin material. Further, the steering angle sensor 100 has a complicated shape such that the central portion is greatly opened to insert the steering shaft, or the engaging portion 101a for transmitting the rotational driving of the steering shaft is provided. There are many cases. In addition to the annular drive gear 101 having such a structure, it is difficult to always ensure a high roundness of the annular drive gear 101 due to molding characteristics such as resin sink and shrinkage. .
  • the first driven gear 103 and the second driven gear 105 mesh with the annular drive gear 101 at different positions, the first driven gear 103 and the second driven gear depend on the roundness of the annular drive gear 101.
  • the rotation angle errors occurring in 105 are different. Therefore, the error of the absolute angle of the annular drive gear 101 calculated based on the rotation of the first driven gear 103 and the second driven gear 105 may be larger than the mechanical error due to the backlash of each gear. It was.
  • An object of the present invention is to provide a steering angle sensor that can be used.
  • the annular drive gear that rotates in accordance with the rotation of the steering wheel, the first driven gear and the second driven gear that are each provided with a magnet and are driven to rotate according to the rotation of the annular drive gear,
  • a steering angle sensor for generating rotation angle information of the steering wheel by changing a magnetic field based on rotation of the first driven gear and the second driven gear, and the annular drive gear;
  • a steering angle sensor is provided in which an intermediate gear meshing with each gear is interposed between one driven gear and the second driven gear, and the above-described problems can be solved.
  • the steering angle sensor of the present invention is configured such that the intermediate drive gear meshing with each gear is interposed between the annular drive gear and the first driven gear and the second driven gear.
  • the effect of the roundness of the motor directly on the rotation angle of the first driven gear and the second driven gear can be reduced.
  • the intermediate gear does not need to be provided with a large opening or an engagement portion for drive transmission. Therefore, the intermediate gear can be formed with a higher roundness than the annular drive gear. Therefore, even when the roundness of the annular drive gear is low, the low roundness of the annular drive gear can be absorbed by the intermediate gear. As a result, an error in the rotation angle information output from the steering angle sensor can be reduced.
  • the diameter of the intermediate gear is smaller than the diameter of the annular drive gear.
  • the intermediate gear, the first tooth portion that meshes with the annular drive gear, the second tooth portion that meshes with the first driven gear and the second driven gear It is preferable to make the number of teeth of the first tooth part equal to the number of teeth of the second tooth part.
  • the axial directions of the rotation shafts of the intermediate gear, the first driven gear, and the second driven gear intersect the axial direction of the rotation shaft of the annular drive gear.
  • the first driven gear and the second driven gear are supported by a housing of the steering angle sensor, while the intermediate gear is not connected to the housing but the annular shape. It is preferably supported by the drive gear, the first driven gear, and the second driven gear.
  • the intermediate gear By supporting the intermediate gear in this way, the structure of the intermediate gear can be simplified, and an intermediate gear with higher roundness can be formed. Further, all gears can be accurately meshed by adjusting the positions of the shafts of the first driven gear and the second driven gear.
  • the intermediate gear is made of a resin and is formed as a thick member without a hole.
  • the intermediate gear is made of a metal material. By configuring the intermediate gear in this way, an intermediate gear with high roundness can be formed.
  • FIG. 1 is an exploded perspective view for explaining the overall configuration of the steering angle sensor 10 according to the first embodiment.
  • FIG. 2 is a perspective view showing a state where the annular drive gear 21, the intermediate gear 23, the first driven gear 25, and the second driven gear 27 are engaged with each other.
  • FIG. 3 is a front view and a side view for explaining the configuration of the intermediate gear 23.
  • the steering angle sensor 10 includes a first driven gear 25 and a second driven gear 27 which are provided with magnets (not shown) and rotate in conjunction with the rotation of the annular drive gear 21. According to the change of the magnetic field due to rotation, rotation angle information is generated by the so-called caliper principle.
  • the steering angle sensor 10 includes an upper housing 11, a lower housing 17, and a side housing 19.
  • the upper housing 11 and the lower housing 17 have through holes 11b and 17b concentric with the steering shaft.
  • an annular drive gear 21, an intermediate gear 23, a first driven gear 25, a second driven gear 27, and a circuit board 31 are provided in a space surrounded by the upper housing 11, the lower housing 17, and the side housing 19, an annular drive gear 21, an intermediate gear 23, a first driven gear 25, a second driven gear 27, and a circuit board 31 are provided. Contained.
  • the upper housing 11 includes a first driven gear housing portion 12 that houses the first driven gear 25, a second driven gear housing portion 13 that houses the second driven gear 27, and an intermediate housing the intermediate gear 23.
  • a gear housing portion 14 is formed.
  • a first bearing portion 12 a that pivotally supports the first driven gear 25 is formed in the first driven gear housing portion 12.
  • a second bearing portion 13 a that pivotally supports the second driven gear 27 is formed in the second driven gear housing portion 13.
  • a bearing shaft 14 a that pivotally supports the intermediate gear 23 is formed in the intermediate gear housing portion 14.
  • the annular drive gear 21 is housed in the annular drive gear housing portion 11a of the upper housing 11 and the annular drive gear housing portion 17a of the lower housing 17 in a state of being rotatably positioned.
  • the annular drive gear 21 has an annular shape in which a tooth portion 21a is formed on the outer peripheral portion and an opening portion 21b is formed in the center.
  • An engagement portion 21c for engaging with the steering shaft and transmitting the rotation of the steering shaft to the annular drive gear 21 is formed on the inner peripheral surface of the annular drive gear 21 surrounding the opening 21b. Driven with rotation of the shaft.
  • the tooth portion 21a of the annular drive gear 21 is formed on the outer peripheral side with respect to the opening portion 21b, extends radially from the center of the rotating shaft, and decreases in height (thickens) as it moves away from the center of the rotating shaft. It has a shape.
  • the first driven gear 25 is accommodated in the first driven gear accommodating portion 12 formed in the upper housing 11 in a state in which the first driven gear 25 is engaged with the intermediate gear 23 so as to be able to transmit rotation and is rotatably positioned. Yes.
