WO2013026251A1 - 曼尼希碱脱钙缓蚀剂及其制备和应用 - Google Patents

曼尼希碱脱钙缓蚀剂及其制备和应用 Download PDF

Info

Publication number
WO2013026251A1
WO2013026251A1 PCT/CN2012/000566 CN2012000566W WO2013026251A1 WO 2013026251 A1 WO2013026251 A1 WO 2013026251A1 CN 2012000566 W CN2012000566 W CN 2012000566W WO 2013026251 A1 WO2013026251 A1 WO 2013026251A1
Authority
WO
WIPO (PCT)
Prior art keywords
mannich base
inhibitor
decalcification
corrosion
acid
Prior art date
Application number
PCT/CN2012/000566
Other languages
English (en)
French (fr)
Inventor
马玲
李磊
甄新平
牛春革
马忠庭
孔祥军
于曙艳
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to CA2822879A priority Critical patent/CA2822879C/en
Priority to US13/990,389 priority patent/US9399735B2/en
Priority to AP2013006943A priority patent/AP3508A/xx
Publication of WO2013026251A1 publication Critical patent/WO2013026251A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/02Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Definitions

  • the invention relates to a Mannich base decalcification inhibitor and its preparation and application.
  • CN 1224078A, CN 1231347A respectively describe a corrosion inhibitor which can only inhibit the corrosion of steel in simple brine;
  • CN 1388271A describes a steel for the high temperature acidic medium (below 16CTC for 20% hydrochloric acid or earth acid) Etchant and preparation method thereof.
  • ZL200610112532X introduces a corrosion inhibitor which can be used in the desalting and dehydration unit salt, acid and water mixed medium of refinery crude oil and its preparation method, which is composed of 10 ⁇ 99.5% (wt%) of main corrosion inhibitor and balance
  • the auxiliary corrosion inhibitor is a combination of two components.
  • the main corrosion inhibitor is a high temperature organic acid corrosion inhibitor synthesized by using boric acid and organic amine
  • the auxiliary corrosion inhibitor is a ketone aldehyde amine corrosion inhibitor, an imidazoline corrosion inhibitor, an alkyne oxymethylamine corrosion inhibitor, etc.
  • One or more of the commercially available corrosion inhibitors are combined.
  • Duan Xiaoyun Li Pengjiang used formaldehyde, cyclohexylamine and acetophenone as main raw materials to synthesize Mannich base corrosion inhibitors by Mannich reaction, and studied the synthesis of Mannich bases by formaldehyde, cyclohexylamine and acetophenone. Effect of Corrosion Inhibition Performance [Section Xiaoyun, Li Pengjiang. A Study on Synthesis of Mannich Base Corrosion Inhibitor. Chemical Technology and Development.
  • Chinese patent CN 100577877C discloses a method for synthesizing Mannich base steel corrosion inhibitor mother liquor and a steel corrosion inhibitor mother liquor, which is passed through a secondary amine, an aldehyde and a mercapto group, a cycloalkyl group, an aromatic group or a halogen in an aqueous medium.
  • CN 101451242 A "High temperature acidification inhibitor for Cr-containing oil pipes” discloses an acid corrosion inhibitor,
  • the composition of the main agent A is: 25 parts to 35 parts of quinoline quaternary ammonium salt or quinoline derivative quaternary ammonium salt, 5 parts to 10 parts of potassium iodide and 40 parts to 60 parts of organic solvent methanol or formaldehyde.
  • the composition of the auxiliary B is: 30 parts to 50 parts of Mannich base, 15 parts to 35 parts of propynyl alcohol, 5 parts to 15 parts of chromium chloride and 20 parts to 35 parts of formaldehyde.
  • a Mannich base type curing agent which synthesizes an epoxy system or a polyurethane system with a phenol compound, formaldehyde and at least one polyamine, in order to make the phenol compound as complete as possible The reaction does not leave, resulting in poor environmental friendliness of the product, and an excess of amine is used in the patent; the patent disclosed in CN 101182296A also reports a curing agent for epoxy or polyurethane systems based on dicyclohexanone, formaldehyde and At least one polyamine is synthesized by a Mannich reaction, and an amine ratio excess is also employed.
  • a Mannich type corrosion inhibitor ie, a ketone aldehyde amine corrosion inhibitor
  • a Mannich type corrosion inhibitor has a ketone, an aldehyde, an amine (monoamine) in a ratio of 1:1:1 or a ketone, an aldehyde, an amine (diamine).
  • the ratio is 2:2:1. Therefore, the obtained Mannich base is a linear structure, and its adsorption center is distributed at one end or both ends of the molecule.
  • the linear Mannich type corrosion inhibitor meets the metal wall surface, it is expressed as a side.
  • the object of the present invention is to provide a Mannich base decalcification inhibitor, which is a decalcification retardation of a multi-branched space-shaped Mannich base or a chiral Mannich base corrosion inhibitor component.
  • the amine or secondary amine group is subjected to Mannich reaction with a ketone or an aldehyde, respectively, that is, a functional group grafting on a plurality of amine groups is sufficiently utilized by an organic polyamine to obtain a multi-branched Mannich base corrosion inhibitor structure.
  • Another object of the present invention is to provide a method for preparing a Mannich base decalcification inhibitor, which is a Mannich base corrosion inhibition group comprising 10 to 80% of the total weight of the Mannich base decalcification inhibitor.
  • a Mannich base decalcification inhibitor which is a Mannich base corrosion inhibition group comprising 10 to 80% of the total weight of the Mannich base decalcification inhibitor.
  • One or more components of the imidazoline or alkynyloxymethylamine corrosion inhibitor are combined.
  • the preparation process is simple, the reaction conditions are mild, and the energy consumption is small.
  • Mannich base decalcification inhibitor which is prepared by the following steps: 1 Preparation of Mannich base corrosion inhibition component: 3 to 7 moles of ketone, 3 ⁇ 7 moles of aldehyde is added to the reaction vessel, the pH is adjusted to 2 ⁇ 6 with acid, the temperature is controlled at 20-50 ° C, and stirred for 20-30 minutes; under stirring, the 1 mole of organic polyamine and organic solvent are stirred. Adding to the reaction kettle, or adding the pH-adjusted ketone, aldehyde and organic solvent to the organic polyamine, controlling the temperature at 60-90 ° C, the reaction time is 1-3 hours, after the reaction is completed, the system is under nitrogen protection.
  • the ketone is one or a combination of two or more of an aliphatic ketone, an alicyclic ketone, and an aromatic ketone.
  • the cyclohexanone in the alicyclic ketone includes cyclohexanone, cyclopentanone, cycloheptanone, o-methylcyclohexanone, p-methylcyclohexanone, 2-methylcyclopentanone, 2-ethylcyclopentanone , 3-ethylcyclopentanone; fatty ketones, aromatic ketones and other alicyclic ketones can be expressed as:
  • 1 2 each independently represent a d-c 6 alkyl group, a C 6 -C 9 linear or branched aromatic group, and a C 5 -C 9 linear or branched cyclic fluorenyl group.
  • the aldehyde is formaldehyde or a compound polyoxymethylene which is capable of dissociating formaldehyde, preferably formaldehyde.
  • the organic polyamine is an organic compound containing three or more primary and/or secondary amine groups, and is diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptaamine. One or more of the components are combined.
  • the imidazoline corrosion inhibitor has a molecular weight of from 10 to 750.
  • the alkynyloxyamine corrosion inhibitor is alkynyloxymethylamine, alkynyloxymethylbenzylammonium chloride, isopropyldipropynyloxymethylamine, butyldipropynyloxymethylamine, ring Ethyldipropynyloxymethylamine, n-hexyldipropynyloxymethylamine, octyldipropynyloxymethylamine,decyldipropynyloxymethylamine,dodecyldipropynyloxy One or a combination of two or more components of a group amine, tetradecyldipropynyloxymethylamine.
  • the raw material may be added by adding an organic polyamine to the ketone or the aldehyde, or by adding a ketone or an aldehyde to the organic polyamine, but the preferred method is to ketone.
  • An organic polyamine is added to the aldehyde.
  • the reaction is carried out by adding an organic solvent in methanol, ethanol or petroleum ether, preferably the solvent is ethanol; and the acid used in the process of adjusting the pH is one of hydrochloric acid, formic acid and acetic acid, preferably hydrochloric acid.
  • Another technical solution provided by the present invention is to provide a method for using a Mannich base decalcification inhibitor, which comprises adding 30 to 2000 ⁇ ⁇ / ⁇ (relative to a corrosive medium) to the corrosive medium and uniformly mixing the corrosion inhibitor.
  • the corrosive medium is an aqueous solution of a water-soluble acid corrosive medium containing a water-soluble inorganic salt, in particular, a desalting crude oil of a refinery below 160 ⁇ , a salt, an acid, and a water mixed medium.
  • the corrosive medium is: a mixed aqueous solution of a water-soluble inorganic salt and a water-soluble acid.
  • the water-soluble inorganic salt is one or more components of a soluble potassium salt, a sodium salt or a magnesium salt;
  • the water-soluble acid is a water-soluble inorganic acid and a water-soluble organic acid, and may be hydrochloric acid, hydrofluoric acid, formic acid or acetic acid.
  • propionic acid and acetic anhydride is a mixed aqueous solution of a water-soluble inorganic salt and a water-soluble acid.
  • composition of the following Mannich base corrosion-inhibiting component and the auxiliary corrosion-inhibiting component is based on the total weight of the Mannich base decalcification inhibitor.
  • the structural formula is 40% based on the total weight of the Mannich base decalcification inhibitor. An average molecular weight of 340, and the total weight percent of Mannich base decalcification inhibitor
  • Mannich base decalcification inhibitor 30% of the total weight percent of Mannich base decalcification inhibitor is n- ⁇ k cyclopentanoic acid imidazoline corrosion inhibitor with an average molecular weight of 310, and Mannich base decalcification inhibitor
  • the total weight percentage is 20% of acetylene methyl benzyl ammonium chloride, 20% tetradecyl dipropyne oxymethylamine corrosion inhibitor according to the total weight percentage of Mannich base decalcification inhibitor Combination, blending time 3h.
  • the total weight percentage of decalcification inhibitor is the total weight percentage of decalcification inhibitor.
  • the oleic acid imidazoline corrosion inhibitor and 10% isopropyldipropynyloxymethylamine inhibitor as a total weight percentage of Mannich base decalcification inhibitor were blended for 1.5 h.
  • a naphthenic acid imidazoline corrosion inhibitor having an average molecular weight of 750 and 25% of butyl dipropynyloxymethylamine based on the total weight of the Mannich base decalcification inhibitor, decalcified by Mannich base
  • the total weight percent of corrosion inhibitor is 25% of the decatilyldipropyne oxymethylamine corrosion inhibitor blending time, blending time 2.5h.
  • the structural formula of 10% of the total weight of the etchant is ⁇ 2 of the benzoic acid imidazoline slow decalcification inhibitor as a total weight percentage of 15% of the structural formula is
  • the cyclopentanoic acid imidazoline corrosion inhibitor with an average molecular weight of 310 was blended for 3 hours.
  • the system was heated to 11 (TC, under nitrogen protection, and the reaction water was removed to obtain a Mannich base corrosion-inhibiting component; After the temperature of the Mannich base corrosion inhibitor of 70% of the total weight of the Mannich base decalcification inhibitor is lowered to 50 , the decalcification inhibition by Mannich base is added under normal pressure with stirring.
  • the total weight percentage of the agent is 10% of cycloethyldipropynyloxymethylamine and 20% of the total weight percent of the Mannich base decalcification inhibitor is dodecyldipropynyloxymethylamine.
  • the etchant was blended and the blending time was 2 h.
  • the total weight percentage of cadaveric Mannich base decalcification inhibitor was 20% of the dimethylacetic acid imidazoline corrosion inhibitor of the formula H 2 C—CH 2 H , and the blending time was lh.
  • Corrosion inhibitor (Example 1): 10% Mannich base corrosion inhibitor + 9 ⁇ % auxiliary corrosion inhibitor;
  • Corrosion inhibitor (Example 5): 50% primary corrosion inhibitor + 50% auxiliary corrosion inhibitor;
  • Example 24 125 300 99. 5S 0. 37
  • Example 25 130 500 99. 50 0. 62
  • Example 26 130 800 99. 63 0. 45
  • Example 27 140 1000 99. 56 0. 62
  • Example 28 140 1200 99 62 0. 52
  • Example 29 150 1500 99. 52 0. 71
  • Example 30 160 1700 99. 49 0. 79
  • Example 31 160 2000 99. 19 1.
  • Corrosion inhibitor (Example 10): 80% primary corrosion inhibitor + 20% auxiliary corrosion inhibitor;
  • Corrosion material 16MnR
  • the corrosion rate of the 16MnR material can reach 90% or more.
  • Example 42 20 80 1 2000 93. 25 9. 51 Example 43 10 60 30 1 00 93. 77 8. 70 Example 44 15 50 35 1000 94. 82 8. 1 1 Example 45 5 30 65 700 94. 97 6. 63 Example 46 3 10 87 600 96. 03 5. 84 Example 47 2 5 93 400 99. 10 0. 82 Example 48 1 2. 5 96. 5 200 93. 18 4. 73 Example 49 0. 5 1. 0 98. 5 100 92. 56 3. 60 Example 50 0. 1 0. 5 99. 4 80 92. 23 3. 22 Example 51 1 10 90 50 87. 45 4. 14 Example 52 5 1 95 30 92. 10 0. 97 Examples 42 to 52 show: Corrosion inhibition rate of 16MnR for 30 ⁇ 200 ( ⁇ g/g Mannich base decalcification inhibitor) in corrosive media with different concentrations Both can reach more than 90%.
  • the present invention adopts the above technical solutions, and has the following advantages compared with the prior art:
  • the corrosion inhibitor prepared by the invention adopts an organic polyamine containing three or more primary amino groups and/or secondary amine groups as an amine component of the main ingredient reaction raw material, and the organic polyamine is added to the excess ketone and aldehyde by adding the organic polyamine.
  • At least three primary and/or secondary amine groups on the organic polyamine are subjected to a Mannich reaction in a ketone or an aldehyde, and the organic polyamine is used to carry out functional group grafting on a plurality of amine groups to obtain a plurality of
  • the Mannich base corrosion inhibitor of the branched space shape increases the adsorption center of the obtained product, and can form multi-point adsorption with the metal surface, and the formed adsorption film is firm and has strong adsorption force.
  • the molecular shape of the space shape Mannich base corrosion inhibitor is larger than that of the prior art linear Mannich base.
  • the Mannich base decalcification inhibitor prepared by using the main agent overcomes the disadvantages of the prior art that the corrosion inhibitor has few adsorption centers, a single adsorption group, and a weak adsorption force with the metal surface.
  • the decalcification inhibitor can It is effectively compounded with crude oil demulsifier and crude oil decalcifying agent. It has synergistic effect, stable performance, strong adsorption, high film forming strength, high film compactness and corrosion inhibition rate of over 90%, which can meet the anti-corrosion requirements of equipment and equipment. Moreover, the corrosion inhibitor is simple and easy to produce, and the energy consumption is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明涉及一种曼尼希碱脱钙缓蚀剂及其制备和应用;按曼尼希碱脱钙缓蚀剂总重量百分比计,由10〜80%的曼尼希碱缓蚀组分和余量的咪唑啉类、炔氧基胺类缓蚀剂中的一种或两种以上组分组合而成;曼尼希碱缓蚀剂组分是由1摩尔含有三个以上伯胺基和/或仲胺基的有机多胺与3〜7摩尔酮、3〜7摩尔醛通过曼尼希反应制备而成;咪唑啉类缓蚀剂分子量为110~750;该脱钙缓蚀剂能与原油破乳剂、原油脱钙剂有效复配,协同作用,性能稳定,吸附力强,成膜强度高,膜致密性高,缓蚀率能够达到90%以上,特别适用于抑制160°C以下炼厂原油脱盐、脱水装置盐、酸、水混合介质对钢铁的腐蚀。

Description

曼尼希碱脱钙缓蚀剂及其制备和应用
技术领域
本发明涉及一种曼尼希碱脱钙缓蚀剂及其制备和应用。
背景技术
随着三采技术的广泛应用, 原油性质越来越差, 高含盐、 高含酸的劣质原油比例 愈来愈大。当炼厂加工高钙稠油时, 会产生催化剂失活、设备内结垢和结焦倾向加剧, 同时导致焦化工艺装置焦炭产品灰分高、 品质低的问题, 对炼油装置的安全运行和企 业经济效益的提升带来较大的影响。 由于脱金属工艺所使用的脱金属剂为酸类化合 物, 且在实施脱钙工艺的过程中也会衍生出一些酸性产物, 这些酸性物质和脱除的盐 在高温条件下共存时, 多种腐蚀效应叠加, 使腐蚀速率呈几何倍数增长, 对生产装置 中金属材质产生异常剧烈的腐蚀。 采用高效缓蚀剂防腐, 可以在不进行装置改造情况 下实施, 成本低, 是一种简单易行的防腐措施。 曼尼希碱作为缓蚀剂应用始于上世纪
70年代, 最初用作防冻溶液中的防腐剂, 后来用于处理石油气储存器内壁。 随着石油 勘探和开采中井深增加, 油井酸化增产原油技术的普遍应用, 对高温酸化缓蚀剂的需 求使得曼尼希碱型缓蚀剂的应用得到推广。
有关对比文献和专利报道主要有:
CN 1224078A, CN 1231347A分别介绍了一种只能够抑制钢铁在单纯盐水中腐蚀的 缓蚀剂; CN 1388271A介绍了一种用于高温酸性介质 ( 16CTC以下对于 20%盐酸或土 酸) 中的钢铁缓蚀剂及其制备方法。 ZL200610112532X介绍了一种可用于炼厂原油脱 盐、 脱水装置盐、 酸、 水混合介质的缓蚀剂及其制备方法, 是由 10〜99. 5% ( wt %) 的主缓蚀剂与余量的辅助缓蚀剂两种组分组合而成。其主缓蚀剂是利用硼酸与有机胺 合成的高温有机酸缓蚀剂, 辅助缓蚀剂为酮醛胺类缓蚀剂、 咪唑啉类缓蚀剂、 炔氧甲 基胺类缓蚀剂等市售缓蚀剂中的一种或两种以上组分组合而成。
段晓云, 李朋江以甲醛、 环己胺、 苯乙酮为主要原料, 利用 Mannich 反应合成 Mannich碱类缓蚀剂, 研究了甲醛、 环己胺、 苯乙酮各原料配比对合成 Mannich碱类 缓蚀剂缓蚀性能的影响 【段晓云, 李朋江.一种 Mannich碱类缓蚀剂合成的研究.化工 技术与开发.2008,37(9): 11-12]; 文献" YZ-1酸化缓蚀剂的合成及其性能 "报道了一种 以甲醛、 丙酮和乙二胺为原料, 经过 Mannieh反应合成的曼尼希碱酸化缓蚀剂 YZ-1。 在盐酸、 氢氟酸和土酸中均有较好的缓蚀效果。 其耐温性高达 150Ό 【郑海洪, 李建 波, 莫治兵, 等. YZ-1 酸化缓蚀剂的合成及其性能.石油化工腐蚀与防护 .2008,25(4 8-10 ]; 西卤石油大学 ffl发 ¾, 李建波, 颜紫霖, 等以甲醛、 苯乙酮、 乙二胺为主要原 料, 通过曼尼希反应制得曼尼希碱, 再与氯化苄进行季铵化得到曼尼希碱季铵盐, 所 得缓蚀剂产品酸溶性较好, 与其他酸化添加剂配伍性好, 无毒, 能抗高温, 在不同酸 液中均表现出了优良的缓蚀性能【田发国, 李建波, 颜紫霖, 等.一种新型油井高温酸 化缓蚀剂 SYB 的制备及性能评价.石油与天然气化工.2009, 38(5): 426-429]; "一种 曼尼希碱型盐酸酸化缓蚀剂的研制"一文报道了利用环己胺研制的一种低成本曼尼希 碱。 该曼尼希碱可用作油气井酸化缓蚀剂的主剂, 腐蚀试验表明, 在 60°C, 20%的工 业盐酸中只需加入 0.5 %, 即可满足石油天然气行业标准中酸化缓蚀剂一级品的要求 【王京光, 于洪江, 李谦定.一种曼尼希碱型盐酸酸化缓蚀剂的研制.西安石油大学学 报: 自然科学版.2007, 22(3): 77-79]; 中国专利 CN 100577877C公开一种合成曼尼 希碱钢铁缓蚀剂母液的方法及钢铁缓蚀剂母液, 该方法是在水介质中通过仲胺、 醛和 垸基、 环烷基、 芳香基或卤代垸基、 环烷基、 芳香基酮的曼尼希反应, 制备钢铁缓蚀 剂; CN 101451242A"—种用于含 Cr油管的高温酸化缓蚀剂"公开了一种酸化缓蚀剂, 其主剂 A组成为: 25份〜 35份喹啉季铵盐或喹啉衍生物季铵盐, 5份〜 10份碘化钾 和 40份〜 60份有机溶剂甲醇或甲醛。助剂 B组成为: 30份〜 50份曼尼希碱, 15份〜 35份丙炔醇, 5份〜 15份氯化铬和 20份〜 35份甲醛。使用时 A : B=2〜1.5: 1; CN 1761715A 以酚类化合物、 甲醛和至少一种多胺合成了环氧体系或聚氨酯体系的曼尼 希碱型固化剂, 为使酚类化合物尽量完全反应而不残留致使产物环境友好性差, 专利 中采用过量的胺; CN 101182296A公开的专利也报道了一种用于环氧体系或聚氨酯体 系的固化剂, 方法是基于二聚环己酮、 甲醛及至少一种多胺通过曼尼希反应合成, 同 样采取胺过量的原料配比。 现有技术中曼尼希型缓蚀剂 (即酮醛胺类缓蚀剂) 合成中酮、 醛、 胺 (单胺) 配 比为 1 : 1 :1或酮、 醛、 胺(二胺)配比为 2:2:1, 因此, 所得到的曼尼希碱为线形结构, 其吸附中心分布于分子一端或两端, 当线形曼尼希型缓蚀剂遇见金属壁面时, 表现为 端基吸附, 含吸附中心的一端与金属形成化学或物理吸附, 另一端向外伸展形成疏水 层。 线形结构曼尼希型缓蚀剂在金属表面成膜的缺陷在于: 缓蚀剂与金属壁面因单点 吸附而结合力差、 膜强度低、 膜致密性差, 尤其在已被侵蚀或不光洁的金属壁面, 难 以成膜或无法成膜, 缓蚀能力差。 发明内容 本发明的目的在于提供一种曼尼希碱脱钙缓蚀剂, 是以多支化的空间体形的曼尼 希碱或称手性曼尼希碱缓蚀组分为主剂的脱钙缓蚀剂, 其曼尼希碱缓蚀组分是以酮、 醛和含有三个以上伯胺基和 (或)仲胺基的有机多胺经曼尼希反应制得, 且其原料摩 尔比为: 酮 : 醛 : 多胺 (三个以上伯胺基和 /或仲胺基) = X1 : X2 : 1 ( X,>2, X2>2 ), 使有机多胺上至少三个伯胺基或仲胺基分别与酮、 醛进行曼尼希反应, 即充分利 用有机多胺进行多个胺基上的官能团接枝, 得到多支化的曼尼希碱缓蚀剂结构。
本发明的另一目的在于是提供一种曼尼希碱脱钙缓蚀剂的制备方法, 是由占曼尼 希碱脱钙缓蚀剂总重量 10〜80%的曼尼希碱缓蚀组分和余量咪唑啉类、 炔氧甲基胺 类缓蚀剂中的一种或两种以上组分组合而成。制备工艺简单, 反应条件温和, 能耗小。
本发明提供的技术方案之一是提供一种曼尼希碱脱钙缓蚀剂, 其制备方法为: ① 曼尼希碱缓蚀组分的制备: 将所述的 3〜7摩尔酮、 3~7摩尔醛加入反应釜, 用酸调节 pH值至 2〜6, 控制温度为 20~50°C, 搅拌 20~30分钟; 在搅拌条件下, 将所述的 1摩 尔有机多胺及有机溶剂加入反应釜中, 或者将调节好 pH值的酮、 醛及有机溶剂加入 有机多胺中, 控制温度 60~90°C, 反应时间为 1~3小时, 反应完毕后, 在氮气保护下 将体系加热至 110Ό, 去除反应水; ②将占曼尼希碱脱钙缓蚀剂重量百分比 10〜80% 的曼尼希碱缓蚀组分降温至 40〜50°C后,在常压下,边搅拌边加入占曼尼希碱脱钙缓 蚀剂重量百分比为 20〜90%的咪唑啉类、炔氧甲基胺类缓蚀剂中的一种或两种以上辅 助缓蚀剂调合, 调合时间 l〜3h。
所述的酮是脂肪酮、 脂环酮、 芳香酮中的一种或两种以上组份组合而成。 脂环酮 中的环内酮包括环己酮, 环戊酮, 环庚酮, 邻甲基环己酮, 对甲基环己酮, 2-甲基环 戊酮, 2-乙基环戊酮, 3-乙基环戊酮; 脂肪酮、 芳香酮和其它脂环酮可以表示为下式:
Figure imgf000004_0001
其中 和 1 2各自独立代表 d~c6烷基, C6〜C9直链或支链的芳香基, C5~C9 直链或支链的环垸基。
所述的醛是甲醛或者是可以解离出甲醛的化合物聚甲醛, 优选为甲醛。
所述的有机多胺为含有三个以上伯胺基和(或)仲胺基的有机化合物, 是二乙烯 三胺、 三乙烯四胺、 四乙烯五胺、 五乙烯六胺、 六乙烯七胺中的一种或两种以上组分 组合而成。 所述的咪唑啉类缓蚀剂分子量为 1 10〜750。
所述的炔氧基胺类缓蚀剂是炔氧甲基胺、 炔氧甲基苄基氯化铵、 异丙基二丙 炔氧甲基胺、 丁基二丙炔氧甲基胺、 环乙基二丙炔氧甲基胺、 正己基二丙炔氧甲 基胺、辛基二丙炔氧甲基胺、十烷基二丙炔氧甲基胺、十二垸基二丙炔氧甲基胺、 十四垸基二丙炔氧甲基胺中的一种或两种以上组分组合而成。
其多支化曼尼希碱缓蚀剂的制备过程中原料的加入方式可以是向酮、 醛中加入 有机多胺, 也可以是向有机多胺中加入酮、 醛, 但优选方式为向酮、 醛中加入有机多 胺。 反应加入甲醇, 乙醇, 石油醚中的一种有机溶剂, 优选溶剂为乙醇; 调节 pH值过程所用的酸为盐酸、 甲酸、 乙酸中的一种, 优选为盐酸。
本发明提供的另一技术方案是提供一种曼尼希碱脱钙缓蚀剂的使用方法,将 30〜 2000μ§/§ (相对于腐蚀介质)所述缓蚀剂添加到腐蚀介质中混合均匀, 腐蚀介质为包 含水溶性无机盐的水溶性酸腐蚀介质的水溶液, 尤其是 160Ό以下炼厂原油脱盐、 脱 水装置盐、 酸、 水混合介质。
所述的腐蚀介质为: 水溶性无机盐和水溶性酸的混合水溶液。 水溶性无机盐为可 溶性钾盐、 钠盐、 镁盐中的一种或两种以上组分; 水溶性酸为水溶性无机酸和水溶性 有机酸, 可以是盐酸、 氢氟酸、 甲酸、 乙酸、 丙酸和乙酐中的一种或两种以上组分。 具体实施方式
以下曼尼希碱缓蚀组分、辅助缓蚀组分的组成按曼尼希碱脱钙缓蚀剂总重量百分 比计。
实施例 1 :
分别将 3摩尔环己酮和甲醛加入反应釜, 用盐酸调节 pH值至 2, 控制温度为 30± 5。C, 搅拌 20分钟; 在搅拌条件下, 将 1摩尔二乙烯三胺及 1.5摩尔有机溶剂甲醇加 入反应釜中, 控制温度 60°C, 反应时间为 3小时, 反应完毕后, 在氮气保护下将体系 加热至 110°C, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙缓蚀 剂总重量百分比计为 10%的曼尼希碱缓蚀组分降温至 40Ό后,在常压下,边搅拌边加
H
HN A、N
入按曼尼希碱脱钙缓蚀剂总重量百分比计为 40%的结构式为 H2c——in2的甲酸咪唑啉 缓蚀剂, 及按曼尼希碱脱钙缓蚀剂总重量百分比计为 50%的炔氧甲基胺缓蚀剂调合, 调合时间 l h。 实施例 2:
分别将 6摩尔苯乙酮、 屮醛加入反应釜, 川乙酸调节 pH 3 , 控制温度为 25 + 5 V , 搅拌 25分钟; 在搅拌条件下, 将 1摩尔五乙烯六胺及 2摩尔有机溶剂乙醇加入 反应釜中, 控制温度 70°C, 反应时间为 2小时, 反应完毕后, 在氮气保护下将体系加 热至 110Ό, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙缓蚀剂 总重量百分比计为 20%的曼尼希碱缓蚀组分降温至 50Ό后 边加入
