WO2017113955A1 - 一种超低收缩聚酯工业丝及其制备方法 - Google Patents

一种超低收缩聚酯工业丝及其制备方法 Download PDF

Info

Publication number
WO2017113955A1
WO2017113955A1 PCT/CN2016/103176 CN2016103176W WO2017113955A1 WO 2017113955 A1 WO2017113955 A1 WO 2017113955A1 CN 2016103176 W CN2016103176 W CN 2016103176W WO 2017113955 A1 WO2017113955 A1 WO 2017113955A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
ethylene glycol
ultra
industrial yarn
low shrinkage
Prior art date
Application number
PCT/CN2016/103176
Other languages
English (en)
French (fr)
Inventor
赵慧荣
范晓兵
杨超明
王力军
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to EP16880746.9A priority Critical patent/EP3348595A4/en
Priority to US15/744,841 priority patent/US10041192B1/en
Priority to JP2018520566A priority patent/JP6474944B2/ja
Publication of WO2017113955A1 publication Critical patent/WO2017113955A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the invention belongs to the technical field of preparation of polyester industrial yarn, relates to an ultra-low shrinkage polyester industrial yarn and a preparation method thereof, in particular to a polycondensation catalyst using a mixture of ethylene glycol magnesium and ethylene glycol oxime and a polyester slice through water Polyester and ultra-low shrinkage polyester industrial yarn which are brewed and washed with a solvent at 120 to 130 ° C and 0.2 to 0.3 MPa and a preparation method thereof.
  • PET Polyethylene terephthalate
  • PET is a kind of polymer with excellent performance. PET is widely used because of its high modulus, high strength, firmness, good shape retention, purity and hygiene, and good barrier properties. In the fields of fiber, bottle packaging, film and sheet, the output is increasing year by year, and the industry status is significantly improved.
  • Industrial polyester fiber mainly refers to industrial, national defense, medical, environmental protection and cutting-edge science. It is a chemical fiber with relatively special physical and chemical structure, properties and uses, or special functions. Strong corrosion, low wear, high temperature resistance, radiation resistance, flame retardancy, fire resistance, high voltage resistance, high strength and high modulus, and a variety of medical functions.
  • PVC tarpaulin produced with high-strength and low-shrinkage polyester industrial filament as raw material has high peel strength and tear strength, making the tarpaulin suitable for various purposes, flexible body advertising light box material, inflatable structural material, canopy cover Building fabric shade tents, etc.
  • the high-strength and low-shrinkage industrial silk fabrics are used in special protective clothing, camouflage, coverings, rucksacks and other military needs.
  • As a kind of geotechnical material it has the advantages of lightness, softness, high strength, wear resistance, corrosion resistance, non-conduction and shock absorption. It is safe, convenient and efficient to use and will not damage the lifting objects.
  • the expansion of the application field of industrial polyester fiber drives the overall competitiveness of the application field, and the polyester high-performance fiber is playing more and more in reducing the weight of the composite material, the durability of use, and the reduction of maintenance and maintenance costs. Out of its comprehensive competitive advantage. In the coming decades, the development of high-performance polyester fiber has not only made great progress in quantity, but also achieved substantial results in the expansion of application fields and the improvement of the overall competitiveness of the industry chain.
  • High strength, high modulus, low shrinkage, dimensional stability, functionalization, the main direction of industrial polyester fiber development, and the influence of fiber quality is the collection structure of polyester polymer, mainly related to polyester molecules.
  • the force, the morphology and structure of the crystal, the orientation structure, etc., and the morphology and structure of the crystal are the key points.
  • Polyester industrial yarn is widely used in different fields. For ultra-low shrinkage polyester industrial yarn, it has low dry heat shrinkage rate and good dimensional stability and is widely used in filter cloth and coated fabric. Tube and conveyor belt weft and so on.
  • the terminal carboxyl group, oligomer, and diethylene glycol (DEG) content are important quality indicators of polyester chips.
  • oligomers and diethylene glycol are oligomers, which not only reflect the quality of production, but also affect the quality.
  • the quality of the products to the spinning process. Therefore, reducing the terminal carboxyl group, oligomer, and diethylene glycol content in the polyester chips is an important step to improve the quality of the polyester product.
  • the effect of terminal carboxyl groups on the properties of the polymer is not to be ignored. In the production, only the carboxyl content of the polyester end is controlled to be stable, so that the uniformity of the relative molecular mass distribution can be stably controlled.
  • the content of diethylene glycol in polyester chips is a very important quality in polyester production. index. Because it directly affects the melting point of polyester chips, the melting point of polyester chips will drop sharply with the increase of DEG content, so it not only reflects the quality of production, but also directly affects the post-processing - spinning process and silk quality.
  • the oligomer in the polyester refers to an oligomer having a degree of polymerization of less than 10, and is classified into a linear oligomer and a cyclic oligomer, wherein a cyclic polymer, particularly a cyclic trimer, is predominant, and the oligomer is mainly It involves heterogeneous nucleation, spinning processing, etc., which has certain adverse effects on the properties of polyester and subsequent processing. Controlling the content of the three in the polyester chips is an important issue in the polyester production process.
  • the object of the present invention is to provide an ultra-low shrinkage polyester industrial yarn and a preparation method thereof, which are a polycondensation catalyst using a mixture of ethylene glycol magnesium and ethylene glycol oxime and an ultra-low shrinkage polyester industrial yarn and Preparation.
  • the ultra-low shrinkage polyester industrial yarn had a dry heat shrinkage of 1.8 ⁇ 0.25% under the test conditions of a temperature of 177 ° C ⁇ 10 min ⁇ 0.05 cN / dtex.
  • the invention adopts a mixture of ethylene glycol magnesium and ethylene glycol ruthenium as a polycondensation catalyst to minimize thermal degradation, and the polyester chips are boiled and washed by water and a solvent at 130 ° C and 0.3 MPa; The effect of carboxyl, oligomer and diethylene glycol content on polyester spinning process.
  • An ultra-low shrinkage polyester industrial yarn of the present invention wherein the polyester is esterified by terephthalic acid and ethylene glycol and polycondensed and granulated by a mixture of ethylene glycol and ethylene glycol ruthenium. And washing, solid phase thickening and spinning;
  • the slice of the industrial polyester has a terminal carboxyl group content of less than 15 mol/t, an oligomer mass percentage content of less than 0.5%, and a diethylene glycol mass percentage content of less than 0.5%;
  • the molecular formula of the magnesium glycol is Mg(OCH 2 CH 2 OH) 2 ;
  • the washing means that the pellet after granulation is boiled and washed with water and a solvent at 120 to 130 ° C and 0.2 to 0.3 MPa.
  • High strength, high modulus, low shrinkage, dimensional stability, functionalization, the main direction of industrial polyester fiber development, and the influence of fiber quality is the collection structure of polyester polymer, mainly related to polyester molecules.
  • the force, the morphology and structure of the crystal, the orientation structure, etc., and the morphology and structure of the crystal are the key points.
  • Low shrinkage and dimensional stability are the main factors affecting high-quality polyester.
  • the macroscopic thermal shrinkage of polyester fiber is due to the entropy change trend of the locally elongated macromolecular chain, the internal stress generated by the development of the crimped state and the spinning process.
  • the axial internal stress that freezes in the sample which can be transferred from the molecular net structure to the entire material, occurs when the outside provides sufficient thermal energy.
  • Polyester fiber is an oriented semi-crystalline polymer material composed of structural units with different orientation stability: (1) a highly stable and highly perfect crystalline portion; (2) an imperfect crystalline portion with relatively low stability; a transition layer between low-stability crystals and amorphous; (4) an unstable oriented amorphous phase.
  • the polyester fiber is heated, the following may occur: the oriented amorphous phase undergoes retraction and crystallization; the imperfection of the crystallized portion is broken and recrystallization may occur: thickening of the crystal grains or complete melting of the crystal grains. It is indicated that the grain size and the degree of crystal perfection are important factors to ensure the high dimensional stability of the fiber. 177 ° C heat harvest
  • the low shrinkage is a fiber with excellent thermal dimensional stability. It has two structural features: large grain size and good crystal integrity. Therefore, the fiber has a large grain size and good crystal integrity, which is a guarantee for the quality of the low shrinkage fiber.
  • nucleation is an important part of the crystallization process.
  • a ring nucleating agent can accelerate the crystallization to a certain extent.
  • the polyester has a high carboxyl group content at the middle end, and the polyester resin has poor thermal stability.
  • the carboxylate of the polyester macromolecular chain formed by the reaction of the polyester with the carboxylate is formed into a crystal nucleus, which accelerates the heterogeneous nucleation of the polyester.
  • Polyester contains 3-4% oligomers, mostly in the form of low molecular ethers and esters, mainly in the form of cyclic trimer oligomers, diethylene glycol, and the quality of oligomers to polyester.
  • the influence is relatively large, mainly affecting the crystal nucleation mechanism, crystallinity, crystal morphology and crystal integrity of the polyester by means of a nucleating agent, thereby affecting the quality of the polyester fiber, especially the heat shrinkage rate of the polyester industrial yarn.
  • Pure polyester without diethylene glycol no matter how the crystallization conditions change, there will be no abnormal spherulitic morphology; and when the sample contains diethylene glycol, the morphology of normal and abnormal spherulites will appear in the crystal region. And as the diethylene glycol content increases, the proportion of abnormal spherulites in the entire morphology increases, thereby affecting the integrity of the crystal, and the crystal perfectity of the polyester is lowered.
  • the cyclic trimer appears in the way of nucleation of polyester.
  • the nucleating agent is more, the crystallization rate is faster, the number of crystal grains is larger, but the grain size is smaller, which in turn affects the crystallization integrity.
  • the increase of heterogeneous nucleation reduces the high stability and high degree of perfection of the crystalline portion, the relatively low stability of the imperfect crystalline portion and the low stability of the transition layer between the crystalline and amorphous, and the polyester fiber Heat shrinkage has an adverse effect.
  • ultra-low shrinkage polyester industrial yarn as described above, wherein the ultra-low shrinkage industrial yarn has a linear density deviation rate of ⁇ 1.5%, a breaking strength of ⁇ 7.0 cN/dtex, a breaking strength CV value of ⁇ 2.5%, and an elongation at break of 20.0 ⁇ 1.5%, the elongation at break CV value ⁇ 7.0%.
  • the invention also provides a preparation method of ultra-low shrinkage polyester industrial yarn, which is obtained by esterification of terephthalic acid and ethylene glycol and polycondensation under the catalysis of a mixture of ethylene glycol and ethylene glycol oxime to obtain poly The ester is then granulated to obtain a polyester chip, which is then viscosified by solution washing and solid phase polycondensation; and then subjected to metering, extrusion, cooling, oiling, drawing, heat setting, and winding to obtain a heat resistant polyester.
  • Industrial silk is obtained by esterification of terephthalic acid and ethylene glycol and polycondensation under the catalysis of a mixture of ethylene glycol and ethylene glycol oxime to obtain poly The ester is then granulated to obtain a polyester chip, which is then viscosified by solution washing and solid phase polycondensation; and then subjected to metering, extrusion, cooling, oiling, drawing, heat setting, and winding to
  • the preparation method of an ultra-low shrinkage polyester industrial yarn as described above, the main process is:
  • Ethylene glycol is added to the single chamber electrolyzer, the supporting electrolyte is magnesium chloride, the magnesium metal block is anode, the cathode is graphite; the direct current is 6 to 10 VV, the cathode current density is 150 to 200 mA, and the electrolysis is 50 to 60 °C. 10 to 12 hours, after the completion of the electrolysis, the electrode was taken out to obtain a white suspension; the mixture was filtered under reduced pressure, and the white solid was washed with anhydrous ethanol, and dried to obtain the magnesium succinate;
  • esterification reaction Using terephthalic acid and ethylene glycol as raw materials, adding an anti-ethering agent, forming a uniform slurry, and then performing an esterification reaction to obtain an esterified product; the esterification reaction is pressurized in a nitrogen atmosphere, and the pressure is controlled at a normal pressure of -0.3 MPa, the temperature is in the range of 250 to 260 ° C, and the amount of the esterified water is more than 90% of the theoretical value is the end point of the esterification reaction;
  • the polycondensation reaction is in a low vacuum stage, a catalyst and a stabilizer are added to the esterification product, and a polycondensation reaction is started under a negative pressure condition.
  • the pressure is smoothly pumped from a normal pressure to an absolute pressure of 500 Pa or less, and the temperature is controlled at 260 to 270 ° C. , the reaction time is 30 to 50 minutes;
  • the catalyst is a mixture of magnesium glycol and ethylene glycol oxime;
  • the polycondensation reaction high vacuum stage after the low vacuum stage of the polycondensation reaction, continue to evacuate, the reaction pressure is reduced to an absolute pressure of less than 100 Pa, the reaction temperature is controlled at 275 to 280 ° C, and the reaction time is 50 to 90 minutes;
  • the polyester chips are boiled by water and a solvent at a temperature of 120 to 130 ° C and 0.2 to 0.3 MPa for 3-5 hours, and then washed;
  • the obtained polyester chip is thickened by solid phase polycondensation, and the intrinsic viscosity of the polyester chip is increased to 1.0 to 1.2 dL/g, which is a high-viscosity slice;
  • the extrusion temperature is 290-320 ° C;
  • the cooled air temperature is 20 to 30 ° C;
  • GR-1 speed is 450-600m/min; temperature is normal temperature;
  • the winding speed is 2600 to 3400 m/min.
  • the catalyst is used in an amount of from 0.01% to 0.05% by mass of the terephthalic acid.
  • a mixture of ethylene glycol and ethylene glycol ruthenium is used as a polycondensation catalyst.
  • Glycolate is a milder type, its thermal degradation coefficient is small, and fewer side reactions are initiated during the reaction, which reduces the number of side reactions during processing. Production of terminal carboxyl groups and oligomers.
  • the main factors causing thermal degradation are high temperature and catalyst. High temperature is the reaction intensity is too high, which leads to accelerated degradation, which produces terminal carboxyl groups and also increases cyclic oligomers.
  • the catalyst is related to the degradation reaction constant of the catalyst during the polycondensation process.
  • the role of the catalyst is not only to catalyze the formation of the main reaction, thereby affecting the rate and yield of the reaction, but also catalyzing thermal degradation and ether bond formation, increasing the content of diethylene glycol, thereby increasing the content of terminal carboxyl groups.
  • the weight of the phthalic acid is 0.01% to 0.05%.
  • the stabilizer is mainly composed of phosphate ester, and its main function is to capture the free radical generated by the reaction during the polymerization process and reduce the side reaction.
  • the solvent is one of ethylene glycol monoethyl ether, ethylene glycol monopropyl ether and ethylene glycol monobutyl ether, a small amount of solvent is added to the water, and the solvent is dissolved. In water, it also dissolves most low molecular ethers and esters, which is beneficial to improve the washing effect and the reduction of oligomers.
  • the method for preparing an ultra-low shrinkage polyester industrial yarn as described above wherein the washing means that the polyester chips are washed with hot water of 70 to 80 ° C for 10 to 15 minutes, and then washed with cold water, dried and cooled for use.
  • the anti-ether agent reduces the formation of ether under acidic conditions by adding a small amount of NaAc, thereby reducing the activity of ethylene glycol to form diethylene glycol.
  • the object of the present invention is to provide an ultra-low shrinkage polyester industrial yarn using a milder type of polycondensation catalyst, ethylene glycol, which causes less side reactions during the reaction and less thermal degradation during processing. , reducing the production of oligomers during processing.
  • the polyester chips are boiled at a temperature of 130 ° C and 0.3 MPa by water and a solvent to facilitate the improvement of the washing effect and the reduction of the oligomer.
  • the reduction of oligomers during the polymerization process and the reduction of thermal degradation during processing greatly reduce the impurities in the polyester, and also reduce the amount of nucleating agent in the polyester, which increases the reduction of heterogeneous nucleation.
  • the probability of homogeneous nucleation is beneficial to the growth of grain size and crystallization perfection in ultra-low shrinkage polyester industrial fiber.
  • a mixture of ethylene glycol and ethylene glycol ruthenium is used as a polycondensation catalyst.
  • Glycolate is a milder type with a small thermal degradation coefficient, less side reactions during the reaction, and less processing. Middle carboxyl group and Oligomer production.
  • the carboxyl group content of the polyester chip is less than 15 mol/t, the mass percentage of the oligomer is less than 0.5%, and the mass percentage of diethylene glycol is less than 0.5%, which is beneficial to further improve the quality of the fiber.
  • the polyester chips are boiled under water and solvent at 120-130 ° C and 0.2-0.3 MPa to improve the washing effect and the reduction of oligomers.
  • the anti-ether agent reduces the formation of ether under acidic conditions by adding a small amount of NaAc, thereby reducing the activity of ethylene glycol to form diethylene glycol.
  • ⁇ Ultra-low shrinkage polyester industrial yarn has the characteristics of low dry heat shrinkage and good dimensional stability and is widely used in filter cloth, coated fabric, hose and conveyor belt weft.
  • the preparation method of an ultra-low shrinkage polyester industrial yarn of the invention wherein the terephthalic acid and the ethylene glycol are esterified and polycondensed under the catalysis of a mixture of ethylene glycol and ethylene glycol to obtain a polyester, and then The polyester chips are obtained by dicing; then thickened by solution washing and solid phase polycondensation; and then metered, extruded, cooled, oiled, drawn, heat set and wound to obtain an ultra-low shrinkage polyester industrial yarn.
  • a preparation method of ultra-low shrinkage polyester industrial yarn, the main process is:
  • Ethylene glycol is added to the single chamber electrolyzer, the supporting electrolyte is magnesium chloride, the magnesium metal block is anode, the cathode is graphite; the direct current is 6V, the cathode current density is 150mA, and the electrolysis is 10 hours at 50°C.
  • the electrode was taken out to obtain a white suspension; the mixture was filtered under reduced pressure, and the white solid was washed with anhydrous ethanol and dried
  • the esterification reaction is carried out.
  • the esterification reaction is pressurized in a nitrogen atmosphere, the pressure is controlled at a normal pressure, the temperature is at 250 ° C, and the amount of the esterified water is 91% of the theoretical value is the end point of the esterification reaction;
  • a catalyst and a stabilizer triphenyl ester are added to the esterification product, the amount of the triphenyl ester is 0.01% by weight of the terephthalic acid, and the amount of the catalyst is 0.01% of the mass of the terephthalic acid.
  • the polycondensation reaction is started under the condition of negative pressure, and the pressure is smoothly pumped from atmospheric pressure to an absolute pressure of 498 Pa, the temperature is controlled at 260 ° C, and the reaction time is 30 minutes; the catalyst is a mixture of ethylene glycol and ethylene glycol oxime, B The mass ratio of diol magnesium to ethylene glycol oxime is 2:1;
  • the polycondensation reaction is in a high vacuum stage. After the low vacuum phase of the polycondensation reaction, vacuuming is continued to reduce the reaction pressure to an absolute pressure of 98 Pa, the reaction temperature is controlled at 275 ° C, and the reaction time is 50 minutes; the polyester is obtained, and the pellet is obtained by pelletizing. Polyester slice
  • the polyester chips were boiled in water and the solvent ethylene glycol monoethyl ether at 120 ° C and 0.2 MPa for 3 hours, and then washed, then the polyester chips were washed with 70 ° C hot water for 10 min, then washed with cold water. , drying and cooling standby, the mass ratio of water to the solvent is 100:3, the ratio of the polyester chips to the water and the solvent, that is, the solid-liquid ratio is 1:5;
  • the obtained polyester chip is thickened by solid phase polycondensation, and the intrinsic viscosity of the polyester chip is increased to 1.0 dL/g, which is a high-viscosity slice;
  • the extrusion temperature is 290 ° C;
  • Cooling air temperature is 20 ° C;
  • GR-1 speed is 450m/min; temperature is normal temperature;
  • the winding speed was 2600 m/min.
  • the obtained ultra-low shrinkage polyester industrial yarn has a dry heat shrinkage rate of 2.05% under the test conditions of 177 ° C ⁇ 10 min ⁇ 0.05 cN / dtex; linear density deviation rate of 1.4%, breaking strength of 7.1 cN / dtex, fracture
  • the strength CV value is 2.3%, and the elongation at break is 21.5%, elongation at break CV value of 6.8%.
  • a preparation method of ultra-low shrinkage polyester industrial yarn, the main process is:
  • Ethylene glycol is added to the single chamber electrolyzer, the supporting electrolyte is magnesium chloride, the magnesium metal block is anode, the cathode is graphite; the direct current is 10 V, the cathode current density is 200 mA, and the electrolysis is 12 hours at 60 ° C.
  • the electrode was taken out to obtain a white suspension; the mixture was filtered under reduced pressure, and the white solid was washed with anhydrous ethanol and dried
  • the esterification reaction is carried out to obtain an esterified product; the esterification reaction is pressurized in a nitrogen atmosphere, the pressure is controlled at 0.3 MPa, the temperature is at 260 ° C, and the esterified water is distilled to a theoretical value of 92% for esterification. End point of reaction
  • a catalyst and a stabilizer trimethyl phosphate are added to the esterification product, and the amount of the trimethyl phosphate is 0.02% by weight of the terephthalic acid, and the amount of the catalyst is 0.02% of the mass of the terephthalic acid.
  • the polycondensation reaction is started under the condition of negative pressure, and the pressure is smoothly pumped from atmospheric pressure to an absolute pressure of 495 Pa, the temperature is controlled at 265 ° C, and the reaction time is 40 minutes; the catalyst is a mixture of ethylene glycol and ethylene glycol oxime, B The mass ratio of diol magnesium to ethylene glycol oxime is 3:1;
  • the polycondensation reaction is in a high vacuum stage. After the low vacuum stage of the polycondensation reaction, the vacuum is continued, the reaction pressure is reduced to an absolute pressure of 98 Pa, the reaction temperature is controlled at 278 ° C, and the reaction time is 80 minutes; the polyester is obtained, and the polyester is obtained by pelletizing. slice;
  • the polyester chips were boiled with water and the solvent ethylene glycol monopropyl ether at 125 ° C and 0.25 MPa for 4 hours, and then washed, that is, the polyester chips were washed with 78 ° C hot water for 12 min, and then washed with cold water. Net, drying and cooling standby, the mass ratio of water to solvent is 100:4, the ratio of polyester chips to water and solvent, ie solid-liquid ratio is 1:9;
  • the obtained polyester chip is thickened by solid phase polycondensation, and the intrinsic viscosity of the polyester chip is increased to 1.1 dL/g, which is a high-viscosity slice;
  • the temperature of extrusion is 300 ° C;
  • Cooling air temperature is 25 ° C;
  • the winding speed was 2700 m/min.
  • the obtained ultra-low shrinkage polyester industrial yarn has a dry heat shrinkage rate of 1.55% under the test condition of temperature of 177 ° C ⁇ 10 min ⁇ 0.05 cN / dtex; linear density deviation rate of 1.5%, breaking strength of 8.2 cN / dtex, fracture
  • the strength CV value was 2.2%
  • the elongation at break was 18.5%
  • the elongation at break CV value was 6.2%.
  • a preparation method of ultra-low shrinkage polyester industrial yarn, the main process is:
  • Ethylene glycol is added to the single chamber electrolyzer, the supporting electrolyte is magnesium chloride, the magnesium metal block is anode, the cathode is graphite; the direct current is 8V, the cathode current density is 160mA, and the electrolysis is 11 hours at 56°C.
  • the electrode was taken out to obtain a white suspension; the mixture was filtered under reduced pressure, and the white solid was washed with anhydrous ethanol and dried
  • the esterification reaction is carried out to obtain an esterified product; the esterification reaction is pressurized in a nitrogen atmosphere, the pressure is controlled at 0.2 MPa, the temperature is at 255 ° C, and the esterified water is distilled to 95% of the theoretical value for esterification. End point of reaction
  • a catalyst and a stabilizer trimethyl phosphite are added to the esterification product, the amount of dimethyl phosphite is 0.03% by weight of terephthalic acid, and the amount of the catalyst is 0.04% of the mass of terephthalic acid.
  • the polycondensation reaction is started under the condition of negative pressure. The pressure at this stage is smoothly pumped from normal pressure to an absolute pressure of 495 Pa, and the temperature is controlled at 266 ° C. The reaction time is 38 minutes; the catalyst is a mixture of ethylene glycol and ethylene glycol oxime, the mass ratio of ethylene glycol to ethylene glycol oxime is 3:1;
  • the polycondensation reaction is in a high vacuum stage. After the low vacuum stage of the polycondensation reaction, the vacuum is continued to reduce the reaction pressure to an absolute pressure of 99 Pa, the reaction temperature is controlled at 277 ° C, and the reaction time is 70 minutes; the polyester is obtained, and the polyester is obtained by pelletizing. slice;
  • the polyester chips were boiled with water and the solvent ethylene glycol monobutyl ether at 128 ° C and 0.25 MPa for 3 hours, and then washed, that is, the polyester chips were washed with hot water at 75 ° C for 12 minutes, and then washed with cold water. Net, drying and cooling standby, the mass ratio of water to solvent is 100:4, the ratio of polyester chips to water and solvent, ie solid-liquid ratio is 1:8;
  • the obtained polyester chip is thickened by solid phase polycondensation, and the intrinsic viscosity of the polyester chip is increased to 1.2 dL/g, which is a high-viscosity slice;
  • the extrusion temperature is 290 ° C;
  • Cooling air temperature is 20 ° C;
  • GR-1 speed is 450m/min; temperature is normal temperature;
  • the winding speed was 2600 m/min.
  • the obtained ultra-low shrinkage polyester industrial yarn has a dry heat shrinkage ratio of 1.8% under the test conditions of 177 ° C ⁇ 10 min ⁇ 0.05 cN / dtex; linear density deviation rate of 1.2%, breaking strength of 8.5 cN / dtex, fracture
  • the strength CV value was 1.8%
  • the elongation at break was 20.1%
  • the elongation at break CV value was 6.8%.
  • a preparation method of ultra-low shrinkage polyester industrial yarn, the main process is:
  • Ethylene glycol is added to the single chamber electrolyzer, the supporting electrolyte is magnesium chloride, the magnesium metal block is anode, the cathode is graphite; the direct current is 10 V, the cathode current density is 150 mA, and the electrolysis is 12 hours at 50 ° C.
  • the electrode was discharged to obtain a white suspension; the mixture was filtered under reduced pressure, and the white solid was washed with anhydrous ethanol and dried
  • the esterification reaction is carried out to obtain an esterified product; the esterification reaction is pressurized in a nitrogen atmosphere, the pressure is controlled at 0.2 MPa, the temperature is at 258 ° C, and the esterified water is distilled to a value of 96% of the theoretical value for esterification. End point of reaction
  • a catalyst and a stabilizer triphenyl ester are added to the esterification product, the amount of the triphenyl ester is 0.03% by weight of the terephthalic acid, and the amount of the catalyst is 0.04% of the mass of the terephthalic acid.
  • the polycondensation reaction was started under pressure, and the pressure was smoothly pumped from atmospheric pressure to an absolute pressure of 495 Pa, the temperature was controlled at 265 ° C, and the reaction time was 30 minutes; the catalyst was a mixture of ethylene glycol and ethylene glycol oxime, ethylene glycol.
  • the mass ratio of magnesium to ethylene glycol is 3:1;
  • the polycondensation reaction is in a high vacuum stage. After the low vacuum stage of the polycondensation reaction, vacuuming is continued to reduce the reaction pressure to an absolute pressure of 98 Pa, the reaction temperature is controlled at 277 ° C, and the reaction time is 70 minutes; polyester is obtained, and the polyester is obtained by pelletizing. slice;
  • the polyester chips were boiled in water and the solvent ethylene glycol monoethyl ether at 120 ° C and 0.3 MPa for 5 hours, and then washed, then the polyester chips were washed with 72 ° C hot water for 12 min, then washed with cold water. , drying and cooling standby, the mass ratio of water to solvent is 100:4, the ratio of polyester chips to water and solvent, that is, the ratio of solid to liquid is 1:8;
  • the obtained polyester chip is thickened by solid phase polycondensation, and the intrinsic viscosity of the polyester chip is increased to 1.2 dL/g, which is a high-viscosity slice;
  • the extrusion temperature is 320 ° C;
  • Cooling air temperature is 30 ° C
  • the winding speed was 3400 m/min.
  • the obtained ultra-low shrinkage polyester industrial yarn has a dry heat shrinkage rate of 1.82% under the test conditions of 177 ° C ⁇ 10 min ⁇ 0.05 cN / dtex; linear density deviation rate of 0.9%, breaking strength of 8.6 cN / dtex, fracture
  • the strength CV value was 2.1%, the elongation at break was 19.5%, and the elongation at break CV value was 6.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种超低收缩聚酯工业丝及其制备方法,超低收缩聚酯工业丝由聚酯溶洗、固相增粘后纺丝而得,所述超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.8±0.25%。采用乙二醇镁与乙二醇锑混合物作为缩聚催化剂,其热降解系数很小,聚合过程中低聚物减少,加工过程中热降解的降低,大大地减少了聚酯中的杂质,同时也降低了聚酯中成核剂的量,在减少异相成核的基础上增加了均相成核的机率,溶洗进一步降低了低聚物的含量,有利于超低收缩聚酯工业丝纤维中晶粒尺寸的长大和结晶完善性优化。超低收缩聚酯工业丝具有较低的干热收缩率和较好的尺寸稳定性等特点而广泛应用在过滤布、涂层织物,软管和传送带纬线等方面。

Description

一种超低收缩聚酯工业丝及其制备方法 技术领域
本发明属聚酯工业丝制备技术领域,涉及一种超低收缩聚酯工业丝及其制备方法,特别是一种缩聚催化剂采用乙二醇镁和乙二醇锑的混合物以及聚酯切片经水与溶洗剂在120~130℃,0.2~0.3MPa条件下煮泡、洗涤的聚酯以及超低收缩聚酯工业丝及其制备方法。
背景技术
聚对苯二甲酸乙二醇酯(PET)是一种性能优良的聚合物,PET以其模量高、强度高、挺括、保形性好、纯净卫生、阻隔性能好等,被广泛应用于纤维、瓶包装、薄膜和片材等领域,产量逐年递增,行业地位显著提升。
产业用聚酯纤维主要是指大都应用于工业、国防、医疗、环境保护和尖端科学各方面,是具有相对特殊的物理化学结构、性能和用途,或具有特殊功能的化学纤维,主要体现在耐强腐蚀、低磨损、耐高温、耐辐射、阻燃、抗燃、耐高电压、高强度高模量以及多种医学功能。以高强低收缩涤纶工业长丝作为原料生产的PVC蓬盖布,具有较高的剥离强度和撕裂强度,使蓬盖布适用于各种用途,柔性体广告灯箱材料、充气结构材料、蓬盖建筑织物遮阳帐篷等。以高强低收缩工业丝为主织物材料在特殊防护服、伪装、覆盖物、背囊等军需方面得到应用。作为土工材料的一种具有轻便、柔软、高强、耐磨、抗腐蚀、不导电、减震等优点。使用时安全方便、效率高,并且不会损坏吊装物件。产业用聚酯纤维的应用领域拓展带动应用领域的整体竞争力提升,无论在减轻复合材料的重量,使用的耐久性和减少维修、包养成本等诸多方面,聚酯类高性能纤维越来越发挥出其综合竞争优势。未来的数十年,高性能聚酯纤维的发展不仅仅从数量上有长足的进展,更在应用领域的拓展和产业链整体竞争力的提升上取得实质性的成效。
高强度、高模量、低收缩、尺寸稳定性、功能化将产业用聚酯纤维发展的主要方向,而影响纤维品质的是聚酯高分子的集态结构,主要涉及到聚酯分子间的作用力,结晶的形态和结构、取向态结构等,而结晶的形态和结构又是其中的重点。涤纶工业丝广泛应用于不同的领域,对于超低收缩型涤纶工业丝来说,具有较低的干热收缩率和较好的尺寸稳定性等特点而广泛应用在过滤布、涂层织物,软管和传送带纬线等方面。
端羧基、齐聚物、二甘醇(DEG)含量是聚酯切片的重要质量指标,其中齐聚物、二甘醇都是低聚物,它们不仅反映了生产状况的好坏,还会影响到纺丝加工的产品质量。因此,减少聚酯切片中的端羧基、齐聚物、二甘醇含量就成为提高聚酯产品质量很重要的环节。端羧基对聚合物性能的影响不容勿视,在生产中只有控制聚酯端羧基含量稳定,才能稳定的控制其相对分子质量分布的均一性。二甘醇在聚酯切片中的含量是聚酯生产中一个很重要的质量 指标。因为它直接影响到聚酯切片的熔点,聚酯切片的熔点会随其中DEG的含量的增加急剧下降,所以它不仅反映了生产状况的好坏,直接影响到后加工—纺丝工艺和丝的质量。聚酯中的齐聚物是指聚合度小于10的低聚体,分为线性齐聚物和环状齐聚物,其中以环状聚体特别是环状三聚体居多,齐聚物主要涉及到异相成核、纺丝加工等,对聚酯的性能及后道加工造成一定的不良影响。控制三者在聚酯切片中的含量是聚酯生产工艺中十分重要的课题。
发明内容
本发明的目的是提供一种超低收缩聚酯工业丝及其制备方法,是一种缩聚催化剂采用乙二醇镁和乙二醇锑的混合物的聚酯以及超低收缩聚酯工业丝及其制备方法。所述超低收缩聚酯工业丝在温度在177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.8±0.25%。本发明采用乙二醇镁和乙二醇锑的混合物为缩聚催化剂,将热降解减少到最低,以及聚酯切片经水与溶洗剂在130℃,0.3MPa条件下煮泡、洗涤;减少端羧基、齐聚物、二甘醇含量对聚酯纺丝加工的影响。
本发明的一种超低收缩聚酯工业丝,为所述聚酯为对苯二甲酸和乙二醇经酯化和在乙二醇镁和乙二醇锑的混合物催化作用下缩聚、造粒和溶洗、固相增粘后纺丝而得;
所述产业用聚酯的切片中,端羧基含量小于15mol/t,齐聚物质量百分比含量小于0.5%,二甘醇的质量百分比含量小于0.5%;
所述乙二醇镁的分子式为Mg(OCH2CH2OH)2
所述溶洗是指造粒后的切片经水与溶洗剂在120~130℃与0.2~0.3MPa条件下煮泡和洗涤。
高强度、高模量、低收缩、尺寸稳定性、功能化将产业用聚酯纤维发展的主要方向,而影响纤维品质的是聚酯高分子的集态结构,主要涉及到聚酯分子间的作用力,结晶的形态和结构、取向态结构等,而结晶的形态和结构又是其中的重点。
低收缩、尺寸稳定性是影响高品质聚酯的主要因素,聚酯纤维的宏观热收缩现象是因为局部伸长大分子链的熵变趋势,向卷曲状态发展产生的内应力及纺丝加工过程冻结在样品中的轴向内应力,这种局部内应力可由分子网结构转递到整个材料,当外界提供足够热能时,发生的现象。
聚酯纤维属于取向半结晶高分子材料,是由取向稳定性不同的结构单元组成:(1)高稳定和高完善程度的结晶部分;(2)相对低稳定性的不完善结晶部分;(3)低稳定性的结晶与非晶之间的过渡层;(4)不稳定的取向非晶相。当聚酯纤维受热时,可能发生如下情况:取向的非晶相发生回缩和结晶;不完善结晶部分的破坏和可能发生再结晶:晶粒的加厚或晶粒完全熔融。说明晶粒尺寸和结晶完善程度是保证纤维高温尺寸稳定性的重要因素。177℃热收 缩率低的是热尺寸稳定性极佳的纤维.,具有两个结构特点:晶粒尺寸大和结晶完善性好。因此纤维的晶粒尺寸大和结晶完善性好,是低收缩纤维品质的保证。
影响聚酯结晶的因素主要有:(1)分子链本身的结构。(2)结晶温度的选择。(3)分子量的影响。(4)成核剂的应用。(5)最后就是工艺条件的影响。其中成核是结晶过程主要的环节中很重要的一环成核剂在一定程度上是可以加快结晶的进行的,同时对低缩聚酯工业丝更重要的是影响结晶的尺寸和结晶完善性。
聚酯中端羧基含量高,聚酯树脂的热稳定性差,同时聚酯与羧酸盐反应生成的聚酯大分子链的羧酸盐,其构成为晶核,使聚酯加速异相成核。聚酯中含有3-4%的低聚物,多以低分子的醚和酯的形式存在,主要以环状三聚体齐聚物、二甘醇为主,低聚物对聚酯的品质影响较大,主要以成核剂的方式影响聚酯的结晶成核机理、结晶度、结晶形态以及结晶的完整性等进而影响聚酯纤维的品质,特别是聚酯工业丝的热收缩率。不含二甘醇的纯聚酯,无论结晶条件如何变化,都不会出现异常球晶的形态;而当试样中含有二甘醇时,晶区中会出现正常和异常球晶共存的形态,并且随着二甘醇含量的增加,异常球晶在整个形态中的比例上升,因而影响到结晶的完整性,使其聚酯的结晶完善性降低。环状三聚体在聚酯多以成核的方式出现,成核剂多,结晶速度快,晶粒数量大,但晶粒尺寸较小,进而影响到结晶的完善性。异相成核的增加,使得高稳定和高完善程度的结晶部分减少,相对低稳定性的不完善结晶部分和低稳定性的结晶与非晶之间的过渡层加大,对聚酯纤维的热收缩产生不良影响。
如上所述的一种超低收缩聚酯工业丝,所述超低收缩工业丝的线密度偏差率≤1.5%,断裂强度≥7.0cN/dtex,断裂强度CV值≤2.5%,断裂伸长为20.0±1.5%,断裂伸长CV值≤7.0%。
如上所述的一种超低收缩聚酯工业丝,所述乙二醇镁和乙二醇锑的混合物中,乙二醇镁与乙二醇锑质量比为2~3:1。
本发明还提供了一种超低收缩聚酯工业丝的制备方法,为对苯二甲酸和乙二醇经酯化和在乙二醇镁和乙二醇锑的混合物催化作用下缩聚制得聚酯,再经切粒得到聚酯切片,然后通过溶洗、固相缩聚增粘;再经计量、挤出、冷却、上油、拉伸、热定型、卷绕,制得耐热性聚酯工业丝。
如上所述的一种超低收缩聚酯工业丝的制备方法,主要工艺为:
(1)催化剂乙二醇镁的制备:
在单室电解槽内加乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压6~10VV,阴极电流密度为150~200mA,50~60℃时电解10~12小时,电解结束后取出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
(2)聚酯的制备,包括酯化反应和缩聚反应:
所述酯化反应:
采用对苯二甲酸和乙二醇作为原料,加入防醚剂,配成均匀浆料后进行酯化反应,得到酯化产物;酯化反应在氮气氛围中加压,压力控制在常压~0.3MPa,温度在250~260℃,酯化水馏出量达到理论值的90%以上为酯化反应终点;
所述缩聚反应:
包括缩聚反应低真空阶段和缩聚反应高真空阶段:
所述缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力500Pa以下,温度控制在260~270℃,反应时间为30~50分钟;所述催化剂为乙二醇镁和乙二醇锑的混合物;
所述缩聚反应高真空阶段,经所述缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力小于100Pa,反应温度控制在275~280℃,反应时间50~90分钟;
制得聚酯,经切粒得到聚酯切片;
(3)溶洗
所述聚酯切片经水与溶洗剂在120~130℃与0.2~0.3MPa条件下煮泡3-5小时,后经洗涤;
(4)固相缩聚:
所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.0~1.2dL/g,即为高粘切片;
(5)纺丝主要工艺参数:
所述挤出的温度为290~320℃;
所述冷却的风温为20~30℃;
所述的拉伸、热定型工艺:
GR-1速度450~600m/min;温度为常温;
GR-2速度480~1000m/min;温度80~100℃;
GR-3速度1800~2500m/min;温度100~150℃;
GR-4速度2800~3500m/min;温度200~250℃;
GR-5速度2800~3500m/min;温度200~250℃;
GR-6速度2600~3400m/min;温度150~220℃;
所述卷绕的速度为2600~3400m/min。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述乙二醇与所述对苯二甲酸的摩尔 比为1.2~2.0:1。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述乙二醇镁和乙二醇锑的混合物中,乙二醇镁与乙二醇锑质量比为2~3:1;所述催化剂用量为所述对苯二甲酸质量的0.01%~0.05%。
采用乙二醇镁与乙二醇锑混合物作为缩聚催化剂,乙二醇镁属于比较温和的一类,其热降解系数很小,在反应过程中引发的副反应较少,减少了在加工过程中端羧基和低聚物的产生。引起热降解的主要因素是高温和催化剂,高温是反应强度过高,导致降解加速,产生了端羧基,同时也使环状齐聚物增加;催化剂则与催化剂的降解反应常数相关,在缩聚过程中,催化剂的作用不仅在于能催化生成主反应,从而影响反应的速率与产量,同时还能催化热降解和醚键生成,增加二甘醇的含量,从而增加端羧基的含量。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述稳定剂选自磷酸三苯酯、磷酸三甲酯和亚磷酸三甲酯中的一种,稳定剂用量为所述对苯二甲酸重量的0.01%~0.05%。稳定剂主要以磷酸酯为主,主要作用是在聚合过程中捕捉反应产生的自由基,减少副反应。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述水与溶洗剂的质量比例为100:3~4,聚酯切片与水和溶洗剂的比例,即固液比为1:5-10;所述溶洗剂为乙二醇一乙醚、乙二醇一丙醚和乙二醇一丁醚中的一种,在水中加入少量的溶洗剂,溶洗剂溶于水,同时也可溶解大多数低分子的醚和酯,有利于提高洗涤的效果和低聚物的减少。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述洗涤是指煮泡后聚酯切片用70~80℃热水洗10~15min,然后用冷水洗净,烘干冷却备用。
如上所述的一种超低收缩聚酯工业丝的制备方法,所述防醚剂为醋酸钠和醋酸钙中的一种,防醚剂用量为所述对苯二甲酸重量的0.01%~0.05%。防醚剂通过加入少量NaAc减少在酸性条件下醚的生成,从而降低了乙二醇反应生成二甘醇的活性。
本发明的目的是提供一种超低收缩聚酯工业丝,采用较温和的一类缩聚催化剂乙二醇镁,在反应过程中引发的较少副反应较少以及加工过程中的较少热降解,减少了在加工过程中低聚物的产生。聚酯切片经水与溶洗剂在130℃,0.3MPa条件下煮泡有利于提高洗涤的效果和低聚物的减少。聚合过程中低聚物减少,加工过程中热降解的降低,大大地减少了聚酯中的杂质,同时也降低了聚酯中成核剂的量,在减少异相成核的基础上增加了均相成核的机率,有利于超低收缩聚酯工业丝纤维中的晶粒尺寸的长大和结晶完善性优化。
有益效果:
●采用乙二醇镁与乙二醇锑混合物作为缩聚催化剂,乙二醇镁属于比较温和的一类,其热降解系数很小,在反应过程中引发的副反应较少,减少了在加工过程中端羧基和 低聚物的产生。
●聚酯切片的端羧基含量小于15mol/t,齐聚物质量百分比含量小于0.5%,二甘醇的质量百分比含量小于0.5%,有利于进一步提高纤维的品质。
●聚酯切片经水与溶洗剂在120~130℃与0.2~0.3MPa条件下煮泡有利于提高洗涤的效果和低聚物的减少。
●防醚剂通过加入少量NaAc减少在酸性条件下醚的生成,从而降低了乙二醇反应生成二甘醇的活性。
●聚合过程中低聚物减少,加工过程中热降解的降低,大大地减少了聚酯中的杂质,同时也降低了聚酯中成核剂的量,在减少异相成核的基础上增加了均相成核的机率,有利于超低收缩聚酯工业丝纤维中晶粒尺寸的长大和结晶完善性优化。
●超低收缩型涤纶工业丝具有较低的干热收缩率和较好的尺寸稳定性等特点而广泛应用在过滤布、涂层织物,软管和传送带纬线等方面。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的一种超低收缩聚酯工业丝的制备方法,对苯二甲酸和乙二醇经酯化和在乙二醇镁和乙二醇锑的混合物催化作用下缩聚制得聚酯,再经切粒得到聚酯切片;然后通过溶洗和固相缩聚增粘;再经计量、挤出、冷却、上油、拉伸、热定型和卷绕,制得超低收缩聚酯工业丝。
实施例1
一种超低收缩聚酯工业丝的制备方法,主要工艺为:
(1)催化剂乙二醇镁的制备:
在单室电解槽内加入乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压6V,阴极电流密度为150mA,50℃时电解10小时,电解结束后取出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
(2)聚酯的制备,包括酯化反应和缩聚反应:
酯化反应:
采用对苯二甲酸和乙二醇作为原料,乙二醇与对苯二甲酸的摩尔比为1.2:1,加入防醚剂醋酸钠,醋酸钠用量为对苯二甲酸重量的0.01%,配成均匀浆料后进行酯化反应,得 到酯化产物;酯化反应在氮气氛围中加压,压力控制在常压,温度在250℃,酯化水馏出量达到理论值的91%为酯化反应终点;
缩聚反应:
包括缩聚反应低真空阶段和缩聚反应高真空阶段:
所述缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂酸三苯酯,酸三苯酯用量为对苯二甲酸重量的0.01%,催化剂用量为对苯二甲酸质量的0.01%,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力498Pa,温度控制在260℃,反应时间为30分钟;催化剂为乙二醇镁和乙二醇锑的混合物,乙二醇镁与乙二醇锑质量比为2:1;
缩聚反应高真空阶段,经所述缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力98Pa,反应温度控制在275℃,反应时间50分钟;制得聚酯,经切粒得到聚酯切片;
(3)溶洗
聚酯切片经水与溶洗剂乙二醇一乙醚在120℃与0.2MPa条件下煮泡3小时,后经洗涤,即煮泡后聚酯切片用70℃热水洗10min,然后用冷水洗净,烘干冷却备用,水与溶洗剂的质量比例为100:3,聚酯切片与水和溶洗剂的比例,即固液比为1:5;
(4)固相缩聚:
所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.0dL/g,即为高粘切片;
(5)纺丝主要工艺参数:
挤出的温度为290℃;
冷却的风温为20℃;
拉伸、热定型工艺:
GR-1速度450m/min;温度为常温;
GR-2速度480m/min;温度80℃;
GR-3速度1800m/min;温度100℃;
GR-4速度2800m/min;温度200℃;
GR-5速度2800m/min;温度200℃;
GR-6速度2600m/min;温度200℃;
卷绕的速度为2600m/min。
制得的超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为2.05%;线密度偏差率1.4%,断裂强度7.1cN/dtex,断裂强度CV值2.3%,断裂伸长为 21.5%,断裂伸长CV值6.8%。
实施例2
一种超低收缩聚酯工业丝的制备方法,主要工艺为:
(1)催化剂乙二醇镁的制备:
在单室电解槽内加入乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压10V,阴极电流密度为200mA,60℃时电解12小时,电解结束后取出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
(2)聚酯的制备,包括酯化反应和缩聚反应:
酯化反应:
采用对苯二甲酸和乙二醇作为原料,乙二醇与对苯二甲酸的摩尔比为2.0:1,加入防醚剂醋酸钙,醋酸钙用量为对苯二甲酸重量的0.05%,配成均匀浆料后进行酯化反应,得到酯化产物;酯化反应在氮气氛围中加压,压力控制在0.3MPa,温度在260℃,酯化水馏出量达到理论值的92%为酯化反应终点;
缩聚反应:
包括缩聚反应低真空阶段和缩聚反应高真空阶段:
缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂磷酸三甲酯,磷酸三甲酯用量为所述对苯二甲酸重量的0.02%,催化剂用量为对苯二甲酸质量的0.02%,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力495Pa,温度控制在265℃,反应时间为40分钟;催化剂为乙二醇镁和乙二醇锑的混合物,乙二醇镁与乙二醇锑质量比为3:1;
缩聚反应高真空阶段,经缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力98Pa,反应温度控制在278℃,反应时间80分钟;制得聚酯,经切粒得到聚酯切片;
(3)溶洗
聚酯切片经水与溶洗剂乙二醇一丙醚在125℃与0.25MPa条件下煮泡4小时,后经洗涤,即煮泡后聚酯切片用78℃热水洗12min,然后用冷水洗净,烘干冷却备用,水与溶洗剂的质量比例为100:4,聚酯切片与水和溶洗剂的比例,即固液比为1:9;
(4)固相缩聚:
所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.1dL/g,即为高粘切片;
(5)纺丝主要工艺参数:
挤出的温度为300℃;
冷却的风温为25℃;
拉伸、热定型工艺:
GR-1速度500m/min;温度为常温;
GR-2速度580m/min;温度90℃;
GR-3速度2000m/min;温度120℃;
GR-4速度3000m/min;温度220℃;
GR-5速度3000m/min;温度220℃;
GR-6速度2700m/min;温度220℃;
卷绕的速度为2700m/min。
制得的超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.55%;线密度偏差率1.5%,断裂强度8.2cN/dtex,断裂强度CV值2.2%,断裂伸长为18.5%,断裂伸长CV值6.2%。
实施例3
一种超低收缩聚酯工业丝的制备方法,主要工艺为:
(1)催化剂乙二醇镁的制备:
在单室电解槽内加入乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压8V,阴极电流密度为160mA,56℃时电解11小时,电解结束后取出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
(2)聚酯的制备,包括酯化反应和缩聚反应:
酯化反应:
采用对苯二甲酸和乙二醇作为原料,乙二醇与对苯二甲酸的摩尔比为1.8:1,加入防醚剂醋酸钠,醋酸钠用量为对苯二甲酸重量的0.03%,配成均匀浆料后进行酯化反应,得到酯化产物;酯化反应在氮气氛围中加压,压力控制在0.2MPa,温度在255℃,酯化水馏出量达到理论值的95%为酯化反应终点;
缩聚反应:
包括缩聚反应低真空阶段和缩聚反应高真空阶段:
缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂亚磷酸三甲酯,亚磷酸三甲酯用量为对苯二甲酸重量的0.03%,催化剂用量为对苯二甲酸质量的0.04%,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力495Pa,温度控制在266℃,反 应时间为38分钟;催化剂为乙二醇镁和乙二醇锑的混合物,乙二醇镁与乙二醇锑质量比为3:1;
缩聚反应高真空阶段,经缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力99Pa,反应温度控制在277℃,反应时间70分钟;制得聚酯,经切粒得到聚酯切片;
(3)溶洗
聚酯切片经水与溶洗剂乙二醇一丁醚在128℃与0.25MPa条件下煮泡3小时,后经洗涤,即煮泡后聚酯切片用75℃热水洗12min,然后用冷水洗净,烘干冷却备用,水与溶洗剂的质量比例为100:4,聚酯切片与水和溶洗剂的比例,即固液比为1:8;
(4)固相缩聚:
所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.2dL/g,即为高粘切片;
(5)纺丝主要工艺参数:
挤出的温度为290℃;
冷却的风温为20℃;
拉伸、热定型工艺:
GR-1速度450m/min;温度为常温;
GR-2速度480m/min;温度80℃;
GR-3速度1800m/min;温度100℃;
GR-4速度2800m/min;温度200℃;
GR-5速度2800m/min;温度200℃;
GR-6速度2600m/min;温度200℃;
卷绕的速度为2600m/min。
制得的超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.8%;线密度偏差率1.2%,断裂强度8.5cN/dtex,断裂强度CV值1.8%,断裂伸长为20.1%,断裂伸长CV值6.8%。
实施例4
一种超低收缩聚酯工业丝的制备方法,主要工艺为:
(1)催化剂乙二醇镁的制备:
在单室电解槽内加入乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压10V,阴极电流密度为150mA,50℃时电解12小时,电解结束后取 出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
(2)聚酯的制备,包括酯化反应和缩聚反应:
酯化反应:
采用对苯二甲酸和乙二醇作为原料,乙二醇与对苯二甲酸的摩尔比为19:1,加入防醚剂醋酸钠,醋酸钠用量为对苯二甲酸重量的0.04%,配成均匀浆料后进行酯化反应,得到酯化产物;酯化反应在氮气氛围中加压,压力控制在0.2MPa,温度在258℃,酯化水馏出量达到理论值的96%为酯化反应终点;
缩聚反应:
包括缩聚反应低真空阶段和缩聚反应高真空阶段:
缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂酸三苯酯,酸三苯酯用量为对苯二甲酸重量的0.03%,催化剂用量为对苯二甲酸质量的0.04%,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力495Pa,温度控制在265℃,反应时间为30分钟;催化剂为乙二醇镁和乙二醇锑的混合物,乙二醇镁与乙二醇锑质量比为3:1;
缩聚反应高真空阶段,经缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力98Pa,反应温度控制在277℃,反应时间70分钟;制得聚酯,经切粒得到聚酯切片;
(3)溶洗
聚酯切片经水与溶洗剂乙二醇一乙醚在120℃与0.3MPa条件下煮泡5小时,后经洗涤,即煮泡后聚酯切片用72℃热水洗12min,然后用冷水洗净,烘干冷却备用,水与溶洗剂的质量比例为100:4,聚酯切片与水和溶洗剂的比例,即固液比为1:8;
(4)固相缩聚:
所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.2dL/g,即为高粘切片;
(5)纺丝主要工艺参数:
挤出的温度为320℃;
冷却的风温为30℃;
拉伸、热定型工艺:
GR-1速度600m/min;温度为常温;
GR-2速度1000m/min;温度100℃;
GR-3速度2500m/min;温度150℃;
GR-4速度3500m/min;温度210℃;
GR-5速度3500m/min;温度210℃;
GR-6速度3400m/min;温度210℃;
卷绕的速度为3400m/min。
制得的超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.82%;线密度偏差率0.9%,断裂强度8.6cN/dtex,断裂强度CV值2.1%,断裂伸长19.5%,断裂伸长CV值6.4%。

Claims (10)

  1. 一种超低收缩聚酯工业丝,其特征是:所述超低收缩聚酯工业丝由聚酯经溶洗和固相增粘后纺丝而得,所述超低收缩聚酯工业丝在温度为177℃×10min×0.05cN/dtex的测试条件下的干热收缩率为1.8±0.25%;所述聚酯为对苯二甲酸和乙二醇经酯化和在乙二醇镁和乙二醇锑的混合物催化作用下缩聚并经造粒后制得;
    所述聚酯的切片中,端羧基含量小于15mol/t,齐聚物质量百分比含量小于0.5%,二甘醇的质量百分比含量小于0.5%;
    所述乙二醇镁的分子式为Mg(OCH2CH2OH)2
    所述溶洗是指造粒后的切片经水与溶洗剂在120~130℃与0.2~0.3MPa条件下煮泡和洗涤。
  2. 根据权利要求1所述的一种超低收缩聚酯工业丝,其特征在于,所述超低收缩工业丝的线密度偏差率≤1.5%,断裂强度≥7.0cN/dtex,断裂强度CV值≤2.5%,断裂伸长为20.0±1.5%,断裂伸长CV值≤7.0%。
  3. 根据权利要求1所述的一种超低收缩聚酯工业丝,其特征在于,所述乙二醇镁和乙二醇锑的混合物中,乙二醇镁与乙二醇锑质量比为2~3:1。
  4. 如权利要求1~3中任一项所述的一种超低收缩聚酯工业丝的制备方法,其特征是:对苯二甲酸和乙二醇经酯化和在乙二醇镁和乙二醇锑的混合物催化作用下缩聚制得聚酯,再经切粒得到聚酯切片;然后通过溶洗和固相缩聚增粘;再经计量、挤出、冷却、上油、拉伸、热定型和卷绕,制得超低收缩聚酯工业丝。
  5. 根据权利要求4所述的一种超低收缩聚酯工业丝的制备方法,其特征在于:主要工艺为:
    (1)催化剂乙二醇镁的制备:
    在单室电解槽内加入乙二醇,支持电解质为氯化镁,金属镁块为阳极,阴极为石墨;通直流电,起始电压6~10V,阴极电流密度为150~200mA,50~60℃时电解10~12小时,电解结束后取出电极,得白色悬浊液;减压过滤,白色固体用无水乙醇洗涤,干燥后得到乙二醇镁;
    (2)聚酯的制备,包括酯化反应和缩聚反应:
    所述酯化反应:
    采用对苯二甲酸和乙二醇作为原料,加入防醚剂,配成均匀浆料后进行酯化反应,得到酯化产物;酯化反应在氮气氛围中加压,压力控制在常压~0.3MPa,温度在250~260℃,酯化水馏出量达到理论值的90%以上为酯化反应终点;
    所述缩聚反应:
    包括缩聚反应低真空阶段和缩聚反应高真空阶段:
    所述缩聚反应低真空阶段,在酯化产物中加入催化剂和稳定剂,在负压的条件下开始缩聚反应,该阶段压力由常压平稳抽至绝对压力500Pa以下,温度控制在260~270℃,反应时间为30~50分钟;所述催化剂为乙二醇镁和乙二醇锑的混合物;
    所述缩聚反应高真空阶段,经所述缩聚反应低真空阶段后,继续抽真空,使反应压力降至绝对压力小于100Pa,反应温度控制在275~280℃,反应时间50~90分钟;
    制得聚酯,经切粒得到聚酯切片;
    (3)溶洗
    所述聚酯切片经水与溶洗剂在120~130℃与0.2~0.3MPa条件下煮泡3-5小时,后经洗涤;
    (4)固相缩聚:
    所得到聚酯切片通过固相缩聚增粘,使聚酯切片的特性粘度提高到1.0~1.2dL/g,即为高粘切片;
    (5)纺丝主要工艺参数:
    所述挤出的温度为290~320℃;
    所述冷却的风温为20~30℃;
    所述的拉伸、热定型工艺:
    GR-1速度450~600m/min;温度为常温;
    GR-2速度480~1000m/min;温度80~100℃;
    GR-3速度1800~2500m/min;温度100~150℃;
    GR-4速度2800~3500m/min;温度200~250℃;
    GR-5速度2800~3500m/min;温度200~250℃;
    GR-6速度2600~3400m/min;温度150~220℃;
    所述卷绕的速度为2600~3400m/min。
  6. 根据权利要求4或5所述的一种超低收缩聚酯工业丝的制备方法,其特征在于,所述乙二醇与所述对苯二甲酸的摩尔比为1.2~2.0:1。
  7. 根据权利要求5所述的一种超低收缩聚酯工业丝的制备方法,其特征在于,所述乙二醇镁和乙二醇锑的混合物中,乙二醇镁与乙二醇锑质量比为2~3:1;所述催化剂用量为所述对苯二甲酸质量的0.01%~0.05%;所述稳定剂选自磷酸三苯酯、磷酸三甲酯和亚磷酸三甲酯中的一种,稳定剂用量为所述对苯二甲酸重量的0.01%~0.05%。
  8. 根据权利要求5所述的一种超低收缩聚酯工业丝的制备方法,其特征在于,所述水与溶洗剂的质量比例为100:3~4,聚酯切片与水和溶洗剂的比例,即固液比为1:5~10;所述溶洗 剂为乙二醇一乙醚、乙二醇一丙醚和乙二醇一丁醚中的一种。
  9. 根据权利要求5所述的一种超低收缩聚酯工业丝的制备方法,其特征在于,所述洗涤是指煮泡后聚酯切片用70~80℃热水洗10~15min,然后用冷水洗净,烘干冷却备用。
  10. 根据权利要求5所述的一种超低收缩聚酯工业丝的制备方法,其特征在于,所述防醚剂为醋酸钠和醋酸钙中的一种,防醚剂用量为所述对苯二甲酸重量的0.01%~0.05%。
PCT/CN2016/103176 2015-12-29 2016-10-25 一种超低收缩聚酯工业丝及其制备方法 WO2017113955A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16880746.9A EP3348595A4 (en) 2015-12-29 2016-10-25 INDUSTRIAL POLYESTER YARN WITH LOW REMOVAL AND PREPARATION METHOD THEREOF
US15/744,841 US10041192B1 (en) 2015-12-29 2016-10-25 Ultra-low shrinkage polyester industrial yarn and its preparation method
JP2018520566A JP6474944B2 (ja) 2015-12-29 2016-10-25 超低収縮ポリエステル工業糸及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511019261.9A CN105646858B (zh) 2015-12-29 2015-12-29 一种超低收缩聚酯工业丝及其制备方法
CN201511019261.9 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017113955A1 true WO2017113955A1 (zh) 2017-07-06

Family

ID=56477410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103176 WO2017113955A1 (zh) 2015-12-29 2016-10-25 一种超低收缩聚酯工业丝及其制备方法

Country Status (5)

Country Link
US (1) US10041192B1 (zh)
EP (1) EP3348595A4 (zh)
JP (1) JP6474944B2 (zh)
CN (1) CN105646858B (zh)
WO (1) WO2017113955A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504241B (zh) * 2015-12-29 2018-06-12 江苏恒力化纤股份有限公司 一种高模低缩聚酯工业丝及其制备方法
CN105646858B (zh) 2015-12-29 2018-07-27 江苏恒力化纤股份有限公司 一种超低收缩聚酯工业丝及其制备方法
CN106283261B (zh) * 2016-08-31 2018-10-30 江苏恒力化纤股份有限公司 一种多孔超柔软超细旦聚酯纤维及其制备方法
CN109750363B (zh) * 2018-12-27 2021-01-01 江苏恒力化纤股份有限公司 超低收缩型聚酯工业丝的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982574A (zh) * 2010-11-12 2011-03-02 青岛伟峰纤维有限公司 超有光三叶异形高强度低干热收缩率涤纶长丝的制备方法
CN102797055A (zh) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 一种低缩高强涤纶工业丝的制造方法
CN102797057A (zh) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 一种高模低缩涤纶工业丝的制造方法
WO2013025062A2 (ko) * 2011-08-17 2013-02-21 코오롱인더스트리 주식회사 폴리에스테르 원사의 제조 방법
KR20140089157A (ko) * 2013-01-04 2014-07-14 주식회사 효성 내열강력 및 내화학성이 우수한 타이어코드용 폴리에스테르 멀티필라멘트사의 제조방법
CN104499081A (zh) * 2014-12-31 2015-04-08 江苏恒力化纤股份有限公司 一种高模低缩型活化聚酯工业丝及其制备方法
CN105463608A (zh) * 2015-12-29 2016-04-06 江苏恒力化纤股份有限公司 一种高强安全带聚酯工业丝及其制备方法
CN105483853A (zh) * 2015-12-29 2016-04-13 江苏恒力化纤股份有限公司 一种低热收缩的广告灯箱布用聚酯工业丝及其制备方法
CN105506773A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高强中缩聚酯工业丝及其制备方法
CN105504242A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种低收缩聚酯工业丝及其制备方法
CN105504241A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高模低缩聚酯工业丝及其制备方法
CN105504244A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种超高强型聚酯工业丝及其制备方法
CN105504239A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高强低伸聚酯工业丝及其制备方法
CN105603559A (zh) * 2015-12-29 2016-05-25 江苏恒力化纤股份有限公司 一种高强车模聚酯工业丝及其制备方法
CN105646858A (zh) * 2015-12-29 2016-06-08 江苏恒力化纤股份有限公司 一种超低收缩聚酯工业丝及其制备方法
CN105646856A (zh) * 2015-12-29 2016-06-08 江苏恒力化纤股份有限公司 一种低缩高强聚酯工业丝及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727144B2 (ja) * 1997-05-08 2005-12-14 帝人株式会社 結晶化抑制型ポリエステル
JP3430440B2 (ja) * 2000-08-01 2003-07-28 東洋紡績株式会社 ポリエステル組成物並びにそれからなる中空成形体、シ−ト状物及び延伸フイルム
AU2002226728B2 (en) * 2001-01-25 2007-07-26 Mitsubishi Chemical Corporation Polyester resin, molded article thereof, and process for producing polyester resin
CN1279214C (zh) * 2004-07-05 2006-10-11 苏州大学 一种合成乙二醇锑的方法
KR100808803B1 (ko) * 2005-08-03 2008-02-29 주식회사 효성 고무보강용 폴리에스테르 멀티필라멘트사의 제조 방법 및이 방법에 의하여 제조된 폴리에스테르 멀티필라멘트사
JP2007182485A (ja) * 2006-01-06 2007-07-19 Solotex Corp ポリエステルの処理方法、これより得られるポリエステル、およびポリエステル繊維
CN102797056B (zh) * 2012-09-03 2014-10-01 江苏恒力化纤股份有限公司 一种超低收缩型涤纶工业丝的制造方法
CN103556285B (zh) * 2013-10-14 2016-01-13 江苏恒力化纤股份有限公司 一种抗蠕变聚酯的超低收缩工业丝及其制备方法
CN104562694B (zh) * 2014-12-31 2016-10-05 江苏恒力化纤股份有限公司 一种超低收缩拒水聚酯工业丝及其制备方法
CN104480563B (zh) * 2014-12-31 2016-08-31 江苏恒力化纤股份有限公司 一种低缩型活化聚酯工业丝及其制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982574A (zh) * 2010-11-12 2011-03-02 青岛伟峰纤维有限公司 超有光三叶异形高强度低干热收缩率涤纶长丝的制备方法
WO2013025062A2 (ko) * 2011-08-17 2013-02-21 코오롱인더스트리 주식회사 폴리에스테르 원사의 제조 방법
CN102797055A (zh) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 一种低缩高强涤纶工业丝的制造方法
CN102797057A (zh) * 2012-09-03 2012-11-28 江苏恒力化纤股份有限公司 一种高模低缩涤纶工业丝的制造方法
KR20140089157A (ko) * 2013-01-04 2014-07-14 주식회사 효성 내열강력 및 내화학성이 우수한 타이어코드용 폴리에스테르 멀티필라멘트사의 제조방법
CN104499081A (zh) * 2014-12-31 2015-04-08 江苏恒力化纤股份有限公司 一种高模低缩型活化聚酯工业丝及其制备方法
CN105506773A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高强中缩聚酯工业丝及其制备方法
CN105483853A (zh) * 2015-12-29 2016-04-13 江苏恒力化纤股份有限公司 一种低热收缩的广告灯箱布用聚酯工业丝及其制备方法
CN105463608A (zh) * 2015-12-29 2016-04-06 江苏恒力化纤股份有限公司 一种高强安全带聚酯工业丝及其制备方法
CN105504242A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种低收缩聚酯工业丝及其制备方法
CN105504241A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高模低缩聚酯工业丝及其制备方法
CN105504244A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种超高强型聚酯工业丝及其制备方法
CN105504239A (zh) * 2015-12-29 2016-04-20 江苏恒力化纤股份有限公司 一种高强低伸聚酯工业丝及其制备方法
CN105603559A (zh) * 2015-12-29 2016-05-25 江苏恒力化纤股份有限公司 一种高强车模聚酯工业丝及其制备方法
CN105646858A (zh) * 2015-12-29 2016-06-08 江苏恒力化纤股份有限公司 一种超低收缩聚酯工业丝及其制备方法
CN105646856A (zh) * 2015-12-29 2016-06-08 江苏恒力化纤股份有限公司 一种低缩高强聚酯工业丝及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348595A4 *

Also Published As

Publication number Publication date
JP2018533677A (ja) 2018-11-15
EP3348595A1 (en) 2018-07-18
JP6474944B2 (ja) 2019-02-27
CN105646858B (zh) 2018-07-27
US10041192B1 (en) 2018-08-07
US20180202078A1 (en) 2018-07-19
EP3348595A4 (en) 2019-04-24
CN105646858A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017113622A1 (zh) 一种高模低缩聚酯工业丝及其制备方法
CN105504242B (zh) 一种低收缩聚酯工业丝及其制备方法
CN105506773B (zh) 一种高强中缩聚酯工业丝及其制备方法
WO2017113955A1 (zh) 一种超低收缩聚酯工业丝及其制备方法
CN105504244B (zh) 一种超高强型聚酯工业丝及其制备方法
CN105463608B (zh) 一种高强安全带聚酯工业丝及其制备方法
CN105504239B (zh) 一种高强低伸聚酯工业丝及其制备方法
KR101537131B1 (ko) 폴리에틸렌나프탈레이트 섬유 및 그 제조 방법
KR101537132B1 (ko) 폴리에틸렌나프탈레이트 섬유 및 그 제조 방법
CN105483853B (zh) 一种低热收缩的广告灯箱布用聚酯工业丝及其制备方法
WO2020134490A1 (zh) 高模低缩活化型涤纶工业丝及其制备方法
CN105646856B (zh) 一种低缩高强聚酯工业丝及其制备方法
US10358525B2 (en) Industrial polyester and its preparation method
JP2011063646A (ja) 高鮮明性ポリエステル繊維製造用ポリエステル組成物の製造方法
CN105603559B (zh) 一种高强车模聚酯工业丝及其制备方法
CN105504240B (zh) 一种耐热性高强聚酯工业丝及其制备方法
JP2011058137A (ja) 繊維シート
JP2011058126A (ja) 樹脂ホース補強用繊維及びそれを用いてなる樹脂ホース
KR20100033601A (ko) 고강도 폴리에틸렌 나프탈레이트 섬유의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744841

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018520566

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE