WO2013025048A2 - Pla 수지를 사용한 친환경 시트 - Google Patents

Pla 수지를 사용한 친환경 시트 Download PDF

Info

Publication number
WO2013025048A2
WO2013025048A2 PCT/KR2012/006494 KR2012006494W WO2013025048A2 WO 2013025048 A2 WO2013025048 A2 WO 2013025048A2 KR 2012006494 W KR2012006494 W KR 2012006494W WO 2013025048 A2 WO2013025048 A2 WO 2013025048A2
Authority
WO
WIPO (PCT)
Prior art keywords
pla resin
sheet
resin
weight
layer
Prior art date
Application number
PCT/KR2012/006494
Other languages
English (en)
French (fr)
Other versions
WO2013025048A3 (ko
Inventor
남승백
정정호
손종석
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2014524951A priority Critical patent/JP5834142B2/ja
Priority to CN201280040328.5A priority patent/CN103764391A/zh
Priority to EP12823882.1A priority patent/EP2746047A4/en
Priority to US14/237,402 priority patent/US9321885B2/en
Publication of WO2013025048A2 publication Critical patent/WO2013025048A2/ko
Publication of WO2013025048A3 publication Critical patent/WO2013025048A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • C08K5/235Diazo and polyazo compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/24868Translucent outer layer