按曼尼希碱脱钙缓蚀剂总重量百分比计为 40%的结构式为
Figure imgf000006_0001
平均分 子量为 340 的 蚀剂, 以及按曼尼希碱脱钙缓蚀剂总重量百分比计为
40%的结构式为
Figure imgf000006_0002
的油酸咪唑啉缓蚀剂调合, 调合时间 2h。
实施例 3:
将 1摩尔四乙烯五胺加入反应釜, 在搅拌条件下, 加入温度为 35±5Ό的用盐酸调 节 pH值至 4的 5摩尔环己酮、 2摩尔甲醛和 3摩尔三聚甲醛 (当量甲醛) 、 1摩尔有 机溶剂乙醇, 控制温度 80°C, 反应时间为 1小时, 反应完毕后, 在氮气保护下将体系 加热至 110°C, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙缓蚀 剂总重量百分比计为 30%的曼尼希碱缓蚀组分降温至 45Ό后,在常压下,边搅拌边加
入按曼尼希碱脱钙缓蚀剂总重量百分比计为 30%的结构式为 n— <k 平均分 子量为 310 的环垸酸咪唑啉缓蚀剂, 以及按曼尼希碱脱钙缓蚀剂总重量百分比计为 20%的炔氧甲基苄基氯化铵、按曼尼希碱脱钙缓蚀剂总重量百分比计为 20%十四烷基二 丙炔氧甲基胺缓蚀剂调合, 调合时间 3h。
实施例 4:
分别将 4摩尔苯乙酮、 4甲醛加入反应釜, 用盐酸调节 pH值至 6, 控制温度为 45 ±5 °C, 搅拌 30分钟; 在搅拌条件下, 将 1摩尔三乙烯四胺及 0.5摩尔有机溶剂乙醇 加入反应釜中, 控制温度 90Γ, 反应时间为 1.5小时, 反应完毕后, 在氮气保护下将 体系加热至 110Ό, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙 蚀剂总重量 ί分比计为 40%的曼尼希碱绥蚀组分降温 在常 ίμ:卜-, 边翻' -.
1- 1 分比 为 10%的结构式为
Figure imgf000007_0001
430的环烷酸咪唑啉缓蚀剂,按曼尼希碱
脱钙缓蚀剂总重量百分比计为
Figure imgf000007_0002
的油酸咪唑啉缓蚀剂、以及按曼尼希碱脱钙缓蚀剂总重量百分比计为 10%的异丙基二 丙炔氧甲基胺缓蚀剂调合, 调合时间 1.5h。
实施例 5:
分别将 7摩尔 2-甲基环戊酮和 7摩尔甲醛加入反应釜, 用乙酸调节 pH值至 5, 控制温度为 20°C, 搅拌 20分钟; 在搅拌条件下, 将 1摩尔六乙烯七胺及 3摩尔有机 溶剂石油醚加入反应釜中, 控制温度 90°C, 反应时间为 2.5小时, 反应完毕后, 在氮 气保护下将体系加热至 110Ό, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼 尼希碱脱钙缓蚀剂总重量百分比计为 50%的曼尼希碱缓蚀组分降温至 45Ό后,在常压 下, 边搅拌边加入按曼尼希碱脱钙缓蚀剂总重量百分比计为 5%的结构式为
钙缓蚀剂总重量
Figure imgf000007_0003
, 平均分子量为 750 的环烷酸咪唑啉缓蚀剂以及按曼尼希碱脱钙缓蚀剂总重量百分比计为 25%的丁基二 丙炔氧甲基胺、按曼尼希碱脱钙缓蚀剂总重量百分比计为 25%的十垸基二丙炔氧甲基 胺缓蚀剂调合, 调合时间 2.5h。
实施例 6:
分别将 2摩尔戊酮、 2摩尔丙酮和 5摩尔甲醛加入反应釜, 用盐酸调节 pH值至 2, 控制温度为 30°C, 搅拌 25分钟; 在搅拌条件下, 将 1摩尔三乙烯四胺及 3摩尔有机 溶剂乙醇加入反应釜中, 控制温度 65 °C, 反应吋间为 2 小时, 反应完毕后, 在氮气 保护下将体系加热至 1 10Γ, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼 希碱脱钙缓蚀剂总重量百分比计为 60%的曼尼希碱缓蚀组分降温至 40Ό后, 在常压 下, 边搅拌边加入按曼尼希碱脱钙缓蚀剂总重量百分比计为 15%的结构式为
Figure imgf000008_0001
按曼尼希碱脱钙缓
蚀剂总重量百分比计为 10%的结构式为
Figure imgf000008_0002
Η2 的苯甲酸咪唑啉缓 脱钙缓蚀剂总重量百分比计为 15%的结构式为
Figure imgf000008_0003
平均分子量为 310 的环垸酸咪唑啉缓蚀剂调合, 调合时间 3h。
实施例 7:
分别将 4摩尔丁酮 -2、 6摩尔甲醛加入反应釜, 用盐酸调节 pH值至 3.5, 控制温度 为 40°C, 搅拌 30分钟; 在搅拌条件下, 将 1摩尔二乙烯三胺及 4摩尔有机溶剂甲醇 加入反应釜中, 控制温度 60Ό, 反应时间为 2.5小时, 反应完毕后, 在氮气保护下将 体系加热至 11(TC, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙 缓蚀剂总重量百分比计为 70%的曼尼希碱缓蚀组分降温至 50Ό后,在常压下,边搅拌 边加入按曼尼希碱脱钙缓蚀剂总重量百分比计为 10%的环乙基二丙炔氧甲基胺以及 按曼尼希碱脱钙缓蚀剂总重量百分比计为 20%的十二烷基二丙炔氧甲基胺缓蚀剂调 合, 调合时间 2h。
实施例 8:
分别将 0.2摩尔四乙烯五胺和 0.8摩尔二乙烯三胺加入反应釜, 在搅拌条件下, 加入 温度为 45°C的用盐酸调节 pH值至 5.5的 3.5摩尔戊酮、 3.5摩尔甲醛和 2.5摩尔有机溶 剂乙醇, 控制温度 90Ό, 反应时间为 2小时, 反应完毕后, 在氮气保护下将体系加热 至 110Ό, 去除反应水, 得到曼尼希碱缓蚀组分; 然后, 将按曼尼希碱脱钙缓蚀剂总 重量百分比计为 80%的曼尼希碱缓蚀组分降温至 40°C后,在常压下,边搅拌边加入按 H3C C I CH3
尸 曼尼希碱脱钙缓蚀剂总重量百分比计为 20%的结构式为 H2C— CH2 H 的二 甲基乙酸咪唑啉缓蚀剂调合, 调合时间 lh。
实施例 9〜: 19
缓蚀剂 (实施例 1): 10%曼尼希碱缓蚀组分 +9ϋ%辅助缓蚀剂;
腐蚀体系: NaCl含量 1%+有机酸 (甲酸:乙酸:丙酸 = 1:1:1) 3%+水 96% 腐蚀材质: 16MnR
腐蚀时间: 24小时
不同温度下缓蚀剂实施例的评价结果
Figure imgf000009_0001
实施例 20〜31
缓蚀剂 (实施例 5): 50%主缓蚀剂 +50%辅助缓蚀剂;
腐蚀体系:无机盐(KCI:NaCl = l:l)含量 3%+有机酸(甲酸:丙酸:乙酐二 1:1:1) 含量 1% +水 96%
腐蚀材质: 16MnR
腐蚀时间: 24小时
表 3 不同温度下缓蚀剂实施例的评价结果
Figure imgf000009_0002
实施例 23 125 200 0.
实施例 24 125 300 99. 5S 0. 37 实施例 25 130 500 99. 50 0. 62 实施例 26 130 800 99. 63 0. 45 实施例 27 140 1000 99. 56 0. 62 实施例 28 140 1200 99. 62 0. 52 实施例 29 150 1500 99. 52 0. 71 实施例 30 160 1700 99. 49 0. 79 实施例 31 160 2000 99. 19 1. 27 实施例 32〜41
缓蚀剂 (实施例 10) : 80%主缓蚀剂 +20%辅助缓蚀剂;
腐蚀体系: MgCL含量 1 % +无机酸 (盐酸:氢氟酸 = 1 : 1 ) 含量 20 % +水 79 % 腐蚀材质: 16MnR
腐蚀时间: 24小时
表 4 不同温度下缓蚀剂实施例的评价结果
Figure imgf000010_0001
到 45~160°C、包含水溶性无机盐的水溶性酸腐蚀介质的水溶液中,对 16MnR材质的缓 蚀率均可以达到 90%以上。
实施例 42〜52
腐蚀材质: 16MnR
腐蚀时间: 24小时
表 5 不同浓度腐蚀介质的应用实施例的评价结果
Figure imgf000010_0002
实施例 42 20 80 1 2000 93. 25 9. 51 实施例 43 10 60 30 1 00 93. 77 8. 70 实施例 44 15 50 35 1000 94. 82 8. 1 1 实施例 45 5 30 65 700 94. 97 6. 63 实施例 46 3 10 87 600 96. 03 5. 84 实施例 47 2 5 93 400 99. 10 0. 82 实施例 48 1 2. 5 96. 5 200 93. 18 4. 73 实施例 49 0. 5 1. 0 98. 5 100 92. 56 3. 60 实施例 50 0. 1 0. 5 99. 4 80 92. 23 3. 22 实施例 51 1 10 90 50 87. 45 4. 14 实施例 52 5 1 95 30 92. 10 0. 97 实施例 42〜52表明: 在不同浓度腐蚀介质中, 30〜200(^g/g的曼尼希碱脱钙缓 蚀剂对 16MnR材质的缓蚀率均可以达到 90%以上。
以上技术特征构成了本发明的实施例, 其具有较强的适应性和较佳的实施效果, 可根据实际需要增减非必要的技术特征, 来满足不同情况的需求。
工业实用性
本发明采用以上技术方案, 与现有技术相比, 具有以下优点:
本发明所制备的缓蚀剂, 其主剂反应原料的胺组分采用含有三个以上伯胺基和 / 或仲胺基的有机多胺, 通过将有机多胺加入到过量的酮、 醛中的方式, 使有机多 胺上的至少三个伯胺基和 /或仲胺基分别于酮、 醛进行曼尼希反应, 充分利用有机 多胺进行多个胺基上的官能团接枝, 得到多支化空间体型的曼尼希碱缓蚀剂, 增加 了所得产物的吸附中心, 能够与金属表面形成多点吸附, 形成的吸附膜牢固, 吸附力 强。 同时, 空间体形曼尼希碱缓蚀剂分子链长度大于现有技术中的线形曼尼希碱, 当 金属壁面已被侵蚀或金属壁面不光洁时, 空间体形曼尼希碱表现为桥接或多分子缠绕 桥接, 能表现出良好的缓蚀效果。因此, 以其为主剂而制备出的曼尼希碱脱钙缓蚀剂, 克服了现有技术中缓蚀剂吸附中心少,吸附基团单一,与金属表面吸附力不强的缺点。 可适用于包含水溶性无机盐的各种无机酸及有机酸腐蚀介质的水溶液, 特别是 160°C 以下炼厂原油脱盐、脱水装置的盐、酸、水混合介质; 该脱钙缓蚀剂能与原油破乳剂、 原油脱钙剂有效复配, 协同作用, 性能稳定, 吸附力强, 成膜强度高, 膜致密性高, 缓蚀率能够达到 90%以上,可以满足设备及装置防腐要求。且该缓蚀剂生产简便易行, 能耗小。 可用于石油炼制及石油化工加工过程中, 油田污水处理及回注污水系统的管 线和设施, 特别适用于抑制 160Ό以下炼厂原油脱盐、 脱水装置盐、 酸、 水混合介质 对钢铁的腐蚀。

Claims

权 利 要 求
1.一种曼尼希碱脱钙缓蚀剂, 其特征在于: 按曼尼希碱脱钙缓蚀剂总重 S百分比 计, ώ 10〜80 %的多支化的曼尼希碱缓蚀组分和余量的咪唑啉类、 炔氧基胺类缓蚀 剂中的一种或两种以上组分组合而成。
2. 根据权利要求 1所述的曼尼希碱脱钙缓蚀剂, 其特征在于: 所述的多支化的曼 尼希碱缓蚀剂组分是 ώ 1摩尔含有三个以上伯胺基和 /或仲胺基的有机多胺与 3~7摩 尔酮、 3〜7摩尔醛通过曼尼希反应制备而成。
3. 根据权利要求 1 所述的曼尼希碱脱钙缓蚀剂, 其特征在于: 所述的咪唑啉类 缓蚀剂分子量为 1 10~750。
4.根据权利要求 1所述的曼尼希碱脱钙缓蚀剂, 其特征在于: 炔氧基胺类缓蚀剂 是炔氧甲基胺、 炔氧甲基苄基氯化铵、 异丙基二丙炔氧甲基胺、 丁基二丙炔氧甲 基胺、 环乙基二丙炔氧甲基胺、 正己基二丙炔氧甲基胺、 辛基二丙炔氧甲基胺、 十垸基二丙炔氧甲基胺、十二烷基二丙炔氧甲基胺、 十四烷基二丙炔氧甲基胺中 的一种或两种以上组分组合而成。
5.一种权利要求 1所述的曼尼希碱脱钙缓蚀剂的制备方法, 其特征在于-
①多支化的曼尼希碱缓蚀组分的制备:将 3~7摩尔酮、 3-7摩尔醛加入反应釜, 用酸调节 ρΗ值至 2~6, 控制温度为 20~50°C, 搅拌 20~30分钟; 在搅拌条件下, 将 1 摩尔有机多胺及有机溶剂加入反应釜中, 或者将调节好 pH值的酮、醛及有机溶剂加 入有机多胺中, 控制温度 60~90°C, 反应时间为 1~3小时, 反应完毕后, 在氮气保护 下将体系加热至 110°C, 去除反应水;
②将占曼尼希碱脱钙缓蚀剂重量百分比 10〜80 %的多支化的曼尼希碱缓蚀组分 降温至 40〜50Ό后, 在常压下, 边搅拌边加入咪唑啉类、 炔氧甲基胺类缓蚀剂中的一 种或两种以上缓蚀剂调合, 调合时间 l〜3h。
6. 根据权利要求 5所述的曼尼希碱脱钙缓蚀剂的制备方法, 其特征在于: 所述 的酮是脂肪酮、 脂环酮、 芳香酮中的一种或两种以上组份组合而成。
7. 根据权利要求 6所述的曼尼希碱脱钙缓蚀剂的制备方法, 其特征在于: 所述 脂环酮中的环内酮包括环己酮, 环戊酮, 环庚酮, 邻甲基环己酮, 对甲基环己酮, 2-甲基环戊酮, 2-乙基环戊酮, 3-乙基环戊酮; 脂肪酮、 芳香酮或其它脂环酮, 表示 为下式- 其中 和 R2各自独立代表 C ^Cft垸基, C6〜C9 链或支链的芳香基, C5〜C9 直链或支链的环烷基。
8. 根据权利要求 5所述的曼尼希碱脱钙缓蚀剂的制备方法, 其特征在于: 所述的醛是甲醛。
9. 根据权利要求 5所述的曼尼希碱脱丐缓蚀剂的制备方法, 其特征在于: 所述的有机多胺为含有三个以上伯胺基和 /或仲胺基的有机化合物.
10. 根据权利要求 5所述的曼尼希碱脱钙缓蚀剂的制备方法, 其特征在于: 有机 多胺为是二乙烯三胺、 三乙烯四胺、 四乙烯 oc=五胺、 五乙烯六胺、 六乙烯七胺中的一种 或两种以上组分组合而成。
R
11.一种权利要求 1 所述的曼尼希碱脱钙缓蚀剂 2的应用, 其特征在于: 使用过程 中,是按每克腐蚀介质添加 30〜2000 μ g 的曼尼希碱脱钙缓蚀剂添加到腐蚀介质中混 合均匀。
12.根据权利要求 11 所述的曼尼希碱脱钙缓蚀剂的应用, 其特征在于: 所述的腐 蚀介质为水溶性无机盐和水溶性酸的混合水溶液。
13.根据权利要求 11 所述的曼尼希碱脱钙缓蚀剂的应用, 其特征在于: 所述水溶 性无机盐为可溶性钾盐、 钠盐、 镁盐中的一种或两种以上组分。
14. 根据权利要求 11所述的曼尼希碱脱钙缓蚀剂的应用, 其特征在于: 所述水溶 性酸为水溶性无机酸和水溶性有机酸中的一种或两种以上。
15. 根据权利要求 14所述的曼尼希碱脱钙缓蚀剂的应用, 其特征在于: 所述水溶 性无机酸和水溶性有机酸是盐酸、 氢氟酸、 甲酸、 乙酸、 丙酸和乙酐中的一种或两种 以上。
PCT/CN2012/000566 2011-08-19 2012-04-27 曼尼希碱脱钙缓蚀剂及其制备和应用 WO2013026251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2822879A CA2822879C (en) 2011-08-19 2012-04-27 Mannich-base inhibitor for decalcification, preparation method and application thereof
US13/990,389 US9399735B2 (en) 2011-08-19 2012-04-27 Mannich-base inhibitor for decalcification, preparation method and application thereof
AP2013006943A AP3508A (en) 2011-08-19 2012-04-27 Mannich-base inhibitor for decalcification, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110240108.4 2011-08-19
CN201110240108.4A CN102953067B (zh) 2011-08-19 2011-08-19 曼尼希碱脱钙缓蚀剂及其制备和应用

Publications (1)

Publication Number Publication Date
WO2013026251A1 true WO2013026251A1 (zh) 2013-02-28

Family

ID=47745875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000566 WO2013026251A1 (zh) 2011-08-19 2012-04-27 曼尼希碱脱钙缓蚀剂及其制备和应用

Country Status (5)

Country Link
US (1) US9399735B2 (zh)
CN (1) CN102953067B (zh)
AP (1) AP3508A (zh)
CA (1) CA2822879C (zh)
WO (1) WO2013026251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201247A (zh) * 2017-05-24 2017-09-26 广昌达新材料技术服务(深圳)股份有限公司 一种原油脱钙装置和脱钙方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119850B (zh) * 2013-04-24 2016-10-05 长江大学 一种用于盐水介质中的缓蚀剂及其制备方法
CN103865506B (zh) * 2014-02-27 2017-01-11 山东泰和水处理科技股份有限公司 一种油气田高温酸化缓蚀剂及其制备方法
CN103881696B (zh) * 2014-03-11 2016-09-14 山东聚鑫化工有限公司 高水溶性、耐高温曼尼希碱缓蚀剂中间体及制备方法
CN104497599B (zh) * 2014-12-09 2017-05-17 中国石油大学(华东) 一种微表处用沥青乳化剂及其制备方法
CN105885814A (zh) * 2016-04-25 2016-08-24 中国石油集团渤海钻探工程有限公司 一种用于油气井酸化用缓蚀剂及其制备方法
CN106047326B (zh) * 2016-06-03 2019-06-11 中国石油天然气股份有限公司 一种适用于高矿化度、高钡锶环境的co2驱缓蚀阻垢剂
CN108423843A (zh) * 2018-02-06 2018-08-21 兰溪市哥特生物技术有限公司 一种低铬的水质缓蚀修复剂的制备方法
CN112877053B (zh) * 2021-01-18 2023-02-07 西安石油大学 一种用于酸化压裂用中高温缓蚀剂及其制备方法
CN114806530B (zh) * 2021-01-29 2023-05-26 中国石油天然气股份有限公司 一种高温酸化缓蚀剂及其制备方法和应用
CN113136198B (zh) * 2021-04-07 2022-05-20 西安石油大油气科技有限公司 一种用于低渗透油田石油开采酸化用复合型缓冲剂
CN113106457A (zh) * 2021-04-08 2021-07-13 四川瑞冬科技有限公司 一种缓蚀剂及其制备方法
CN115305160A (zh) * 2022-09-01 2022-11-08 上海旭贵科技发展有限公司 一种溶出系统清洗剂及其制备方法和应用
CN117512599B (zh) * 2023-11-17 2024-04-12 武汉三友石化有限公司 一种耐温高缓蚀水溶性缓蚀剂的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1550919C (ru) * 1988-01-12 1992-10-15 Предприятие П/Я А-1785 Консервационный состав ВНИИНМ-ПАВ-31/87
CN1419573A (zh) * 2000-03-24 2003-05-21 范蒂科公司 以烷基二亚丙基三胺为基础的曼尼希碱和其它化合物
CN101182296A (zh) * 2007-12-14 2008-05-21 岳阳昌德化工实业有限公司 一种曼尼希碱及其制备方法和用途
CN102051622A (zh) * 2010-12-28 2011-05-11 西安三环科技开发总公司 碳钢酸化缓蚀剂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092247C (zh) 1998-01-22 2002-10-09 中国科学院福建物质结构研究所二部 抑制钢铁在盐水中腐蚀的缓蚀剂、制备方法及其使用方法
CN1092250C (zh) 1998-04-08 2002-10-09 中国科学院福建物质结构研究所二部 抑制钢铁在食盐中腐蚀的缓蚀剂、制备方法及其使用方法
CN1147622C (zh) 2002-02-22 2004-04-28 新疆石油学院 用于高温酸性介质中的钢铁缓蚀剂及其制备方法
EP1475411A1 (de) 2003-05-05 2004-11-10 Sika Technology AG Mannichbasen und Herstellungsverfahren von Mannichbasen
US20050123437A1 (en) * 2003-12-03 2005-06-09 Cassidy Juanita M. Methods and compositions for inhibiting metal corrosion
WO2007034155A1 (en) * 2005-09-26 2007-03-29 Halliburton Energy Services, Inc. Corrosion inhibitor compositions and associated methods
CN101130702B (zh) * 2006-08-23 2010-07-28 中国石油天然气股份有限公司 炼厂脱盐脱水装置用缓蚀剂及制备和使用方法
CN100577877C (zh) 2007-09-28 2010-01-06 新疆石油学院 合成曼尼希碱钢铁缓蚀剂母液的方法及钢铁缓蚀剂母液
CN101451242B (zh) * 2007-12-04 2010-09-29 中国石油天然气集团公司 一种用于含Cr油管的高温酸化缓蚀剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1550919C (ru) * 1988-01-12 1992-10-15 Предприятие П/Я А-1785 Консервационный состав ВНИИНМ-ПАВ-31/87
CN1419573A (zh) * 2000-03-24 2003-05-21 范蒂科公司 以烷基二亚丙基三胺为基础的曼尼希碱和其它化合物
CN101182296A (zh) * 2007-12-14 2008-05-21 岳阳昌德化工实业有限公司 一种曼尼希碱及其制备方法和用途
CN102051622A (zh) * 2010-12-28 2011-05-11 西安三环科技开发总公司 碳钢酸化缓蚀剂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201247A (zh) * 2017-05-24 2017-09-26 广昌达新材料技术服务(深圳)股份有限公司 一种原油脱钙装置和脱钙方法

Also Published As

Publication number Publication date
CA2822879A1 (en) 2013-02-28
CA2822879C (en) 2018-03-06
CN102953067A (zh) 2013-03-06
US9399735B2 (en) 2016-07-26
AP3508A (en) 2016-01-04
AP2013006943A0 (en) 2013-06-30
US20130256602A1 (en) 2013-10-03
CN102953067B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2013026251A1 (zh) 曼尼希碱脱钙缓蚀剂及其制备和应用
EP2718259B1 (en) Composition and method for reducing hydrate agglomeration
CA2841020C (en) A multi-branched mannich base corrosion inhibitor and preparation method thereof
CN101654303B (zh) 一种适用于油田复杂污水的缓蚀剂及其制造方法
CN102953064B (zh) 曼尼希碱缓蚀中和剂及其制备方法
CN104404531A (zh) 一种复配型无磷水溶性缓蚀剂及其制备方法
CN108048065A (zh) 一种油气井缓蚀剂及其制备方法和应用
CN109355663A (zh) 一种用于油田的缓蚀剂、缓蚀剂的制备方法及其应用
CN105239076A (zh) 一种不对称双季铵盐类二氧化碳缓蚀剂及其制备方法
CN110952098B (zh) 一种集输油管线用咪唑啉聚氧乙烯醚类缓蚀剂及其制备方法
CN103469211A (zh) 一种聚合型咪唑啉缓蚀剂及其制备方法
CN109112548B (zh) 一种抗co2腐蚀集输管线缓蚀剂
US8105987B2 (en) Corrosion inhibitors for an aqueous medium
CN112592705B (zh) 一种生态安全型阻垢缓蚀剂及其制备方法
CN104805444A (zh) 一种低温缓蚀剂及其制备方法
CA2795252A1 (en) Systems and methods for processing glycerol
CN100560801C (zh) 一种水溶性高温有机酸缓蚀剂及其制备方法和使用方法
JPS63183183A (ja) 二酸化炭素腐食抑制組成物とその使用方法
Wang et al. 3-(diethylamino)-1-phenylpropan-1-one as a Corrosion Inhibitor for N80 Steel in Acidization of Petroleum Exploitation
CN110952100A (zh) 一种集输管线预膜用油溶性缓蚀剂及其制备方法
CN112877053B (zh) 一种用于酸化压裂用中高温缓蚀剂及其制备方法
CN114231141A (zh) 一种高压驱盐成膜剂及其制备方法
CN109942493B (zh) 油基硫酰胺基苄基咪唑啉阳离子化合物、其制备、包含其的缓蚀剂、缓蚀剂的制备及应用
CN107190265A (zh) 一种复合咪唑啉缓蚀剂及其制备方法
Jiangshan et al. Research Progress of Mannich Base Corrosion Inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990389

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2822879

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2014).

122 Ep: pct application non-entry in european phase

Ref document number: 12826223

Country of ref document: EP

Kind code of ref document: A1