  • the first driven gear 25 has a tooth portion 25a on the outer peripheral portion and an opening portion 25c in the center. Further, an engagement portion 25b is formed adjacent to the opening 25c, and the engagement portion 25b engages with the first bearing portion 12a of the upper housing 11, whereby the first driven gear 25 is moved to the first bearing. It is supported by the part 12a.
  • the second driven gear 27 is accommodated in the second driven gear accommodating portion 13 formed in the upper housing 11 in a state where the second driven gear 27 is engaged with the intermediate gear 23 so as to be able to transmit rotation and is positioned so as to be rotatable. Yes.
  • the second driven gear 27 has a tooth portion 27a on the outer peripheral portion and an opening portion 25c in the center. Further, an engaging portion 27b is formed adjacent to the opening portion 27c, and the engaging portion 27b engages with the second bearing portion 13a of the upper housing 11 so that the second driven gear 27 becomes the second bearing. It is supported by the part 13a.
  • the first driven gear 25 and the second driven gear 27 are integrally provided with magnets (not shown).
  • the first driven gear 25 and the second driven gear 27 are arranged such that the directions of magnetic flux formed by the magnets have a predetermined phase difference.
  • the number of the tooth portions 25a of the first driven gear 25 and the number of the tooth portions 27a of the second driven gear 27 are different from each other. Rotational angle information corresponding to the rotational angle of the shaft is generated.
  • the intermediate gear 23 is formed in the upper housing 11 in a state in which the intermediate gear 23 is engaged with the annular drive gear 21, the first driven gear 25, and the second driven gear 27 so as to be able to transmit rotation and is positioned so as to be rotatable. Is accommodated in the intermediate gear accommodating portion 14.
  • the intermediate gear 23 has a bearing hole 23c formed in the center, and the intermediate gear 23 is supported on the support shaft 14a by inserting the support shaft 14a formed in the upper housing 11 into the bearing hole 23c. Yes.
  • the intermediate gear 23 is formed with a first tooth portion 23 a that engages with the annular drive gear 21 and a second tooth portion 23 b that engages with the first driven gear 25 and the second driven gear 27. ing.
  • the first teeth 23a and the second teeth 23b are formed. It arrange
  • gear part 23a has comprised the taper shape which diameter reduces as it leaves
  • the intermediate gear 23 has no holes other than the relatively small-diameter bearing hole 23c, and it is not necessary to provide an engaging part other than the tooth part 23a.
  • the intermediate gear 23 has a smaller diameter than the annular drive gear 21, and the teeth of the first tooth portion 23a and the second tooth portion 23b are arranged on a straight line along the axial direction.
  • the shape is radially symmetric when viewed from the center of the rotation axis, that is, point-symmetric about the rotation axis. Therefore, even when the intermediate gear 23 is molded with a resin material, sink marks and shrinkage occur evenly, and distortion and the like during molding are less likely to occur compared to the annular drive gear 21, thereby suppressing a decrease in roundness. Be able to.
  • the molding method of the intermediate gear 23 is not limited to mold molding using a resin material. Since the intermediate gear 23 is point-symmetric about the rotation axis, high roundness can be obtained by any molding method. In particular, when the intermediate gear 23 having a small diameter is used, a relatively high roundness can be obtained without being limited to the raw material. In addition, since metallic materials are less prone to sink and shrinkage during molding than resin materials, high roundness can be obtained by mold molding or processing molding using metal materials.
  • the axial direction ⁇ of the rotation shafts of the intermediate gear 23, the first driven gear 25, and the second driven gear 27 is used in order to reduce the size of the sensor.
  • the intermediate gear 23, the first driven gear 25, and the second driven gear 27 are arranged so as to intersect the axial direction ⁇ of the rotating shaft of the annular drive gear 21. 2A and 2B, the axial direction ⁇ of the rotation shaft of the intermediate gear 23, the first driven gear 25, and the second driven gear 27, and the axial direction ⁇ of the rotation shaft of the annular drive gear 21 are used. Is configured to be 90 degrees.
  • the first tooth portion 23 a located on the side of the center opening portion 21 b of the annular drive gear 21 is the tooth portion 21 a of the annular drive gear 21.
  • the annular drive gear 21 is rotated.
  • the second toothed portion 23b of the intermediate gear 23 meshes with the toothed portion 25a of the first driven gear 25 and the toothed portion 27a of the second driven gear 27, so that the first driven gear 25 and the second driven gear are engaged. The rotation is transmitted to 27.
  • the height of the tooth portion 21a of the annular drive gear 21 decreases as the distance from the rotation shaft center decreases, and the first tooth portion 23a of the intermediate gear 23 gradually moves toward the rotation shaft center direction of the annular drive gear 21. Since the diameter is reduced, the intermediate gear 23 is sandwiched between the annular drive gear 21, the first driven gear 25, and the second driven gear 27, and is difficult to move in the axial direction.
  • the number of teeth of the first tooth portion 23a of the intermediate gear 23 and the number of teeth of the second tooth portion 23b are the same, the number of teeth received by the intermediate gear 23 from the annular drive gear 21 The number of teeth transmitted from the intermediate gear 23 to the first driven gear 25 and the second driven gear 27 is the same, so that acceleration / deceleration of rotation does not occur. For this reason, it is not necessary to change the calculation processing contents when detecting the rotation angle of the steering wheel by processing the signal output from the steering angle sensor 10 depending on whether the intermediate gear 23 is interposed or not.
  • the circuit board 31 is mounted with an element (not shown) that converts a magnetic field change caused by the rotation of each of the first driven gear 25 and the second driven gear 27 into an electric signal and outputs it. This element generates an electrical signal as rotation angle information in accordance with the rotation angle of the steering shaft.
  • the connector pin 33 provided on the circuit board 31 is fitted into a connector part 19 a provided on the side housing 19, and the connector part 19 a is electrically connected to the circuit board 31.
  • the steering angle sensor 10 includes the intermediate gear 23 having a relatively high roundness, the annular drive gear 21, the first driven gear 25, and the second driven gear 27. Therefore, even if the roundness of the annular drive gear 21 provided with the opening 21b and the engaging portion 21c is low, the first drive from the annular drive gear 21 An error in the rotation angle transmitted to the driven gear 25 and the second driven gear 27 can be reduced.