Definitions

  • the present invention relates to a multi-layered sheet, and more particularly, at least one layer constituting the sheet is formed of a biodegradable resin including a PLA resin, and the biodegradable resin is modified through a thermal initiation crosslinking reaction. It relates to an eco-friendly sheet using PLA resin, which is easy to process and has excellent mechanical properties after processing.
  • Sheets using petroleum resins such as polyvinyl chloride (PVC) are widely used in buildings such as houses, apartments, apartments, offices, and stores.
  • Such a sheet is manufactured by extrusion or calendering using a resin such as polyvinyl chloride (PVC) or the like.
  • PVC polyvinyl chloride
  • PVC polyvinyl chloride
  • PLA Poly Lactic Acid
  • An object of the present invention is to form at least one layer constituting the sheet with a biodegradable resin containing a PLA resin, while modifying the biodegradable resin through a cross-linking reaction upon thermal initiation, and the biodegradable resin using a conventional PLA resin and In contrast, to improve the melt strength to provide easy thermal plywood processing, excellent mechanical properties after processing, to provide an eco-friendly sheet.
  • Eco-friendly sheet for achieving the above object is formed of one or more layers, at least one layer of the sheet is PLA resin; Thermal initiators; And a biodegradable resin including a crosslinking monomer, wherein the biodegradable resin is modified through a thermal initiation crosslinking reaction.
  • Eco-friendly sheet using PLA resin according to the present invention is modified by thermal cross-linking reaction of biodegradable resin containing PLA resin, cross-linking between molecular chains is made to increase the melt strength, easy to heat processing, to the product after processing In this case, physical properties such as tensile strength and elongation are improved.
  • Eco-friendly sheet using PLA resin according to the present invention can solve the problem of supply of raw materials due to exhaustion of petroleum resources by using PLA resources based on plant resources instead of petroleum resources based PVC generally used as a binder.
  • the eco-friendly sheet using the PLA resin according to the present invention is less environmentally hazardous substances such as CO 2 during manufacturing, there is an environmentally friendly advantage that is easy to discard.
  • FIG 1 and 2 are cross-sectional views showing embodiments of the eco-friendly sheet using PLA resin according to the present invention.
  • FIG. 1 and 2 are cross-sectional views showing an eco-friendly sheet using a PLA resin according to an embodiment of the present invention.
  • the sheet shown in FIG. 1 includes a back layer 110, a printed layer 120, and a transparent layer 130.
  • the sheet according to the present invention is a biodegradable resin containing a PLA (Polylactic acid) resin, at least one of the back layer 110, the print layer 120 and the transparent layer 130 is modified through a cross-linking reaction at the start It includes.
  • PLA Polylactic acid
  • Figure 2 is a cross-sectional view showing an eco-friendly sheet using a PLA resin according to another embodiment of the present invention.
  • the sheet shown in FIG. 2 includes a backing layer 110, a printing layer 120, and a transparent layer 130, and further includes a surface treatment layer 140 and a glass fiber impregnated layer 150.
  • the sheet according to the present invention is one or more layers of the back layer 110, the printed layer 120, the transparent layer 130, the surface treatment layer 140, the glass fiber impregnated layer 150 through a cross-linking reaction at the start Modified biodegradable resins, including polylactic acid (PLA) resins.
  • PLA polylactic acid
  • Eco-friendly sheet is formed of one or more layers, at least one layer of the sheet is PLA resin; Thermal initiators; And a biodegradable resin including a crosslinking monomer, wherein the biodegradable resin is modified through a thermal initiation crosslinking reaction.
  • the PLA resin is a thermoplastic polyester of lactide or lactic acid, and may be prepared by polymerizing lactic acid prepared by fermenting starch extracted from, for example, corn, potato, or the like. Since the corn, potatoes and the like are any renewable plant resources, PLA resin that can be secured from them can effectively cope with the problems caused by exhaustion of petroleum resources.
  • PLA resin has much lower emissions of environmentally harmful substances such as CO 2 during use or disposal than petroleum-based materials such as polyvinyl chloride (PVC), and is environmentally friendly in that it can be easily decomposed under natural environment even when disposed of.
  • PVC polyvinyl chloride
  • PLA resin may be divided into crystalline PLA (c-PLA) resin and amorphous PLA (a-PLA) resin.
  • c-PLA crystalline PLA
  • a-PLA amorphous PLA
  • the PLA resin is most preferably 100% amorphous PLA resin, and if necessary, PLA resin in which crystalline and amorphous coexist.
  • the biodegradable resin of the present invention includes a thermal initiator to cause crosslinking reaction by heat.
  • the thermal initiator is preferably a radical initiator that is decomposed by heat generated in a processing process such as plywood processing to form radicals.
  • the thermal initiator that can be used in the present invention is preferably an azo compound or a peroxide compound.
  • examples of azo compounds include 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (isobutyronitrile), and 2,2'-azobis (2,4- Dimethylvaleronitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile).
  • examples of the peroxide compound include tetramethylbutylperoxy neodecanoate. (ex.Perocta ND, NOF company make), bis (4-butylcyclohexyl) peroxydicarbonate (ex.
  • Peroyl TCP di (2-ethylhexyl) peroxy carbonate, butyl per Oxy neodecanoate (ex. Perbutyl ND, NOF Co., Ltd.), dipropyl peroxy dicarbonate (ex. Peroyl NPP, NOF Co., Ltd.), diisopropyl peroxy dicarbonate (ex. Peroyl IPP, NOF Co., Ltd.), diethoxyethyl peroxy dicarbonate (ex. Peroyl EEP, NOF Co., Ltd.), diethoxyhexyl peroxy dicarbonate (ex. Peroyl OEP, NOF Co., Ltd.), hexyl peroxy Dicarbonate (ex.
  • Luperox 546M75, Alofina t-butylperoxy pivalate, t-amyl peroxy-2-ethylhexanoate, lauryl peroxide, dilauuroyl peroxide, didecanoyl peroxide , Benzoyl peroxide or dibenzoyl peroxide, and the like, but are not limited thereto.
  • the content of the thermal initiator is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the PLA resin. If the content is less than 0.1 parts by weight, it is difficult for sufficient radical initiation reaction to occur. If the content is more than 10 parts by weight, deterioration of the PLA resin may occur due to unreacted initiators, thereby deteriorating physical properties.
  • the biodegradable resin of the present invention includes a monomer which acts as a crosslinking agent formed between molecular chains of the PLA resin by a crosslinking reaction.
  • the monomer has excellent properties such as melt strength, transparency, UV stability, water resistance, solvent resistance, etc. during polymer polymerization, and is easily polymerized by heat. It is preferable that it is 1 or more types specifically selected from the acrylate-type monomer and methacrylate-type monomer which have a monofunctional or polyfunctional group.
  • the content of the monomer is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the PLA resin. If the content is less than 0.1 part by weight, there is a problem in that the improvement of physical properties such as melt strength is insufficient, and in the case of more than 10 parts by weight, the overall physical properties of each layer may be lowered due to compatibility problems with other materials constituting each layer. .
  • Eco-friendly sheet of the present invention has a laminated structure, for this purpose, a biodegradable resin including PLA resin should be prepared in the form of a sheet or a film, using a calendering or extrusion method for processing of the sheet or film form.
  • the biodegradable resin of this invention contains a plasticizer further.
  • the plasticizer is preferably an phthalate-based plasticizer as an environmentally friendly plasticizer.
  • the plasticizer facilitates molding at high temperature by softening PLA resin to increase thermoplasticity. It is preferable to use at least one selected from ATBC (Acetyl tributyl citrate) and TBC (Tributyl citrate) as the nonphthalate plasticizer.
  • the content of the nonphthalate plasticizer is preferably 5 to 100 parts by weight based on 100 parts by weight of the PLA resin.
  • the content of the plasticizer is less than 5 parts by weight, the hardness of the PLA resin may be increased, and workability may be lowered.
  • the content of the plasticizer is greater than 100 parts by weight, the plasticity and flexibility are increased, but the bleeding phenomenon in which the plasticizer flows out from the surface due to the use of excessive plasticizers is increased. Occurs.
  • the biodegradable resin of the present invention may further include calcium carbonate (CaCO 3 ) as a lubricant, a reinforcing inorganic filler, titanium dioxide (TiO 2 ), and the like as a white pigment for aesthetic purpose.
  • CaCO 3 calcium carbonate
  • TiO 2 titanium dioxide
  • the lubricant is added to prevent the resin from sticking to the calender roll or the press during processing such as calendering and extrusion of the biodegradable resin.
  • lubricants there are various types of such lubricants, but in the present invention, environmentally friendly higher fatty acids are used as lubricants, and for example, stearic acid, which is a saturated higher fatty acid having 18 carbon atoms, may be proposed.
  • the lubricant is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the PLA resin. If the amount of the lubricant is less than 0.1 parts by weight, the effect of using the lubricant may not be obtained. If the amount of the lubricant is more than 10 parts by weight, the impact resistance, heat resistance, glossiness, etc. of the PLA resin may be degraded.
  • the calcium carbonate it is preferable to use 5 to 1,000 parts by weight relative to 100 parts by weight of the PLA resin.
  • the back layer 110 supports the upper print layer 120 and the transparent layer 130 as the most basic layer of the sheet, and serves to absorb the impact of the upper or lower portion.
  • This back layer 110 preferably has a thickness of 1.0 ⁇ 5.0 mm. If the thickness of the back layer 110 is 1.0 mm or less, the above functions cannot be properly performed. If the thickness of the back layer 110 exceeds 5.0 mm, the use of many PLA resins may cause the sheet manufacturing cost to increase. .
  • the back layer 110 is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a cross-linking reaction upon thermal initiation during processing.
  • a biodegradable resin including a PLA resin, a thermal initiator, and a monomer
  • lubricant, calcium carbonate, titanium dioxide, or the like may be additionally added to the biodegradable resin.
  • the printing layer 120 formed on the upper surface of the back layer 110 forms a pattern on various surfaces such as transfer printing, gravure printing, screen printing, offset printing, rotary printing or flexographic printing, inkjet printing, and the like. This serves to impart aesthetics of the sheet.
  • the printed layer 120 preferably has a thickness of 0.01 ⁇ 0.3 mm. When the thickness of the printed layer 120 is less than 0.01 mm, printing may be difficult. When the thickness of the printed layer 120 exceeds 0.3 mm, the sheet manufacturing cost may increase.
  • the print layer 120 is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a cross-linking reaction upon thermal initiation during processing.
  • a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a cross-linking reaction upon thermal initiation during processing.
  • lubricant, calcium carbonate, titanium dioxide, or the like may be additionally added to the biodegradable resin.
  • the transparent layer 130 formed on the printed layer 120 is formed on the printed layer 130 to impart a sense of volume, and serves to protect a pattern formed on the upper surface of the printed layer 120.
  • the transparent layer 130 preferably has a thickness of 0.10 ⁇ 1.0 mm. If the transparent layer has a thickness of less than 0.10 mm, the pattern formed on the printed layer cannot be effectively protected and the volume is reduced. On the other hand, if the thickness of the transparent layer exceeds 1.0 mm, it can be a cause of an increase in the sheet manufacturing cost without further effect increase.
  • the transparent layer 130 is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a crosslinking reaction upon thermal initiation during processing.
  • a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a crosslinking reaction upon thermal initiation during processing.
  • lubricant, calcium carbonate, titanium dioxide, or the like may be additionally added to the biodegradable resin.
  • the surface treatment layer 140 is formed on the transparent layer 130 for the purpose of improving the surface quality such as scratch resistance and abrasion resistance of the sheet, and to improve the stain resistance to facilitate cleaning.
  • the surface treatment layer 140 preferably has a thickness of 0.01 ⁇ 0.1 mm.
  • the surface treatment layer 140 is formed to a thickness of less than 0.01 mm, it is difficult to expect the effect of improving the physical properties such as scratch resistance, and when the surface treatment layer 140 exceeds 0.1 mm, excessive manufacture of the surface treatment layer There is a problem that costs are required and the appearance characteristics of the sheet may be reduced.
  • the surface treatment layer 140 is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a crosslinking reaction upon thermal initiation during processing.
  • the lubricant may be further added to the biodegradable resin.
  • the glass fiber impregnated layer 150 protects the back surface opposite to the sheet surface and serves to absorb the impact of the upper or lower portion.
  • the glass fiber impregnated layer 150 preferably has a thickness of 1.0 ⁇ 5.0mm. If the thickness is 1.0mm or less, the above functions cannot be performed properly, and if the thickness exceeds 5.0mm, the use of many PLA resins or the like causes a rise in sheet manufacturing cost.
  • the glass fiber impregnated layer 150 includes a glass fiber and a binder resin, wherein the binder resin is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a crosslinking reaction upon thermal initiation during processing. do.
  • the binder resin is made of a biodegradable resin including a PLA resin, a thermal initiator, and a monomer, and is modified by a crosslinking reaction upon thermal initiation during processing. do.
  • the method for producing the eco-friendly sheet of the present invention is not particularly limited, and for example, after mixing and kneading each raw material of the biodegradable resin including the above-described PLA resin, it is prepared through a process of calendering molding into a desired sheet shape. can do.
  • the thermal initiator contained in the biodegradable resin of the present invention is decomposed into radicals to initiate a crosslinking reaction between the PLA resin and the monomer.
  • the mixing and kneading process of the raw material for example, liquid or powdery raw material may be performed using a super mixer, an extruder, a kneader, two or three rolls and the like.
  • the blended raw materials are kneaded at a temperature of about 120 to 200 ° C. using a banbury mixer or the like, and the kneaded raw materials are about 120 to 200 ° C. for more efficient mixing.
  • the mixing and kneading process may be repeated in multiple stages, such as in the manner of primary and secondary mixing using a two rolls or the like at a temperature of.
  • the method of manufacturing the sheet-like back layer by applying the mixed raw materials as described above to the calendering method is not particularly limited, for example, to be prepared using a conventional apparatus such as an inverted L four-roll roll calender. Can be.
  • the above-mentioned calendering conditions can be suitably selected in consideration of the composition etc. of the resin composition used, and can carry out the calendering process within the range of the processing temperature of about 120-200 degreeC.
  • PLA resin 100 parts by weight of the PLA resin, 25 parts by weight of ATBC, 10 parts by weight of the acrylate monomer, 1 part by weight of the dialkyl peroxide and 5 parts by weight of stearic acid were kneaded at a temperature of 150 ° C. in a half-barrier mixer to sufficiently crosslink the reaction upon thermal initiation. It was done.
  • the raw materials kneaded in the half-barrier mixer were mixed first and second by using two rolls of 140 ° C.
  • the mixed raw material was calendered at 130 ° C. to prepare a sheet sample for flooring having a thickness of 0.4 mm, and the sheet sample was laminated.
  • the lamination process is performed with a heating drum and an embossing facility using a heated steam heat source, and in general, as in the lamination processing of PVC sheets, the lamination structure is performed by performing a hot plywood under heating drum conditions having a surface temperature of 120 to 150 ° C. To complete.
  • a sheet sample was prepared under the same conditions as in Example, except that no dialkyl peroxide was added, and the sheet sample was laminated.
  • the sheet according to the present invention was found to be easy to work in the lamination process at a relatively high temperature by using a biodegradable resin modified through a thermal initiation crosslinking reaction, and also excellent in strength after processing.

Abstract

친환경적인 PLA 수지를 사용한 친환경 시트에 대하여 개시한다. 본 발명에 따른 PLA 수지를 사용한 친환경 시트는 이면층; 상기 이면층 상부에 형성되며, 상부면에 인쇄 무늬가 형성되는 인쇄층; 및 상기 인쇄층 상부에 형성되는 투명층;을 포함하고, 상기 이면층, 인쇄층 및 투명층 중 하나 이상은 PLA(Polylactic acid) 수지를 포함하는 것을 특징으로 한다.

Description

PLA 수지를 사용한 친환경 시트
본 발명은 다층구조의 시트에 관한 것으로, 보다 상세하게는 시트를 구성하는 적어도 하나의 층을 PLA 수지를 포함하는 생분해성 수지로 형성하면서, 해당 생분해성 수지는 열개시 가교 반응을 통하여 개질된 것으로서, 가공이 용이하고 가공 후의 기계적 물성이 우수한, PLA 수지를 사용한 친환경 시트에 관한 것이다.
폴리염화비닐(PVC) 등의 석유계 수지를 사용한 시트는, 주택, 맨션, 아파트, 오피스 또는 점포 등의 건축물에서 널리 사용되고 있다.
상기와 같은 시트는, 폴리염화비닐(PVC) 등의 수지를 사용하여 압출 또는 카렌더링 방식 등으로 제조된다. 그런데, 그 원료가 한정된 자원인 원유 등으로부터 전량 얻어지기 때문에, 석유자원의 고갈 등에 따라 향후 원재료의 수급 곤란 등의 문제가 발생할 것으로 예상되고 있다.
또한, 최근 높아지는 환경 문제에 대한 관심을 고려하여도, 폴리염화비닐(PVC)계 시트는, 유해 물질을 배출하기 쉽고, 폐기 시에도 환경에 부담을 준다는 문제점이 있다.
이러한 문제점에 따라, 최근에는 식물자원에서 추출, 합성된 PLA(Poly Lactic Acid) 수지가 상기한 석유계 수지를 대체할 수 있는 수단으로 각광받고 있다. 특허공개공보 제10-2008-0067424호를 비롯한 다수의 선행문헌에는 이러한 PLA 수지를 사용한 친환경 시트가 개시되어 있다.
그러나, 이와 같은 PLA 수지로 제조된 시트는 기존 PVC 수지로 제조된 시트와 비교하여, 열 합판 가공시 가공설비에 달라붙거나 고온 가공시 점탄성이 부족하여 다층으로 적층하는 가공작업이 용이하지 않은 단점이 있었다.
본 발명의 목적은 시트를 구성하는 적어도 하나의 층을 PLA 수지를 포함하는 생분해성 수지로 형성하면서, 해당 생분해성 수지를 열개시 가교 반응을 통하여 개질함으로써, 기존의 PLA 수지를 사용한 생분해성 수지와 대비하여 용융강도를 개선시켜 열 합판 가공이 용이하고, 가공 후의 기계적 물성이 우수한, 친환경 시트를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일실시예에 따른 친환경 시트는 하나 이상의 층으로 형성되며, 상기 시트의 적어도 하나의 층은 PLA 수지; 열개시제; 및 가교 모노머를 포함하는 생분해성 수지를 포함하고, 상기 생분해성 수지는 열개시 가교 반응을 통하여 개질된 것을 특징으로 한다.
본 발명에 따른 PLA 수지를 사용한 친환경 시트는 PLA 수지를 포함하는 생분해성 수지가 열개시 가교 반응을 통하여 개질됨으로써, 분자 사슬간 가교화가 이루어져 용융강도가 증가하여 열가공이 용이하고, 가공 후 제품에 있어서 인장강도, 신율 등의 물리적 성질이 향상된다.
본 발명에 따른 PLA 수지를 사용한 친환경 시트는 바인더로 일반적으로 사용하는 석유자원 기반의 PVC 대신에 식물 자원 기반의 PLA 수지를 사용함으로써 석유자원 고갈에 따른 원재료 수급 문제를 해결할 수 있다.
또한, 본 발명에 따른 PLA 수지를 사용한 친환경 시트는 제조시 CO2 등 환경 유해 물질의 배출이 적고, 폐기가 용이한 친환경적인 장점이 있다.
도 1, 2는 본 발명에 따른 PLA 수지를 사용한 친환경 시트의 실시예들을 나타내는 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명에 따른 PLA 수지를 사용한 친환경 시트에 관하여 상세히 설명하기로 한다.
도 1, 2는 본 발명의 실시예에 따른 PLA 수지를 사용한 친환경 시트를 나타내는 단면도이다.
도 1에 도시된 시트는 이면층(110), 인쇄층(120) 및 투명층(130)을 포함한다. 이때, 본 발명에 따른 시트는 이면층(110), 인쇄층(120) 및 투명층(130) 중 하나 이상의 층은 열개시 가교 반응을 통하여 개질된, PLA(Polylactic acid) 수지를 포함하는 생분해성 수지를 포함한다.
도 2는 본 발명의 다른 일실시예에 따른 PLA 수지를 사용한 친환경 시트를 나타내는 단면도이다.
도 2에 도시된 시트는 이면층(110), 인쇄층(120) 및 투명층(130)을 포함하고, 또한 표면처리층(140) 및 유리섬유 함침층(150)을 더 포함한다. 이때, 본 발명에 따른 시트는 이면층(110), 인쇄층(120), 투명층(130), 표면처리층(140), 유리섬유 함침층(150) 중 하나 이상의 층은 열개시 가교 반응을 통하여 개질된, PLA(Polylactic acid) 수지를 포함하는 생분해성 수지를 포함한다.
본 발명의 일실시예에 따른 친환경 시트는 하나 이상의 층으로 형성되며, 상기 시트의 적어도 하나의 층은 PLA 수지; 열개시제; 및 가교 모노머를 포함하는 생분해성 수지를 포함하고, 상기 생분해성 수지는 열개시 가교 반응을 통하여 개질된 것을 특징으로 한다.
본 발명의 생분해성 수지의 주요 재료로서, PLA 수지는 락타이드 또는 락트산의 열가소성 폴리에스테르로서, 제조예를 들면, 옥수수, 감자 등에서 추출한 전분을 발효시켜 제조되는 락트산을 중합시켜 제조될 수 있다. 상기 옥수수, 감자 등은 얼마든지 재생 가능한 식물 자원이므로, 이들로부터 확보할 수 있는 PLA 수지는 석유 자원 고갈에 의한 문제에 효과적으로 대처할 수 있다.
또한 PLA 수지는 사용 또는 폐기 과정에서 CO2 등의 환경 유해 물질의 배출량이 폴리염화비닐(PVC) 등의 석유기반 소재에 비해 월등히 적고, 폐기 시에도 자연 환경 하에서 용이하게 분해될 수 있는 친환경적인 특성을 가진다.
PLA 수지는 결정질 PLA(c-PLA) 수지와 비정질 PLA(a-PLA) 수지로 구분될 수 있다. 이때, 결정질 PLA 수지의 경우 가소제가 시트 표면으로 흘러나오는 브리딩(bleeding) 현상이 발생할 수 있으므로, 비정질 PLA 수지를 사용하는 것이 바람직하다. 비정질 PLA 수지를 사용하는 경우, 브리딩 현상을 방지하기 위하여 필수적으로 첨가되었던 상용화제가 첨가되지 않아도 되는 장점이 있다. 비정질 PLA 수지를 사용하는 경우, PLA 수지는 100% 비정질 PLA 수지를 사용하는 것이 가장 바람직하며, 필요에 따라서는 결정질과 비정질이 공존하는 PLA 수지를 사용할 수 있다.
본 발명의 생분해성 수지는 열에 의한 가교반응이 일어나도록 하기 위하여 열개시제를 포함한다.
상기 열개시제는 합판 가공 등, 가공과정에서 발생하는 열에 의하여 분해되어 라디칼을 형성하는 라디칼 개시제인 것이 바람직하다.
본 발명에서 사용될 수 있는 열개시제는 아조계 화합물 또는 퍼옥시드계 화합물이 바람직하다.
구체적으로 아조계 화합물의 예로는 2,2'-아조비스 (2-메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴), 2,2'-아조비스(2,4-디메틸발레로니트릴) 및 2,2'-아조비스(4-메톡시- 2,4-디메틸발레로니트릴) 등을 들 수 있고, 퍼옥시드계 화합물의 예로는 테트라메틸부틸퍼옥시 네오데카노에이트(ex. Perocta ND, NOF사(제)), 비스(4-부틸시클로헥실)퍼옥시디카보네이트(ex. Peroyl TCP, NOF사(제)), 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트(ex. Perbutyl ND, NOF사(제)), 디프로필 퍼옥시 디카보네이트(ex. Peroyl NPP, NOF사(제)), 디이소프로필 퍼옥시 디카보네이트(ex. Peroyl IPP, NOF사(제)), 디에톡시에틸 퍼옥시 디카보네이트(ex. Peroyl EEP, NOF사(제)), 디에톡시헥실 퍼옥시 디카보네이트(ex. Peroyl OEP, NOF사(제)), 헥실 퍼옥시 디카보네이트(ex. Perhexyl ND, NOF사(제)), 디메톡시부틸 퍼옥시 디카보네이트(ex. Peroyl MBP, NOF사(제)), 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트(ex. Peroyl SOP, NOF사(제)), 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸 (dimyristyl)퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트(ex. Perhexyl PV, NOF사(제)), 부틸 퍼옥시 피발레이트(ex. Perbutyl, NOF사(제)), 트리메틸 헥사노일 퍼옥시드(ex. Peroyl 355, NOF사(제)), 디메틸 히드록시부틸퍼옥시네오데카노에이트(ex. Luperox 610M75, Atofina(제)), 아밀 퍼옥시네오데카노에이트(ex. Luperox546M75, Atofina(제)), 부틸 퍼옥시네오데카노에이트(ex. Luperox 10M75, Atofina(제)), t-부틸퍼옥시 네오헵타노에이트, 아밀퍼옥시 피발레이트(pivalate)(ex. Luperox 546M75, Alofina(제)), t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트, 라우릴 퍼옥시드, 디라우로일(dilauroyl) 퍼옥시드, 디데카노일 퍼옥시드, 벤조일 퍼옥시드 또는 디벤조일 퍼옥시드 등을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 열개시제의 함량은 PLA 수지 100중량부에 대하여 0.1~10중량부인 것이 바람직하다. 함량이 0.1중량부 미만인 경우 충분한 라디칼 개시반응이 일어나기 힘들며, 10중량부 초과인 경우 미반응 개시제에 의하여 PLA 수지의 열화가 발생하여 물성이 저하될 수 있다.
본 발명의 생분해성 수지는 가교 반응에 의하여 PLA 수지의 분자사슬간에 형성되는 가교 역할을 하는 모노머를 포함한다.
상기 모노머는 고분자 중합시 용융강도, 투명성, UV 안정성, 내수성, 내용제성 등의 요구되는 물성이 우수한 특성을 갖고, 열에 의하여 쉽게 중합되는 것이 바람직하다. 구체적으로는 단관능 또는 다관능기를 갖는 아크릴레이트계 모노머, 메타크릴레이트계 모노머 중 선택된 1종 이상인 것이 바람직하다.
상기 모노머의 함량은 PLA 수지 100중량부에 대하여 0.1~10중량부인 것이 바람직하다. 함량이 0.1중량부 미만인 경우 용융강도 등 물성향상 효과가 불충분하다는 문제가 있으며, 10중량부 초과의 경우 각 층을 구성하는 타 물질과의 상용성 문제 등으로 각 층의 전체적인 물성이 저하될 수 있다.
본 발명의 친환경 시트는 적층구조를 갖는바, 이를 위해서는 PLA 수지를 포함하는 생분해성 수지를 시트나 필름 형태로 제조하여야 하는데, 시트나 필름 형태의 가공을 위하여 카렌더링 또는 압출공법을 이용한다. 이를 위해서 본 발명의 생분해성 수지는 가소제를 더 포함하는 것이 바람직하다.
상기 가소제는 친환경적인 가소제로서 비프탈레이트계인 것이 바람직하다. 상기 가소제는 PLA 수지를 연화하여 열가소성을 증대시킴으로써 고온에서 성형가공을 용이하게 한다. 이러한 비프탈레이트계 가소제로 ATBC(Acetyl tributyl citrate), TBC(Tributyl citrate) 중 선택된 1종 이상을 사용함이 바람직하다.
상기 비프탈레이트계 가소제의 함량은 PLA 수지 100중량부에 대하여 5~100중량부인 것이 바람직하다. 가소제의 함량이 5중량부 미만인 경우, PLA 수지의 경도가 높아져 가공성이 저하될 수 있고, 100중량부를 초과하는 경우, 가소성 및 유연성은 높아지나, 과다한 가소제 사용으로 표면에서 가소제가 유출되는 블리딩 현상이 발생한다.
또한, 본 발명의 생분해성 수지는 활제, 보강용 무기계 필러로서 탄산칼슘(CaCO3), 심미성 부여 목적의 백색안료로서 이산화티타늄(TiO2) 등이 더 포함될 수 있다.
상기 활제(Lubricant)는 상기 생분해성 수지의 카렌더링, 압출 등의 가공과정에서 수지가 카렌더 롤 또는 프레스에 들러붙는 것을 방지하기 위하여 첨가된다.
이러한 활제는 다양한 종류가 있으나, 본 발명에서는 활제로서 친환경적인 고급 지방산을 사용하며, 예로 탄소수 18의 포화 고급지방산인 스테아린 산 등을 제시할 수 있다.
상기 활제는 PLA 수지 100 중량부에 대하여 0.1~10 중량부로 사용하는 것이 바람직하다. 활제의 사용량이 0.1중량부 미만이면 활제 사용 효과를 얻을 수 없으며, 활제의 사용량이 10중량부를 초과하면 PLA 수지의 내충격성, 내열성, 광택도 등을 열화시킬 수 있다.
상기 탄산칼슘의 경우 PLA 수지 100 중량부에 대비 5~1,000 중량부 사용하는 것이 바람직하다.
또한, 이산화티타늄의 경우, PLA 수지 100 중량부에 대하여 0.5~50 중량부 사용하는 것이 바람직하다.
탄산칼슘이나 이산화티타늄이 상기 범위를 초과하여 사용될 경우 타 성분들의 결합력이 저하되어 가공성이 저하될 수 있다.
이하, 도 1 및 도 2에 도시된 이면층(110), 인쇄층(120), 투명층(130), 표면처리층(140), 유리섬유 함침층(150) 각각에 대하여 설명하기로 한다.
본 발명에서 이면층(110)은 시트의 가장 기본이 되는 층으로 상부의 인쇄층(120) 및 투명층(130)을 지지하고, 상부나 하부의 충격을 흡수하는 역할을 한다.
이러한 이면층(110)은 1.0 ~ 5.0 mm 의 두께를 갖는 것이 바람직하다. 이면층(110)의 두께가 1.0 mm 이하일 경우 상기 기능들을 제대로 수행할 수 없으며, 이면층(110)의 두께가 5.0 mm를 초과할 경우 많은 PLA 수지 등의 사용으로 시트 제조 비용 상승의 원인이 된다.
상기 이면층(110)은 전술한 바와 같이, PLA 수지, 열개시제, 모노머를 포함하는 생분해성 수지로 이루어지며, 가공 과정에서 열개시 가교 반응에 의해 개질된다. 이때 상기 생분해성 수지에는 추가적으로 활제, 탄산칼슘, 이산화티타늄 등이 단독으로 혹은 2종 이상 더 첨가되어 있을 수 있다.
본 발명에서 이면층(110) 상부에 형성되는 인쇄층(120)은 상부 표면에 전사 인쇄, 그라비어 인쇄, 스크린 인쇄, 오프셋 인쇄, 로터리 인쇄 또는 플렉소 인쇄, 잉크젯 인쇄 등의 다양한 방식으로 무늬를 형성함으로써 시트의 심미성을 부여하는 역할을 한다.
이러한 인쇄층(120)은 0.01 ~ 0.3 mm 의 두께를 갖는 것이 바람직하다. 인쇄층(120)의 두께가 0.01 mm 미만일 경우 인쇄가 어려워질 수 있으며, 인쇄층(120)의 두께가 0.3 mm를 초과할 경우에는 시트 제조 비용의 상승을 가져오게 된다.
상기 인쇄층(120)은 전술한 바와 같이, PLA 수지, 열개시제, 모노머를 포함하는 생분해성 수지로 이루어지며, 가공 과정에서 열개시 가교 반응에 의하여 개질된다. 이 때 상기 생분해성 수지에는 추가적으로 활제, 탄산칼슘, 이산화티타늄 등이 단독으로 혹은 2종 이상 더 첨가되어 있을 수 있다.
본 발명에서 인쇄층(120) 상부에 형성되는 투명층(130)은 인쇄층(130) 상에 형성되어 부피감을 부여하고, 인쇄층(120) 상부면에 형성된 무늬 등을 보호하는 역할을 한다.
이러한 투명층(130)은 0.10~ 1.0 mm 의 두께를 갖는 것이 바람직하다. 투명층이 0.10 mm 미만의 두께를 가질 경우 인쇄층에 형성된 무늬를 효과적으로 보호할 수 없고 또한 부피감이 저하된다. 한편, 투명층의 두께가 1.0 mm를 초과할 경우 더 이상의 효과 상승 없이, 시트 제조 비용의 상승의 원인이 될 수 있다.
본 발명에서 투명층(130)은 전술한 바와 같이, PLA 수지, 열개시제, 모노머를 포함하는 생분해성 수지로 이루어지며, 가공 과정에서 열개시 가교 반응에 의하여 개질된다. 이 때 상기 생분해성 수지에는 추가적으로 활제, 탄산칼슘, 이산화티타늄 등이 단독으로 혹은 2종 이상 더 첨가되어 있을 수 있다.
본 발명에서 표면처리층(140)은 시트의 내스크래치성이나 내마모성 등의 표면 품질을 향상시키고, 내오염성을 개선하여 청소가 용이하도록 하기 위한 목적 등에서 투명층(130) 상에 형성된다.
상기 표면처리층(140)은 0.01 ~ 0.1 mm의 두께를 갖는 것이 바람직하다. 표면처리층(140)이 0.01 mm 미만의 두께로 형성되는 경우 내스크래치성 등의 물성 향상 효과를 기대하기 어렵고, 또한 표면처리층(140)이 0.1 mm를 초과할 경우 표면처리층 형성에 과다한 제조비용이 소요되고, 시트의 외관 특성을 저하시킬 수 있는 문제점이 있다.
본 발명에서 표면처리층(140)은 전술한 바와 같이, PLA 수지, 열개시제, 모노머를 포함하는 생분해성 수지로 이루어지며, 가공 과정에서 열개시 가교 반응에 의하여 개질된다. 이 때 상기 생분해성 수지에는 추가적으로 활제 등이 더 첨가될 수 있다.
본 발명에서 유리섬유 함침층(150)은 시트 표면에 반대되는 이면을 보호하며, 상부나 하부의 충격을 흡수하는 역할을 한다.
상기 유리섬유 함침층(150)은 1.0~5.0mm 의 두께를 갖는 것이 바람직하다. 두께가 1.0mm 이하일 경우 상기 기능들을 제대로 수행할 수 없으며, 두께가 5.0mm를 초과할 경우 많은 PLA 수지 등의 사용으로 시트 제조 비용 상승의 원인이 된다.
이러한 유리섬유 함침층(150)은 유리섬유 및 바인더 수지를 포함하는바, 상기 바인더 수지는 PLA 수지, 열개시제, 모노머를 포함하는 생분해성 수지로 이루어지며, 가공 과정에서 열개시 가교 반응에 의하여 개질된다.
본 발명의 친환경 시트를 제조하는 방법은 특별히 제한되지 않으며, 예를 들면, 전술한 PLA 수지를 포함한 생분해성 수지의 각 원료들을 혼합 및 혼련한 후, 원하는 시트 형상으로 카렌더링 성형하는 과정을 통하여 제조할 수 있다.
이 때, 각 원료들을 혼련하는 과정에서 가공열을 활용하여, 본 발명의 생분해성 수지에 포함된 열개시제가 라디칼로 분해되면서 PLA 수지와 모노머간의 가교반응을 개시하게 된다.
상기에서, 원료의 혼합 및 혼련 공정은, 예를 들면, 액상 또는 분말상의 원료를 슈퍼 믹서, 압출기, 혼련기(kneader), 2본 또는 3본 롤 등을 사용하여 수행할 수 있다. 또한, 원료의 혼합 및 혼련 공정에서는 보다 효율적인 혼합을 위하여, 배합된 원료를 반바리 믹서(banbury mixer) 등을 사용하여 120 ~ 200℃ 정도의 온도에서 혼련하고, 혼련된 원료를 120 ~ 200℃ 정도의 온도에서 2본 롤 등을 사용하여, 1차 및 2차 믹싱하는 방식과 같이, 상기 혼합 및 혼련 공정을 다단계로 반복 수행할 수도 있다.
한편, 상기와 같이 혼합된 원료를 카렌더링 공법에 적용하여 시트상의 이면층 등을 제조하는 방법 역시 특별히 제한되지 않으며, 예를 들어, 역 L형 4본롤 카렌더 등의 통상의 장치를 사용하여 제조할 수 있다.
또한, 상기에서 카렌더링 가공 조건은, 사용되는 수지 조성물의 조성 등을 고려하여, 적절히 선택할 수 있으며, 대략 120 ~ 200℃ 정도의 가공 온도의 범위 내에서 카렌더링 가공을 실시할 수 있다.
실시예 및 비교예에 의한 시트의 제조
이하에서는, 본 발명의 바람직한 실시예에 의한 시트의 제조예 및 비교예에 의한 제조예를 제시한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며, 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
PLA 수지 100중량부, ATBC 25중량부, 아크릴레이트계 모노머 10중량부, 디알킬퍼옥사이드 1중량부, 스테아린산 5중량부를 반바리 믹서에서 150℃의 온도로 혼련하여 열개시에 의한 가교 반응이 충분히 이루어지도록 하였다.
반바리 믹서에서 혼련된 원료를 140℃의 2본 롤을 이용하여 1차 및 2차 믹싱하였다.
믹싱된 원료를 130℃에서 카렌다링 가공하여 두께 0.4mm의 바닥재용 시트샘플을 제조하고, 상기 시트샘플을 적층 가공하였다.
이 때, 적층 가공은 가열된 스팀열원을 이용한 히팅 드럼과 엠보싱 설비로 수행하는데, 통상적으로 PVC 시트의 적층 가공과 마찬가지로 120~150℃의 표면온도를 갖는 히팅드럼 조건에서 열합판을 실시함으로써 적층구조를 완성하였다.
비교예
디알킬퍼옥사이드를 첨가하지 않았다는 점을 제외하고, 실시예와 동일한 조건으로 시트샘플을 제조하고, 상기 시트샘플을 적층 가공하였다.
평가
상기 실시예와 비교예의 적층 가공성 및 물성(인장강도)에 대한 평가결과는 하기 표 1에 나타낸 바와 같다.
표 1
실시예 비교예
적층가공성 120~150℃의 표면온도를 갖는 히팅드럼 조건 하에서 적층이 용이하게 실시되었음 히팅드럼의 표면에 달라붙어서 적층가공성이 매우 떨어졌음
물성(인장강도)(KS M3802) 90.3kgf/cm2 65.4kgf/cm2
상기 평가결과와 같이, 본 발명에 의한 시트는 열개시 가교 반응을 통하여 개질된 생분해성 수지를 사용함으로써 비교적 고온의 적층 공정에서도 가공성이 용이하였고, 가공 후의 강도도 우수함을 알 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 기술자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 이하에 기재되는 특허청구범위에 의해서 판단되어야 할 것이다.

Claims (10)

  1. 하나 이상의 층으로 형성되는 시트에 있어서,
    상기 시트의 적어도 하나의 층은 PLA 수지;
    열개시제; 및
    가교 모노머를 포함하는 생분해성 수지를 포함하고, 상기 생분해성 수지는 열개시 가교 반응을 통하여 개질된 것을 특징으로 하는 친환경 시트.
  2. 제 1항에 있어서,
    상기 열개시제는 아조계 또는 퍼옥시드계 화합물 중 선택된 1종 이상인 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  3. 제 1항에 있어서,
    상기 열개시제의 함량은 PLA 수지 100중량부에 대하여 0.1~10중량부인 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  4. 제 1항에 있어서,
    상기 가교 모노머는 아크릴레이트계 모노머, 메타크릴레이트계 모노머 중 선택된 1종 이상인 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  5. 제 1항에 있어서,
    상기 가교 모노머의 함량은 PLA 수지 100중량부에 대하여 0.1~10중량부인 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  6. 제 1항에 있어서,
    상기 생분해성 수지는 비프탈레이트계 가소제를 더 포함하는 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  7. 제 6항에 있어서,
    상기 비프탈레이트계 가소제의 함량은 PLA 수지 100중량부에 대하여 5~100중량부인 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  8. 제 1항에 있어서,
    상기 생분해성 수지는 PLA 수지 100중량부에 대하여 활제 0.1~10중량부, 탄산칼슘 5~1000중량부, 이산화티타늄 0.5~50중량부를 더 포함하는 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  9. 제 1항에 있어서,
    상기 시트는 투명층, 인쇄층, 이면층을 포함하는 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
  10. 제 9항에 있어서,
    상기 시트는 유리섬유 함침층 및 표면처리층을 더 포함하는 것을 특징으로 하는 PLA 수지를 사용한 친환경 시트.
PCT/KR2012/006494 2011-08-18 2012-08-16 Pla 수지를 사용한 친환경 시트 WO2013025048A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014524951A JP5834142B2 (ja) 2011-08-18 2012-08-16 Pla樹脂を使用した環境にやさしいシート
CN201280040328.5A CN103764391A (zh) 2011-08-18 2012-08-16 使用聚乳酸树脂的环保薄片
EP12823882.1A EP2746047A4 (en) 2011-08-18 2012-08-16 ECOLOGICAL SHEET USING PLA RESIN
US14/237,402 US9321885B2 (en) 2011-08-18 2012-08-16 Environmentally-friendly sheet using PLA resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110082381A KR101379552B1 (ko) 2011-08-18 2011-08-18 Pla 수지를 사용한 친환경 시트
KR10-2011-0082381 2011-08-18

Publications (2)

Publication Number Publication Date
WO2013025048A2 true WO2013025048A2 (ko) 2013-02-21
WO2013025048A3 WO2013025048A3 (ko) 2013-06-13

Family

ID=47715594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006494 WO2013025048A2 (ko) 2011-08-18 2012-08-16 Pla 수지를 사용한 친환경 시트

Country Status (7)

Country Link
US (1) US9321885B2 (ko)
EP (1) EP2746047A4 (ko)
JP (1) JP5834142B2 (ko)
KR (1) KR101379552B1 (ko)
CN (1) CN103764391A (ko)
TW (1) TWI568578B (ko)
WO (1) WO2013025048A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524667A (ja) * 2013-07-11 2016-08-18 エルジー・ハウシス・リミテッド クッション床材及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385814B1 (ko) * 2011-12-26 2014-04-17 (주)엘지하우시스 생분해성 수지 조성물과 이를 이용한 생분해성 시트의 제조방법
KR102006284B1 (ko) * 2015-03-09 2019-08-02 (주)엘지하우시스 친환경 시트 및 이의 제조방법
EP3279406A4 (en) * 2015-03-30 2018-11-21 LG Hausys, Ltd. Flame-retardant floor material and method for manufacturing same
KR101857850B1 (ko) * 2015-11-19 2018-05-14 (주)엘지하우시스 생분해성 고분자를 포함하는 선박용 난연 타일
CN109906295A (zh) * 2016-10-17 2019-06-18 诺瓦利斯股份有限公司 尺寸稳定的地板镶板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067424A (ko) 2007-01-16 2008-07-21 도레이새한 주식회사 다층구조를 가진 생분해성 시트

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177800A (ja) * 1991-12-26 1993-07-20 Dainippon Printing Co Ltd 化粧材及び化粧材の製造方法
US5861461A (en) * 1995-12-06 1999-01-19 Yukong Limited Biodegradable plastic composition, method for preparing thereof and product prepared therefrom
KR100332163B1 (ko) * 1999-11-26 2002-04-12 이영일 생분해성 수지 조성물 및 이의 제조방법
JP3824547B2 (ja) * 2001-08-10 2006-09-20 ユニチカ株式会社 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2006063302A (ja) * 2004-01-13 2006-03-09 C I Kasei Co Ltd ポリ乳酸フィルムおよびその製造方法
KR20070120248A (ko) * 2006-06-19 2007-12-24 금산주식회사 폴리유산계 수지 발포시트, 그 제조방법 및 이로부터얻어진 발포성형체
JP4988398B2 (ja) * 2007-03-22 2012-08-01 ユニチカ株式会社 難燃かつ柔軟性樹脂組成物およびそれを成形してなる成形体
KR101000749B1 (ko) * 2008-09-30 2010-12-13 주식회사 그린케미칼 생분해성 수지 조성물, 그의 제조방법 및 그로부터 제조되는 생분해성 필름
DE102009042008A1 (de) * 2009-09-21 2011-03-24 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Überwiegend biologisch abbaubare Trennfolie
KR101302335B1 (ko) * 2009-09-23 2013-08-30 (주)엘지하우시스 바닥재 및 그 제조 방법
JP2011116949A (ja) * 2009-10-28 2011-06-16 Unitika Ltd ポリ乳酸系樹脂組成物、その製造方法、およびそれより得られる発泡体
KR101304144B1 (ko) * 2011-05-13 2013-09-05 (주)엘지하우시스 생분해성 시트

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067424A (ko) 2007-01-16 2008-07-21 도레이새한 주식회사 다층구조를 가진 생분해성 시트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746047A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524667A (ja) * 2013-07-11 2016-08-18 エルジー・ハウシス・リミテッド クッション床材及びその製造方法

Also Published As

Publication number Publication date
WO2013025048A3 (ko) 2013-06-13
KR20130020027A (ko) 2013-02-27
CN103764391A (zh) 2014-04-30
TW201311439A (zh) 2013-03-16
TWI568578B (zh) 2017-02-01
EP2746047A2 (en) 2014-06-25
US20140170394A1 (en) 2014-06-19
EP2746047A4 (en) 2014-07-30
KR101379552B1 (ko) 2014-03-31
US9321885B2 (en) 2016-04-26
JP5834142B2 (ja) 2015-12-16
JP2014526987A (ja) 2014-10-09

Similar Documents

Publication Publication Date Title
WO2013025048A2 (ko) Pla 수지를 사용한 친환경 시트
WO2011115413A2 (ko) Pla 수지를 사용한 바닥재
WO2013089387A1 (ko) 가교된 폴리락트산을 이용한 발포 시트 및 이의 제조방법
WO2017016206A1 (zh) 复合地板及其制备方法
KR100796351B1 (ko) 열 가소성 폴리올레핀계 타포린 및 그의 제조방법
WO2016122137A1 (ko) 바닥재용 투명필름 및 이를 포함하는 바닥재
WO2012148099A2 (ko) 성형성 및 광택성이 우수한 친환경 데코 시트
WO2011155731A2 (ko) 직물 표면을 갖는 pla 바닥재
WO2018056539A1 (ko) 생분해성 수지 조성물 및 이로부터 제조된 생분해성 물품
WO2016122136A1 (ko) 바닥재용 투명필름, 이의 제조방법 및 이를 포함하는 바닥재
WO2020080670A1 (ko) 치수안정성 및 내마모성이 우수한 열가소성 폴리우레탄 친환경 바닥재 및 그의 제조방법
WO2018199375A1 (ko) 친환경 셀룰로오스 아세테이트 컴파운드의 제조방법
WO2011115382A2 (ko) Pla 수지를 사용한 칩 스루 바닥재
JP2016094534A (ja) 熱可塑性樹脂フィルムとその製造方法、加飾フィルム、積層フィルム、および積層体
WO2013100420A1 (ko) 생분해성 수지 조성물과 이를 이용한 생분해성 시트의 제조방법
WO2013133520A1 (ko) 치수 안정성을 가지는 바닥재용 수지 조성물
WO2013147401A1 (ko) 가교된 폴리락트산을 이용한 보드 및 이의 제조방법
WO2020130700A2 (ko) 아크릴계 라미네이트 필름, 이의 제조방법 및 이로부터 제조된 데코 시트
WO2015170875A1 (en) Wallpaper using pla and pha blend resin and method for manufacturing the same
WO2020028633A1 (en) Calendered polyvinyl chlorsde/cellulose ester blend film
WO2013154255A1 (ko) 친환경 가소제를 함유하는 생분해성 수지 조성물 및 이를 이용한 생분해성 수지 제품
WO2013157725A1 (ko) Pla수지를 이용한 칩마블 바닥재
WO2013066037A1 (ko) 라디칼 개시 반응에 의하여 가교 개질된 피이티지 수지 조성물과 이를 사용한 필름 및 시트의 제조방법
KR102006284B1 (ko) 친환경 시트 및 이의 제조방법
KR101796457B1 (ko) 실사인쇄용 폴리올레핀계 타폴린 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823882

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14237402

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014524951

Country of ref document: JP

Kind code of ref document: A