WO2013025062A2 - 폴리에스테르 원사의 제조 방법 - Google Patents
폴리에스테르 원사의 제조 방법 Download PDFInfo
- Publication number
- WO2013025062A2 WO2013025062A2 PCT/KR2012/006525 KR2012006525W WO2013025062A2 WO 2013025062 A2 WO2013025062 A2 WO 2013025062A2 KR 2012006525 W KR2012006525 W KR 2012006525W WO 2013025062 A2 WO2013025062 A2 WO 2013025062A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester
- yarn
- acid
- dicarboxylic acid
- fabric
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/231—Inflatable members characterised by their shape, construction or spatial configuration
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/80—Solid-state polycondensation
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/02—Inflatable articles
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
Definitions
- the present invention relates to a method for producing a polyester yarn that can be used for fabrics for airbags, and more particularly, to a method for producing polyester yarns having excellent storage properties, flexibility, shape stability, and improved air barrier property during airbag deployment. It relates to yarn and fabric for airbags obtained from.
- an air bag detects a stratification stratification applied to a vehicle at a speed of about 40 km / h at a speed of about 40 km / h, and then explodes a gunpowder to expel gas into the airbag. It refers to a device that protects the driver and the passenger by supplying and inflating, and the structure of a general airbag system is as shown in FIG.
- a general airbag system includes an inflator 121 that generates gas by ignition of the primer 122 and an airbag 124 that is inflated and deployed toward the driver of the driver's seat by the generated gas. Consisting of an airbag module 100 mounted on the steering wheel 101, a stratification sensor 130 for generating an impact signal upon collision, and an electronic control for igniting the primer 122 of the inflator 121 according to the impact signal. It includes a module (Electronic Control Module) 110.
- the airbag system configured as described above transmits a signal to the electronic control heads 110 by detecting the stratification by the stratification sensor 130 when the vehicle becomes a front stratification.
- the electronic control caps 110 that recognizes this ignite the primer 122 to burn the gas generating agent inside the inflator 121.
- the gas generator thus burned inflates the airbag 124 through rapid gas generation.
- the inflated and deployed airbag 124 partially absorbs the stratified load caused by the stratification while contacting the driver's front upper body and collides with the inflated airbag 124 as the head and chest of the driver move forward by inertia.
- the gas of the airbag 124 is discharged rapidly into the discharge hole formed in the airbag 124 and is buffered in the front part of the driver Will work. Therefore, by effectively buffering the laminar force transmitted to the driver during frontal collision, secondary injury can be reduced.
- the inflator 121 is operated while being mounted in a handle of the vehicle or a vehicle side glass window or a side structure in a folded state to minimize the volume thereof, and maintaining the folded state. Allow the airbag to inflate and deploy.
- the airbag fabric has excellent mechanical properties.
- flexibility and flexibility to reduce the impact on passengers is very important.
- airbag fabrics that maintain excellent air blocking effect and flexibility at the same time for passenger safety, are able to withstand the impact of airbags and can be effectively mounted in a vehicle, have not been proposed.
- nylon 66 Conventionally, polyamide fibers such as nylon 66 have been used as a material for yarn for airbags.
- nylon 66 has excellent layer resistance but is inferior in terms of moist heat resistance, light resistance, and shape stability and high raw material cost compared to polyester fiber.
- Japanese Patent Application Laid-Open No. 04-214437 proposes the use of polyester fibers in which such defects are reduced.
- the high stiffness and low flexibility inherent to polyester make it difficult to store them in a small volume in a car, resulting in poor foldability and to the passengers when airbag cushions are deployed. There is room for considerable stratification.
- the present invention exhibits optimized flexibility and mechanical properties as yarns for airbags, thereby producing polyester yarns that allow for the provision of airbag cushions that can further enhance foldability and deployment performance while minimizing passenger impact during deployment. To provide a method.
- the present invention also provides a polyester yarn produced according to the above method.
- the present invention also provides an airbag fabric manufactured using the polyester yarn.
- the present invention comprises the steps of reacting a dicarboxylic acid composition comprising two or more dicarboxylic acid compounds with a glycol and an ester; Polycondensation reaction of the oligomer produced by the ester reaction; Solid-phase polymerizing the polymer produced by the polycondensation reaction; And melt spinning and stretching the polyester chip produced by the solid state polymerization reaction, wherein the dicarboxylic acid composition comprises an aromatic dicarboxylic acid having 6 to 24 carbon atoms and an aliphatic dicarboxyl having 2 to 24 carbon atoms.
- the dicarboxylic acid composition comprises one or more isomers of terephthalic acid selected from the group consisting of terephthalic acid, isophthalic acid and phthalic acid, and the molar ratio of terephthalic acid and its isomer is 1: 0.01 to 1: 0.12,
- a method for producing a polyester yarn in which the molar ratio of the total amount of the dicarboxylic acid compound to the glycol is 1: 1 to 1: 1.5.
- the present invention also provides a polyester yarn produced by the above method.
- the present invention also provides an airbag fabric manufactured using the polyester yarn.
- a method of manufacturing a polyester yarn according to a specific embodiment of the present invention, and an airbag yarn and a fabric manufactured therefrom will be described in more detail.
- this is presented as one example of the invention is not limited by the scope of the invention by this, it will be apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention.
- Fabric for polyester airbags is polyethylene terephthalate (hereinafter,
- melt-spun a polymer including " PET ” to produce an undrawn yarn, which can be prepared by weaving a polyester yarn obtained through this process after stretching to obtain a stretched yarn (ie, yarn). . Therefore, the properties of the polyester yarn is directly or indirectly reflected in the physical properties of the fabric for the polyester airbag.
- polyester as an airbag yarn instead of polyamide fibers such as conventional nylon 66
- the high temperature and high humidity due to the low fusion heat capacity and the low melting heat capacity due to the high modulus and stiffness of the polyester yarn Under severe conditions, it should be possible to overcome the deterioration of physical properties and consequently the deterioration of development performance.
- Pulley ester has a high stiffness structure compared to nylon in the molecular structure has a high modulus characteristics. For this reason, when used as a fabric for the air bag is mounted on the car, the packing (packing) is significantly reduced.
- carboxyl end groups hereinafter referred to as "CEG"
- CEG carboxyl end groups
- the present invention by using a specific dicarboxylic acid composition and dihydric alcohol glycol in the optimum composition range in the manufacturing process of the polyester yarn, significantly reducing the stiffness in the polyester yarn produced It has excellent toughness, tear strength, and edge comb resistance, while maintaining high air barrier performance, but can be effectively applied to fabrics for airbags.
- the polyester yarn prepared through the optimized composition range and process conditions, such as airbag fabrics it shows more improved folding properties, form stability, and air barrier effect, It has been found that excellent mechanical properties, airflow prevention, and airtightness can be maintained even under conditions of better packing and high temperature and high humidity in mounting.
- a method for producing a polyester yarn comprises the steps of ester-reacting a dicarboxylic acid composition comprising two or more dicarboxylic acid compounds with glycol; Polycondensation of the oligomer produced by the ester reaction reaction; Solid-phase polymerizing the polymer produced by the polycondensation reaction; And melt spinning and stretching the polyester chip produced by the solid state polymerization reaction.
- the polycarboxylic acid composition includes an aromatic dicarboxylic acid having 6 to 24 carbon atoms and an aliphatic dicarboxylic acid having 2 to 24 carbon atoms, and the molar ratio of the aromatic dicarboxylic acid and aliphatic dicarboxylic acid is 1 : 0.01 to 1: 0.15.
- the dicarboxylic acid composition may include one or more isomers of terephthalic acid and terephthalic acid selected from the group consisting of terephthalic acid and isophthalic acid and phthalic acid, and the molar ratio of the terephthalic acid to the isomer thereof may be 1: 0.01 to 1: 0.12. have.
- the dicarboxylic acid compound and the glycol are, for example, the molar ratio of the total amount of dicarboxylic acids such as aromatic dicarboxylic acid and aliphatic dicarboxylic acid and glycol, or terephthalic acid and its isomers, namely isophthalic acid.
- the molar ratio of the total amount of phthalic acid and the glycol may be 1: 1 to 1: 1.5, and the reaction may be performed.
- FIG. 2 is a process chart showing a polyester yarn manufacturing process comprising the melt spinning and drawing steps.
- the method of manufacturing the polyester yarn for an air bag of the present invention melts the polyester polymer prepared in the manner as described above, and engraves the molten polymer spun through the detention with quenching-air.
- the emulsion is applied to the undrawn yarn using (220, or oil-jet), and the emulsion applied to the undrawn yarn is subjected to a constant air pressure using a pre-interlacer (230). It can be uniformly dispersed on the surface.
- the production method of the present invention in order to manufacture a high-strength low modulus high shrink polyester yarn that can be effectively used in the fabric for airbags, can be used to produce a high viscosity polyester polymer.
- the polyester polymer may be prepared by ester-reacting a glycol with a dicarboxylic acid composition comprising two or more dicarboxylic acid compounds. More specifically, the polyester polymer may be obtained by reacting an aromatic dicarboxylic acid having 6 to 24 carbon atoms and an aliphatic dicarboxylic acid having 2 to 24 carbon atoms with glycol, or esterifying terephthalic acid with an isomer thereof with glycol. It can manufacture.
- the polyester polymer thus prepared has a high intrinsic viscosity and a low carboxyl end group (CEG) content, so that the excellent mechanical properties and air leakage prevention, airtightness, etc., even after aging under the harsh conditions of high temperature and high humidity when processed into a polyester yarn It can be effectively applied to fabrics for airbags.
- CEG carboxyl end group
- the polyester polymer in the production method of the present invention comprises the steps of esterifying an aromatic dicarboxylic acid having 6 to 24 carbon atoms and aliphatic dicarboxylic acid having 2 to 24 carbon atoms with glycol; Produced by the ester reaction Polycondensation reaction of the oligomer; Solid-phase polymerizing the polymer produced by the polycondensation reaction; And melt spinning and stretching the polyester chip produced by the solid state polymerization reaction.
- the polyester polymer comprises: reacting at least one isomer of terephthalic acid, isophthalic acid and phthalic acid, selected from the group consisting of glycol and ester; Polycondensation of the oligomer produced by the ester reaction; Solid-phase polymerizing the polymer produced by the polycondensation reaction; And melt spinning and stretching the polyester chip produced by the solid state polymerization reaction can be prepared by a process comprising a.
- the esterification reaction of the present invention is carried out using a dicarboxylic acid composition comprising two or more dicarboxylic acid compounds.
- a dicarboxylic acid composition comprising two or more dicarboxylic acid compounds.
- an aromatic dicarboxylic acid having 6 to 24 carbon atoms and an aliphatic dicarboxylic acid having 2 to 24 carbon atoms are used together, or isophthalic acid (m—phthalic acid) together with terephthalic acid (p-phthalic acid).
- m—phthalic acid isophthalic acid
- p-phthalic acid terephthalic acid
- one or more isomers of terephthalic acid, such as o-phthalic acid may be used together.
- terephthalic acid p -phthalic acid
- isophthalic acid m-phthalic acid
- phthalic acid o-phthalic acid
- diphenyl ether dicarboxylic acid biphenyl dicarboxylic acid
- ' 1,4-naphthalene dicarboxylic acid 1
- at least one selected from the group consisting of, 5-naphthalene dicarboxylic acid and ester-forming derivatives thereof it is preferable to use terephthalic acid in consideration of economics and physical properties of the finished product.
- aliphatic dicarboxylic acid having 2 to 24 carbon atoms which is esterified with the glycol component together with the aromatic dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid Acid (glutaric acid), adipic acid, pimelic acid suberic acid, azelaic acid, sebacic acid, And one or more selected from the group consisting of ester forming derivatives thereof.
- adipic acid can be used together with terephthalic acid in consideration of economical properties and finished product properties.
- terephthalic acid terephthalic acid
- terephthalic acid terephthalic acid
- terephthalic acid terephthalic acid
- isophthalic acid in combination with terephthalic acid in consideration of economics and physical properties of the finished product.
- the dicarboxylic acid composition that is, glycol which performs ester reaction with the dicarboxylic acid component is aliphatic di-carbon of 2 to 16 carbon atoms, alicyclic di-carbon of 6 to 24 carbon atoms, aromatic diol of 6 to 24 carbon atoms, And one or more selected from the group consisting of ethylene oxide or propylene oxide adducts thereof.
- glycols which can be used to prepare the polyester of the present invention include ethylene glycol, 1,2-propanedi, 1,3-propanediol, 1,3'butanedi, 1,4-butanediol, 1, 5-pentanediol, 1,6-nucleic acid di, 1,7-heptanedi, 1,8 'octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12—dodecanediol, diethylene 2 carbon atoms such as glycol, trimethylene glycol, tetramethylene glycol, nusamethylene glycol, triethylene glycol, tetraethylene glycol, tetramethyl ethylene glycol, pentaethylene glycol, nuxaethylene glycol, octaethylene glycol, dipropylene glycol, tripropylene glycol, etc.
- the process for producing the polyester polymer may be applied to the TP Terephthalic Acid process for reacting or esterifying a dicarboxylic acid component having a specific composition as described above and a glycol component thereof.
- the general polyester TPA method is used in the reaction reaction of esterification by reacting the dicarboxylic acid with glycol, without using a catalyst. It is a direct reaction that does acid catalyst reaction.
- the method of producing polyethylene terephthalate (PET) directly by esterification of tetraphthalic acid and ethylene glycol is mentioned. '
- the oligomer prepared as described above may be subjected to a polycondensation reaction at high temperature while adding a catalyst under high vacuum to obtain a polymer having a predetermined viscosity.
- the polymer thus produced is discharged through a nozzle using a gear pump or a high pressure inert gas (N 2 ).
- the polymer thus discharged is solidified with cooling water and cut into suitable sizes.
- carboxyl end groups are generated by pyrolysis caused by ester reaction and polycondensation reaction proceeding to silver and dicarboxylic acid having carboxyl end groups as a raw material.
- the polyester final polymer produced contains a large amount of carboxyl end groups.
- the terminal carboxyl group is present as an acid under high temperature and high humidity, resulting in the breakage of existing molecular chains resulting in a decrease in physical properties of the fabric. Is caused.
- the present invention performs low-temperature polymerization by optimizing the polycondensation and solid-phase polymerization of the dicarboxylic acid and diol components in a mild condition, and minimizes the content of such carboxyl end groups as well as through additional solid phase polymerization Reducing the content of CEG by combining terminal carboxyl and hydroxyl groups At the same time the molecular weight of the polymer can be increased.
- the shrinkage rate is lower than that of nylon, so the rigidity of the fabric is lowered, the air permeability is significantly lowered Fabric slippage occurs at the stitching area and tearing stiffness is also reduced.
- the airbag is damaged by a strong pressure during the airbag deployment may not be able to play the role of protecting the occupant of the existing role of the airbag.
- a dicarboxylic acid composition containing two or more specific dicarboxylic acid compounds in a predetermined range together with the ester reaction and polycondensation high strength It is possible to manufacture a high shrink yarn of the dlrus. That is, by mixing two or more specific dicarboxylic compounds in an ester reaction with glycol, that is, adding the aliphatic dicarboxylic acid with aromatic dicarboxylic acid or isophthalic acid with terephthalic acid.
- the linear structure instead of the benzene ring is introduced into the molecular chain, or the linear structure of the molecular chain is made into a coil structure, and the rigidity of the molecular chain is eliminated to remove the molecular chain attraction. Can be reduced. As a result, the movement of the molecules themselves can be made free, and the structure that can be easily deformed by heat, that is, the heat shrinkage can be facilitated.
- a high viscosity chip Chip
- the polyester yarn obtained by reacting glycol and two or more specific dicarboxylic acid compounds together in this way has not only low modulus and high strength but also high shrinkage characteristics.
- the esterification reaction and the polycondensation reaction of the dicarboxylic acid composition and glycol may be performed according to a conventional method known as the TPA method, and is not particularly limited to separate process conditions.
- the molar ratio of the dicarboxylic acid component and glycol in the ester reaction step that is, the total amount of aromatic dicarboxylic acid and aliphatic dicarboxylic acid and the molar ratio of glycol or terephthalic acid and isophthalic acid
- the molar ratio of the total amount of dicarboxylic acids such as phthalic acid and glycol may be 1: 1 to 1: 1.5, preferably 1: 1.1 to 1: 1.45, and more preferably 1: 1.1 to 1: 1.4.
- the molar ratio of the dicarboxylic acid component and the glycol may be 1: 1 or more in terms of improving the process efficiency of the polymerization reaction, and may be 1: 1.5 or less in terms of improving physical properties such as CEG and DEG of the resulting polymer. -have.
- a predetermined molar ratio range can be maintained even between two or more dicarboxylic acid compounds in the dicarboxylic acid composition to be reacted with the glycol.
- the molar ratio of aromatic dicarboxylic acid and aliphatic dicarboxylic acid in the dicarboxylic acid composition is 1: 0.01 to 1: 0.15, preferably 1: 0.01 to 1: 0.14, more preferably 1: 0.01 to 1: 0.13.
- the molar ratio of the aliphatic diol and alicyclic diol may be 1: 0.01 or more in terms of excellent physical properties when processing the fabric for airbags, and may be 1: 0.15 or less in terms of improving yarn manufacturing process efficiency.
- the molar ratio of terephthalic acid and isomers thereof, isophthalic acid, phthalic acid, and the like is 1: 0.01 to 1: 0.12, preferably 1: 0.01 to 1: 0.11, more preferably 1: 0.01 to 1: 1. May be 0.1.
- the molar ratio of the terephthalic acid and isomers thereof, isophthalic acid, phthalic acid, etc. may be 1: 0.01 or more in terms of excellent physical properties during airbag fabric processing, and may be 1: 0.12 or less in terms of improving yarn manufacturing process efficiency. .
- the ester reaction is 230 to 300 ° C., preferably 250 to
- reaction time may be performed in 2 hours to 7 hours, preferably 3 to 5 hours.
- the reaction time and the reaction temperature may be carried out by adjusting the physical properties and productivity of the polymer.
- the polycondensation reaction in the present invention may be carried out at a temperature of 250 to 290 ° C, preferably 270 to 285 ° C, and may be carried out at a pressure of 2 Torr or less, preferably 1 Torr or less.
- the reaction time may be performed for 2 to 5 hours, preferably for 3 to 4 hours, and the reaction time and the reaction silver may be performed by controlling the physical properties and productivity of the polymer.
- the polycondensation reaction can be adjusted to a low level of the viscosity, CEG of the molten polymer through low-temperature polymerization, preferably the intrinsic viscosity of the polymer produced after the polycondensation reaction is more than 0.25 dl / g or 25 dl / g to It is desirable to adjust the amount to be 0.80 dl / g, preferably 0.4 dl / g or more, and more preferably 0.5 dl / g or more, in terms of minimizing the carboxyl group at the end of the polymer.
- the polymer produced after the polycondensation reaction minimizes the size of the chip so as to minimize the internal / external reaction difference and increase the reaction speed in the next solid phase polymerization step, that is, to reduce the specific surface area of the chip. It can be used larger.
- the polymer produced after the polycondensation reaction has a chip size of 1.0 g / 100ea to 3.0 g / 100ea in order to increase the specific surface area, and more preferably 1.5 g / 100ea to 2.5 g / 100ea. It may be cleaved so as to perform solid phase polymerization.
- the shape of the polymer chip may be prepared by using a spherical shape in order to prevent fusion during the solid phase polymerization.
- spherical, ie, polymer chips in the form of balls or beads can be produced by underwater cutting.
- the polymer chip may be manufactured by cutting a polymer and making pellets, for example, by rotating a knife in water.
- adhesion of the pellets to each other can be minimized and can be approximately spherical until cooled. That is, since the polymer has an elastomeric substrate, the polymer may be curled to produce chips having a shape close to an ellipse or a sphere.
- the spherical polymer chip may have a cross section in the form of a circle or ellipse.
- the polymer chip is subjected to sticking during solid state polymerization.
- the chip surface may be manufactured and used in a form having a surface roughness ( 3 )) 1 or more by scratching or the like.
- the solid phase polymerization reaction may be carried out at a temperature of 170 to 240 ° C, for example, ⁇ 70 to 225 ° C or 200 to 240 ° C, preferably at 180 to 220 ° C or 205 to 235 ° C. .
- the solid phase polymerization reaction may be carried out at a pressure of 2 Torr or less, preferably 1 Torr or less.
- the reaction time may be carried out for 10 hours or more or 10 to 40 hours
- reaction time and reaction temperature may be carried out by adjusting in terms of final viscosity and radioactivity improvement.
- the resulting carboxyl end group is combined with hydroxyl groups to reduce the CEG content. And increase the molecular weight of the polymer.
- the polyester polymer further subjected to solid phase polymerization may have an intrinsic viscosity of at least 0.7 dl / g or at least 0.7 to 2.0 dl / g, preferably at least 0.85 dl / g and more preferably at least 0.90 dl / g. "it is desirable in improving the physical properties and nuclear side of the yarn.
- the intrinsic viscosity of the chip should be 0.7 dl / g or more to prepare a yarn having desirable high strength and high elongation characteristics.
- a high-viscosity polyester polymer for example, a polyester polymer having an intrinsic viscosity of 0.85 dl / g or more in the unstretched yarn manufacturing process, melting It is desirable to effectively lower the modulus by maintaining the high viscosity range through the spinning and stretching process to exhibit high strength with low stretching.
- the intrinsic viscosity is more preferably 2.0 dl / g or less in order to prevent the molecular chain breakage and the pressure increase due to the discharge amount in the spin pack due to the rise of the melting temperature of the polyester polymer.
- the molecular weight of the polyester polymer is preferably 30 meq / kg or less.
- the CEG content of the polyester polymer is maintained in the lowest range even after the process of melt spinning and stretching, the final polyester yarn is characterized by high strength and excellent morphological stability, mechanical properties, excellent properties of expression properties under severe conditions It is desirable to be able to secure.
- the intramolecular CEG content of the polyester yarn finally produced through melt spinning and stretching process is excessive, such as 30 meq / kg to 50 meq Increasing to more than / kg, the ester bond is cleaved by the CEG under high humidity conditions may cause a decrease in the properties of the yarn itself and the fabric produced therefrom.
- the polyester polymer preferably contains polyethylene terephthalate (PET) as a main component, but in order to secure excellent mechanical properties as an airbag yarn, it may preferably contain 70 mol% or more, and more preferably 90 mol% or more. have.
- PET polyethylene terephthalate
- the polyester yarn manufacturing method of the present invention to melt-spun the polyester polymer of the high intrinsic viscosity and low CEG content to produce a polyester non-drawn yarn.
- the melt spinning process is preferably performed at a low temperature range so as to minimize thermal decomposition of the polyester polymer.
- low-temperature spinning for example, 260 to to reduce the intrinsic viscosity and CEG content of the high viscosity polyester polymer according to the process, that is, to maintain the high viscosity and low CEG content of the polyester polymer It can be carried out at a silver degree of 300 ° C, ie 260 to 290 ° C or 270 to 300 ° C.
- the spinning temperature refers to the extruder temperature
- thermal decomposition of the polyester polymer occurs in large quantities. So Lowering the intrinsic viscosity may increase the molecular weight decrease and increase the CEG content.
- the surface damage of the yarn may lead to a decrease in the overall physical properties, which is undesirable.
- melt spinning process when the melt spinning process is performed at a temperature that is too low, for example, below 260 ° C. or 270 ° C., the melting of the polyester polymer may be difficult, and the radioactivity may be reduced by N / Z surface angle. It is preferred to carry out the melt spinning process within the temperature range.
- the melt spinning process may be carried out at a lower spinning tension in terms of minimizing polyester polymer degradation reaction, i.e., to minimize spinning tension, for example, a rate of melt spinning the polyester polymer It can be adjusted to a low speed of 300 to 1,000 m / min, preferably from 350 to 700 m / min.
- a rate of melt spinning the polyester polymer It can be adjusted to a low speed of 300 to 1,000 m / min, preferably from 350 to 700 m / min.
- the undrawn yarn obtained through the melt spinning process exhibits an intrinsic viscosity of at least 0.8 dl / g or 0.8 dl / g to 1.2 dl / g, preferably at least 0.85 dl / g, more preferably at least 0.90 dl / g.
- the CEG content in the molecule of the unstretched yarn obtained through low-temperature spinning may be 50 meq / kg or less, preferably 40 meq / kg or less, and more preferably 30 meq / kg or less.
- the intramolecular CEG content of such non-twisted yarns can be maintained at the same level in the stretched yarns, ie, polyester yarns, which have undergone subsequent stretching processes.
- these high viscosity and low CEG content polyester polymers By performing melt spinning under the low temperature conditions as described above to minimize the thermal decomposition of the polyester polymer, etc., it is possible to minimize the difference in intrinsic viscosity and CEG content between the polyester polymer and the polyester yarn.
- melt spinning and subsequent processes may be performed such that the difference in intrinsic viscosity between the polyester polymer and the polyester yarn is 0.5 dl / g or less or 0 to 0.5 dl / g, preferably 0.4 dl / g or less.
- the difference in intrinsic viscosity may be expressed as 0.1 dl / g or more.
- the difference in the intramolecular CEG content between the polyester polymer and the polyester yarn may be carried out to 20 meq / kg or less or 0 to 20 meq / kg, preferably 15 meq / kg or less, in the actual process
- the CEG content difference may appear to be more than 3 meq / kg.
- the present invention by suppressing the decrease in the intrinsic viscosity of the polyester polymer and the increase in the content of the CEG as possible, while maintaining excellent mechanical properties of the polyester yarn at the same time to ensure excellent elongation, high strength low modulus yarn suitable for airbag fabric Can be prepared.
- the polyester polymer for example PET chip
- the polyester polymer is spun through a mold designed such that the fineness of the monofilament can be 0.5 to 20 denier, preferably 1 to 15 denier. That is, the denier of the monofilament should be 1.5 denier or more to reduce the possibility of the trimming due to the occurrence of the trimming during the radiation and the interference between each other at each time, and the fineness of the monofilament should be 15 denier or less to increase the cooling efficiency. .
- a cooling process may be added to produce the polyester non-drawn yarn.
- This cooling process is preferably proceeded by a method of applying a 15 to 60 ° C corner wind, it is preferable to adjust the amount of cooling air to 0.4 to 1.5 m / s in each corner wind conditions.
- the polyester non-drawn yarn showing various physical properties according to the embodiment of the present invention can be manufactured more easily.
- the non-drawn yarn is drawn to prepare a drawn yarn.
- the stretching The process may be performed under a stretching ratio condition of 5.0 to 6.5, preferably 5.0 to 6.2 or 6.0, more preferably 5.0 to 5.8.
- the polyester unstretched yarn passes through GR 1 and GR 2, and then stretches at a draw ratio of 3.0 to 5.0, preferably 3.2 to 4.8, between GR 2 and GR 3, and GR 3 and GR. It can proceed with a draw ratio between 1.0 and 2.0 preferably 1.2-1.8 between four.
- the polyester unstretched yarn has optimized high melt spinning process to maintain high intrinsic viscosity and low initial modulus, while also minimizing intramolecular CEG content. Therefore, when the drawing process is carried out under a high draw ratio condition of more than 6.5, it may be over-stretched, so that cutting or wool may occur in the drawn yarn, and a low elongation high modulus yarn may be manufactured due to the high degree of fiber orientation. . In particular, when the elongation of the yarn is lowered and the modulus is increased under such a high draw ratio condition, when applied as a fabric for airbags, the plidability and storage properties may be poor.
- the drawing process is carried out under a relatively low draw ratio
- the fiber orientation is low
- the strength of the polyester yarn manufactured therefrom may be partially lowered.
- the stretching process is carried out under a stretching ratio of 5.0 or more in terms of physical properties, for example, it is possible to manufacture a high strength low modulus polyester yarn suitable for application to fabrics for airbags. It is preferable to proceed under draw ratio conditions.
- a melt spinning process using a high viscosity polyester polymerized chip to produce a low modulus polyester yarn while simultaneously satisfying the properties of high strength and low shrinkage in a direct spinning process It may include stretching, heat setting, relaxing, and winding the process by applying a multi-layer gouger to winding the winder.
- the stretching process may be performed after passing the undrawn yarn through a gouge lor under conditions of an oil pickup amount of 0.2% to 2.0%.
- the relaxation is preferably 1% to 10%, and when less than 1%, it is difficult to express the shrinkage rate, and as in the case of high draw ratio conditions, it is difficult to manufacture high elongation low modulus fibers as high fiber orientation is formed. If it exceeds 10%, the noise on the blast furnace becomes severe, and workability cannot be secured.
- the stretching process may further perform a heat setting step of heat-treating the undrawn yarn at a temperature of about 130 to 250 ° C, for example, at a temperature of 130 to 220 or 170 to 250 ° C.
- the heat treatment may be performed at a temperature of 140 to 245 ° C., for example, 140 to 215 ° C. or 175 to 245 ° C., for proper progress of the stretching process.
- the silver is less than 130 ° C, the thermal effect is not sufficient, and the relaxation efficiency is low, so that it is difficult to attain the shrinkage rate.
- the silver is higher than 250 ° C, the yarn strength decreases due to pyrolysis and the occurrence of eluent tar is increased. Can be degraded.
- the winding speed may be performed at 2,000 to 4,000 m / min, preferably 2,500 to 3,700 m / min.
- polyester yarn produced through the method as described above.
- Such polyester yarn may be prepared by melt spinning a polyester polymer, for example, PET chip, as described above, to prepare an unstretched yarn and stretching the unstretched yarn, as described above.
- Specific conditions or processing methods may be directly or indirectly reflected on the physical properties of the polyester yarn to produce a polyester yarn having predetermined characteristics.
- the polyester yarn manufactured through such process optimization is characterized by low modulus, high strength, and high shrinkage.
- the polyester yarn prepared according to the present invention has an initial modulus of 40 to 100 g / d, elongates 0.5% or more when subjected to a stress of 1.0 g / d at room temperature, and when subjected to a stress of 4.0 g / d.
- Polyester yarns for airbags that stretch more than 4.3% and stretch more than 7.5% when subjected to 7.0 g / d. It turns out that it can be secured.
- CEG carboxyl end group
- Carboxyl End Group which is present as an acid under high humidity conditions to cause the basic molecular chain cleavage of polyester yarn It turns out that. Therefore, such a polyester yarn exhibits a low initial modulus and a high elongation range at the same time, and thus can be preferably applied to an airbag fabric having excellent mechanical properties and storage properties, form stability, layer resistance, and air barrier effect.
- Polyester has a stiffness structure that is higher than nylon due to its molecular structure. As a result, polyester exhibits high modulus characteristics. When polyester is used as a fabric for airbags, the polyester has a low folding property and packing property. The storage becomes difficult.
- the polyester yarn obtained through the controlled melt spinning and stretching process exhibits properties of high strength low modulus and is lower than the previously known polyester industrial yarn, i.e. 40 to 100 g / d, preferably Represents an initial modulus of 50 to 100 g / d, more preferably 55 to 95 g / d.
- the modulus of the polyester yarn is a physical property value of the elastic modulus obtained from the slope of the elastic section of the force-strain diagram obtained in the tensile test, and indicates the extent of deformation and the degree of deformation of the object when the object is stretched from both sides.
- the value corresponds to the modulus of elasticity.
- the initial modulus of the yarn is the modulus value of the elastic modulus at the point where the elastic section starts after the "0" point in the stress-strain. If the initial modulus of the yarn is high, the elasticity is good, but the stiffness of the fabric may be deteriorated.
- the polyester yarn of the present invention is the initial modulus is optimized in the range far lower than the conventional polyester industrial yarn.
- airbag fabrics made from polyester yarns having a lower initial initial modulus range solve the high stiffness problem of conventional polyester fabrics, and have excellent folding, flexibility, and storage properties. Can be represented.
- the polyester yarn is also drawn with low initial modulus Has minimized characteristics. Due to this, the polyester yarn at room temperature
- the airbag fabric manufactured from the polyester yarn can solve the high stiffness problem of the existing polyester fabric, and can exhibit excellent folding property, flexibility, and storage property.
- polyester yarn contains polyethylene terephthalate (PET) as a main component.
- PET polyethylene terephthalate
- the PET is a variety of additives can be added in the manufacturing step, in order to exhibit a suitable physical properties for the fabric for the air bag yarn containing at least 70 mol3 ⁇ 4>, more preferably 90 mol3 ⁇ 4 or more Can be.
- the term PET refers to a case where the PET polymer is 70 mol% or more without any special explanation.
- the polyester yarn has an improved intrinsic viscosity, i.e., 0.8 dl / g or more or 0.8 dl / g to 1.2 dl / g, preferably 0.85 dl / g to 1.15 dl /, as compared to previously known polyester yarns. g, more preferably 0.90 dl / g to 1.10 dl / g.
- Intrinsic viscosity is preferably secured in the above range in order to prevent thermal deformation in the coating process, etc. when the polyester yarn is applied to the air bag.
- the intrinsic viscosity of the yarn should be 0.8 dl / g or more to exhibit high strength with low stretching to satisfy the required strength of the airbag yarn, and otherwise it may be forced to express physical properties with high stretching.
- the degree of orientation of the fiber may be increased to obtain high modulus physical properties. Therefore, it is preferable to maintain the intrinsic viscosity of the yarn at 0.8 dl / g or more to enable low modulus expression by applying low stretching.
- the yarn viscosity is greater than 1.2 dl / g, the stretching tension may increase during stretching, which may cause a process problem, more preferably 1.2 dl / g or less.
- the polyester yarn of the present invention is By maintaining a high degree of intrinsic viscosity, it is possible to provide a high strength characteristic that can provide sufficient mechanical properties, layer resistance, toughness, etc. to the airbag fabric at the same time to provide low ductility with low stretching. . Therefore, it is possible to manufacture a fabric for an airbag which simultaneously exhibits excellent mechanical properties and storage properties, form stability, layer resistance, and air barrier effect by using polyester yarns exhibiting low initial modulus and high elongation, preferably high intrinsic viscosity. Become. Therefore, by using the polyester yarn, it is possible to obtain a fabric for an air bag that exhibits lower ductility, folding property, flexibility, and storage properties, but also exhibits excellent impact resistance, shape stability, mechanical properties, and airtightness.
- polyester fabrics for airbags have excellent mechanical properties, shape stability, and air barrier effects, but also provide excellent folding and storage properties when mounted in tight spaces of cars, while at the same time providing excellent flexibility to minimize passengers' stratification. Since it can protect, it can be preferably applied as a fabric for airbags.
- the polyester yarn of the present invention may be prepared under melt spinning and stretching conditions as described above, and may exhibit a significantly lower carboxyl end group (CEG) content than previously known polyester yarns. That is, the polyester yarn may exhibit a CEG content of 50 meq / kg or less, preferably 40 meq / kg or less, more preferably 30 meq / kg or less.
- the carboxyl end groups (CEG) in the polyester molecular chains attack the ester bonds at high temperature and high humidity conditions to cause molecular chain breakage, thereby degrading physical properties after aging.
- the ester bond is cleaved by the CEG under high humidity conditions when applied for an air bag, causing deterioration of physical properties.
- the CEG content is preferably 50 meq / kg or less. Do.
- the polyester yarn according to the embodiment of the present invention has a tensile strength of 7.5 g / d or more or 7.5 g / d to 11.0 g / d, preferably 8.0 g / d or more or 8.0 g / d to 10.0 g / d and may exhibit an elongation at break of at least 13% or from 13% to 35%, preferably at least 14% or 14% to 25%.
- the yarn may exhibit a dry heat shrinkage of at least 3.5% or 3.5% to 12%, preferably at least 4.0%, more preferably at least 4.5%.
- the polyester yarn of the present invention can not only secure strength and physical properties to an excellent degree, but also exhibit excellent performance when manufactured as a fabric for airbags. Can be.
- the polyester yarn of the present invention can be optimized by optimizing and maintaining the dry heat shrinkage of the polyester yarn to a high level as described above, it is possible to effectively control the morphological stability, air permeability, desorption resistance, etc. of the fabric through high shrinkage at the same time.
- the polyester yarn of the present invention preferably has a shrinkage force at 0.005 to 0.075 g / d at 150 ° C corresponding to the laminate coating temperature of the general coating fabric, 200 ° corresponding to the sol coating temperature of the general coating fabric
- the shrinkage stress at C is 0.005 to 0.075 g / d. That is, the shrinkage stress at 150 ° C. and 200 ° C. should be 0.005 g / d or more, respectively, to prevent sagging of the fabric due to heat during the coating process, and should be 0.075 g / d or less at room temperature after the coating process. When stressed, relaxation stress can be alleviated.
- the shrinkage stress is based on values measured under a fixed load of 0.10 g / d.
- the polyester yarn In order to prevent deformation in the heat treatment process such as coating, as described above, the polyester yarn also has a crystallinity of 353 ⁇ 4 to 60%, preferably 36% to 50% or 40% to 53%, more preferably 37 % To 48% or 41% to 50%.
- the degree of crystallinity of the yarn is preferably at least 3 »in order to maintain thermal morphological stability when applied to the fabric for the airbag, and when the crystallinity is greater than 6, the problem that the layer absorption performance is lowered due to the reduction of the amorphous region may occur. It is preferable to become 60% or less.
- the polyester yarn may be a single yarn fineness of 0.5 to 20 denier, preferably 2.0 to 10.5 denier.
- the polyester In order for the yarn to be used effectively in the fabric for airbags, the fineness of the yarn must be maintained at a low fineness in terms of storage, so that the total fineness of the applicable yarn is 200 to 1,000 denier, preferably 220 to 840 denier, more preferably 250 to 600 denier Can be.
- the higher the number of filaments of the yarn may give a soft touch, but if too much radioactivity may not be good, the number of filaments is 50 to 240 preferably 55 to 220, more preferably 60 to 200 Can be.
- a polyester fabric for an air bag comprising the polyester yarn described above.
- the airbag fabric refers to a woven fabric or a nonwoven fabric used for manufacturing an airbag for an automobile, and is characterized by being manufactured using a polyester yarn manufactured through the process as described above.
- the present invention by using a polyester fiber having a high shrinkage characteristics of high strength _ high elongation low modulus, rather than the conventional high strength-low elongation and high modulus polyester fiber, the energy absorption capacity at the time of air bag inflation is improved
- a polyester fabric for an air bag that has excellent shape stability, air barrier property, excellent folding property, flexibility, and storage property.
- the airbag fabric is not only excellent in room temperature physical properties, but also maintains excellent mechanical properties and airtightness even after aging (a ⁇ ) under severe conditions of high silver and high humidity.
- the airbag fabric of the present invention is the American Material Testing Association standard
- the tensile strength measured at room temperature by the ASTM D 5034 method can be 220 kgf / inch or 220 to 350 kgf / inch, preferably 230 kgf / inch or more. In the case of the tensile strength, it is preferable to be 220 kgf / inch or more in terms of physical properties required for existing airbags, and in reality, it is desirable to be 350 kgf / inch or less in terms of physical properties.
- the fabric for the air bag may be 20% or more, or 203 ⁇ 4 to 60%, preferably 30% or more, measured at room temperature by the American Society for Testing and Materials Standard ASTM D 5034 method.
- existing air bag It is preferable to be 20% or more in terms of aspect, and to be 60% or less in terms of physical properties.
- the coating material for airbags is rapidly expanded by hot-high pressure gas, so excellent tear strength level is required.
- the tear strength indicating the burst strength of the coating fabric for airbags is determined by the American Society for Testing and Materials ASTM D 2261 method. When measured at room temperature may be 20 kgf or more or 20 to 60 kgf, preferably 23 kgf or more, more preferably 25 kgf or more.
- the tear strength of the coated fabric is less than the lower limit, that is, 20 kgf at room temperature, a burst of the airbag may occur when the airbag is deployed, which may cause a great risk to the airbag function.
- Fabric for airbags according to the present invention has a deactivation resistance of 360 N or more or 360 to 1,000 N, preferably 380 N or more, as measured in phase (25 ° C) by the American Society for Testing and Materials Standard ASTM D 6479 method. 400 N or more, more preferably 420 N or more.
- the polyester fabric may have a sliding resistance of 300 N or more or 300 to 970 N, preferably 310 N or more, more preferably 320 N or more measured at 90 ° C.
- the slip resistance of the polyester fabric is measured at room temperature (25 ° C) and 90 ° C, respectively, if less than 360 N and less than 300 N, respectively, the strength of the fabric of the airbag cushion sewing area during the air bag deployment suddenly worsened When the airbag is deployed, the fabric may be undesirably teared due to pinholes in the fabric and bark sliding.
- the fabric for airbag according to the present invention may be less than 4.0%, preferably less than 2.0% of the fabric shrinkage in the warp direction and the weft direction, respectively measured by the ASTM D 1776 method.
- the fabric shrinkage rate in the warp direction and the weft direction do not exceed 1.0%.
- the fabric may have an air permeability of 10.0 cfm or less, or 0 to 10.0 cfm, measured at room temperature by the American Society for Testing and Materials Standard ASTM D 737 method.
- the air permeability of the fabric for the airbag can be significantly lowered by including the rubber component coating layer in the fabric, it is possible to ensure the air permeability of the value close to almost 0 cfm. However, do not perform such rubber coating
- the non-coated fabric of the present invention has an air permeability of 10.0 cfm or less or 0 to 10.0 cfm, preferably 3.5 cfm or less, or 0.1 to 3.5 cfm, measured at room temperature by the American Society for Testing and Materials, ASTM D 737.
- the fabric for the air bag of the present invention may be less than 1.2 kgf or 0.2 to 1.2 kgf, preferably 1.0 kgf measured at room temperature by the American Society for Testing and Materials Standard ASTM D 4032 method.
- 530 denier or more may be 1.2 kgf or less
- less than 460 denier may be in the range of 1.0 kgf or less or 0.8 kgf.
- the stiffness is preferably 1.2 kgf or less, particularly when less than 460 denier is 1.0 kgf or less. In the case of more than 530 denier, it is preferable to be 1.2 kgf or less.
- the method for manufacturing the fabric for airbags of the present invention includes the steps of weaving the dough for airbags using the polyester yarn, refining the dough for the woven airbag, and tentering the refined fabric.
- the polyester yarn may be produced as a final airbag fabric through a conventional weaving method, refining and tentering process.
- the weaving form of the fabric is not limited to a particular form, both the plain weave type and 0P (0ne Piece Woven) type of woven form is preferred.
- the fabric for the airbag of the present invention weft and the polyester yarn It can be manufactured using a ramp through beaming, weaving, refining, and tenting processes.
- the fabric can be produced using a conventional weaving machine, and is not limited to using any particular loom.
- plain weave fabrics can be manufactured using Rapier Loom, Air Jet Loom, or Water Jet Loom. Jacquard Loom).
- the fabric for the airbag thus manufactured is manufactured in the form of an airbag cushion having a predetermined shape while undergoing cutting and sewing.
- the airbag is not limited to a particular form and may be manufactured in a general form.
- an airbag system including the airbag is provided.
- the airbag system can be equipped with conventional devices well known to those skilled in the art.
- the airbag may be largely classified into a frontal airbag and a side curtain airbag.
- the frontal airbag includes a driver's seat, a passenger seat, side protection, knee protection, ankle protection, pedestrian protection airbags, and the like. Accordingly, the airbag of the present invention includes both a frontal airbag and a side curtain airbag.
- a method for producing a polyester yarn suitable for fabrics for airbags having excellent flexibility and foldability along with excellent mechanical properties by providing a specific dicarboxylic acid composition and glycol in an optimum composition range is provided. .
- the polyester yarns produced in this way exhibit characteristics of high strength, low modulus and high shrinkage at the same time, so that when used in fabrics for airbags, it is possible to obtain excellent form stability, mechanical properties, and air barrier effect. At the same time, it is possible to secure excellent folding and flexibility, which significantly improves the storage performance of the vehicle and at the same time minimizes the impact on the passengers to protect the occupants.
- the use of the polyester yarn according to the present invention can prevent the fabric from slipping and tearing due to internal pressure during airbag deployment and at the same time significantly improve air permeability. I can protect it.
- the polyester yarn manufactured according to the present invention and the polyester fabric using the same can be very preferably used for manufacturing a vehicle airbag.
- FIG. 1 is a view showing a general airbag system.
- FIG. 2 is a process diagram schematically showing a polyester yarn manufacturing process according to an embodiment of the present invention.
- the molar ratio (AA / TPA) of terephthalic acid (TPA) and adipic acid (AA) is 0.02-0.12, and the dicarboxylic acid component and ethylene glycol (EG)
- the ester reaction was carried out between 285-292 V for 4 hours with a molar ratio [EG / OPA + AA)] of 1.3.
- the resulting oligomer was subjected to a polycondensation reaction for 3 hours 30 minutes between 284-290 ° C to produce a polymer.
- the polyester polymer (chip) produced through the polycondensation reaction was cut in water using an underwater cutter device was prepared in the form of pellets of a spherical shape such as beads.
- polyester polymer (chip) produced in this way is formed into a spherical shape, there is no phenomenon of entanglement with each other during solid phase polymerization, It is possible to proceed with higher silver content than with conventional copolymer solid state polymerization.
- Solid phase polymerization was further performed at 235 ° C. for 22 to 24 hours to prepare a polyester solid phase polymer chip having an intrinsic viscosity (IV) of 1.3 dl / g.
- the polyester solid-state polymerization chip was prepared by spinning and stretching in the process as shown in Figure 2 to prepare a polyester yarn for air bags.
- the polyester solid-state polymerization chip is melted at a temperature of 290-294 ° C to discharge the molten polyester through the spinneret, the discharged molten polyester is passed through a delayed cooling section consisting of a hood-heater and a heat insulating plate Delayed quenching.
- the delayed polyester fiber was imparted with an emulsion using an emulsion applying device in the form of.
- the amount of the emulsion is 0.8 parts by weight based on 100 parts by weight of yarn
- the emulsion used is ethylene oxide / propylene oxide addition diester (30 parts by weight), ethylene oxide addition diester (15 parts by weight), glyceryl tri Spinning emulsions were used in which an ester (10 parts by weight), trimethylpropane triester (10 parts by weight), and a small amount of antistatic agent were combined.
- the emulsified yarn was passed through a pre-collector and stretched using a Gaussler ripper.
- the second yarn (2 nd Interlacer) was used to give an interlinking to the stretched polyester yarn, and then wound by a winder to prepare a polyester yarn.
- the molar ratio (iso-PA / TPA) of terephthalic acid (TPA) and isophthalic acid (iso-PA) is 0.02 to 0.08, and the dicarboxylic acid component and ethylene glycol (
- the ester reaction was carried out at 282-288 ° C. for 4 hours with the molar ratio [EG / (TPA + iso-PA)] of EG) being 1.3.
- the resulting oligomer was subjected to a polycondensation reaction for 3.5 hours at 288-292 ° C. to produce a polymer.
- polyester polymer produced through the polycondensation reaction is further subjected to a solid-phase polymerization for 24 to 28 hours between 217-220 ° C.
- polyester solid phase having an intrinsic viscosity (IV) of 1.2 dl / g A fuse chip was prepared.
- the polyester solid-state polymerization chip was prepared by spinning and stretching in the process as shown in Figure 2 to prepare a polyester yarn for air bags.
- the polyester solid-state polymerization chip is melted in the silver of 288 ° C to discharge molten polyester through spinneret, delayed quench by passing the discharged molten polyester through a delay cooling section consisting of a hood-heater and a heat insulating plate (delayed quenching).
- the delayed quenched polyester fibers were imparted with an emulsion using an emulsion applying device in the form of.
- the amount of the emulsion is 0.8 parts by weight based on 100 parts by weight of yarn
- the emulsion used is ethylene oxide / propylene oxide addition diol ester (30 parts by weight), ethylene oxide addition diester (15 parts by weight), glyceryl tri Spinning emulsions were used that were combined with ester (10 parts by weight), trimethylpropane triester (10 parts by weight), and a small amount of antistatic agent.
- the emulsified yarns were passed through a pre-collector and stretched using a Gaudler lorler.
- the second yarn (2 nd Interlacer) was used to give an interlinking to the stretched polyester yarn, and then wound by a winder to prepare a polyester yarn.
- the density p of the polyester yarn was measured at 25 ° C according to the density gradient pipe method using n-heptane and carbon tetrachloride, and the crystallinity was calculated according to the following formula 1.
- P is yarn density
- Pc is crystal density (1.457 g / cm 3 for PET)
- p a is amorphous density (1.336 g / cm 3 for PET).
- Carboxy 1 End Group (CEG) of polyester yarns is prepared by placing 0.2 g of sample into a 50 mL Erlenmeyer flask, adding 20 mL of benzyl alcohol, according to ASTM D 664 and D 4094. (hot plate) to hold up to 180 ° C and held for 5 minutes to completely dissolve the sample, then angled to 160 ° C and 5-6 drops of phenolphthalene when reaching 135 ° C, 0.02 N K0H
- the CEG content (COOH million equiv./kg of sample) was calculated by the following equation (3).
- A is the amount of K0H consumed in the titration of the sample (mL)
- B is the amount of K0H consumed in the titration of the blank sample (mL)
- ⁇ is the weight of the sample (g).
- Initial modulus was measured by calculating the elastic modulus from the slope of the elastic section of the force-strain graph obtained in the tensile test according to the method of the American Society for Testing and Materials Standard ASTM D 885.
- Tensile strength and elongation at break of polyester yarn were measured using a universal testing machine (Instron), the sample length was 250 mm, the tensile speed was set to 300 mm / min, the initial load was set to 0.05 g / d.
- Single yarn fineness was measured by taking the yarn by 9,000 m and measuring its total fineness (Denier) of the yarn and dividing by the number of filaments.
- Elongation ⁇ Elongation was measured by the same method as the tensile strength and the elongation at break, and the elongation value corresponding to each load (oad) was confirmed on the S-S curve.
- Comparative Examples 1 and 2 do not include a separate adipic acid, ester reaction was performed using only terephthalic acid as dicarboxylic acid in the same manner as in Example 1.
- a polyester yarn of Comparative Examples 6 to 10 was prepared according to the same method as Example 6 except for the conditions described in Table 7 below.
- Comparative Examples 6 and 7 do not contain separate isophthalic acid
- the ester reaction was carried out in the same manner as 6 using only terephthalic acid as the dicarboxylic acid.
- the tear strength of the fabric for airbags was determined according to the American Society for Testing and Materials, ASTM D 2261.
- Fabric shrinkage in the weft and weft directions was measured according to the American Society for Testing and Materials, ASTM D 1776.
- the direction of shrinkage of the fabric in the direction ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage X 100% ⁇ was measured.
- the ductility of the fabric was measured by the circular bend method using a ductility measuring device according to the American Material Testing Association standard ASTM D 4032.
- ASTM D 4032 American Material Testing Association standard ASTM D 4032.
- the cantilever method can be applied as a method of measuring the stiffness, and the stiffness can be measured by measuring the bend length of the fabric using a cantilever measuring device, which is a test bench that is inclined at an angle to give a bend to the fabric.
- the thickness of the fabric for airbags was measured according to the American Society for Testing and Materials, ASTM D 1777.
- phase comb resistance of the fabric was measured at 25 ° C. by the method according to ASTM D 6479.
- Examples 1 to 5 prepared by reacting glycol with aromatic dicarboxylic acid and aliphatic dicarboxylic acid in an optimum range Fabrics for airbags of Preparation Examples 1 to 5 using polyester yarns were found to be able to realize significantly improved ductility and high bowel resistance (Edge comb). In particular, it can be seen that the tensile strength and air permeability of the airbag fabrics of Preparation Examples 1 to 5 were 237-255 kgf / inch and 0.43 to 0.55 cfm, respectively, to exhibit excellent mechanical properties and development performance.
- the fabrics for airbags of Preparation Examples 1 to 5 can achieve significantly improved results of 0.36 to 0.42 kgf and 480-590 N, respectively, in terms of stiffness and desorption resistance, and simultaneously secure excellent storage properties, shape stability, and air blocking effect. It can be seen that.
- terephthalic acid and isophthalic acid in the optimal range with glycol prepared by using the polyester yarn of Example 6-10 Example 6-10 fabric for airbags significantly improved stiffness and It has been confirmed that high active resistance (Edge comb) can be achieved.
- tensile strength and air permeability are 236 to 253 kgf / inch and 0.42 to 0.53 cfm, respectively, to show excellent mechanical properties and development performance.
- the airbag fabrics of Preparation 6 to 10 is to obtain a significantly improved results are each 0.33-0.42 kgf and 496-570 N in FIG speech and hwaltal resistance, it is excellent sunapseong, shape stability, and the air shielding effect at the same time It can be seen that it can be secured.
- the polyester fabrics of Comparative Preparation Examples 1 to 5 using the polyester yarns of Comparative Examples 1 to 5 are significantly inferior in mechanical properties and airtightness, and do not satisfy the characteristics of fabric properties for airbags. Confirmed.
- the lecture and air permeability are significantly increased to 1.65-1.77 kgf and 1.44-1.67 cfm, respectively, it can be seen that the airtightness, etc. can be significantly reduced when mounted with the air bag.
- the tensile strength and the sliding resistance fall significantly to 165-224 kgf / inch and 213 to 360 N, respectively.
- the polyester fabric of Comparative Preparation Example 6-10 using the polyester yarns of Comparative Examples 6 to 10 is remarkably inferior in mechanical properties and airtightness, and does not satisfy the characteristics of fabric properties for airbags. Confirmed. In particular, the lecture and air permeability are significantly increased to 1.5 ⁇ 1.7 kgf and 1.42 ⁇ 1.55 cfm, respectively, it can be seen that the airtightness, etc. can be significantly reduced when mounted with an air bag.
- the tensile strength and the slide resistance fall significantly to 196 to 224 kgf / inch and 223-350 N, respectively.
- the airbag fabric properties may not be striking and the airbag may burst when the airbag is deployed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Air Bags (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 에어백용 원단에 사용 가능한 폴리에스테르 원사에 관한 것으로, 특히, 특정의 디카르복실산 조성물과 글리콜을 소정의 범위로 혼합하여 에스테르 반응시키는 단계, 상기 에스테르 반응으로 생성된 올리고머를 중축합 반응시키는 단계, 상기 중축합 반응으로 생성된 폴리머를 고상 중합시키는 단계, 및 상기 고상 중합 반응으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계를 포함하는 폴리에스테르 원사의 제조 방법, 이로부터 제조되는 에어백용 원사, 및 이를 포함하는 에어백용 원단에 관한 것이다. 본 발명에 따라 제조된 폴리에스테르 원사는 저모듈러스, 고강력일 뿐만 아니라 고수축의 특징을 갖게 된다. 또한, 본 발명의 폴리에스테르 원사는 강연도를 현저히 낮추며 우수한 기계적 물성을 확보함으로써, 에어백용 원단으로 사용시 우수한 수납성, 형태안정성, 및 공기 차단 효과를 제공할 수 있다.
Description
【명세서】
【발명의 명칭】
폴리에스테르 원사의 제조 방법
【기술분야】
본 발명은 에어백용 원단에 사용 가능한 폴리에스테르 원사의 제조 방법에 관한 것으로, 보다 상세하게는 우수한 수납성, 유연성, 형태안정성, 및 에어백 전개시 향상된 공기 차단성 등을 갖는 폴리에스테르 원사의 제조 방법과 이로부터 얻어지는 에어백용 원사 및 원단에 관한 것이다.
【배경기술】
일반적으로 에어백 (air bag)은, 주행중인 차량이 약 40 km/h 이상의 속도에서 정면의 층돌시, 차량에 가해지는 층돌층격을 층격감지센서에서 감지한 후, 화약을 폭발시켜 에어백 내부로 가스를 공급하여 팽창시킴으로써, 운전자 및 승객을 보호하는 장치를 말하는 것이며, 일반적인 에어백 시스템의 구조는 도 1에 도시한 것과 같다.
도 1에 도시되는 바와 같이, 일반적인 에어백 시스템은 뇌관 (122)의 점화에 의해 가스를 발생시키는 인플레이터 (inf later; 121), 그 발생된 가스에 의해 운전석의 운전자 쪽으로 팽창 전개되는 에어백 (124)으로 이루어져 조향 휠 (101)에 장착되는 에어백 모들 (100)과, 충돌시 충격 신호를 발생하는 층격센서 (130), 및 그 충격 신호에 따라 인풀레이터 (121)의 뇌관 (122)을 점화시키는 전자 제어모들 (Electronic Control Module; 110)를 포함하여 구성되어 있다. 이와 같이 구성된 에어백 시스템은 차량이 정면 층돌하게 되면, 층격 센서 (130)에서 층격을 감지하여 전자 제어모들 (110)에 신호를 전달한다. 이 때, 이를 인식한 전자 제어모들 (110)은 뇌관 (122)을 점화시켜, 인플레이터 (121) 내부의 가스발생제를 연소시킨다. 이렇게 연소되는 가스발생제는 급속한 가스 발생을 통해 에어백 (124)을 팽창시킨다. 이렇게 팽창되어 전개된 에어백 (124)은 운전자의 전면 상체와 접촉하면서 층돌에 의한 층격하중을 부분적으로 흡수하고, 관성에 의해 운전자의 머리와 가슴이 전방으로 나아가면서 팽창된 에어백 (124)과 충돌될 경우, 에어백 (124)의 가스는 에어백 (124)에 형성된 배출공으로 급속히 배출되며 운전자의 전면부에 완충
작용하게 된다. 따라서, 전면 충돌시 운전자에게 전달되는 층격력을 효과적으로 완충시켜 줌으로서, 2차상해를 경감할 수 있게 된다.
상기와 같이, 자동차에 사용되는 에어백은 일정한 형태로 제조된 후, 그 부피를 최소화하기 위하여 접힌 상태로 자동차의 핸들이나 자동차 측면 유리창 또는 측면 구조물 등에 장착되어 접힌 상태를 유지하였다가 인플레이터 (121) 작동시 에어백이 팽창되어 전개될 수 있도록 한다.
따라서, 자동차 장착시 에어백의 폴딩성 및 패키지성을 효과적으로 유지하며, 에어백 자체의 손상 및 파열을 막고 우수한 에어백 쿠션 전개 성능을 발휘하고, 승객에게 가해지는 층격을 최소화하기 위해서는, 에어백 원단의 우수한 기계적 물성과 함께 플딩성 및 승객에게 가해지는 충격을 줄이기 위한 유연성이 매우 중요하다. 그렇지만, 승객의 안전을 위하여 우수한 공기 차단효과 및 유연성을 동시에 유지하며, 에어백이 받는 충격에 층분히 견디고 자동차내에 효과적으로 장착되어 사용할 수 에어백용 원단은 제안되어 있지 않은 상황이다.
종래에는 나일론 66 등의 폴리아미드 섬유가 에어백용 원사의 재료로 사용된 바 있다. 그러나, 나일론 66은 내층격성이 우수하지만 폴리에스테르 섬유에 비해 내습열성, 내광성, 형태안정성의 측면에서 뒤떨어지고 원료 비용도 높은 단점이 있다.
한편, 일본특허공개공보 평 04-214437호에는 이러한 결점이 경감되는 폴리에스테르 섬유의 사용이 제안되어 있다. 그러나, 이같이 기존의 폴리에스테르 원사를 사용하여 에어백을 제조하는 경우에는, 폴리에스테르 특유의 높은 스티프니스 및 낮은 유연성으로 인해 자동차내에 작은 부피로 수납하기 어려워 폴딩성이 떨어질 뿐 아니라 에어백 쿠션의 전개시 승객에게 가해지는 층격이 상당히 나타날 여지가 있다. 또한, 수분 또는 열 등에 의한 분해가 적지 않게 나타나는 폴리에스테르의 특성상, 고온 고습의 가흑 조건 하에서 층분한 기계적 물성 및 전개 성능을 유지하는 데 한계가 있어 상업적으로 거의 적용되지 않았었다.
따라서, 에어백용 원단으로 사용하기에 적합하게 우수한 형태안정성 및 공기 차단 효과를 유지하며, 승객에게 가해지는 층격을 줄이기 위한 유연성, 수납성, 및 고온 고습의 가혹 조건 하에서도 우수한 기계적 물성을
갖는 섬유 원사 개발에 대한 연구가 필요하다.
【발명의 내용】
【해결하려는 과제】
본 발명은 에어백용 원사로서의 최적화된 유연성 및 기계적 물성을 나타냄에 따라, 보다 향상된 폴딩성 및 전개 성능을 나타내면서도 전개시 승객의 충격을 최소화할 수 있는 에어백 쿠션의 제공을 가능케 하는 폴리에스테르 원사의 제조 방법을 제공하고자 한다.
본 발명은 또한, 상기 방법에 따라 제조되는 폴리에스테르 원사를 제공하고자 한다.
본 발명은 또한, 상기 폴리에스테르 원사를 사용하여 제조되는 에어백용 원단을 제공하고자 한다.
【과제의 해결 수단】
본 발명은 2종 이상의 디카르복실산 화합물을 포함하는 디카르복실산 조성물을 글리콜과 에스테르 반웅시키는 단계; 상기 에스테르 반응으로 생성된 올리고머를 중축합 반응시키는 단계; 상기 중축합 반응으로 생성된 폴리머를 고상 중합시키는 단계; 및 상기 고상 중합 반웅으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계;를 포함하고, 상기 디카르복실산 조성물은 탄소수 6~24의 방향족 디카르복실산 및 탄소수 2~24의 지방족 디카르복실산을 포함하고, 상기 방향족 디카르복실산과 지방족 디카르복실산과의 몰비는 1:0.01 내지 1:0.15이며; 또는 상기 디카르복실산 조성물은 테레프탈산과, 이소프탈산 및 프탈산으로 이루어진 군에서 선택되는 테레프탈산의 이성질체 1종 이상을 포함하고, 상기 테레프탈산과 그의 이성질체와의 몰비는 1:0.01 내지 1:0.12이며, 상기 디카르복실산 화합물의 총량과 글리콜과의 몰비가 1:1 내지 1:1.5이 되도록 하여 반응시키는 폴리에스테르 원사의 제조 방법을 제공한다.
본 발명은 또한, 상기 방법으로 제조되는 폴리에스테르 원사를 제공한다.
본 발명은 또한, 상기 폴리에스테르 원사를 사용하여 제조되는 에어백용 원단을 제공하고자 한다.
이하, 발명의 구체적인 구현예에 따른 폴리에스테르 원사의 제조 방법 및 이로부터 제조되는 에어백용 원사와 원단에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함'' 또는 "함유 "라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
폴리에스테르 에어백용 원단은 폴리에틸렌테레프탈레이트 (이하,
"PET"라 함)을 포함하는 중합체를 용융 방사하여 미연신사를 제조하고, 이를 연신하여 연신사 (즉, 원사)를 얻은 후에, 이러한 공정을 통해 얻은 폴리에스테르 원사를 제직 가공하여 제조될 수 있다. 따라서, 상기 폴리에스테르 원사의 특성이 플리에스테르 에어백용 원단의 물성에 직 /간접적으로 반영된다.
특히, 종래의 나일론 66 등 폴리아미드 섬유 대신에 폴리에스테르를 에어백용 원사로 적용하기 위해서는, 기존에 폴리에스테르 원사의 높은 모들러스와 강연도 등에 따른 폴딩성 저하 및 낮은 용융 열용량으로부터 기인한 고온 고습의 가혹 조건 하에서 물성 저하, 이에 따른 전개 성능 저하를 극복할 수 있어야 한다.
풀리에스테르는 분자구조상 나일론 등에 비해 강연성 (stiffness)이 높은 구조를 가지게 되어 높은 모들러스 (high modulus)의 특성을 갖게 된다. 이로 인해, 에어백용 원단으로 사용하여 자동차에 장착할 경우 수납성 (packing)이 현저히 떨어지게 된다. 또한, 폴리에스테르 분자쇄내의 카르복실 말단기 (Carboxyl End Group, 이하, "CEG"라 함)은 고은 고습 조건에서 에스테르기 (ester bond)를 공격하여 분자쇄 절단을 가져와 에이징후 물성을 저하시키는 원인이 된다.
이에 따라, 본 발명은 폴리에스테르 원사의 제조 공정에서 특정의 디카르복실산 조성물과 이가 알코올인 글리콜을 최적의 조성 범위로 함께 사용함으로써, 제조되는 폴리에스테르 원사에서 강연도를 현저히
낮추면서도 터프니스 (toughness), 인열강도 (Tear Strength), 활탈저항력 (Edge Comb Resistance) 등이 우수하고 높은 공기 차단 성능 등을 유지할 수 있어 에어백용 원단에 효과적으로 적용할 수 있다.
특히, 본 발명자들의 실험 결과, 최적화된 조성 범위 및 공정 조건 등을 통해 제조되는 폴리에스테르 원사를 에어백용 원단에 적용함에 따라, 보다 향상된 폴딩성, 형태안정성, 및 공기 차단 효과를 나타내어 에어백 제조시 자동차 장착 등에서 보다 우수한 수납성 (packing) 및 고온 고습의 가혹 조건 하에서도 우수한 기계적 물성, 공기 유출 방지, 기밀성 등을 유지할 수 있음이 밝혀졌다.
이에 발명의 일 구현예에 따르면, 폴리에스테르 원사의 제조 방법이 제공된다. 이러한 폴리에스테르 원사의 제조 방법은 2종 이상의 디카르복실산 화합물을 포함하는 디카르복실산 조성물을 글리콜과 에스테르 반응시키는 단계; 상기 에스테르 반웅으로 생성된 을리고머를 중축합 반응시키는 단계; 상기 중축합 반응으로 생성된 폴리머를 고상 중합시키는 단계; 및 상기 고상 중합 반웅으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계;를 포함할 수 있다. 상기 에스테르 반웅 단계에서, 다카르복실산 조성물은 탄소수 6~24의 방향족 디카르흑실산 및 탄소수 2~24의 지방족 디카르복실산을 포함하고, 상기 방향족 디카르복실산과 지방족 디카르복실산과의 몰비는 1:0.01 내지 1:0.15일 될 수 있다. 또는, 상기 디카르복실산 조성물은 테레프탈산과, 이소프탈산 및 프탈산으로 이루어진 군에서 선택되는 테레프탈산의 이성질체 1종 이상을 포함하고, 상기 테레프탈산과 그의 이성질체와의 몰비는 1:0.01 내지 1:0.12일 수 있다. 또한, 상기 에스테르 반응 단계에서, 디카르복실산 화합물과 글리콜은 즉, 방향족 디카르복실산, 지방족 디카르복실산 등의 디카르복실산 총량과 글리콜의 몰비, 또는 테레프탈산과 그의 이성질체 즉, 이소프탈산 또는 프탈산의 총량과 글리콜의 몰비가 1:1 내지 1:1.5이 되도록 하여 반응시킬 수 있다.
이하, 이러한 폴리에스테르 원사의 제조 방법을 각 단계별로 상세하 설명하기로 한다.
먼저, 첨부한 도면을 참고로 하여, 본 발명이 속하는 기술 분야에서
통상의 지식을 가진 자가 용이하게 실시할 수 있도특 본 발명의 용융 방사 및 연신 공정의 실시 형태를 간략히 설명할 수 있다.
도 2는 본'발명의 일 구현예에 따라, 상기 용융 방사 및 연신 단계를 포함하는 폴리에스테르 원사 제조공정을 모식적으로 나타낸 공정도이다. 도 2에서 보는 바와 같이 본 발명의 에어백용 폴리에스테르 원사의 제조 방식은 전술한 바와 같은 방식으로 제조된 폴리에스테르 중합체를 용융시켜, 구금을 통해 방사된 용융 고분자를 급넁 공기 (quenching-air)로 넁각시키고, 유제 를 (220, 또는 오일 -젯)을 이용하여 미연신사에 유제를 부여하고, 전- 집속기 (pre-interlacer, 230)를 사용하여 일정한 공기압력으로 미연신사에 부여된 유제를 원사의 표면에 균일하게 분산시킬 수 있다. 이후, 다단의 연신장치 (241~246)를 통하여 연신과정을 거친 후, 최종적으로 세컨드 집속기 (2nd Interlaces 250)에서 일정한 압력으로 원사를 인터밍글 (intermingle)시켜 권취기 (260)에서 권취하여 원사를 생산할 수 았다.
한편, 본 발명의 제조 방법은 먼저, 에어백용 원단에 효과적으로 사용할 수 있는 고강력 저모들러스 고수축 폴리에스테르 원사를 제조하기 위하여, 고점도의 폴리에스테르 중합체를 제조하여 사용할 수 있다. 특히, 상기 폴리에스테르 중합체는 2종 이상의 디카르복실산 화합물을 포함하는 디카르복실산 조성물과 글리콜을 에스테르 반응시켜 제조할 수 있다. 좀더 구체적으로는, 상기 폴리에스테르 중합체는 탄소수 6~24의 방향족 디카르복실산 및 탄소수 2~24의 지방족 디카르복실산을 글리콜과 에스테르 반웅시키거나, 또는 테레프탈산과 그의 이성질체를 글리콜과 에스테르 반응시켜 제조할 수 있다. 이렇게 제조된 폴리에스테르 중합체는 높은 고유점도와 함께 낮은 카르복실 말단기 (CEG) 함량을 가짐으로써, 폴리에스테르 원사로 가공시 고온 고습의 가혹 조건 하에서 에이징 후에도 우수한 기계적 물성 및 공기 유출 방지, 기밀성 등을 유지할 수 있어 에어백용 원단에 효과적으로 적용할 수 있다.
특히, 본 발명의 제조 방법에서 상기 폴리에스테르 중합체는 탄소수 6~24의 방향족 디카르복실산 및 탄소수 2~24의 지방족 디카르복실산을 글리콜과 에스테르 반응시키는 단계; 상기 에스테르 반웅으로 생성된
을리고머를 중축합 반응시키는 단계 ; 상기 중축합 반응으로 생성된 폴리머를 고상 중합시키는 단계; 및 상기 고상 중합 반응으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계 ;를 포함하는 공정으로 제조할 수 있다. 또는 상기 폴리에스테르 중합체는 테레프탈산과, 이소프탈산 및 프탈산으로 이루어진 군에서 선택되는 테레프탈산의 이성질체 1종 이상을 글리콜과 에스테르 반웅시키는 단계; 상기 에스테르 반응으로 생성된 을리고머를 중축합 반응시키는 단계; 상기 중축합 반웅으로 생성된 폴리머를 고상 중합시키는 단계; 및 상기 고상 중합 반웅으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계;를 포함하는 공정으로 제조할 수 있다.
본 발명의 에스테르화 반응은 2종 이상의 디카르복실산 화합물을 포함하는 디카르복실산 조성물을 사용하여 수행한다. 상기 디카르복실산 조성물에서 탄소수 6~24의 방향족 디카르복실산과 탄소수 2~24의 지방족 디카르복실산을 함께 사용하거나, 또는 테레프탈산 (p-phthalic acid)과 함께 이소프탈산 (m— phthalic acid), 프탈산 (o-phthalic acid) 등의 테레프탈산의 이성질체 1종 이상을 함께 사용할 수 있다.
상기 디카르복실산 조성물로서 탄소수 6~24의 방향족 디카르복실산 및 탄소수 2~24의 지방족 디카르복실산을 함께 사용할 경우에, 상기 탄소수 6~24의 방향족 디카르복실산로는 테레프탈산 (p-phthalic acid), 이소프탈산 (m-phthalic acid), 프탈산 (o-phthal ic acid), 디페닐에테르디카르복실산, 바이페닐디카르복실산,' 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산 및 그의 에스테르 형성 유도체들로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 이 증에서, 경제성 및 완제품의 물성 등올 고려해서 테레프탈산을 사용하는 것이 바람직하다.
또한, 상기 방향족 디카르복실산과 함께 글리콜 성분과 에스테르 반응을 수행하는 탄소수 2~24의 지방족 디카르복실산으로는 옥살산 (oxalic acid) , 말론산 (malonic acid) , 숙신산 (succinic acid) , 글루타르산 (glutaric acid) , 아디프산 (adipic acid), 피멜산 (pimelic acid) 수베르산 (suberic acid), 아젤라산 (azelaic acid), 세박산 (sebacic acid) ,
및 그의 에스테르 형성 유도체들로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 이 중에서 경제성 및 완제품의 물성 등을 고려해서 아디프산을 테레프탈산 등과 함께 사용할 수 있다.
한편, 상기 디카르복실산 조성물로서 테레프탈산 (p-phthalic acid)과 테레프탈산의 이성질체 1종 이상을 함께 사용할 경우에, 경제성 및 완제품의 물성 등을 고려해서 이소프탈산을 테레프탈산과 함께 사용하는 것이 바람직하다.
본 발명에서 상기 디카르복실산 조성물, 즉, 디카르복실산 성분과 에스테르 반응을 수행하는 글리콜은 탄소수 2~16의 지방족 디을, 탄소수 6~24의 지환족 디을, 탄소수 6~24의 방향족 디올, 및 그의 에틸렌 옥사이드 또는 프로필렌 옥사이드 부가물로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 좀더 구체적으로는, 본 발명의 폴리에스테르를 제조하는 데 사용 가능한 글리콜은 에틸렌 글리콜, 1,2-프로판디을, 1,3-프로판디올, 1,3ᅳ 부탄디을, 1,4-부탄디올, 1,5-펜탄디올, 1,6-핵산디을, 1,7-헵탄디을, 1,8ᅳ 옥탄디올, 1,9-노난디올, 1,10-데칸디올, 1,12—도데칸디올, 디에틸렌 글리콜, 트리메틸렌글리콜, 테트라메틸렌 글리콜, 핵사메틸렌 글리콜, 트리에틸렌글리콜, 테트라에틸렌 글리콜, 테트라메틸 에틸렌 글리콜, 펜타에틸렌 글리콜, 핵사에틸렌 글리콜, 옥타에틸렌 글리콜, 디프로필렌글리콜, 트리프로필렌글리콜 등의 탄소수 2~16의 알칸디올 등과, 시클로핵산디올 시클로핵산디메탄을, 시클로핵산디에탄올, 시클로핵산디프로판올, 시클로핵산디부탄올, 시클로핵산디펜탄을, 시클로부탄디메탄올, 시클로펜탄디메탄을 등의 탄소수 6~24의 지환족 디올, 및 비스페놀 A, 비스페놀 S 등의 탄소수 6~24의 방향족 디을과, 이러한 디올 성분의 에틸렌 옥사이드 혹은 프로필렌 옥사이드 부가물 등을 들 수 있다.
이러한 폴리에스테르 증합체의 제조 공정은, 상술한 바와 같은 특정 조성의 디카르복실산 성분들과 이가 알코을인 글리콜 성분을 반응시키거나 켜 에스테르화하는 TP Terephthalic Acid) 공법에 적용하는 것이 될 수 있다. 일반적인 폴리에스테르 TPA 공법은 상기 디카르복실산과 글리콜을 반응시켜 에스테르화하는 에스테르 반웅에서 촉매를 사용하지 않고 자기
산촉매 반웅을 하는 직접반웅이다. 예컨대, 하기 반웅식 1에 나타낸 바와 같이, 테트라프탈산과 에틸렌글리콜과의 에스테르화 반응 (esterfication)으로 직접적으로 폴리에틸렌테레프탈레이트 (PET)를 제조하는 방법을 들 수 있다. '
[반응식 1]
이러한 TPA 반응에서는 디카르복실산의 불용성과 낮은 반응성 때문에 고온을 유지해야 한다. 이렇게 만들어진 올리고머를 고진공 하에서 촉매를 첨가하며 고온으로 중축합 반응시켜 일정 점도의 폴리머를 얻을 수 있다. 이렇게 만들어진 폴리머를 기어 펌프를 이용하던지 고압의 불활성 기체 (N2)를 이용하여 노즐을 통과시켜 배출한다. 이렇게 배출된 폴리머는 냉각수로 고화시켜 알맞은 크기로 절단한다.
상기와 같이 종래의 TPA 공법에 따른 폴리에스테르 제조시, 고은으로 진행하는 에스테르 반웅과 중축합 반웅에 의한 열분해 발생으로 카르복실 말단기를 생성시키고 원료로 카르복실 말단기를 가지고 있는 디카르복실산을 사용함으로써, 제조된 폴리에스테르 최종 폴리머에는 다량의 카르복실 말단기가 포함되게 된다. 또한, 이같이 다량의 카르복실 말단기가 포함된 폴리에스테르 원사를 에어백용 원단에 적용하는 경우에는 전술한 바와 같이, 고온 고습 하에서 산으로 존재하는 말단 카르복실기 때문에 기존 분자쇄 절단이 유발되어 원단의 물성 저하가 야기된다. 이러한 측면에서, 본 발명은 상기 디카르복실산과 디을 성분의 중축합 및 고상 중합 반응을 마일드한 조건으로 최적화하여 저온 중합을 수행하며, 이러한 카르복실 말단기 함량을 최소화할 뿐만 아니라 추가 고상 중합을 통해 말단 카르복실기와 하이드록실기를 결합시켜 CEG의 함량을 줄이는
동시에 폴리머의 분자량을 증가시킬 수 있다.
한편, 상기와 같이 일반적인 TPA 공법에 따라 디카르복실산과 에틸렌글리콜을 사용하여 폴리에스테르를 제조하고 원단을 만들어 가공할 경우, 나일론 대비 수축율이 낮아 원단 조직의 견고함이 떨어져 공기 투과성이 현저히 떨어지며 원단의 바느질 부위에서 원단이 미어지는 현상이 발생하고 찢김 강성 또한 떨어진다. 또한, 이러한 원단으로 에어백을 제조할 경우, 에어백 전개시 강한 압력에 의해 에어백이 손상되어 에어백 기존 역할인 탑승자 보호 역할올 할 수 없게 되기도 한다.
따라서, 본 발명에서는 폴리에스테르 중합체를 제조함에 있어서, 특정의 디카르복산 화합물 2종 이상을 포함하는 디카르복실산 조성물을 글리콜과 소정의 범위로 함께 첨가하여 에스테르 반응시키고 중축합시킴으로써, 고강력 저모들러스의 고수축 원사를 제조할 수 있게 된다. 즉, 글리콜과의 에스테르 반웅에 특정의 디카르복산 화합물 2종 이상을 흔합하여 사용함으로써, 즉, 디카르복실산 조성물을 방향족 디카르복실산과 함께 지방족 디카르복실산을 첨가하거나 테레프탈산과 함께 이소프탈산, 프탈산 등을 첨가함으로써, 분자쇄에 벤젠 고리 대신에 선형 (linear) 구조를 도입하거나 분자쇄의 선형 (linear) 구조를 코일형 (coil) 구조로 만들어 주며 분자쇄의 경직성을 없애 분자쇄간 인력을 감소시킬 수 있다. 이로써, 분자 자체의 움직임이 자유로운 상태로 만들어 줄 수 있어, 열에 의해 쉽게 변형이 될 수 있는 구조, 즉, 열에 의한 수축이 용이하게 될 수 있게 한다. 또한, 본 발명에 따르면, 고점도 칩 (Chip)을 사용하여 저은방사를 실시하고 지연냉각부에서 방사 장력을 최소화할 수 있으며, 고점도의 필라멘트 (filament)를 확보하여 저연신으도 고강력, 고수축의 원사를 제조할 수 있게 된다.
또한, 이렇게 글리콜과 특정의 디카르복실산 화합물 2종 이상을 함께 반응시켜 얻어진 폴리에스테르 원사는 저모들러스, 고강력일 뿐만 아니라 고수축의 특징을 갖게 된다. 결국 이러한 원사를 사용하여 에어백 원단을 제조할 경우, 에어백 전개시 내부 압력에 의한 원단의 미어짐, 찢겨짐을 방지하고 공기 투과성도 개선됨으로써 충격으로부터 탑승자를 보호하는 역할을 할 수 있게 된다.
한편, 본 발명에서 상기 디카르복실산 조성물과 글리콜의 에스테르화 반응 및 중축합 반웅은 TPA 공법으로 알려진 통상적인 방법에 따라 수행할 수 있으며, 특별히 별도의 공정 조건에 한정되는 것은 아니다.
다만, 본 발명의 바람직한 일 구현예에 따르면, 상기 에스테르 반응 단계에서 디카르복실산 성분과 글리콜의 몰비, 즉, 방향족 디카르복실산과 지방족 디카르복실산의 총량과 글리콜의 몰비 또는 테레프탈산과 이소프탈산, 프탈산 등의 디카르복실산의 총량과 글리콜의 몰비는 1:1 내지 1:1.5, 바람직하게는 1:1.1 내지 1:1.45, 더욱 바람직하게는 1:1.1 내지 1:1.4가 될 수 있다. 이때, 상기 디카르복실산 성분과 글리콜의 몰비는 중합 반응의 공정 효율 향상 측면에서 1:1 이상이 될 수 있으며, 생성되는 폴리머의 CEG 및 DEG등의 물성 향상 측면에서 1:1.5 이하가 될 수 -있다. 또한, 본 발명에서 상기 글리콜과 반응하게 되는 디카르복실산 조성물 중 2종 이상의 디카르복실산 화합물 사이에서도 소정의 몰비 범위를 유지할 수 있다. 좀더 구체적으로, 상기 디카르복실산 조성물에서 방향족 디카르복실산과 지방족 디카르복실산의 몰비는 1:0.01 내지 1:0.15, 바람직하게는 1:0.01 내지 1:0.14더욱 바람직하게는 1:0.01 내지 1:0.13가 될 수 있다. 이때, 상기 지방족 디올과 지환족 디을의 몰비는 에어백용 원단 가공시 우수한 물성 발현 측면에서 1:0.01 이상이 될 수 있으며, 원사 제조 공정 효율 향상 측면에서 1:0.15 이하가 될 수 있다. 한편, 상기 디카르복실산 조성물에서 테레프탈산과 그의 이성질체인 이소프탈산, 프탈산 등과의 몰비는 1:0.01 내지 1:0.12, 바람직하게는 1:0.01 내지 1:0.11 더욱 바람직하게는 1:0.01 내지 1:0.1가 될 수 있다. 이때, 상기 테레프탈산과 그의 이성질체인 이소프탈산, 프탈산 등의 몰비는 에어백용 원단 가공시 우수한 물성 발현 측면에서 1:0.01 이상이 될 수 있으며, 원사 제조 공정 효율 향상 측면에서 1:0.12 이하가 될 수 있다.
상기 에스테르 반응은 230 내지 300 °C, 바람직하게는 250 내지
290 °C 또는 250 내지 280 °C에서 수행할 수 있으며, 반웅 시간은 2 시간 내지 7 시간, 바람직하게는 3 내지 5 시간으로 수행할 수 있다. 이때, 반응 시간 및 반응 온도는 플리머의 물성 및 생산성 향상 측면에서 조절하여 수행할 수 있다.
또한, 본 발명에서 상기 중축합 반웅은 온도 250 내지 290 °C, 바람직하게는 270 내지 285 °C에서 수행할 수 있으며, 압력 2 Torr 이하 바람직하게는 1 Torr 이하 에서 수행할 수 있다. 이때, 반웅 시간은 2 내지 5 시간, 바람직하게는 3 내지 4 시간으로 수행할 수 있으며, 반응시간 및 반응 은도는 폴리머의 물성 및 생산성 향상 측면에서 조절하여 수행할 수 있다.
특히, 상기 중축합 반웅은 저온 중합을 통해 용융 폴리머의 점도, CEG를 낮은 수준으로 조절할 수 있으며, 바람직하게는 중축합 반웅후 생성된 폴리머의 고유 점도가 0.25 dl/g 이상 또는 25 dl/g 내지 0.80 dl/g 가 될 수 있도록, 바람직하게는 0.4 dl/g 이상, 좀더 바람직하게는 0.5 dl/g 이상이 될 수 있도록 조절하는 것이 폴리머의 말단에 카르복실기를 최소화하는 측면에서 바람직하다.
상기 중축합 반응 후 생성된 폴리머는 다음의 고상 중합 단계에서 내 /외부 반응차를 최소화하고 반웅속도를 상승시킬 수 있도록 칩 (chip)의 크기를 최소화하여, 즉, 칩 (chip)의 비표면적을 크게 하여 사용할 수 있다. 또한, 바람직하게는 상기 중축합 반응 후 생성된 폴리머는 비표면적을 크게 하기 위하여 칩의 크기를 1.0 g/100ea 내지 3.0 g/100ea가 되도록, 좀더 바람직하게는 1.5 g/100ea 내지 2.5 g/100ea가 되도록 절단하여 고상 중합을 수행할 수 있다.
이때, 상기 폴리머 칩의 형태는 고상 중합시 융착을 방지하기 위하여 구형으로 제조하여 사용할 수 있다. 이러한 구형, 즉, 공 또는 구슬과 같은 형태의 폴리머 칩은 언더워터 커팅 (underwater cutting) 방식으로 제조될 수 있다. 상기 폴리머 칩은 예컨대, 물 속에서 나이프 (knife)가 돌아가면서 폴리머를 커팅하며 펠릿 (pellet)을 만드는 방식으로 제조될 수 있다. 특히, 이렇게 물 속에서 커팅된 폴리머 펠릿은 절단 후 곧바로 물에 둘러싸이기 때문에 펠릿끼리의 점착이 최소화되고 또한 냉각하기까지에는 대략 구형에 가까워질 수 있다. 즉, 폴리머가 엘라스토머적 기질을 갖고 있어 등글게 말려서 타원 또는 구에 가까운 형상으로 칩이 생성될 수 있다. 본 발명에서 구형의 폴리머 칩은 원 (circle) 또는 타원 (ellipse) 형태의 단면을 갖는 것일 수 있다. 또한, 상기 폴리머 칩은 고상 중합시 융착 (sticking)을
방지하기 위하여 칩 표면에 스크래치 (scratch) 등으로 표면 조도 ( 3Χ) 1 이상을 갖는 형태로 제조하여 사용할 수도 있다.
상기 고상 중합 반응은 온도 170 내지 240 °C, 예컨대, Γ70 내지 225 °C 또는 200 내지 240 °C에서 수행할 수 있으며, 바람직하게는 180 내지 220 °C 또는 205 내지 235 °C에서 수행할 수 있다. 또한, 상기 고상 중합 반응은 압력 2 Torr 이하, 바람직하게는 1 Torr 이하에서 수행할 수 있다. 이때, 반응 시간은 10 시간 이상 또는 10 내지 40 시간으로 수행할 수 있으며, 반웅 시간 및 반응 온도는 최종 점도 및 방사성 향상 측면에서 조절하여 수행할 수 있다.
본 발명에서는 용융 중합의 중축합 반응을 좀더 마일드한 조건의 저온 중합을 수행함과 동시에 고상 중합을 추가 반응으로 진행함으로써, 생성된 카르복실 말단기 (CEG)를 하이드록실기와 결합시켜 CEG 함량을 감소시키고 폴리머의 분자량을 증가시킬 수 있다. 이같이 고상중합을 추가로 수행한 폴리에스테르 중합체는 고유 점도가 0.7 dl/g 이상 또는 0.7 내지 2.0 dl/g, 바람직하게는 0.85 dl/g 이상, 좀더 바람직하게는 0.90 dl/g 이상이 될 수 있도록 하는'것이 원사의 물성 및 방사성 향상 측면에서 바람직하다. 상기 칩의 고유점도는 0.7 dl/g 이상이 되어야 바람직한 고강력 및 고절신의 특성을 갖는 원사를 제조할 수 있다. 다만, 전술한 바와 같이, 고강력 저모들러스의 폴리에스테르 원사를 제조하기 위해서는, 미연신사 제조 공정에서 고점도 폴리에스테르 중합체, 예를 들어, 고유점도 0.85 dl/g 이상의 폴리에스테르 중합체를 사용하여, 용융 방사 및 연신 공정을 통해 이러한 고점도 범위를 최대한 유지하여 저연신으로 고강력을 발휘할 수 있어 모들러스를 효과적으로 낮추는 것이 바람직하다. 또한, 상기 폴리에스테르 중합체의 용융 온도 상승에 따른 분자쇄 절단과 방사팩에서의 토출량에 의한 압력 증가를 막기 위해서는 고유점도가 2.0 dl/g 이하인 것이 더욱 바람직하다.
또한, 폴리에스테르 원사로 제조하여 에어백용 원단으로 적용시 고온 고습 조건 하에서도 우수한 물성을 유지할 수 있도록 하기 위해서는, 상기 폴리에스테르 중합체의 분자내 CEG 함량은 30 meq/kg 이하가 바람직하다.
여기서, 상기 폴리에스테르 중합체의 CEG 함량은 용융 방사 및 연신 공정을 진행한 후에도 최대한 낮은 범위로 유지되어, 최종 제조된 폴리에스테르 원사가 고강력 및 우수한 형태안정성, 기계적 물성, 가혹 조건하에서 우수한 물성 발현 특성을 확보할 수 있도록 하는 것이 바람직하다. 이러한 측면에서, 상기 폴리에스테르 중합체의 CEG 함량이 30 meq/kg를 초과하게 되면 용융 방사 및 연신 공정을 통해 최종 제조된 폴리에스테르 원사의 분자내 CEG 함량이 과량으로, 예컨대 30 meq/kg 내지 50 meq/kg를 초과하는 정도로 증가하며, 높은 습도 조건 하에서 CEG에 의해 에스테르 결합이 절단되어 원사 자체 및 이로부터 제조된 원단의 물성 저하가 야기될 수 있다.
상기 폴리에스테르 중합체는 폴리에틸렌테레프탈레이트 (PET)를 주성분으로 포함하는 것이 바람직하몌 에어백용 원사로서 우수한 기계적 물성을 확보하기 위해서는 바람직하게는 70 몰% 이상, 더욱 바람직하게는 90 몰% 이상을 포함할 수 있다.
한편, 본 발명의 폴리에스테르 원사 제조 방법은 상기 높은 고유점도 및 낮은 CEG 함량의 폴리에스테르 중합체를 용융 방사하여 폴리에스테르 미연신사를 제조한다.
이때, 낮은 초기 모들러스 및 높은 신율 범위를 층족하는 폴리에스테르 미연신사를 얻기 위해서는, 상기 용융 방사 공정은 폴리에스테르 중합체의 열분해를 최소화할 수 있도록 낮은 온도 범위에서 수행하는 것이 바람직하다. 특히, 고점도의 폴리에스테르 중합체의 고유점도 및 CEG 함량 등에 대하여 공정에 따른 물성 저하를 최소화할 수 있도록, 즉, 폴리에스테르 중합체의 고점도 및 낮은 CEG 함량을 유지할 수 있도록 저온방사, 예를 들어, 260 내지 300 °C, 즉, 260 내지 290 °C 또는 270 내지 300 °C의 은도에서 수행할 수 있다. 이 때, 효율적인 방사 공정 수행을 위하여 바람직하게는 270 °C 이상, 좀더 바람직하게는 275 °C 이상, 더욱 바람직하게는 280 °C 이상의 온도에서 수행할 수 있다. 여기서, 방사온도란 사출기 (Extruder) 온도를 지칭하는 것이며, 상기 용융 방사 공정을 너무 높은 온도에서, 예컨대, 290 °C 또는 300 °C를 초과하여 수행할 경우에는 폴리에스테르 중합체의 열분해가 다량으로 발생하여
고유점도의 저하로 분자량 감소 및 CEG 함량 증가가 커질 수 있다. 이와 함께, 원사의 표면 손상으로 전반적인 물성 저하를 초래할 수 있어 바람직하지 않다. 이에 반해, 상기 용융 방사 공정을 너무 낮은 온도에서, 예컨대, 260 °C 또는 270 °C 미만에서 진행할 경우에는 폴리에스테르 중합체의 용융이 어려울 수 있으며, N/Z표면 넁각으로 방사성이 떨어질 수도 있어, 상기 온도 범위 내에서 용융 방사 공정을 수행하는 것이 바람직하다.
실험 결과, 이러한 낮은 온도 범위에서 폴리에스테르 중합체와 용융 방사 공정을 진행함에 따라, 폴리에스테르 중합체의 분해 반웅을 최소화하여 높은 고유점도를 유지하여 높은 분자량을 확보함으로써, 후속하는 연신 공정에서 높은 연신 비율을 적용하지 않고도 고강력의 원사를 얻을 수 있으며, 이같이 저연신 공정을 수행할 수 있음에 따라 모듈러스를 효과적으로 낮출 수 있어 상술한 물성을 층족하는 폴리에스테르 원사가 얻어질 수 있음이 밝혀졌다.
또한, 상기 용융 방사 공정은 폴리에스테르 중합체 분해 반웅을 최소화하는 측면에서, 보다 낮은 방사 장력 하에서 진행될 수 있도록, 즉 방사 장력을 최소화할 수 있도록, 예를 들어, 상기 폴리에스테르 증합체를 용융 방사하는 속도를 300 내지 1,000 m/min의 저속으로 조절할 수 있고, 바람직하게는 350 내지 700 m/min으로 조절할 수 있다. 이같이 선택적으로 낮은 방사 장력 및 낮은 방사 속도 하에 폴리에스테르 중합체의 용융 방사 공정을 진행함에 따라, 폴리에스테르 중합체의 분해 반응을 더욱 최소화할 수 있다.
한편, 이러한 용융 방사 공정을 거치고 얻어진 미연신사는 0.8 dl/g 이상 또는 0.8 dl/g 내지 1.2 dl/g, 바람직하게는 0.85 dl/g 이상, 더욱 바람직하게는 0.90 dl/g 이상의 고유점도를 나타낼 수 있다. 또한, 이렇게 저온방사를 통해 얻어진 미연신사의 분자내 CEG 함량이 50 meq/kg 이하, 바람직하게는 40 meq/kg 이하, 좀더 바람직하게는 30 meq/kg 이하일 수 있다. 이러한 미연사의 분자내 CEG 함량은 후속 연신 공정을 수행한 연신사, 즉, 폴리에스테르 원사에서도 동일한 수준으로 유지될 수 있다.
특히, 이러한 고점도 및 낮은 CEG 함량의 폴리에스테르 중합체는
상술한 바와 같은 저온 조건 하에서 용융 방사를 수행하여 폴리에스테르 중합체의 열분해 등을 최대한 억제함으로써, 폴리에스테르 중합체와 폴리에스테르 원사와의 고유점도 및 CEG 함량 차이를 최소화할 수 있다. 예를 들어, 폴리에스테르 중합체와 폴리에스테르 원사와의 고유점도 차이는 0.5 dl/g 이하 또는 0 내지 0.5 dl/g, 바람직하게는 0.4 dl/g 이하가 되도록 용융 방사 및 이후 공정을 수행할 수 있으며, 실제 공정에서는 상기 고유점도 차이가 0.1 dl/g 이상으로 나타날 수 있다. 또한, 폴리에스테르 중합체와 폴리에스테르 원사와의 분자내 CEG 함량 차이는 20 meq/kg 이하 또는 0 내지 20 meq/kg, 바람직하게는 15 meq/kg 이하가 되도록 공정을 수행할 수 있으며, 실제 공정에서는 상기 CEG 함량 차이가 3 meq/kg 이상으로 나타날 수 있다.
본 발명은 이같이 폴리에스테르 중합체의 고유점도 저하 및 CEG 함량 증가를 최대한 억제함으로써, 폴리에스테르 원사의 우수한 기계적 물성을 유지하면서 동시에 우수한 신율을 확보할 수 있으며, 에어백용 원단에 적합한 고강력의 저모듈러스 원사를 제조할 수 있다.
그리고, 상기 폴리에스테르 중합체, 예를 들어 PET 칩은 모노 필라멘트의 섬도가 0.5 내지 20 데니어, 바람직하게는 1 내지 15 데니어로 될 수 있도록 고안된 구금을 통하여 방사되는 것이 바람직하다. 즉, 방사 중 사절의 발생 및 넁각시 서로간의 간섭에 의하여 사절이 발생할 가능성을 낮추기 위해서는 모노 필라멘트의 데니어가 1.5 데니어 이상은 되어야 하며, 냉각 효율을 높이기 위해서는 모노 필라멘트의 섬도가 15 데니어 이하인 것이 바람직하다.
또한, 상기 폴리에스테르 중합체를 용융 방사한 후에는 냉각 공정을 부가하여 상기 폴리에스테르 미연신사를 제조할 수 있다. 이러한 냉각 공정은 15 내지 60 °C의 넁각풍을 가하는 방법으로 진행함이 바람직하고, 각각의 넁각풍 온도 조건에 있어서 냉각 풍량을 0.4 내지 1.5 m/s로 조절하는 것이 바람직하다. 이로써, 발명의 일 구현예에 따른 제반 물성을 나타내는 폴리에스테르 미연신사를 보다 쉽게 제조할 수 있다.
한편, 이러한 방사 단계를 통해 폴리에스테르 미연신사를 제조한 후에는, 이러한 미연신사를 연신하여 연신사를 제조한다. 이때, 상기 연신
공정은 5.0 내지 6.5, 바람직하게는 5.0 내지 6.2 또는 6.0, 좀더 바람직하게는 5.0 내지 5.8의 연신비 조건 하에서 연신 공정을 수행할 수 있다. 특히, 상기 연신 공정은 폴리에스테르 미연신사가 GR 1과 GR 2를 통과한 후에 GR 2와 GR 3 사이에서 3.0 내지 5.0, 바람직하게는 3.2 내지 4.8의 연신비로 일단 연신을 진행하고, GR 3과 GR 4 사이에서 1.0 내지 2.0 바람직하게는 1.2 내지 1.8의 연신비로 진행할 수 있다.
상기 폴리에스테르 미연신사는 용융 방사 공정을 최적화하여 높은 고유점도와 낮은 초기 모들러스를 유지하며 분자내 CEG 함량 또한 최소화한 상태이다. 따라서, 6.5를 넘는 높은 연신비 조건 하에서 상기 연신 공정을 진행하면, 과연신 수준이 되어 상기 연신사에 절사 또는 모우 등이 발생할 수 있고 높은 섬유의 배향도에 의해 저신율 고모듈러스의 원사가 제조될 수 있다. 특히, 이렇게 높은 연신비 조건 하에서 원사의 신율이 저하되고 모들러스가 증가하게 되는 경우, 에어백용 원단으로 적용시 플딩성, 수납성이 좋지 않을 수 있다. 반면에, 비교적 낮은 연신비 하에서 연신 공정을 진행하면, 섬유 배향도가 낮아 이로부터 제조된 폴리에스테르 원사의 강도가 일부 낮아질 수 있다. 다만, 물성 측면에서 5.0 이상의 연신비 하에서 연신 공정을 수행하면, 예를 들어, 에어백용 원단 등에 적용되기에 적합한 고강력 저모듈러스의 폴리에스테르 원사의 제조가 가능하므로., 상기 연신 공정은 5.0 내지 6.5의 연신비 조건 하에서 진행하는 것이 바람직하다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 직접 방사 연신 공정으로 고강도 및 저수축의 성질을 동시에 만족시키면서 낮은 모들러스의 폴리에스테르 원사를 제조하기 위하여 고점도의 폴리에스테르 중합 칩을 사용하여 용융 방사한 다음, 와인더에 권취하기까지 다단 고뎃 를러를 거치며 연신, 열고정, 이완, 권취하는 공정을 포함할 수 있다.
상기 연신 공정은 상기 미연신사를 오일 픽업량 0.2% 내지 2.0%의 조건 하에서 고뎃 를러를 통과시킨 후에 수행할 수 있다.
상기 이완 과정에서 이완를은 1% 내지 10%가 바람직하며, 1% 미만일 경우에는 수축율의 발현이 어려우며 높은 연신비 조건 하에서와 마찬가지로 높은 섬유 배향도 형성에 따라 고신율 저모들러스 섬유 제조가 어려워질 수
있으며, 10%를 초과할 경우에는 고뎃 를러상에서 사떨림이 심해져서 작업성을 확보할 수가 없다.
또한, 상기 연신 공정에서는 상기 미연신사를 대략 130 내지 250 °C의 온도 하에서, 예컨대, 130 내지 220 또는 170 내지 250 °C의 온도 하에서 열처리하는 열고정 공정을 추가로 수행할 수 있다. 또한, 상기 연신 공정의 적절한 진행을 위해 바람직하게는 140 내지 245 °C의 온도로, 예컨대, 140 내지 215 °C 또는 175 내지 245 °C의 온도로 열처리할 수 있다. 여기서, 은도가 130 °C 미만일 경우에는 열적 효과가 층분하지 못하여 이완효율이 떨어져 수축률 달성이 어려우며, 250 °C를 초과할 경우에는 열분해에 의한 원사강도 저하 및 를러상 타르 발생이 증가하여 작업성이 저하될 수 있다.
이때, 권취속도는 2,000 내지 4,000 m/min, 바람직하게는 2,500 내지 3,700 m/min으로 수행할 수 있다.
한편, 발명의 다른 구현예에 따라, 상술한 바와 같은 방법을 통해 제조되는 폴리에스테르 원사가 제공된다. 이러한 폴리에스테르 원사는 상술한 바와 같이 폴리에스테르 중합체, 예를 들어 PET칩을 용융 방사하여 미연신사를 제조하고, 상기 미연신사를 연신하는 방법으로 제조될 수 있고, 상기한 바와 같이, 이들 각 단계의 구체적 조건이나 진행 방법이 폴리에스테르 원사의 물성에 직 /간접적으로 반영되어 소정의 특성을 갖는 플리에스테르 원사가 제조될 수 있다.
특히, 이러한 공정 최적화를 통해 제조된 폴리에스테르 원사는 저모들러스, 고강력일 뿐만 아니라 고수축의 특징을 갖게 된다. 결국, 이러한 폴리에스테르 원사를 사용하여 에어백 원단을 제조할 경우, 에어백 전개시 내부 압력에 의한 원단의 미어짐, 찢겨짐을 방지하고 공기투과성을 현저히 개선할 수 있으며, 이와 동시에 승객에게 가해지는 충격을 최소화할 수 있음이 밝혀졌다.
본 발명에 따라 제조되는 폴리에스테르 원사는 초기 모들러스가 40 내지 100 g/d이며, 상온에서 1.0 g/d의 응력에 처해졌을 때 0.5% 이상 신장하고, 4.0 g/d의 응력에 처해졌을 때는 4.3% 이상 신장하고, 7.0 g/d의 웅력에 처해졌을 때는 7.5% 이상 신장하는 에어백용 플리에스테르 원사를
확보할 수 있음이 밝혀졌다. 또한, 본 발명에서 이러한 용융 방사 및 연신 공정의 최적화를 통해, 높은 습도 조건 하에서 산으로 존재하여 폴리에스테르 원사의 기본 분자쇄 절단을 유발시키는 카르복실 말단기 (CEG, Carboxyl End Group)를 최소화할 수 있음이 밝혀졌다. 따라서, 이러한 폴리에스테르 원사는 낮은 초기 모들러스 및 높은 신율 범위를 동시에 나타내어 우수한 기계적 물성 및 수납성, 형태안정성, 내층격성, 공기 차단 효과를 갖는 에어백용 원단에 바람직하게 적용될 수 있다.
일반적으로. 폴리에스테르는 분자 구조상 나일론 등에 비해 강연성 (stiffness)이 높은 구조를 갖는 것으로, 이로 인해 높은 모들러스의 특성을 나타내며 에어백용 원단으로 사용시 폴딩성 및 패킹성 (packing)이 현저히 떨어져, 자동차의 좁은 공간에 수납이 어렵게 된다. 그런데, 조절된 용융 방사 및 연신 공정을 통해 얻어진 상기 폴리에스테르 원사는 고강력 저모들러스의 특성을 나타내며 이전에 알려진 폴리에스테르 산업용 원사보다 낮은 초기 모들러스, 즉, 40 내지 100 g/d, 바람직하게는 50 내지 100 g/d, 좀더 바람직하게는 55내지 95 g/d의 초기 모들러스를 나타낸다. 이 때, 상기 폴리에스테르 원사의 모들러스는 인장시험시 얻어지는 웅력-변형도 선도의 탄성 구간 기울기로부터 얻어지는 탄성계수의 물성값으로, 물체를 양쪽에서 잡아 늘일 때, 물체의 늘어나는 정도와 변형되는 정도를 나타내는 탄성률에 해당하는 값이다. 또한, 원사의 초기 모들러스는 응력 -변형도에서 "0" 점 이후에 대략 탄성 구간이 시작되는 지점에서의 탄성계수 물성값이다. 상기 원사 초기의 모들러스가 높으면 탄성은 좋으나 원단의 강연도 (stiffness)가 나빠질 수 있으며, 초기 모들러스가 너무 낮을 경우 원단의 강연도는 좋으나 탄성회복력이 낮아져서 원단의 강인성이 나빠질 수 있다. 그런데, 본 발명의 폴리에스테르 원사는 초기 모들러스가 종래의 폴리에스테르 산업용 원사보다 훨씬 낮은 범위에서 최적화된 것이다. 이같이, 기존에 비해 낮은 범위의 초기 모들러스를 갖는 폴리에스테르 원사로부터 제조된 에어백용 원단은 기존의 폴리에스테르 원단의 높은 강연도 (stiffness) 문제 등을 해결하고, 우수한 폴딩성, 유연성, 및 수납성을 나타낼 수 있다.
상기 폴리에스테르 원사는 또한, 낮은 초기 모들러스와 함께 연신이
최소화된 특징을 갖는다. 이로 인해, 상기 폴리에스테르 원사는 상온에서
1.0 g/d의 웅력에 처해졌을 때 0.5% 이상 또는 0.5% 내지 1.5%, 바람직하게는 0.7% 내지 1.2% 신장하고, 4.0 g/d의 웅력에 처해졌을 때는 4.3% 이상 또는 4.3% 내지 20%, 바람직하게는 4.3% 내지 15% 신장하고, 7.0 g/d의 웅력에 처해졌을 때는 7.5% 이상 또는 7.5% 내지 25%, 바람직하게는 7.5% 내지 20% 신장하는 것이 될 수 있다. 이러한 특성으로 인해, 상기 폴리에스테르 원사로부터 제조된 에어백용 원단이 기존의 폴리에스테르 원단의 높은 강연도 (stiffness) 문제 등을 해결하고, 우수한 폴딩성, 유연성, 및 수납성을 나타낼 수 있다.
이러한 폴리에스테르 원사는 폴리에틸렌테레프탈레이트 (PET)를 주성분으로 포함하는 것이 바람직하다. 이 때, 상기 PET는 그 제조단계에서 여러 가지 첨가제가 첨가될 수 있는 것으로서, 에어백용 원단에 적합한 물성을 나타내기 위해서는 적어도 70 몰¾> 이상, 더욱 바람직하게는 90 몰¾ 이상을 포함하는 원사일 수 있다. 이하에서 PET라는 용어는 특별한 설명 없이 PET고분자가 70 몰% 이상인 경우를 의미한다.
이와 동시에, 상기 폴리에스테르 원사는 이전에 알려진 폴리에스테르 원사에 비해 보다 향상된 고유점도, 즉, 0.8 dl/g 이상 또는 0.8 dl/g 내지 1.2 dl/g, 바람직하게는 0.85 dl/g 내지 1.15 dl/g, 더욱 바람직하게는 0.90 dl/g 내지 1.10 dl/g의 고유점도를 나타낼 수 있다. 고유점도는 상기 폴리에스테르 원사를 에어백 용도로 적용시 코팅 공정 등에서 열적 변형이 일어나지 않도록 하기 위하여 상기 범위로 확보되는 것이 바람직하다.
상기 원사의 고유점도는 0.8 dl/g 이상이 되어야 저연신으로 고강력을 발휘하여 에어백 원사의 요구 강력을 만족시킬 수 있어 바람직하고, 그렇지 못할 경우 고연신으로 물성 발현할 수 밖에 없게 될 수 있다. 이같이 고연신을 적용할 경우 섬유의 배향도가 상승하여 높은 모들러스의 물성을 얻게 될 수 있다. 따라서, 상기 원사의 고유점도를 0.8 dl/g 이상으로 유지하여 저연신을 적용하여 저 모둘러스 발현이 가능하도록 하는 것이 바람직하다. 또한, 원사 점도가 1.2 dl/g를 초과하여 연신시 연신 장력이 상승하여 공정상 문제를 발생시킬 수 있으므로, 1.2 dl/g 이하가 좀더 바람직하다. 특히, 본 발명의 폴리에스테르 원사는 이같이
높은 정도의 고유점도를 유지함으로써, 저연신으로 낮은 강연도를 제공함과 동시에 에어백용 원단에 충분한 기계적 물성 및 내층격성, 터프니스 (toughness) 등을 제공할 수 있는 고강력 특성이 더욱 부여될 수 있다. 따라서, 이러한 낮은 초기 모듈러스 및 높은 신율, 바람직하게는 높은 고유점도를 나타내는 폴리에스테르 원사를 이용하여 우수한 기계적 물성 및 수납성, 형태안정성, 내층격성, 공기 차단 효과를 동시에 나타내는 에어백용 원단을 제조하는 것이 가능해진다. 그러므로, 상기 폴리에스테르 원사를 이용하면, 보다 낮은 강연도 및 폴딩성, 유연성, 수납성을 나타내면서도, 우수한 내충격성, 형태안정성, 기계적 물성, 기밀성을 나타내는 에어백용 원단이 얻어질 수 있다. 이러한 에어백용 폴리에스테르 원단은 우수한 기계적 물성, 형태 안정성, 공기 차단 효과를 나타내면서도 자동차의 좁은 공간에 장착시 우수한 폴딩성, 수납성을 제공함과 동시에 우수한 유연성으로 승객에게 가해지는 층격을 최소화하여 탑승자를 안전하게 보호할 수 있으므로, 에어백용 원단 등으로 바람직하게 적용될 수 있다.
또한, 본 발명의 폴리에스테르 원사는 상술한 바와 같은 용융 방사 및 연신 조건 하에서 제조되어, 이전에 알려진 폴리에스테르 원사에 비해 크게 낮아진 카르복실 말단기 (CEG) 함량을 나타낼 수 있다. 즉, 상기 폴리에스테르 원사는 50 meq/kg 이하, 바람직하게는 40 meq/kg 이하 더욱 바람직하게는 30 meq/kg 이하의 CEG 함량을 나타낼 수 있다. 폴리에스테르 분자쇄 내의 카르복실 말단기 (CEG)는 고온 고습 조건에서 에스테르기 (ester bond)를 공격하여 분자쇄 절단을 초래하고 이로 인해 에이징 (aging)후 물성을 떨어뜨리게 된다. 특히, 상기 CEG 함량이 50 meq/kg를 초과하게 되면 에어백 용도로 적용시 높은 습도 조건 하에서 CEG에 의해 에스테르 결합이 절단되어 물성 저하가 야기되므로, 상기 CEG 함량은 50 meq/kg 이하가 되는 것이 바람직하다.
한편, 상기 발명의 일 구현예에 따른 폴리에스테르 원사는 인장강도가 7.5 g/d 이상 또는 7.5 g/d 내지 11.0 g/d, 바람직하게는 8.0
g/d 이상 또는 8.0 g/d 내지 10.0 g/d이고, 절단신도가 13% 이상 또는 13% 내지 35 %, 바람직하게는 14% 이상 또는 14% 내지 25%를 나타낼 수 있다. 또한, 상기 원사는 건열수축율이 3.5% 이상 또는 3.5% 내지 12%, 바람직하게는 4.0% 이상, 좀더 바람직하게는 4.5% 이상을 나타낼 수 있다. 이미 상술한 바와 같이, 고유점도 및 초기 모듈러스, 신율 범위를 최적 범위로 확보함으로써, 본 발명의 폴리에스테르 원사는 우수한 정도로 강도 및 물성을 확보할 수 있을 뿐만 아니라 에어백용 원단으로 제조시 우수한 성능을 발휘할 수 있다. 특히, 이상과 같이 폴리에스테르 원사의 건열수축율을 높은 수준으로 최적화하여 유지함으로써, 고수축을 통한 원단의 형태안정성 및 공기투과도, 활탈저항력 등을 동시에 효과적으로 제어할 수 있다. ·
또한, 본 발명의 폴리에스테르 원사는 일반적인 코팅 직물의 라미네이트 코팅 온도에 해당하는 150 °C 에서의 수축웅력이 0.005 내지 0.075 g/d인 것이 바람직하고, 일반적인 코팅 직물의 졸 코팅 온도에 해당하는 200 °C에서의 수축응력이 0.005 내지 0.075 g/d인 것이 바람직하다. 즉, 상기 150 °C와 200 °C에서의 수축응력이 각각 0.005 g/d 이상은 되어야 코팅 공정중 열에 의한 원단의 처짐 현상을 막을 수 있고, 0.075 g/d 이하가 되어야 코팅공정을 지나 상온에서 넁각될 때 이완응력을 완화시킬 수 있다. 상기 수축응력은 0.10 g/d의 고정 하중 하에서 측정한 값을 기준으로 한다.
이상과 같이 코팅 등의 열처리 공정에서 변형을 방지하기 위해서는, 상기 폴리에스테르 원사는 또한, 결정화도가 35¾ 내지 60%이며, 바람직하게는 36% 내지 50% 또는 40% 내지 53%, 더욱 바람직하게는 37% 내지 48% 또는 41% 내지 50%가 될 수 있다. 상기 원사의 결정화도는 에어백용 원단에 적용시 열적 형태 안정성 유지 등을 위하여 3» 이상이 되는 것이 바람직하고, 상기 결정화도가 6 를 초과하는 경우에 비결정 영역이 감소함으로써 층격 흡수 성능이 떨어지는 문제점이 발생할 수 있어 60% 이하가 되는 것이 바람직하다.
또한, 상기 폴리에스테르 원사는 단사섬도가 0.5 내지 20 데니어, 바람직하게는 2.0 내지 10.5 데니어인 것이 될 수 있다. 상기 폴리에스테르
원사가 에어백용 원단에 효과적으로 사용되기 위해서는 수납성 측면에서 저섬도 고강력으로 유지해야 하므로, 적용 가능한 원사의 총섬도는 200 내지 1,000 데니어, 바람직하게는 220 내지 840 데니어, 좀더 바람직하게는 250 내지 600 데니어가 될 수 있다. 또한, 상기 원사의 필라멘트수는 많을수록 소프트한 촉감을 줄 수 있으나, 너무 많은 경우에는 방사성이 좋지 않을 수 있으므로, 필라멘트수는 50 내지 240 바람직하게는 55 내지 220, 좀더 바람직하게는 60 내지 200이 될 수 있다.
한편, 발명의 또 다른 구현예에 따라, 상술한 폴리에스테르 원사를 포함하는 에어백용 폴리에스테르 원단이 제공된다.
본 발명에서 에어백 (airbag)용 원단이라 함은 자동차용 에어백의 제조에 사용되는 직물 또는 부직포 등을 말하는 것으로, 상기와 같이 공정을 통해 제조된 폴리에스테르 원사를 사용하여 제조되는 것을 특징으로 한다.
특히, 본 발명은 기존의 고강도-저신도 및 높은 모들러스를 갖는 폴리에스테르 섬유가 아닌 고강도 _고신도 저모들러스의 고수축 특성을 갖는 폴리에스테르 섬유를 사용함으로써, 에어백 팽창시의 에너지 흡수 능력이 우수할 뿐만 아니라, 우수한 형태안정성과 공기 차단성 및 우수한 폴딩성, 유연성, 수납성을 갖는 에어백용 폴리에스테르 원단을 제공할 수 있다. 또한, 상기 에어백용 원단은 상온 물성이 우수할 뿐만 아니라, 고은 및 고습의 가혹 조건 하에서 에이징 (a^ing) 후에도 우수한 기계적 물성 및 기밀성 등을 유지할 수 있다.
좀더 구체적으로, 본 발명의 에어백용 원단은 미국재료시험협회규격
ASTM D 5034 방법으로 상온에서 측정한 인장강도가 220 kgf/inch 또는 220 내지 350 kgf/inch, 바람직하게는 230 kgf/inch 이상이 될 수 있다. 상기 인장강도의 경우 기존 에어백 요구 물성 측면에서 220 kgf/inch 이상이 되는 것이 바람직하고, 현실적으로 물성 발현 측면에서 350 kgf/inch 이하가 되는 것이 바람직하다.
상기 에어백용 원단은 미국재료시험협회규격 ASTM D 5034 방법으로 상온에서 측정한 절단 신도가 20% 이상 또는 20¾ 내지 60%, 바람직하게는 30% 이상이 될 수 있다. 상기 절단 신도의 경우 기존 에어백 요구 물성
측면에서 20% 이상이 되는 것이 바람직하고, 현실적으로 물성 발현 측면에서 60% 이하가 되는 것이 바람직하다.
또한, 에어백용 코팅원단은 고온-고압의 가스에 의해 급속하게 팽창되므로 우수한 인열강도 수준이 요구되는데, 상기 에어백용 코팅 원단의 파열 강도를 나타내는 인열강도를 미국재료시험협회규격 ASTM D 2261 방법으로 상온에서 측정하였을 때 20 kgf 이상 또는 20 내지 60 kgf, 바람직하게는 23 kgf 이상, 좀더 바람직하게는 25 kgf 이상이 될 수 있다. 여기서, 코팅 원단의 인열강도가 상기 하한값, 즉 상온에서 20 kgf 미만인 경우에는 에어백의 전개시 에어백의 파열이 발생함으로써 에어백 기능에 커다란 위험을 초래할 수도 있다.
본 발명에 따른 에어백용 원단은 미국재료시험협회규격 ASTM D 6479 방법으로 상은 (25 °C)에서 측정한 활탈저항력이 360 N 이상 또는 360 내지 1,000 N, 바람직하게는 380 N 이상, 좀더 바람직하게는 400 N 이상, 더욱 바람직하게는 420 N 이상아 될 수 있다. 또한, 상기 폴리에스테르 원단은 90 °C에서 측정한 활탈저항력이 300 N 이상 또는 300 내지 970 N, 바람직하게는 310 N 이상, 좀더 바람직하게는 320 N 이상이 될 수 있다. 이 때, 상기 폴리에스테르 원단의 활탈저항력은 상온 (25 °C) 및 90 °C에석 측정시, 각각 360 N 미만 및 300 N 미만인 경우에는 에어백 전개시 에어백 쿠션 봉제부위의 원단 강도가 급격히 나빠짐으로써 실제 에어백 전개시 원단에서 핀홀 (pin hole) 발생과 봉목 밀림 현상으로 인한 원단 찢어짐 현상이 발생되어 바람직하지 못할 수 있다.
또한, 본 발명에 따른 에어백용 원단은 ASTM D 1776 방법으로 측정한 경사방향 및 위사방향의 원단수축율이 각각 4.0% 이하, 바람직하게는 2.0% 이하가 될 수 있다. 여기서, 원단의 형태안정성 측면에서는 경사방향 및 위사방향의 원단수축율이 1.0%를 초과하지 않는 것이 가장 바람직하다.
상기 원단은 미국재료시험협회규격 ASTM D 737 방법으로 상온에서 측정한 공기투과도가 10.0 cfm 이하 또는 0 내지 10.0 cfm이 될 수 있다. 특히, 에어백용 원단의 공기투과도는 원단에 고무성분 코팅층이 포함시킴으로써 현저히 낮출 수 있으며, 거의 0 cfm에 근사한 값의 공기투과도를 확보할 수도 있다. 다만, 이러한 고무성분 코팅을 수행하지
않는 경우에, 본 발명의 비코팅 원단은 미국재료시험협회규격 ASTM D 737 방법으로 상온에서 측정한 공기투과도가 10.0 cfm 이하 또는 0 내지 10.0 cfm, 바람직하게는 3.5 cfm 이하 또는 0.1 내지 3.5 cfm, 더욱 바람직하게는 1.5 cfm 이하 또는 1.0 cfm 이하가 될 수 있다. 이때, 공기투과도가 10.0 cfm, 좀더 바람직하게는 3.5 cfm를 초과하는 경우에는 에어백용 원단의 기밀성을 유지하는 측면에서는 바람직하지 않을 수 있다. 또한, 본 발명의 에어백용 원단은 미국재료시험협회규격 ASTM D 4032 방법으로 상온에서 측정한 강연도가 1.2 kgf 이하 또는 0.2 내지 1.2 kgf, 바람직하게는 1.0 kgf 이하가 될 수 있다. 특히, 530 데니어 이상인 경우 1.2 kgf 이하가 될 수 있으며, 460 데니어 미만인 경우 1.0 kgf 이하 또는 0.8 kgf의 범위가 될 수 있다.
본 발명의 원단은 에어백용으로 사용하기 위해서는 상기 강연도 범위를 유지하는 것이 바람직하고, 강연도가 0.2 kgf 미만으로 너무 낮은 경우에는 에어백 팽창 전개시 충분한 보호 지지 기능을 하지 못할 수 있으며, 차량 장착시에도 형태 유지 성능이 떨어져 수납성이 저하될 수 있다. 또한, 너무 딱딱한 상태가 되어 접기 어렵게 됨으로써 수납성이 저하되는 것을 방지하고, 원단의 변색 현상을 방지하기 위해서는, 상기 강연도는 1.2 kgf 이하가 바람직하고, 특히 460 데니어 미만인 경우에는 1.0 kgf 이하가 바람직하며, 530 데니어 이상인 경우에도 1.2 kgf 이하가 되는 것이 좋다.
한편, 발명의 또 다른 구현예에 따라, 상술한 폴리에스테르 원사를 사용하여 에어백용 원단의 제조 방법이 제공된다. 본 발명의 에어백용 원단 제조 방법은 상기 폴리에스테르 원사를 사용하여 에어백용 생지를 제직하는 단계, 상기 제직된 에어백용 생지를 정련하여 하는 단계, 및 상기 정련된 직물을 텐터링하는 단계를 포함한다.
본 발명에서 상기 폴리에스테르 원사는 통상적인 제직 방법과, 정련 및 텐터링 공정을 거쳐서 최종적인 에어백용 원단으로 제조될 수 있다. 이때, 원단의 제직형태는 특정 형태에 국한되지 않으며 평직 타입과 0P (0ne Piece Woven) 타입의 제직형태 모두가 바람직하다.
특히, 본 발명의 에어백용 원단은 상기 폴리에스테르 원사를 위사 및
경사로 이용하여 비밍 (beaming), 제직, 정련, 및 텐터링 공정을 거쳐 제조될 수 있다. 상기 원단은 통상적인 제직기를 사용하여 제조할 수 있으며, 어느 특정 직기를 사용하는 것에 한정되지 않는다. 다만., 평직형태의 원단은 레피어 직기 (Rapier Loom)나 에어제트 직기 (Air Jet Loom) 또는 워터제트 직기 (Water Jet Loom) 등을 사용하여 제조할 수 있으며, 0PW 형태의 원단은 자카드 직기 (Jacquard Loom)를 사용하여 제조할 수 있다.
이렇게 제조된 에어백용 원단은 재단과 봉제공정을 거치면서 일정한 형태를 갖는 에어백 쿠션 형태로 제조된다. 상기 에어백은 특별한 형태에 국한되지 아니하며 일반적인 형태로 제조될 수 있다.
한편, 발명의 또 다른 구현예에 따라, 상기 에어백을 포함하는 에어백 시스템이 제공된다.
상기 에어백 시스템은 관련 업자들에게 잘 알려진 통상의 장치를 구비할 수 있다. 상기 에어백은 크게 프론탈 에어백 (Frontal Airbag)과 사이드 커튼 에어백 (Side Curtain Airbag)으로 구분될 수 있다. 상기 프론탈용 에어백에는 운전석용, 조수석용, 측면보호용, 무릎보호용, 발목보호용, 보행자 보호용 에어백 등이 있으며, 사이드 커른 타입 에어백은 자동차 측면층돌이나 전복사고시 승객을 보호하게 된다. 따라서, 본 발명의 에어백은 프론탈용 에어백과 사이드 커튼 에어백을 모두 포함한다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
【발명의 효과】
본 발명에 따르면, 특정의 디카르복실산 조성물과 글리콜을 최적의 조성 범위로 반웅시킴으로써, 우수한 기계적 물성과 함께 유연성 및 폴딩성 등이 우수한 에어백용 원단에 적합한 폴리에스테르 원사를 제조하는 방법이 제공된다.
이렇게 제조되는 폴리에스테르 원사는 고강력, 저모들러스 및 고수축율의 특성을 동시에 나타냄으로써, 에어백용 원단에 사용시 우수한 형태안정성, 기계적 물성, 공기 차단 효과를 얻을 수 있을 뿐만 아니라,
이와 동시에 우수한 폴딩성 및 유연성을 확보할 수 있어 자동차 장착시 수납성을 현저히 개선하고 동시에 승객에게 가해지는 충격을 최소화하여 탑승자를 안전하게 보호할 수 있다. 특히, 본 발명에 따른 폴리에스테르 원사를 사용하면, 에어백 전개시 내부 압력에 의한 원단의 미어짐, 찢겨짐을 방지함과 동시에 공기투과성을 현저히 개선할 수 있어, 자동차 층돌시의 층격 등으로부터 탑승자를 안전하게 보호할 수 있다.
따라서, 본 발명에 따라 제조되는 폴리에스테르 원사 및 이를 이용한 폴리에스테르 원단은 차량용 에어백 제조 등에 매우 바람직하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 일반적인 에어백 시스템을 나타낸 도면이다.
도 2는 본 발명의 일 구현예에 따른 폴리에스테르 원사 제조공정을 모식적으로 나타낸 공정도이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1~5
하기 표 1에 나타낸 바와 같은 공정 조건으로, 테레프탈산 (TPA)과 아디프산 (AA)의 몰비 (AA/TPA)가 0.02-0.12이 되도록 하고, 상기 디카르복실산 성분과 에틸렌글리콜 (EG) 의 몰비 [EG/OPA+AA)]가 1.3이 되도록 하여 에스테르 반웅을 285-292 V 사이에서 4 시간 동안 진행하였다. 상기 에스테르 반웅 후, 생성된 올리고머를 284-290 °C 사이에서 3시간 30분 동안 중축합 반웅을 진행하여 폴리머를 생성시켰다.
이때, 상기 중축합 반웅을 통해 생성된 폴리에스테르 중합체 (chip)는 언더워터 커터 (underwater cutter) 장치를 사용하여 물 속에서 절단되어 구슬과 같은 구형의 펠릿 형태로 제조하였다.
이렇게 생성된 폴리에스테르 중합체 (chip)를 구형의 형상으로 제조함으로써 고상중합시 서로 엉겨 붙는 현상이 없기 때문에, 고상중합
은도를 기존 코폴리머 고상중합 때보다 높여 진행할 수 있으며 여기에서는
235 °C 에서 22~24 시간 동안 추가로 고상중합을 수행하여 고유 점도 (IV)가 1.3 dl/g인 폴리에스테르 고상중합 칩을 제조하였다.
상기 폴리에스테르 고상중합 칩은 도 2에 나타낸 바와 같은 공정으로 용융 방사하고 연신하는 단계를 거쳐 에어백용 폴리에스테르 원사를 제조하였다.
특히, 상기 폴리에스테르 고상중합 칩은 290-294 °C의 온도에서 용융하여 방사 구금을 통해 용융 폴리에스테르를 토출시키고, 상기 토출된 용융 폴리에스테르를 후드 -히터 및 단열판으로 구성된 지연 냉각 구간에 통과시켜 지연 급넁 (delayed quenching)하였다.
상기 지연급넁된 폴리에스테르 섬유에 를 형태의 유제 부여 장치를 이용하여 유제를 부여하였다. 이 때, 상기 유제의 양은 원사 100 중량부에 대하여 0.8 중량부이며, 사용된 유제는 에틸렌옥사이드 /프로필렌옥사이드 부가 디을에스테르 (30 중량부), 에틸렌옥사이드 부가 디을에스테르 (15 중량부), 글리세릴 트리에스테르 (10 중량부), 트리메틸프로판 트리에스테르 (10 중량부), 및 소량의 대전방지제를 흔합한 방사 유제를 사용하였다.
상기 유제가 부여된 원사를 전-집속기에 통과시키고, 고뎃 를러를 이용하여 연신하였다.
상기 연신 후에, 세컨드 집속기 (2nd Interlacer)를 이용하여, 상기 연신된 폴리에스테르 원사에 인터밍글을 부여한 후, 권취기로 권취하여 폴리에스테르 원사를 제조하였다.
이때, 각 성'분의 몰비, 에스테르 반응, 중축합 반웅, 고상 중합 반응 조건, PET 중합체의 고유점도, 용융 방사, 연신비 열처리 등의 공정 조건 등은 하기 표 1에 나타낸 바와 같으며, 나머지 조건은 폴리에스테르 원사 제조를 위한 통상적인 조건에 따랐다.
하기 표 2에 나타낸 바와 같은 공정 조건으로, 테레프탈산 (TPA)과 이소프탈산 (iso-PA)의 몰비 (iso-PA/TPA)가 0.02~0.08이 되도록 하고, 상기 디카르복실산 성분과 에틸렌글리콜 (EG)의 몰비 [EG/(TPA+iso-PA)]가 1.3이 되도록 하여 에스테르 반옹을 282~288 °C 사이에서 4 시간 동안 진행하였다. 상기 에스테르 반웅 후, 생성된 올리고머를 288-292 °C에서 3.5 시간 동안 중축합 반웅을 진행하여 폴리머를 생성시켰다.
또한, 상기 중축합 반웅을 통해 생성된 폴리에스테르 중합체 (chip)를 217-220 °C 사이에서 24~28 시간 동안 추가로 고상중합을 수행하여 고유 점도 (IV)가 1.2 dl/g인 폴리에스테르 고상증합 칩을 제조하였다.
상기 폴리에스테르 고상중합 칩은 도 2에 나타낸 바와 같은 공정으로 용융 방사하고 연신하는 단계를 거쳐 에어백용 폴리에스테르 원사를 제조하였다.
특히, 상기 폴리에스테르 고상중합 칩은 288 °C의 은도에서 용융하여 방사 구금을 통해 용융 폴리에스테르를 토출시키고, 상기 토출된 용융 폴리에스테르를 후드 -히터 및 단열판으로 구성된 지연 냉각 구간에 통과시켜 지연 급냉 (delayed quenching)하였다.
상기 지연급냉된 폴리에스테르 섬유에 를 형태의 유제 부여 장치를 이용하여 유제를 부여하였다. 이 때, 상기 유제의 양은 원사 100 중량부에 대하여 0.8 중량부이며, 사용된 유제는 에틸렌옥사이드 /프로필렌옥사이드 부가 디올에스테르 (30 중량부), 에틸렌옥사이드 부가 디을에스테르 (15 중량부), 글리세릴 트리에스테르 (10 증량부), 트리메틸프로판 트리에스테르 (10 중량부), 및 소량의 대전방지제를 흔합한 방사 유제를 사용하였다.
상기 유제가 부여된 원사를 전-집속기에 통과시키고, 고뎃 를러를 이용하여 연신하였다.
상기 연신 후에, 세컨드 집속기 (2nd Interlacer)를 이용하여, 상기 연신된 폴리에스테르 원사에 인터밍글을 부여한 후, 권취기로 권취하여 폴리에스테르 원사를 제조하였다.
이때, 각 성분의 몰비, 에스테르 반응, 중축합 반응, 고상 중합 반웅 조건, PET 중합체의 고유점도, 용융 방사, 연신비, 열처리 등의 공정 조건 등은 하기 표 2에 나타낸 바와 같으며, 나머지 조건은 폴리에스테르 원사 제조를 위한 통상적인 조건에 따랐다.
【표 2】
1) 결정화도
폴리에스테르 원사의 밀도 p는 n-헵탄과 사염화탄소를 이용한 밀도구배관법에 따라 25 °C에서 측정하였으며, 결정화도는 하기 계산식 1에 따라 계산하였다.
[계산식 1]
Xc (진정화도) _
P (Pc一 Pa)
상기 식에서, P는 원사의 밀도, Pc는 결정의 밀도 (PET의 경우는 1.457 g/cm3), 및 pa는 비결정의 밀도 (PET의 경우는 1.336 g/cm3)이다.
2) 고유점도
사염화탄소를 이용하여 시료에서 유제를 추출하고, 160 ±2 °C에서
OCP (Ortho Chloro Phenol)로 녹인 후, 25°C의 조건에서 자동점도 측정기 (Skyvis-4000)를 이용하여 점도관에서의 시료 점도를 측정하여 하기 계산식 2에 따라 폴리에스테르 원사의 고유점성도 (intrinsic viscosity, IV)를 구하였다.
[계산식 2]
고유점성도 (IV) = {(0.0242 x Rel) + 0.2634} x F 상기 식에서,
■§백초수 x공 ᅵ il증 > 도 수
OCP 도 이고
Startda (i' fiii3:¾ .1¥:
standard: 준'쫓 2_로 펩 ^ ::3꼐 §균' IV
이다. 3) CEG 함량
플리에스테르 원사의 카르복실 말단기 (CEG, Car boxy 1 End Group)는 ASTM D 664 및 D 4094의 규정에 따라, 시료 0.2 g을 50 mL의 삼각 플라스크에 넣은 후, 벤질알콜 20 mL를 가하고 핫 플레이트 (hot plate)를 이용하여 180 °C까지 을려 5 분간 유지시켜 시료를 완전히 용해시킨 다음, 160 °C로 넁각시켜 135 °C가 도달할 때 페놀프탈렌 5~6 방울을 가하고, 0.02 N K0H로 적정하여 무색에서 분흥색으로 변하는 적정점에서 하기 계산식 3 에 의해 CEG 함량 (COOH million equiv./시료 kg)을 계산하였다.
[계산식 3]
CEG = (A-B) 20X1/W
상기 식에서, A는 시료의 적정에 소비된 K0H의 양 (mL)이고, B는 공시료의 적정에 소비된 K0H의 양 (mL)이며, Ψ는 시료의 무게 (g)이다.
4) 초기 모들러스
미국재료시험협회규격 ASTM D 885의 방법에 따라, 인장시험시 얻어지는 웅력-변형도 그래프의 탄성 구간 기울기로부터 탄성계수를 산측하여 초기 모들러스를 측정하였다.
5) 인장강도 및 절단신도
폴리에스테르 원사의 인장강도 및 절단신도를 만능재료 시험기 (Instron)을 사용하여 측정하였으며, 시료장은 250 mm이고, 인장속도는 300 mm/min으로 하였으며, 초기 로드는 0.05 g/d로 설정하였다.
6) 건열수축율
영국 테스트라이트 (Testrite)사의 Test te MK-V 장비를 사용하여
180 °C의 온도 및 초하중 (0.05 g/d)에서 건열수축율을 2 분 동안 측정하였다.
7) 단사 섬도
단사 섬도는 얼레를 이용하여 원사를 9,000 m만큼 취하고 그의 무게를 재어 원사의 총섬도 (Denier)를 구한 후 필라멘트 수로 나누는 방법으로 측정하였다.
8) 신율 · 상기 인장강도 및 절단 신도 측정 방법과 동일한 방법으로 측정하고, S-S 커브 (Curve)에서 각 하중 ( oad)에 해당하는 신도값을 확인하였다.
【표 3】
하기 표 5에 기재된 조건을 적용하며, 언더워터 커터 (underwater cutter) 장치가 아닌 스트랜드 방식으로 실린더 (cylinder) 형태의 폴리머 칩을 제조하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 비교예 1~5의 폴리에스테르 원사를 제조하였다.
특히, 비교예 1 및 2는 별도의 아디프산을 포함하지 않고, 실시예 1과 동일한 방법으로 디카르복실산으로서 테레프탈산만을 사용하여 에스테르 반웅을 수행하였다.
【표 5】
하기 표 7에 기재된 조건을 제외하고는 실시예 6과 동일한 방법에 따라 비교예 6~10의 폴리에스테르 원사를 제조하였다.
특히, 비교예 6 및 7는 별도의 이소프탈산을 포함하지 않고, 실시예
6과 동일한 방법으로 디카르복실산으로서 테레프탈산만을 사용하여 에스테르 반응을 수행하였다.
【표 7]
【표 8]
실시예 1~10에 따라 제조된 폴리에스테르 원사를 사용하여 래피어직기를 통해 에어백용 원단 생지를 제직하고 (경사 X위사: 41X41-49X49), 정련 및 텐터링 공정을 거쳐 에어백용 원단을 제조하였다. 또한, 상기 원단에 폴리비닐클로라이드 (PVC) 수지를 수지 나이프 코팅 (knife over roll coating)방법으로 코팅량 코팅량 20 g/m2 범위에서 코팅하여 PVC코팅된 원단을 제조하였다.
이때, 나머지 원단 제조 공정 조건은 에어백용 폴리에스테르 원단 제조를 위한 통상적인 조건에 따랐다. 한편, 이렇게 제조된 각각의 에어백용 풀리에스테르 원단에 대하여
다음의 방법으로 물성을 측정하였으며, 측정된 물성은 하기 표 9 및 표 10에 정리하였다.
(a) 인장강도 및 절단신도
에어백 원단에서 시편을 재단하여 미국재료시험협회규격 ASTM D
5034에 따른 인장강도 측정장치의 하부 클램프에 고정시키고, 상부 클램프를 위로 이동시키면서 에어백 원단 시편이 파단될 때의 강도 및 신도를 측정하였다.
(b) 인열강도
미국재료시험협회규격 ASTM D 2261에 따라 에어백용 원단의 인열강도를 축정하였다.
(c) 경사 및 위사 방향 원단수축율
미국재료시험협회규격 ASTM D 1776에 따라 경 /위사 방향의 원단수축율을 측정하였다. 먼저, 0PW용 에어백 원단에서 시편을 재단한 후, 경사 및 위사 방향으로 수축 전 길이인 20 cm씩을 표시하고 149 °C에서 1 시간 동안 챔버에서 열처리한 시편의 수축한 길이를 측정하여 경사방향 및 위사방향의 원단수축율 {(수축전 길이 - 수축후 길이) / 수축전 길이 X 100%} 측정하였다.
(d) 강연도
미국재료시험협회규격 ASTM D 4032에 따른 강연도 측정장치를 이용하여 써클라벤드법 (Circular Bend)법으로 원단의 강연도를 측정하였다. 또한, 강연도 측정법으로 켄티레버법을 적용할 수 있으며, 원단에 굽힘을 주기 위하여 일정각도의 경사를 준 시험대인 켄티레버 측정기기를 이용하여 원단 굽힘 길이 측정을 통해 강연도를 측정할 수 있다.
(e) 후도
미국재료시험협회규격 ASTM D 1777 에 따라 에어백용 원단의 후도를 측정하였다.
(f) 공기투과도
미국재료시험협회규격 ASTM D 737에 따라 에어백용 원단을 20 °C, 65 %RH 하에서 1일 이상 방치한 후, 125 Pa의 압력의 공기가 38 cm2의
원형단면을 통과하는 양을 측정하였다.
(g) 활탈저항력
코팅 처리 전의 비코팅된 원단을 사용하여 미국재료시험협회규격
ASTM D 6479에 따른 방법으로 상은 (25 °C)에서 원단의 활탈저항력 (Edge Comb Resistance)을 측정하였다.
【표 9】
비교 제조예 1~10
비교예 1~10에 따라 제조된 폴리에스테르 원사를 사용한 것을 제외하고는 제조예 1과 동일한 방법에 따라 에어백용 폴리에스테르 원단을 제조하고 물성을측정하여 하기 표 11 및 표 12에 정리하였다. 【표 11】
상기 표 9에서 보는 것과 같이, 글리콜과 방향족 디카르복실산 및 지방족 디카브록실산을 최적 범위로 반웅시켜 제조한 실시예 1~5의
폴리에스테르 원사를 사용한 제조예 1~5의 에어백용 원단은 현저히 향상된 강연도 및 높은 활탈저항력 (Edge comb)를 구현할 수 있는 것으로 확인되었다. 특히, 제조예 1~5의 에어백용 원단의 경우 인장강도 및 공기투과도는 각각 237-255 kgf/inch 및 0.43~0.55 cfm으로 우수한 기계적 물성 및 전개 성능을 발휘할 수 있음을 알 수 있다. 또한, 제조예 1~5의 에어백용 원단은 강연도 및 활탈저항력에서도 각각 0.36~0.42 kgf 및 480-590 N으로 현저히 향상된 결과를 얻을 수 있어, 우수한 수납성, 형태안정성, 및 공기 차단 효과를 동시에 확보할 수 있음을 알 수 있다. 또한, 상기 표 10에서 보는 것과 같이, 테레프탈산과 이소프탈산을 글리콜과 최적 범위로 반웅시켜 제조한 실시예 6-10의 폴리에스테르 원사를 사용한 제조예 6~10의 에어백용 원단은 현저히 향상된 강연도 및 높은 활탈저항력 (Edge comb)를 구현할 수 있는 것으로 확인되었다. 특히, 제조예 6~10의 에어백용 원단의 경우 인장강도 및 공기투과도는 각각 236~253 kgf/inch 및 0.42~0.53 cfm으로 우수한 기계적 물성 및 전개 성능을 발휘할 수 있음을 알 수 있다. 또한, 제조예 6~10의 에어백용 원단은 강연도 및 활탈저항력에서도 각각 0.33-0.42 kgf 및 496-570 N으로 현저히 향상된 결과를 얻을 수 ,있어, 우수한 수납성, 형태안정성, 및 공기 차단 효과를 동시에 확보할 수 있음을 알 수 있다.
반면에, 상기 표 11에서 보는 것과 같이 비교예 1~5의 폴리에스테르 원사를 사용한 비교제조예 1~5의 폴리에스테르 원단은 기계적 물성 및 기밀성 등이 현저히 떨어지며 에어백용 원단 물성 특성을 층족하지 못함이 확인되었다. 특히, 강연도와 공기투과도가 각각 1.65-1.77 kgf 및 1.44-1.67 cfm으로 현저히 증가되어, 에어백으로 장착시 기밀성 등을 현저히 저하될 수 있음을 알 수 있다. 또한, 인장강도와 활탈저항력이 각각 165-224 kgf/inch 및 213~360 N으로 현저히 떨어짐을 알 수 있다. 이같이 활탈저항력과 인장 강도가 현저히 낮은 경우에는 에어백 원단 물성 특성을 충족시키지 못해 에어백 전개시 에어백이 파열되는 문제가 발생할 수 있다. 또한. 상기 표 12에서 보는 것과 같이 비교예 6~10의 폴리에스테르 원사를 사용한 비교제조예 6-10의 폴리에스테르 원단은 기계적 물성 및 기밀성 등이 현저히 떨어지며 에어백용 원단 물성 특성을 층족하지 못함이
확인되었다. 특히, 강연도와 공기투과도가 각각 1.5~1.7 kgf 및 1.42~1.55 cfm으로 현저히 증가되어, 에어백으로 장착시 기밀성 등을 현저히 저하될 수 있음을 알 수 있다. 또한, 인장강도와 활탈저항력은 각각 196~224 kgf/ inch 및 223-350 N으로 현저히 떨어짐을 알 수 있다. 이같이 활탈저항력과 인장강도가 현저히 낮은 경우에는 에어백 원단 물성 특성을 층족시키지 못해 에어백 전개시 에어백이 파열되는 문제가 발생할 수 있다.
Claims
【청구항 1】
2종 이상의 디카르복실산 화합물을 포함하는 디카르복실산 조성물을 글리콜과 에스테르 반응시키는 단계;
상기 에스테르 반웅으로 생성된 을리고머를 중축합 반웅시키는 단계; 상기 중축합 반웅으로 생성된 폴리머를 고상 중합시키는 단계 ; 및 상기 고상 중합 반응으로 생성된 폴리에스테르 칩을 용융 방사하고 연신하는 단계;
를 포함하고,
상기 디카르복실산 조성물은 탄소수 6~24의 방향족 디카르복실산 및 탄소수 2~24의 지방족 디카르복실산을 포함하고, 상기 방향족 디카르복실산과 지방족 디카르복실산과의 몰비는 1:0.01 내지 1:0.15이며; 또는 상기 디카르복실산 조성물은 테레프탈산과, 이소프탈산 및 프탈산으로 이루어진 군에서 선택되는 테레프탈산의 이성질체 1종 이상을 포함하고, 상기 테레프탈산과 그의 이성질체와의 몰비는 1:0.01 내지 1:0.12이며,
상기 디카르복실산 화합물의 총량과 글리콜과의 몰비가 1:1 내지 1:1.5이 되도록 하여 반웅시키는 폴리에스테르 원사의 제조 방법.
【청구항 2]
제 1항에 있어서,
상기 중축합 반응을 250 내지 290 °C 온도에서 수행하는 폴리에스테르 원사의 제조 방법.
【청구항 3]
제 1항에 있어서,
상기 고상 중합 반웅을 170 내지 240 "C 온도에서 수행하는 폴리에스테르 원사의 제조 방법.
【청구항 4】
제 1항에 있어서,
상기 방향족 디카르복실산은 테레프탈산, 이소프탈산, 프탈산, 디페닐에테르디카르복실산 바이페닐디카르복실산, 1, 4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산및 그의 에스테르 형성 유도체로
이루어진 군에서 선택된 1종 이상인 폴리에스테르 원사의 제조방법 .
【청구항 5】
겨 U항에 있어서,
상기 지방족 디 카르복실산은 옥살산, 말론산 , 숙신산, 글루타르산, 아디프산, 피 멜산, 수베르산, 아젤라산 , 세박산및 그의 에스테르 형성 유도체로 이루어진 군에서 선택된 1종 이상인 폴리에스테르 원사의 제조방법 .
【청구항 6]
제 1항에 있어서,
상기 글리콜은 탄소수 2~16의 지방족 디을, 탄소수 6~24의 지환족 디을 , 탄소수 6~24의 방향족 디올, 및 그의 에 틸렌 옥사이드 또는 프로필렌 옥사이드 부가물로 이루어진 군에서 선택된 1종 이상인 폴리에스테르 원사의 제조방법 .
【청구항 7】
제 1항에 있어서,
상기 중축합 반웅후 생성된 폴리머는 고유 점도가 0.25 dl/g 이상인 폴리에스테르 원사의 제조 방법 .
【청구항 81
제 1항에 있어서,
상기 증축합 반웅후 생성된 폴리머는 칩 크기를 1.0 g/100ea 내지
3.0 g/100ea가 되도록 절단한 후에 고상 중합을 수행하는 에어 백용 폴리에스테르 원사의 제조 방법 .
【청구항 9】
제 1항에 있어서,
상기 고상 중합 반응을 10 시간 이상으로 수행하는 폴리 에스테르 원사의 제조 방법 .
【청구항 10]
제 1항에 있어서,
상기 고상 중합 반응후 생성된 폴리에스테르 칩은 폴리에 틸렌테 레프탈레이트를 70 몰% 이상 포함하는 폴리에스테르 원사의
제조 방법 .
【청구항 11】
겨 U항에 있어서 ,
상기 고상 중합 반웅후 생성된 폴리에스테르 칩은 고유 점도가 0.7 dl/g 이상인 폴리에스테르 원사의 제조 방법 .
【청구항 12】
제 1항에 있어서 ,
상기 고상 중합 반응으로 생성된 폴리에스테르 칩을 260 내지 300 °C에서 용융 방사하는 폴리에스테르 원사의 제조 방법 .
【청구항 13】
제 1항에 있어서,
상기 고상 중합 반웅으로 생성된 폴리에스테르 칩을 300 m/min 내지 1 , 000 m/min의 방사 속도 하에서 용융 방사하는 폴리에스테르 원사의 제조 방법 .
【청구항 14】
제 1항에 있어서,
상기 고상 중합 반웅으로 생성된 폴리에스테르 첩을 용융 방사하고 총연신비 5.0 내지 6.5가 되도록 연신하는 폴리에스테르 원사의 제조 방법 .
【청구항 15]
제 1항에 있어서 ,
상기 연신 공정 후에 130 내지 250 °C 온도 하에서 열고정 공정을 추가로 포함하는 폴리에스테르 원사의 제조 방법 .
【청구항 16]
제 1항에 있어서,
상기 연신 공정 후에 이완률 \ 내지 10%의 이완 공정을 추가로 포함하는 폴리에스테르 원사의 제조 방법 .
【청구항 17】
거 U항 내지 제 16항 중 어느 한 항에 따른 방법으로 제조되는 폴리에스테르 원사.
【청구항 18】
제 17항에 있어서,
결정화도가 35 내지 60%인 폴리에스테르 원사 .
【청구항 19】
제 17항에 있어서,
인장강도가 7.5 g/d 이상이고, 절단신도가 13% 이상인 폴리 에스테르 원사.
【청구항 20】
제 17항에 있어서,
상온에서 측정된 1.0 g/d 응력에서 신율이 0.5¾ 이상이며, 4.0 g/d 웅력에서 신율이 4. 이상이고, 7.0 g/d의 웅력에서 신율이 7.5% 이상인 폴리에스테르 원사 .
【청구항 21】
제 17항에 있어서,
초기 모들러스가 40 내지 100 g/d인 폴리에스테르 원사 .
【청구항 22】
제 17항에 따른 폴리에스테르 원사를 포함하는 폴리에스테르 원단 .
【청구항 23]
제 22항에 있어서 ,
상기 원단은 미국재료시험협회규격 ASTM D 2261 방법으로 측정한 인열강도가 23 kgf 이상인 폴리에스테르 원단 .
【청구항 24]
제 22항에 있어서,
상기 원단은 미국재료시험협회규격 ASTM D 6479 방법으로 상온 (25 °C )에서 측정한 활탈저항력 이 360 N 이상인 폴리에스테르 원단 . 【청구항 25】
제 22항에 있어서,
상기 원단은 미국재료시험협회규격 ASTM D 4032 방법으로 측정한 강연도가 1.2 kgf 이하인 폴리에스테르 원단 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/239,061 US20140194021A1 (en) | 2011-08-17 | 2012-08-16 | Process for producing polyester fiber |
CN201280051216.XA CN103890249A (zh) | 2011-08-17 | 2012-08-16 | 聚酯纤维的制备方法 |
EP12824658.4A EP2746435A4 (en) | 2011-08-17 | 2012-08-16 | METHOD FOR MANUFACTURING POLYESTER YARN |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0081904 | 2011-08-17 | ||
KR1020110081903A KR20130019749A (ko) | 2011-08-17 | 2011-08-17 | 폴리에스테르 원사의 제조 방법 |
KR20110081904 | 2011-08-17 | ||
KR10-2011-0081903 | 2011-08-17 | ||
KR1020120089361A KR20130020592A (ko) | 2011-08-17 | 2012-08-16 | 폴리에스테르 원사의 제조 방법 |
KR10-2012-0089361 | 2012-08-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013025062A2 true WO2013025062A2 (ko) | 2013-02-21 |
WO2013025062A3 WO2013025062A3 (ko) | 2013-06-13 |
Family
ID=50732702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/006525 WO2013025062A2 (ko) | 2011-08-17 | 2012-08-16 | 폴리에스테르 원사의 제조 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140194021A1 (ko) |
EP (1) | EP2746435A4 (ko) |
CN (1) | CN103890249A (ko) |
WO (1) | WO2013025062A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017113955A1 (zh) * | 2015-12-29 | 2017-07-06 | 江苏恒力化纤股份有限公司 | 一种超低收缩聚酯工业丝及其制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103397395B (zh) * | 2013-08-07 | 2015-12-23 | 亚东工业(苏州)有限公司 | 一种安全气囊用高弹回复性涤纶工业长丝的制备方法 |
EP4130364B1 (en) * | 2020-03-26 | 2024-06-05 | Asahi Kasei Kabushiki Kaisha | Base cloth for material and manufacturing method therefor |
WO2023190512A1 (ja) * | 2022-03-31 | 2023-10-05 | 三菱ケミカル株式会社 | ポリエステル樹脂ペレット及びポリエステル樹脂の製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214437A (ja) | 1990-02-12 | 1992-08-05 | Hoechst Ag | エアバッグ用布帛 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113703A (en) * | 1973-07-19 | 1978-09-12 | Dynamit Nobel Aktiengesellschaft | Unsaturated polyesters derived from chloroxylylene diols |
JP2864582B2 (ja) * | 1989-11-28 | 1999-03-03 | 東レ株式会社 | 衝撃吸収エアバッグ |
DE4131362A1 (de) * | 1991-09-20 | 1993-03-25 | Zimmer Ag | Verfahren zur herstellung statistischer copolyester |
US6020421A (en) * | 1998-09-01 | 2000-02-01 | Unitika Ltd. | Polyester composition and method for producing the same |
CN1312304A (zh) * | 2000-03-08 | 2001-09-12 | 财团法人工业技术研究院 | 制备高分子量聚酯的组合物及用其制备高分子量聚酯的方法 |
KR100900667B1 (ko) * | 2002-10-23 | 2009-06-01 | 에스케이케미칼주식회사 | 난연성 폴리에스테르 수지 및 이의 제조방법 |
US7014914B2 (en) * | 2004-01-09 | 2006-03-21 | Milliken & Company | Polyester yarn and airbags employing certain polyester yarn |
EP1593702B1 (en) * | 2004-05-05 | 2007-12-26 | Saudi Basic Industries Corporation | Process for the production of polyethylene terephthalate copolyester |
KR101159840B1 (ko) * | 2004-12-22 | 2012-06-25 | 에스케이케미칼주식회사 | 저 함량의 올리고머를 갖는 1,4-사이클로헥산디메탄올이공중합된 폴리에스테르 수지 및 그 제조방법 |
JP5736365B2 (ja) * | 2009-04-14 | 2015-06-17 | コーロン インダストリーズ インク | エアバッグ用ポリエステル原糸及びその製造方法 |
KR101060246B1 (ko) * | 2009-04-14 | 2011-08-29 | 코오롱인더스트리 주식회사 | 에어백용 폴리에스테르 원사 및 그의 제조방법 |
CN101787583A (zh) * | 2010-03-13 | 2010-07-28 | 浙江理工大学 | 连续聚合直纺高收缩聚酯长丝的制备方法 |
-
2012
- 2012-08-16 EP EP12824658.4A patent/EP2746435A4/en not_active Withdrawn
- 2012-08-16 CN CN201280051216.XA patent/CN103890249A/zh active Pending
- 2012-08-16 WO PCT/KR2012/006525 patent/WO2013025062A2/ko active Application Filing
- 2012-08-16 US US14/239,061 patent/US20140194021A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214437A (ja) | 1990-02-12 | 1992-08-05 | Hoechst Ag | エアバッグ用布帛 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017113955A1 (zh) * | 2015-12-29 | 2017-07-06 | 江苏恒力化纤股份有限公司 | 一种超低收缩聚酯工业丝及其制备方法 |
US10041192B1 (en) | 2015-12-29 | 2018-08-07 | Jiangsu Hengli Chemical Fibre Co., Ltd. | Ultra-low shrinkage polyester industrial yarn and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
US20140194021A1 (en) | 2014-07-10 |
EP2746435A4 (en) | 2015-04-15 |
CN103890249A (zh) | 2014-06-25 |
WO2013025062A3 (ko) | 2013-06-13 |
EP2746435A2 (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5736365B2 (ja) | エアバッグ用ポリエステル原糸及びその製造方法 | |
JP5486094B2 (ja) | エアバッグ用ポリエステル原糸およびこの製造方法 | |
WO2012036509A2 (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR101025598B1 (ko) | 에어백용 폴리에스테르 원사 및 그의 제조방법 | |
WO2013025062A2 (ko) | 폴리에스테르 원사의 제조 방법 | |
WO2012091524A2 (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR101779442B1 (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR101025599B1 (ko) | 에어백용 폴리에스테르 원사 및 그의 제조방법 | |
KR20120029958A (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
CN103354846B (zh) | 聚酯纱线以及包含该聚酯纱线的聚酯织物 | |
KR101718150B1 (ko) | 폴리에스테르 원사의 제조 방법 | |
KR101709260B1 (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR20130019749A (ko) | 폴리에스테르 원사의 제조 방법 | |
KR101718148B1 (ko) | 폴리에스테르 원사의 제조 방법 | |
KR20120067768A (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR20130020592A (ko) | 폴리에스테르 원사의 제조 방법 | |
KR20120030835A (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR20110109116A (ko) | 에어백용 폴리에스테르 원사 및 그의 제조방법 | |
KR20120029959A (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR20120067770A (ko) | 폴리에스테르 원사 및 그의 제조방법 | |
KR20110109949A (ko) | 폴리에스테르 원사 및 그의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12824658 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239061 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012824658 Country of ref document: EP |