  • the intermediate gear 23 is made smaller than the diameter of the annular drive gear 21, and the first tooth portion 23a and the second tooth portion 23b are shafts. Since it is formed as a thick member arranged on a straight line along the direction, an appropriate strength can be obtained. Therefore, the decrease in roundness is further suppressed, and the rotation angle information of the steering shaft can be generated with high accuracy.
  • the steering angle sensor 10 includes the axial direction ⁇ of the rotation shaft of the annular drive gear 21 and the rotation shafts of the intermediate gear 23, the first drive gear 25, and the second drive gear 27.
  • the axial direction ⁇ is configured to form 90 degrees. Therefore, when the axial directions of the rotating shafts of the annular drive gear 21, the intermediate gear 23, the first driven gear 25, and the second driven gear 27 are parallel, that is, the annular drive gear 21, the intermediate gear 23, the first Compared to the case where the driven gear 25 and the second driven gear 27 are all arranged along the same plane, the steering angle sensor 10 can be downsized.
  • the steering angle sensor 10 has a structure in which the intermediate gear 23 is sandwiched and fixed by the annular drive gear 21, the first driven gear 25, and the second driven gear 27. Therefore, the position of the intermediate gear 23 is difficult to shift in the direction of the rotation axis. Therefore, the possibility that the rotation of the annular drive gear 21 is erroneously transmitted to the first driven gear 25 and the second driven gear 27 is reduced, and the error of the generated rotation angle information can be further reduced.
  • the steering angle sensor according to the second embodiment of the present invention differs from the steering angle sensor according to the first embodiment in the configuration of the intermediate gear and the upper housing.
  • FIG. 4 is an exploded perspective view for explaining the overall configuration of the steering angle sensor 10A according to the second embodiment.
  • FIG. 5 is a front view and a side view for explaining the configuration of the intermediate gear 23A.
  • FIG. 6 is a view for explaining the alignment of the intermediate gear 23A, the first driven gear 25, and the second driven gear 27. As shown in FIG.
  • the intermediate gear 23A is formed as a thick member without a shaft insertion hole. Yes. Accordingly, the upper housing 11 ⁇ / b> A does not have a support shaft in the intermediate gear housing portion 14. With such an intermediate gear 23A, the structure of the intermediate gear 23A can be simplified, and the roundness can be further increased.
  • the same effect as the steering angle sensor 10 according to the first embodiment can be obtained, and the rotation angle of the annular drive gear 21 can be obtained. Can be further reduced in error that occurs when transmitting to the first driven gear 25 and the second driven gear 27.
  • the steering angle sensor 10 according to the first and second embodiments described above shows one aspect of the present invention and does not limit the present invention. Each embodiment is within the scope of the present invention. It is possible to change arbitrarily within.
  • the steering angle sensor 10 according to the first and second embodiments can be changed as follows, for example.
  • the axial direction ⁇ of the rotation shaft of the annular drive gear 21, the intermediate gear 23, the first driven gear 25, and the second driven gear. 27 is configured to form 90 degrees with respect to the axial direction ⁇ of the rotating shaft 27, but the angle formed may be less than 90 ° or may exceed 90 °. Regardless of this angle, the error of the rotation angle information due to the roundness of the annular drive gear 21 can be reduced.
  • the diameter of the intermediate gear 23 is smaller than the diameters of the first driven gear 25 and the second driven gear 27.
  • the size of the intermediate gear 23 is not particularly limited. For example, if the roundness of the intermediate gear 23 is high, the diameter of the intermediate gear 23 may be larger than the diameter of the annular drive gear 21.
  • the second tooth portion 23b of the intermediate gear 23 that meshes with the second driven gear 27 is provided separately and arranged linearly along the axial direction.
  • the driven gear 25 and the second driven gear 27 may all be configured to mesh with a common tooth portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Steering Controls (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 環状駆動ギヤの真円度によって、第1の従動ギヤ及び第2の従動ギヤに生じる回転角度の誤差の影響が小さくされて、ステアリングホイールの回転角度情報を精度良く生成することができる操舵角センサを提供する。 ステアリングホイールの回転に伴って回転する環状駆動ギヤと、それぞれマグネットが設けられて前記環状駆動ギヤの回転に応じて従動回転する第1の従動ギヤ及び第2の従動ギヤと、を備え、前記第1の従動ギヤ及び前記第2の従動ギヤの回転に基づく磁界の変化により前記ステアリングホイールの回転角度情報を生成するための操舵角センサにおいて、前記環状駆動ギヤと、前記第1の従動ギヤ及び前記第2の従動ギヤと、の間に、それぞれのギヤと噛み合う中間ギヤを介在させる。 

Description

操舵角センサ
 本発明は、自動車のステアリングホイールの回転角度情報を生成するための操舵角センサに関する。
 従来、自動車のステアリングホイールの回転角度情報を生成するための操舵角センサが知られている。
 図7は、従来の操舵角センサ100の分解図を示している。この操舵角センサ100は、図示しないステアリングホイールの回転に伴って回転する環状駆動ギヤ101と、この環状駆動ギヤ101に噛合して従動回転する第1の従動ギヤ103及び第2の従動ギヤ105とを備えている。第1の従動ギヤ103及び第2の従動ギヤ105にはそれぞれマグネット104,106が一体に設けられている。操舵角センサ100には回路基板110が備えられており、この回路基板110には、マグネット104,106の回転に基づく磁界の変化を検出する素子111,113が搭載されている。(例えば、特許文献1を参照)。
特開2003-294409号公報
 従来の操舵角センサ100において、環状駆動ギヤ101は樹脂材料を用いて成形されている。また、操舵角センサ100は、中央部が、ステアリングシャフトを挿通するために大きく開口していたり、ステアリングシャフトの回転駆動を伝達するための係合部101aが設けられたりするなど、複雑な形状となる場合が多い。環状駆動ギヤ101がこのような構造を有していることと併せて、樹脂のひけや収縮等の成形特性上、環状駆動ギヤ101の真円度を常に高く確保することが困難となっている。
 第1の従動ギヤ103及び第2の従動ギヤ105は、異なる位置で環状駆動ギヤ101と噛み合っているために、環状駆動ギヤ101の真円度によって第1の従動ギヤ103及び第2の従動ギヤ105に生じる回転角度の誤差がそれぞれ異なる。したがって、第1の従動ギヤ103及び第2の従動ギヤ105の回転に基づいて演算された環状駆動ギヤ101の絶対角度の誤差が、それぞれのギヤのバックラッシによる機械的誤差よりも大きくなるおそれがあった。
 本発明の発明者らは、このような課題を鑑みて検討した結果、環状駆動ギヤと、第1の従動ギヤ及び第2の従動ギヤとの間に、それぞれのギヤと噛み合う中間ギヤを介在させることにより、上記の課題を解決できることを見出した。
 すなわち、本発明は、環状駆動ギヤの真円度によって、第1の従動ギヤ及び第2の従動ギヤに生じる回転角度の誤差の影響が小さくされて、ステアリングホイールの回転角度情報を精度良く生成することができる操舵角センサを提供することを目的とする。
 本発明によれば、ステアリングホイールの回転に伴って回転する環状駆動ギヤと、それぞれマグネットが設けられて前記環状駆動ギヤの回転に応じて従動回転する第1の従動ギヤ及び第2の従動ギヤと、を備え、前記第1の従動ギヤ及び前記第2の従動ギヤの回転に基づく磁界の変化により前記ステアリングホイールの回転角度情報を生成するための操舵角センサにおいて、前記環状駆動ギヤと、前記第1の従動ギヤ及び前記第2の従動ギヤと、の間に、それぞれのギヤと噛み合う中間ギヤを介在させたことを特徴とする操舵角センサが提供され、上述した問題を解決することができる。
 すなわち、本発明の操舵角センサは、環状駆動ギヤと、第1の従動ギヤ及び第2の従動ギヤとの間に、それぞれのギヤに噛み合う中間ギヤを介在させることとしているために、環状駆動ギヤの真円度が第1の従動ギヤ及び第2の従動ギヤの回転角度に直接与える影響を低減することができる。具体的に、ステアリングシャフトが挿通される環状駆動ギヤと異なり、中間ギヤは、大きく開口を設けたり、駆動伝達用の係合部を設けたりする必要がない。そのために、中間ギヤは、環状駆動ギヤよりも高い真円度で成形することができる。したがって、環状駆動ギヤの真円度が低い場合であっても、中間ギヤによって環状駆動ギヤの真円度の低さを吸収することができる。その結果、操舵角センサから出力される回転角度情報の誤差を低減することができる。
 また、本発明の操舵角センサにおいて、前記中間ギヤの直径を、前記環状駆動ギヤの直径よりも小さくすることが好ましい。このように中間ギヤを構成することにより、中間ギヤの真円度を環状駆動ギヤの真円度よりも容易に高くすることができる。
 また、本発明の操舵角センサにおいて、前記中間ギヤに、前記環状駆動ギヤと噛み合う第1の歯部と、前記第1の従動ギヤ及び前記第2の従動ギヤと噛み合う第2の歯部と、を設け、前記第1の歯部の歯数と、前記第2の歯部の歯数と、を等しくすることが好ましい。このように中間ギヤを構成することにより、環状駆動ギヤの回転速度を加減速することがなくなり、中間ギヤを介在させる場合と介在させない場合とで、回転角度の演算処理内容を変更することなく、ステアリングホイールの回転角度情報を精度良く生成することができる。
 また、本発明の操舵角センサにおいて、前記中間ギヤ、前記第1の従動ギヤ、及び第2の従動ギヤの回転軸の軸方向が、前記環状駆動ギヤの回転軸の軸方向に対して交差するように、前記環状駆動ギヤ、前記中間ギヤ、前記第1の従動ギヤ及び前記第2の従動ギヤを配置することが好ましい。このようにそれぞれのギヤを配置することにより、操舵角センサを小型化することができる。
 また、本発明の操舵角センサにおいて、前記第1の従動ギヤ及び前記第2の従動ギヤが前記操舵角センサのハウジングに支承される一方、前記中間ギヤが、前記ハウジングによらずに、前記環状駆動ギヤ、前記第1の従動ギヤ及び前記第2の従動ギヤに支承されることが好ましい。このように中間ギヤを支承することにより、中間ギヤの構造を簡素化でき、より真円度の高い中間ギヤを成形することができる。また、第1の従動ギヤ及び第2の従動ギヤの軸の位置を調節することによってすべてのギヤを正確に噛み合わせることができる。
 また、本発明の操舵角センサにおいて、前記中間ギヤが樹脂からなるとともに、孔を設けない厚肉部材として形成されることが好ましい。このように中間ギヤを構成することにより、樹脂のひけや収縮等による真円度の低下を抑制することができ、真円度の高い中間ギヤを成形することができる。
 また、本発明の操舵角センサにおいて、前記中間ギヤが金属材料からなることが好ましい。このように中間ギヤを構成することにより、真円度の高い中間ギヤを成形することができる。
本発明の第1の実施の形態にかかる操舵角センサの全体的構成を説明するための分解斜視図である。 第1の実施の形態の環状駆動ギヤ、中間ギヤ、第1の従動ギヤ及び第2の従動ギヤが噛み合った状体を示す斜視図である。 第1の実施の形態の中間ギヤの正面図及び側面図である。 本発明の第2の実施の形態にかかる操舵角センサの全体的構成を説明するための分解斜視図である。 第2の実施の形態の中間ギヤの正面図及び側面図である。 環状駆動ギヤ、中間ギヤ、第1の従動ギヤ及び第2の従動ギヤの位置合わせについて説明するために示す図である。 従来の操舵角センサの構成を説明するための分解図である。
 以下、本発明の実施の形態にかかる操舵角センサに関する実施の形態を、図面に基づいて具体的に説明する。
 なお、それぞれの図中において同じ符号が示されているものは、特に説明がない限り同一の構成要素を示しており、適宜説明が省略されている。
[第1の実施の形態]
 図1は、第1の実施の形態にかかる操舵角センサ10の全体的構成を説明するために示す分解斜視図である。図2は、環状駆動ギヤ21、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27が噛み合った状態を示す斜視図である。図3は、中間ギヤ23の構成を説明するために示す正面図及び側面図である。
 第1の実施の形態にかかる操舵角センサ10は、それぞれ図示しないマグネットが設けられ、環状駆動ギヤ21の回転に連動して回転する第1の従動ギヤ25及び第2の従動ギヤ27を備え、回転による磁界の変化に応じて、いわゆるノギスの原理によって回転角度情報を生成するものとなっている。
 操舵角センサ10は、上部ハウジング11、下部ハウジング17、及び側部ハウジング19を備えている。上部ハウジング11及び下部ハウジング17には、ステアリングシャフトと同心の貫通孔が11b,17bが形成されている。上部ハウジング11、下部ハウジング17、及び側部ハウジング19で囲まれた空間内には、環状駆動ギヤ21、中間ギヤ23、第1の従動ギヤ25、第2の従動ギヤ27、及び回路基板31が収容されている。
 上部ハウジング11には、第1の従動ギヤ25を収容する第1の従動ギヤ収容部12、第2の従動ギヤ27を収容する第2の従動ギヤ収容部13、及び中間ギヤ23を収容する中間ギヤ収容部14が形成されている。第1の従動ギヤ収容部12内には、第1の従動ギヤ25を軸支する第1の軸受け部12aが形成されている。第2の従動ギヤ収容部13内には、第2の従動ギヤ27を軸支する第2の軸受け部13aが形成されている。中間ギヤ収容部14内には、中間ギヤ23を軸支する支承軸14aが形成されている。
 環状駆動ギヤ21は、回転可能に位置決めされた状態で、上部ハウジング11の環状駆動ギヤ収容部11a及び下部ハウジング17の環状駆動ギヤ収容部17a内に収容されている。環状駆動ギヤ21は、外周部に歯部21aが形成されるとともに、中央に開口部21bが形成された環状を成している。また、開口部21bを囲む環状駆動ギヤ21の内周面には、ステアリングシャフトと係合してステアリングシャフトの回転を環状駆動ギヤ21に伝達するための係合部21cが形成されており、ステアリングシャフトの回転に伴って回転駆動する。
 環状駆動ギヤ21の歯部21aは、開口部21bよりも外周側に形成され、回転軸中心から放射状に延在するとともに、回転軸中心から離れるにつれて高さが低くなる(厚さが薄くなる)形状を成している。
 第1の従動ギヤ25は、中間ギヤ23に回転伝達可能に係合して回転可能に位置決めされた状態で、上部ハウジング11に形成されている第1の従動ギヤ収容部12内に収容されている。第1の従動ギヤ25は、外周部に歯部25aが形成されるとともに、中央に開口部25cが形成されている。また、開口部25cに隣接して係合部25bが形成され、係合部25bが上部ハウジング11の第1の軸受け部12aに係合することによって、第1の従動ギヤ25が第1の軸受け部12aに支承されている。
 第2の従動ギヤ27は、中間ギヤ23に回転伝達可能に係合して回転可能に位置決めされた状態で、上部ハウジング11に形成されている第2の従動ギヤ収容部13内に収容されている。第2の従動ギヤ27は、外周部に歯部27aが形成されるとともに、中央に開口部25cが形成されている。また、開口部27cに隣接して係合部27bが形成され、係合部27bが上部ハウジング11の第2の軸受け部13aに係合することによって、第2の従動ギヤ27が第2の軸受け部13aに支承されている。
 第1の従動ギヤ25及び第2の従動ギヤ27には、図示しないマグネットがそれぞれ一体となって設けられている。第1の従動ギヤ25及び第2の従動ギヤ27は、それぞれマグネットによって形成される磁束方向が所定の位相差を有するように配置されている。また、第1の実施の形態にかかる操舵角センサ10において、第1の従動ギヤ25の歯部25aの数と、第2の従動ギヤ27の歯部27aの数とを異ならせてあり、ステアリングシャフトの回転角度に応じた回転角度情報が生成されるようになっている。
 中間ギヤ23は、環状駆動ギヤ21、第1の従動ギヤ25及び第2の従動ギヤ27のそれぞれに回転伝達可能に係合して回転可能に位置決めされた状態で、上部ハウジング11に形成されている中間ギヤ収容部14内に収容されている。中間ギヤ23は、中央に軸受け孔23cが形成されており、軸受け孔23c内に、上部ハウジング11に形成された支承軸14aが挿入されることによって、中間ギヤ23が支承軸14aに支承されている。
 また、中間ギヤ23には、環状駆動ギヤ21に係合する第1の歯部23aと、第1の従動ギヤ25及び第2の従動ギヤ27に係合する第2の歯部23bが形成されている。第1の歯部23a及び第2の歯部23bは同数形成されており、中間ギヤ23を正面から見た場合に(図3(a)の状態)、第1の歯部23a及び第2の歯部23bのそれぞれの歯が互いに重なり合うように、軸方向に沿う直線上に配置されている。また、第1の歯部23aは、第2の歯部23bから離れるにつれて縮径するテーパ状を成している(図3(b)を参照)。
 この中間ギヤ23は、比較的小径の軸受け孔23c以外に孔を有しておらず、歯部23a以外の係合部を設ける必要もない。また、中間ギヤ23は、環状駆動ギヤ21に比べて小さな直径を有しているとともに、第1の歯部23a及び第2の歯部23bのそれぞれの歯が軸方向に沿う直線上に配置され、回転軸の中心から見て放射状に対称な形状、すなわち、回転軸を中心として点対称をなしている。そのため、中間ギヤ23を樹脂材料によって型成形する場合であっても、ひけや収縮が均等に発生し、環状駆動ギヤ21に比べて成形時の歪み等が生じにくく、真円度の低下を抑えることができるようになっている。
 中間ギヤ23の成形方法は、樹脂材料を用いた型成形に限られない。中間ギヤ23は回転軸を中心として点対称をなしているために、いずれの成形方法によっても高い真円度を得ることができる。特に、小さい直径の中間ギヤ23とする場合には、原材料に限らず比較的高い真円度を得ることができる。また、金属材料は、樹脂材料に比べて成形時のひけや収縮が生じにくいために、金属材料を用いた型成形あるいは加工成形によっても高い真円度を得ることができる。
 また、第1の実施の形態にかかる操舵角センサ10においては、センサの小型化を図るために、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27の回転軸の軸方向αが、環状駆動ギヤ21の回転軸の軸方向βに対して交差するように、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27が配置されている。図2(a)及び(b)の例では、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27の回転軸の軸方向αと、環状駆動ギヤ21の回転軸の軸方向βとの成す角度θが90度となるように構成されている。中間ギヤ23の第1の歯部23a及び第2の歯部23bのうち、環状駆動ギヤ21の中央の開口部21b側に位置する第1の歯部23aが、環状駆動ギヤ21の歯部21aに噛み合って環状駆動ギヤ21の回転を受けている。一方、中間ギヤ23の第2の歯部23bが、第1の従動ギヤ25の歯部25a及び第2の従動ギヤ27の歯部27aに噛み合って第1の従動ギヤ25及び第2の従動ギヤ27に回転を伝達している。
 このとき、環状駆動ギヤ21の歯部21aの高さが回転軸中心から離れるにつれて低くなるとともに、中間ギヤ23の第1の歯部23aが環状駆動ギヤ21の回転軸中心方向に向けて徐々に縮径していることから、中間ギヤ23は、環状駆動ギヤ21、第1の従動ギヤ25及び第2の従動ギヤ27によって挟持されて、軸方向移動しにくくなっている。
 また、中間ギヤ23の第1の歯部23aの歯数と、第2の歯部23bの歯数とが同数で構成されていることから、中間ギヤ23が環状駆動ギヤ21から受ける歯数と、中間ギヤ23が第1の従動ギヤ25及び第2の従動ギヤ27に伝達する歯数とが同じになっており、回転の加減速が生じないようになっている。そのために、中間ギヤ23を介在させる場合と介在させない場合とで、操舵角センサ10から出力される信号を処理してステアリングホイールの回転角度を検出する際の演算処理内容を変更する必要がない。
 回路基板31には、第1の従動ギヤ25及び第2の従動ギヤ27それぞれの回転によって生じる磁界の変化を電気信号に変換して出力する図示しない素子が搭載されている。この素子は、ステアリングシャフトの回転角度に応じて、回転角度情報としての電気信号を生成する。また、回路基板31に設けられたコネクタピン33は、側部ハウジング19に設けられたコネクタ部19aに嵌合されており、コネクタ部19aは回路基板31に電気的に接続されている。
 このように、第1の実施の形態にかかる操舵角センサ10は、比較的高い真円度を有する中間ギヤ23を、環状駆動ギヤ21と、第1の従動ギヤ25及び第2の従動ギヤ27との間に介在させることとしているために、開口部21bや係合部21cが設けられる環状駆動ギヤ21の真円度が低くなっている場合であっても、環状駆動ギヤ21から第1の従動ギヤ25及び第2の従動ギヤ27に伝達される回転角度の誤差を低減することができる。
 特に、第1の実施の形態にかかる操舵角センサ10において、中間ギヤ23は、環状駆動ギヤ21の直径よりも小さくされるとともに、第1の歯部23aと第2の歯部23bとが軸方向に沿う直線上に配置された厚肉部材として形成されていることから、適度な強度が得られるようになっている。したがって、真円度の低下がさらに抑えられて、精度良くステアリングシャフトの回転角度情報を生成することができる。
 また、第1の実施の形態にかかる操舵角センサ10は、環状駆動ギヤ21の回転軸の軸方向αと、中間ギヤ23、第1の駆動ギヤ25及び第2の駆動ギヤ27の回転軸の軸方向βとが90度を成すように構成されている。そのために、環状駆動ギヤ21、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27の回転軸の軸方向が平行になる場合、すなわち、環状駆動ギヤ21、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27がすべて同一面に沿って配置される場合に比べて、操舵角センサ10を小型化することができる。
 また、第1の実施の形態にかかる操舵角センサ10は、中間ギヤ23が、環状駆動ギヤ21、第1の従動ギヤ25及び第2の従動ギヤ27によって挟持されて固定された構造となっているために、中間ギヤ23の位置が回転軸方向にずれにくくなっている。したがって、環状駆動ギヤ21の回転が第1の従動ギヤ25及び第2の従動ギヤ27に誤って伝達されるおそれが少なくなって、生成される回転角度情報の誤差をさらに低減することができる。
[第2の実施の形態]
 本発明の第2の実施の形態にかかる操舵角センサは、中間ギヤ及び上部ハウジングの構成が第1の実施の形態にかかる操舵角センサの場合と異なっている。
 図4は、第2の実施の形態にかかる操舵角センサ10Aの全体的構成を説明するために示す分解斜視図である。図5は、中間ギヤ23Aの構成を説明するために示す正面図及び側面図である。図6は、中間ギヤ23A、第1の従動ギヤ25及び第2の従動ギヤ27の位置合わせについて説明するために示す図である。
 第2の実施の形態にかかる操舵角センサ10Aにおいて、中間ギヤ23Aは、第1の実施の形態にかかる操舵角センサ10の場合とは異なり、軸挿入孔を設けない厚肉部材として形成されている。また、これに伴って、上部ハウジング11Aは、中間ギヤ収容部14内に支承軸を有していない。このような中間ギヤ23Aであれば、中間ギヤ23Aの構造を簡素化することができ、真円度をより高めることができるようになる。
 さらには、中間ギヤに軸挿入孔を設け、上部ハウジングの支承軸に支持させる構成の場合には、歯車の噛み合わせ(ピッチ)を合わせるために、図6(a)に示すように、中間ギヤ23´、第1の従動ギヤ25´及び第2の従動ギヤ27´の3ヶ所の軸の位置の精度が確保されるように、各ギヤや上部ハウジングを形成する必要がある。これに対して、中間ギヤの軸挿入孔を省略した場合には、図6(b)に示すように、第1の従動ギヤ25及び第2の従動ギヤ27の2ヶ所の軸の位置を調節することによって、中間ギヤ23Aを、環状駆動ギヤ21、第1の従動ギヤ25及び第2の従動ギヤ27のすべてと正確に噛み合わせることができる。
 したがって、第2の実施の形態にかかる操舵角センサ10Aによれば、第1の実施の形態にかかる操舵角センサ10と同様の効果を得ることができるとともに、さらに、環状駆動ギヤ21の回転角度を、第1の従動ギヤ25及び第2の従動ギヤ27に伝達する際に生じる誤差を、より低減することができる。
[他の実施の形態]
 以上説明した第1及び第2の実施の形態にかかる操舵角センサ10は、本発明の一態様を示すものであってこの発明を限定するものではなく、それぞれの実施の形態は本発明の範囲内で任意に変更することが可能である。上記の第1及び第2の実施の形態にかかる操舵角センサ10は、例えば、以下のように変更することができる。
(1)第1及び第2の実施の形態にかかる操舵角センサ10においては、環状駆動ギヤ21の回転軸の軸方向αと、中間ギヤ23、第1の従動ギヤ25及び第2の従動ギヤ27の回転軸の軸方向βとが90度を成すように構成することとしているが、この成す角度は90°未満であっても良いし、90°を超えてもよい。この角度にかかわらず、環状駆動ギヤ21の真円度による回転角度情報の誤差を低減することができる。
(2)第1及び第2の実施の形態にかかる操舵角センサ10においては、中間ギヤ23の直径が第1の従動ギヤ25及び第2の従動ギヤ27の直径よりも小さくされているが、中間ギヤ23の大きさは特に限定されるものではない。例えば、中間ギヤ23の真円度が高く形成されているのであれば、中間ギヤ23の直径が環状駆動ギヤ21の直径よりも大きくなっていてもかまわない。
(3)第1及び第2の実施の形態にかかる操舵角センサ10においては、環状駆動ギヤ21の歯部21aと噛み合う中間ギヤ23の第1の歯部23a、及び、第1の従動ギヤ25及び第2の従動ギヤ27と噛み合う中間ギヤ23の第2の歯部23bが、それぞれ別個に設けられて、軸方向に沿って直線上に配置されているが、環状駆動ギヤ21、第1の従動ギヤ25及び第2の従動ギヤ27がすべて共通の歯部と噛み合うように構成されていてもよい。

Claims (7)

  1.  ステアリングホイールの回転に伴って回転する環状駆動ギヤと、それぞれマグネットが設けられて前記環状駆動ギヤの回転に応じて従動回転する第1の従動ギヤ及び第2の従動ギヤと、を備え、前記第1の従動ギヤ及び前記第2の従動ギヤの回転に基づく磁界の変化により前記ステアリングホイールの回転角度情報を生成するための操舵角センサにおいて、
     前記環状駆動ギヤと、前記第1の従動ギヤ及び前記第2の従動ギヤと、の間に、それぞれのギヤと噛み合う中間ギヤを介在させたことを特徴とする操舵角センサ。
  2.  前記中間ギヤの直径を、前記環状駆動ギヤの直径よりも小さくすることを特徴とする請求項1に記載の操舵角センサ。
  3.  前記中間ギヤに、前記環状駆動ギヤと噛み合う第1の歯部と、前記第1の従動ギヤ及び前記第2の従動ギヤと噛み合う第2の歯部と、を設け、前記第1の歯部の歯数と、前記第2の歯部の歯数と、を等しくすることを特徴とする請求項1又は2に記載の操舵角センサ。
  4.  前記中間ギヤ、前記第1の従動ギヤ、及び第2の従動ギヤの回転軸の軸方向が、前記環状駆動ギヤの回転軸の軸方向に対して交差するように、前記環状駆動ギヤ、前記中間ギヤ、前記第1の従動ギヤ及び前記第2の従動ギヤを配置することを特徴とする請求項1~3のいずれか一項に記載の操舵角センサ。
  5.  前記第1の従動ギヤ及び前記第2の従動ギヤが前記操舵角センサのハウジングに支承される一方、前記中間ギヤが、前記ハウジングによらずに、前記環状駆動ギヤ、前記第1の従動ギヤ及び前記第2の従動ギヤに支承されることを特徴とする請求項1~4のいずれか一項に記載の操舵角センサ。
  6.  前記中間ギヤが樹脂からなるとともに、孔を設けない厚肉部材として形成されることを特徴とする請求項1~5のいずれか一項に記載の操舵角センサ。
  7.  前記中間ギヤが金属材料からなることを特徴とする請求項1~5のいずれか一項に記載の操舵角センサ。
PCT/JP2012/067597 2011-08-22 2012-07-10 操舵角センサ WO2013027506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/240,071 US9297670B2 (en) 2011-08-22 2012-07-10 Steering angle sensor
EP12825919.9A EP2749839B1 (en) 2011-08-22 2012-07-10 Steering angle sensor
CN201280051663.5A CN103975219B (zh) 2011-08-22 2012-07-10 转向角传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-180599 2011-08-22
JP2011180599A JP2013044557A (ja) 2011-08-22 2011-08-22 操舵角センサ

Publications (1)

Publication Number Publication Date
WO2013027506A1 true WO2013027506A1 (ja) 2013-02-28

Family

ID=47746257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067597 WO2013027506A1 (ja) 2011-08-22 2012-07-10 操舵角センサ

Country Status (5)

Country Link
US (1) US9297670B2 (ja)
EP (1) EP2749839B1 (ja)
JP (1) JP2013044557A (ja)
CN (1) CN103975219B (ja)
WO (1) WO2013027506A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323349A1 (en) * 2014-05-08 2015-11-12 Robert Bosch Gmbh Sensor Arrangement for Sensing Rotation Angles on a Rotating Component in a Vehicle
CN108147325A (zh) * 2018-02-06 2018-06-12 视航机器人(佛山)有限公司 叉车及其转角测量结构
WO2018163690A1 (ja) * 2017-03-07 2018-09-13 パナソニックIpマネジメント株式会社 回転角度検出装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005066A1 (de) * 2011-03-03 2012-09-06 Robert Bosch Gmbh Sensoranordnung
KR102158483B1 (ko) * 2014-09-03 2020-09-23 현대모비스 주식회사 절대조향각 연산 방법
KR102224460B1 (ko) * 2014-11-11 2021-03-08 엘지이노텍 주식회사 토크앵글센서
GB2540599B (en) * 2015-07-22 2021-04-14 Cmr Surgical Ltd Rotary encoder.
CN106224446B (zh) * 2016-07-20 2019-07-12 深圳市克鲁盾汽车智能装备有限公司 汽车方向传感器以及汽车
RU168937U1 (ru) * 2016-10-10 2017-02-28 Открытое акционерное общество "Специальное конструкторское бюро станочных информационно - измерительных систем с опытным производством" ОАО "СКБ ИС" Магнитный преобразователь угла
JP6829663B2 (ja) * 2017-07-04 2021-02-10 ミネベアミツミ株式会社 アブソリュートエンコーダ
KR20220022314A (ko) * 2020-08-18 2022-02-25 엘지이노텍 주식회사 센싱 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161654A (en) * 1981-03-31 1982-10-05 Agency Of Ind Science & Technol Measuring method for amount of rotation
JP2003294409A (ja) 2002-03-28 2003-10-15 Bosch Automotive Systems Corp 舵角センサ、該舵角センサを搭載した舵角センサ組み込み式回転コネクタ装置
JP2005156163A (ja) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd 回転角度検出装置
JP2006119082A (ja) * 2004-10-25 2006-05-11 Hitachi Cable Ltd 操舵角検出装置
JP2006182054A (ja) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd 車両用可変舵角操舵装置およびその操舵制御方法
JP2009505097A (ja) * 2006-07-25 2009-02-05 エルジー イノテック カンパニー リミテッド 操向角感知装置及び感知方法
JP2011099727A (ja) * 2009-11-05 2011-05-19 Panasonic Corp 回転角度検出装置及びこれを用いた回転角度・トルク検出装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860399B2 (ja) * 2000-08-08 2006-12-20 株式会社ジェイテクト 電動パワーステアリング装置
JP4123761B2 (ja) * 2001-11-15 2008-07-23 松下電器産業株式会社 回転角度検出装置
JP3682039B2 (ja) 2002-10-02 2005-08-10 株式会社デンソー 車両乗員検知装置
JP2004184264A (ja) * 2002-12-04 2004-07-02 Matsushita Electric Ind Co Ltd 回転角度検出装置
WO2007107649A1 (fr) * 2006-03-22 2007-09-27 Sc2N Capteur d'angle destine a mesurer la position angulaire absolue d'un axe tournant
JP2008026039A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd 回転角度検出装置
CN101376405B (zh) * 2008-09-05 2010-06-02 卢灿光 一种旋转角度传感器
DE102009018893A1 (de) * 2009-04-24 2010-10-28 Leopold Kostal Gmbh & Co. Kg Winkelsensor
GB2496546B (en) * 2010-08-24 2017-03-01 Rotork Controls Apparatus adapted to provide an indication of an angular position of an input member over multiple turns
CN102252081A (zh) * 2011-07-19 2011-11-23 湖北行星传动设备有限公司 一种并联齿轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161654A (en) * 1981-03-31 1982-10-05 Agency Of Ind Science & Technol Measuring method for amount of rotation
JP2003294409A (ja) 2002-03-28 2003-10-15 Bosch Automotive Systems Corp 舵角センサ、該舵角センサを搭載した舵角センサ組み込み式回転コネクタ装置
JP2005156163A (ja) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd 回転角度検出装置
JP2006119082A (ja) * 2004-10-25 2006-05-11 Hitachi Cable Ltd 操舵角検出装置
JP2006182054A (ja) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd 車両用可変舵角操舵装置およびその操舵制御方法
JP2009505097A (ja) * 2006-07-25 2009-02-05 エルジー イノテック カンパニー リミテッド 操向角感知装置及び感知方法
JP2011099727A (ja) * 2009-11-05 2011-05-19 Panasonic Corp 回転角度検出装置及びこれを用いた回転角度・トルク検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323349A1 (en) * 2014-05-08 2015-11-12 Robert Bosch Gmbh Sensor Arrangement for Sensing Rotation Angles on a Rotating Component in a Vehicle
FR3020872A1 (fr) * 2014-05-08 2015-11-13 Bosch Gmbh Robert Dispositif de detecteur pour saisir les angles de rotation d'un composant rotatif d'un vehicule
CN105241373A (zh) * 2014-05-08 2016-01-13 罗伯特·博世有限公司 用于在车辆中的旋转构件处获取转角的传感器组件
WO2018163690A1 (ja) * 2017-03-07 2018-09-13 パナソニックIpマネジメント株式会社 回転角度検出装置
CN108147325A (zh) * 2018-02-06 2018-06-12 视航机器人(佛山)有限公司 叉车及其转角测量结构
CN108147325B (zh) * 2018-02-06 2023-12-12 视航机器人(佛山)有限公司 叉车及其转角测量结构

Also Published As

Publication number Publication date
CN103975219A (zh) 2014-08-06
EP2749839A4 (en) 2015-01-14
CN103975219B (zh) 2017-06-27
EP2749839A1 (en) 2014-07-02
US9297670B2 (en) 2016-03-29
US20140210457A1 (en) 2014-07-31
JP2013044557A (ja) 2013-03-04
EP2749839B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
WO2013027506A1 (ja) 操舵角センサ
JP5943955B2 (ja) レンジ切り替え装置
CN101586940B (zh) 旋转角检测装置
JP6442173B2 (ja) 回転コネクタ
US9236780B2 (en) Rotary actuator with lined bearing holder
JP5984898B2 (ja) レンジ切り替え装置
JP2007078459A (ja) 多回転式絶対値エンコーダおよび回転機械
US11408485B2 (en) Electric actuator
JP2010286299A (ja) 回転角センサ
JP2012002519A (ja) 回転角度・トルク検出装置
US11913784B2 (en) Reduction mechanism and absolute encoder
JP5397702B2 (ja) 計器用駆動装置
KR102180737B1 (ko) 모터 및 이를 포함하는 동력 전달 장치
JP2007325479A (ja) マルチ駆動モータ
JP2008111737A (ja) 回転センサ
WO2017082099A1 (ja) ギアードモータおよびギアードモータの製造方法
WO2017082097A1 (ja) ギアードモータ
JP2007211905A (ja) 減速機
JP2010112848A (ja) 回転角度検出装置
JP7404047B2 (ja) 回転角度検出装置
JP2004279065A (ja) 回転角検出装置
JP2011022074A (ja) 多回転角度検出装置
JP2012021890A (ja) 回転角度検出装置
JP2019113386A (ja) 回転検出装置
TWM448672U (zh) 磁感式角度傳感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012825919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14240071

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE