WO2013024565A1 - 取代の評価方法及びウェーハの製造方法 - Google Patents

取代の評価方法及びウェーハの製造方法 Download PDF

Info

Publication number
WO2013024565A1
WO2013024565A1 PCT/JP2012/004571 JP2012004571W WO2013024565A1 WO 2013024565 A1 WO2013024565 A1 WO 2013024565A1 JP 2012004571 W JP2012004571 W JP 2012004571W WO 2013024565 A1 WO2013024565 A1 WO 2013024565A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
processing
allowance
machining allowance
machining
Prior art date
Application number
PCT/JP2012/004571
Other languages
English (en)
French (fr)
Inventor
雅志 市川
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2013024565A1 publication Critical patent/WO2013024565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/03Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping

Definitions

  • the present invention relates to a process for processing both surfaces of a semiconductor wafer, and an evaluation method for evaluating the machining allowance of both front and back surfaces in the process, and a wafer manufacturing method for processing with stable quality using the evaluation method. .
  • a method of manufacturing a semiconductor wafer such as a silicon mirror wafer includes a slicing process for slicing a single crystal rod manufactured by a single crystal manufacturing apparatus to obtain a thin disk-shaped wafer, and a wafer obtained by the slicing process.
  • chamfering process of chamfering the edge of the outer periphery, lapping process of lapping the chamfered wafer and flattening it, and processing distortion remaining on the chamfered and lapped wafer surface are removed. It consists of an etching process, a polishing process for finishing the surface of the etched wafer into a mirror surface, and a cleaning process for cleaning the polished wafer.
  • the polishing step includes double-side polishing in which both sides are simultaneously polished and single-side polishing in which one side is polished.
  • the purpose of the lapping process is, for example, to obtain a necessary shape accuracy such as flatness and parallelism at the same time that a sliced wafer is aligned to a predetermined thickness.
  • the wafer after the lapping process has the best shape accuracy, and it is said that the final shape of the wafer is determined, and the shape accuracy in the lapping process is extremely important.
  • the wrapping apparatus 10 has a lower surface plate 12 and an upper surface plate 11 provided to face each other in the vertical direction. These upper and lower surface plates 11 and 12 are rotated in opposite directions by driving means (not shown).
  • the lower surface plate 12 has a sun gear 13 on the upper surface of the center thereof, and an annular internal gear 14 is provided on the peripheral edge thereof.
  • a gear portion 16 that meshes with the sun gear 13 and the internal gear 14 is formed on the outer peripheral surface of the wafer holding carrier 15 to form a gear structure as a whole.
  • the wafer holding carrier 15 is provided with a plurality of holding holes 17. The wafer W to be wrapped is disposed and held in the holding hole 17.
  • the carrier 15 holding the wafer is sandwiched between the upper and lower surface plates 11 and 12, and planetary gear motion, that is, rotating and revolving between the upper and lower surface plates 11 and 12 rotating while facing each other.
  • a liquid turbid liquid such as slurry containing aluminum oxide (Al 2 O 3 ), silicon carbide (SiC) or the like and water containing a surfactant is provided on the upper platen 11 from a nozzle.
  • Abrasive grains are fed between the wafer W and the upper and lower surface plates 11 and 12 by flowing through the formed through holes 18 into the gap between the upper and lower surface plates 11 and 12, and the shape of the upper and lower surface plates 11 and 12 is transferred to the wafer W. ing.
  • a processing apparatus that processes both sides simultaneously, such as the lapping apparatus described above, even if the total machining allowance (or machining allowance) is constant, there is a possibility that the balance between the machining allowances on the front and back sides (upper and lower) is not known. For example, there is a possibility that the machining allowance on both the front and back surfaces may change over time due to wear of the upper and lower surface plates and the carrier.
  • the management of the machining allowance in a process of simultaneously processing both surfaces is measured by measuring the center thickness of the wafer before and after processing and evaluating the change in thickness.
  • the total allowance can be grasped, but the front and back allowances cannot be distinguished separately.
  • a dummy wafer is prepared, laser marks are printed on both sides, and how the dot depth changes before and after processing is confirmed using a laser microscope. The front and back side allowance is evaluated.
  • this conventional evaluation method it is necessary to place laser marks on both sides of the wafer, especially on the surface (the surface on which normal devices are normally formed), so the product itself cannot be directly evaluated, and a dummy wafer is used for confirmation. There is a need.
  • this method requires time and effort for laser mark printing and dot depth measurement, and it is difficult to easily evaluate the method. Therefore, it is difficult to increase the measurement frequency. Also, when the slurry enters the dot, the accuracy of measuring the dot depth is deteriorated. Furthermore, when the wafer is not relatively flat before processing, the measurement accuracy when checking the dot depth with a laser microscope is poor, and the variation becomes large. For example, a sliced wafer before processing has irregularities called saw marks, and the measurement accuracy may deteriorate due to the influence of the irregularities.
  • the machining allowance is small as described above, the difference between machining front and back machining allowances becomes a problem. For example, if the difference between the front and back machining allowances fluctuates greatly, the history of the previous process (such as the saw mark of the slicing process) may remain due to insufficient machining allowance. Also, if you do not notice that the front / back difference has changed over time, a large number of defects may occur. Therefore, when the allowance is small, it is necessary to increase the frequency of managing the front and back allowance difference. Further, when the wafer shape of the raw material is not flat, it is necessary to check the machining allowance within the wafer surface (especially the outer peripheral portion) and whether the surface is processed into a taper shape.
  • the present invention has been made in view of the above-described problems, and uses a wafer as a product in a processing process such as lapping, which simultaneously processes both front and back surfaces of a wafer such as a silicon wafer and removes it with a predetermined machining allowance. It is an object to provide a method for evaluating a machining allowance and a method for producing a wafer, which can easily and separately evaluate the machining allowances for both the front and back surfaces separately, thereby enabling the production of a wafer with the adjusted front and back machining allowances. And
  • a machining allowance evaluation method for evaluating the machining allowance of the wafer after machining in a machining process in which both front and back surfaces of a wafer having a chamfered outer periphery are removed with a predetermined machining allowance.
  • a machining allowance evaluation method is provided, wherein the machining allowance of each front and back surfaces of the wafer is calculated and evaluated based on the amount of change in the chamfer width of each front and back surfaces of the wafer before and after processing.
  • the processing process can be any one of double-sided lapping, double-sided grinding, and double-sided polishing.
  • the evaluation method of the present invention can be applied to various processing processes in which the front and back surfaces of the wafer are simultaneously processed and removed with a predetermined machining allowance.
  • the method further includes measuring a chamfer width on each of the front and back surfaces of the wafer before and after the front and back processing steps of the wafer, and in the step of evaluating the machining allowance of the wafer,
  • a method for manufacturing a wafer characterized in that a machining allowance for each of the front and back surfaces of the wafer is calculated and evaluated based on a change amount of a chamfer width of each of the front and back surfaces of the wafer measured before and after the processing of the front and back surfaces of the wafer.
  • the allowance on both the front and back sides is individually evaluated in a short time separately using the wafer as the product, and the allowance on each of the front and back surfaces is adjusted separately based on the evaluation result. Wafer can be manufactured.
  • the front and back surfaces of the wafer can be processed by either double-sided lapping, double-sided grinding, or double-sided polishing.
  • the manufacturing method of the present invention can be applied to various processing processes in which both front and back surfaces of a wafer are simultaneously processed and removed with a predetermined machining allowance.
  • the machining allowance for each of the front and back surfaces of the wafer is calculated based on the amount of change in the chamfer width of each of the front and back surfaces of the wafer before and after the machining. Therefore, the wafer as a product can be directly evaluated, and the machining allowance on both the front and back sides can be easily and separately evaluated in a short time.
  • a processing process in which both surfaces of a wafer are removed with a predetermined machining allowance for example, in a lapping process, processing is performed with a certain machining allowance in order to remove a work-affected layer (distortion, damage) generated in a previous slicing process.
  • This allowance is preferably as small as possible in consideration of productivity and cost of raw materials.
  • the conventional method of calculating the total machining allowance from the thickness change before and after machining should be used. it can.
  • FIG. 1 is an explanatory view for explaining a method for evaluating a machining allowance according to the present invention.
  • the outer periphery of the wafer to be evaluated is chamfered.
  • the chamfering width on the front side is X1
  • the chamfering angle is ⁇ 1
  • the chamfering width on the backside is X2
  • the chamfering angle is ⁇ 2.
  • the machining allowance evaluation method of the present invention is a method for evaluating the machining allowance of a processed wafer in a machining process in which the front and back surfaces of a wafer having a chamfered outer periphery are removed with a predetermined machining allowance.
  • the chamfering widths X1 and X2 and the chamfering angles ⁇ 1 and ⁇ 2 of the wafer before processing are measured by a chamfering shape measuring apparatus.
  • the front and back surfaces of the wafer are processed and removed by a predetermined amount.
  • the chamfered widths X1 and X2 of the wafer after processing are measured again by the chamfered shape measuring device.
  • the machining allowance for each of the front and back surfaces of the wafer is calculated and evaluated based on the amount of change in the chamfer width between the front and back surfaces of the wafer before and after processing.
  • the allowance is calculated by the following equation.
  • Surface removal allowance (Chamfering width X1 of wafer surface before processing ⁇ Chamfering width X1 of wafer surface after processing) ⁇ tan ⁇ 1
  • Back surface removal allowance (Chamfering width X2 of wafer back surface before processing ⁇ Chamfering width X2 of wafer back surface after processing) ⁇ tan ⁇ 2
  • a product wafer can be directly evaluated without using a dummy wafer, so that the evaluation accuracy can be improved and the cost can be reduced.
  • the machining allowances on both the front and back sides can be easily and separately evaluated in a short time.
  • the above-described processing process can be any of double-sided lapping, double-sided grinding, and double-sided polishing.
  • the evaluation method of the present invention can be applied to various processing processes in which the front and back surfaces of the wafer are simultaneously processed and removed with a predetermined machining allowance.
  • FIG. 2 shows a flowchart of an example of the wafer manufacturing method of the present invention.
  • the outer periphery of the wafer is chamfered (A in FIG. 2).
  • This step is not particularly limited, and chamfering can be performed in the same manner as in the conventional method.
  • the chamfering widths X1 and X2 and the chamfering angles ⁇ 1 and ⁇ 2 of the wafer before processing are measured by a chamfering shape measuring apparatus (B in FIG. 2).
  • This measurement can be performed by a conventional method generally performed after chamfering for evaluation of chamfering quality.
  • both the front and back surfaces of the wafer are removed with a predetermined machining allowance by processing such as double-sided lapping (C in FIG. 2).
  • This step is also not particularly limited, and processing can be performed in the same manner as in the conventional method. For example, an example of performing double-sided wrapping will be described below.
  • FIG. 3 is a schematic view showing an example of a lapping apparatus that can be used in the wafer manufacturing method of the present invention.
  • the wrapping apparatus 1 includes a lower surface plate 12 and an upper surface plate 11 that are provided to face each other in the vertical direction. While the upper surface plate 11 is stopped, the lower surface plate 12 is rotated by driving means (not shown).
  • the lower surface plate 12 has a sun gear 13 on the upper surface of the center thereof, and an annular internal gear 14 is provided on the peripheral edge thereof.
  • a gear portion 16 that meshes with the sun gear 13 and the internal gear 14 is formed on the outer peripheral surface of the wafer holding carrier 15 to form a gear structure as a whole.
  • the wafer holding carrier 15 is provided with a plurality of holding holes 17. The wafer W to be wrapped is disposed and held in the holding hole 17.
  • the carrier 15 holding the wafer is sandwiched between the upper and lower surface plates 11 and 12, and planetary gear motion, that is, rotation and revolution, is performed between the rotating lower surface plate 12 and the stopped upper surface plate 11.
  • a liquid turbid liquid such as slurry containing aluminum oxide (Al 2 O 3 ), silicon carbide (SiC) or the like and water containing a surfactant is provided on the upper platen 11 from a nozzle.
  • Abrasive grains are fed between the wafer W and the upper and lower surface plates 11 and 12 by flowing into the gap between the upper and lower surface plates 11 and 12 through the formed through holes, and both surfaces of the wafer W are lapped.
  • the chamfered widths X1 and X2 of the processed wafer from which a predetermined amount on both the front and back surfaces are removed are measured by a chamfered shape measuring device (D in FIG. 2).
  • the machining allowance of the wafer after processing is evaluated (E in FIG. 2).
  • the machining allowance for each of the front and back surfaces of the wafer is calculated and evaluated based on the amount of change in the chamfer width on both the front and back surfaces of the wafer before and after processing.
  • the allowance is calculated by the following equation, in the same manner as the allowance evaluation method of the present invention described above.
  • Surface removal allowance (Chamfering width of wafer surface before processing ⁇ Chamfering width of wafer surface after processing) ⁇ tan ⁇ 1
  • Back surface removal allowance (Chamfer width of wafer back surface before processing ⁇ Chamfer width of wafer back surface after processing) ⁇ tan ⁇ 2
  • the process of adjusting the machining conditions in the next wafer front and back machining process (F in FIG. 2). ).
  • a case where wrapping is performed using a wrapping apparatus as shown in FIG. 3 will be described as an example.
  • the lower surface plate rotates with the upper surface plate stopped, and the carrier rotates and revolves.
  • the difference between the rotation speed of the lower surface plate and the revolution speed of the carrier is the ability to wrap the lower surface of the wafer. Moreover, since the upper surface plate is stopped, the revolution speed of the carrier becomes the ability to wrap the upper surface of the wafer. Therefore, by adjusting these rotational speeds, in particular, the revolution speed of the carrier, the front and back difference in lapping can be arbitrarily adjusted. Moreover, it can also adjust combining processing conditions other than rotation speed, for example, conditions, such as a slurry flow rate.
  • the processing of both the front and back surfaces of the wafer can be performed by double-sided grinding or double-sided polishing in addition to double-sided lapping.
  • the manufacturing method of the present invention can be applied to various processing processes in which both front and back surfaces of a wafer are simultaneously processed and removed with a predetermined machining allowance.
  • Example 1 One silicon wafer was manufactured according to the wafer manufacturing method of the present invention as shown in FIG. 2, and the stock removal was evaluated by the stock removal evaluation method of the present invention. First, after chamfering the wafer, the chamfering width and chamfering angle on the front surface side and the back surface side were measured using a chamfering shape measuring device (LEP2200 manufactured by KOBELCO). The position of the wafer for which the machining allowance was evaluated was the 90 ° position shown in FIG.
  • LEP2200 chamfering shape measuring device manufactured by KOBELCO
  • the chamfering width X1 on the front surface side was 326.0 ⁇ m
  • the chamfering angle ⁇ 1 was 26.2 °
  • the chamfering width X2 on the back surface side was 352.8 ⁇ m
  • the chamfering angle ⁇ 2 was 25.19 °.
  • the wafer was lapped using a lapping apparatus as shown in FIG.
  • the machining allowance was adjusted to 25 ⁇ m on one side and the machining allowance on both the front and back surfaces was uniform.
  • the chamfering width on the front surface side and the back surface side of the processed wafer was measured using a chamfering shape measuring apparatus.
  • the chamfering width X1 on the front surface side was 276.4 ⁇ m
  • the chamfering width X2 on the back surface side was 299.4 ⁇ m.
  • the machining allowance was calculated from the following equation using the measured chamfer width before and after machining.
  • Back surface removal allowance (352.8 ⁇ 299.4)
  • ⁇ tan (25.19 °) 25.1 ⁇ m
  • Front and back machining allowance could be evaluated as follows.
  • the lapping machine used this time has a uniform front and back allowance, and it was found that it was as intended. The above evaluation could be performed in a shorter time than the conventional method in the comparative example described later.
  • the machining allowance evaluation method of the present invention can easily and separately evaluate the machining allowances on both the front and back sides using a wafer as a product.
  • Example 2 In the same manner as in Example 1, the machining allowance of four silicon wafers was evaluated by the machining allowance evaluation method of the present invention. However, the position of the wafer for which the machining allowance was evaluated was set at 8 locations as follows. That is, as shown in FIG. 4, the positions of 9.1, 45, 90, 135, 180, 225, 270, and 315 ° in the wafer surface were evaluated. The results are shown in Table 1. Further, FIG. 5 shows the total machining allowance, machining allowance, average value and variation (standard deviation ⁇ ) of the machining allowance.
  • the present invention can easily evaluate the machining allowance of a plurality of wafers based on the chamfer widths at a plurality of positions, and can perform more reliable evaluation by, for example, obtaining an average value.
  • the influence of the slice shape of the wafer before processing and the distribution ( ⁇ ) of the machining allowance within the wafer surface can be easily estimated.
  • the lapping apparatus used has about 1 to 2 ⁇ m more machining allowance on the front surface than machining on the back surface.
  • Example 3 A silicon wafer was manufactured in accordance with the wafer manufacturing method of the present invention in the same manner as in Example 1, and the stock removal of the silicon wafer was evaluated at eight positions by the stock removal evaluation method of the present invention in the same manner as in Example 2. However, a lapping device was used under the condition that the surface allowance was about 2 ⁇ m larger than the back surface. And the average value and distribution ((sigma)) of the allowance difference were calculated
  • Example 4 A silicon wafer was manufactured in accordance with the wafer manufacturing method of the present invention in the same manner as in Example 1, and the stock removal of the silicon wafer was evaluated at eight positions by the stock removal evaluation method of the present invention in the same manner as in Example 2. And the manufacture and evaluation of the silicon wafer were repeated while managing the average value of the machining allowance.
  • the management value of the average value of the machining allowance was set to 3.5 ⁇ m. While repeating these, as shown in FIG. 7, the average value sometimes exceeded the control value 3.5 ⁇ m, so in order to adjust the machining allowance of the front and back surfaces of the wafer based on the evaluation results, the processing conditions are as follows: Adjusted as follows. Specifically, the number of revolutions of the carrier was adjusted by adjusting the number of rotations of the sun gear and the internal gear of the lapping device used.
  • the wafer could be manufactured with the average value of the machining allowance suppressed to a control value of 3.5 ⁇ m or less.
  • the machining allowances on both the front and back surfaces can be evaluated separately, and a wafer in which the machining allowances on the front and back surfaces are separately adjusted based on the evaluation results can be manufactured.
  • Example 2 A single silicon wafer was manufactured under the same conditions as in Example 1 except for the evaluation process of the machining allowance, and the machining allowance was evaluated by a conventional method in which a laser mark was printed on the wafer as shown in FIG. First, a dummy wafer was prepared from the manufactured wafers, and laser marks were printed on both surfaces of the wafer. Here, printing was performed with a hard laser marker at a dot depth of about 50 ⁇ m.
  • Example 1 After printing the laser mark, the dot depth at an arbitrary position was confirmed with a laser microscope. As a result, the dots printed on the front side were 53.5 ⁇ m, and the dots printed on the back side were 54.5 ⁇ m. Next, using the same lapping apparatus as that used in Example 1, the wafer was lapped under the same conditions as in Example 1.
  • the dot depth of the laser mark on the processed wafer was confirmed.
  • the confirmation position was the same as the position at the time of confirmation before processing.
  • the laser mark contained foreign substances that seemed to be slurry, and the exact depth could not be confirmed. Therefore, after cleaning the wafer and removing the foreign matter, the dot depth was confirmed again.
  • the dots printed on the front side were 29.2 ⁇ m
  • the dots printed on the back side were 29.6 ⁇ m. From these changes in dot depth, it was found that the allowance on the front surface side was 24.3 ⁇ m and the allowance on the back surface side was 24.9 ⁇ m. Further, the difference between the front and back surfaces was ⁇ 0.6 ⁇ m.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 本発明は、外周が面取りされたウェーハの表裏両面を加工して所定量除去する加工プロセスにおいて、加工後の前記ウェーハの取代を評価する取代の評価方法であって、加工前後の前記ウェーハの表裏面それぞれの面取り幅の変化量に基づいて前記ウェーハの表裏面それぞれの取代を算出して評価することを特徴とする取代の評価方法である。これにより、ウェーハの表裏両面を同時に加工して所定量除去する加工プロセスにおいて、製品となるウェーハを用いて表裏両面の取代をそれぞれ別々に短時間で簡便に評価でき、それによって表裏取代がそれぞれ調整されたウェーハの製造を可能にする取代の評価方法が提供される。

Description

取代の評価方法及びウェーハの製造方法
 本発明は、半導体ウェーハの両面を加工するプロセスにおいて、そのプロセスでの表裏両面の取代を評価する評価方法と、該評価方法を用いて品質を安定させて加工するウェーハの製造方法に関するものである。
 従来、一般にシリコン鏡面ウェーハ等の半導体ウェーハの製造方法は、単結晶製造装置によって製造された単結晶棒をスライスして薄円板状のウェーハを得るスライス工程と、該スライス工程で得られたウェーハの割れ欠けを防ぐためにその外周のエッジ部を面取りする面取り工程と、面取りされたウェーハをラッピングしてこれを平坦化するラッピング工程と、面取り及びラッピングされたウェーハ表面に残留する加工歪を除去するエッチング工程と、エッチングされたウェーハの表面を鏡面状に仕上げるポリッシュ工程と、ポリッシュされたウェーハを洗浄する洗浄工程からなる。
 また、平坦化する工程にはラッピング以外にも、砥石を用い両面を同時に研削する両頭研削といわれる技術も用いられる。さらに、ポリッシング工程も両面を同時に研磨する両面研磨と片面を研磨する片面研磨とがある。
 ところで、ラッピング工程の目的は、例えば、スライスされたウェーハを所定の厚みに揃えると同時にその平坦度、平行度などの必要な形状精度を得ることである。一般に、このラッピング加工後のウェーハが最も形状精度が良いことが知られており、ウェーハの最終形状を決定するとも言われ、ラッピング工程での形状精度がきわめて重要である。
 また、ラッピング技術として従来から、同心円形状の定盤の自転運動、円形のウェーハ保持用キャリアの装置本体に対する公転運動、円形のウェーハ保持用キャリアの自転運動の三つの運動を組み合わせ、定盤とウェーハに相対運動を与えることにより、ラップを行うラッピング装置が知られている(例えば、特許文献1参照)。このラッピング装置は、例えば、図8(A)(B)に示すように構成される。
 図8(A)(B)に示すように、ラッピング装置10は上下方向に相対向して設けられた下定盤12及び上定盤11を有している。これら上下定盤11、12は不図示の駆動手段によって互いに逆方向に回転する。下定盤12はその中心部上面にサンギア13を有し、その周縁部には環状のインターナルギア14が設けられている。
 また、ウェーハ保持用キャリア15の外周面には上記サンギア13及びインターナルギア14と噛合するギア部16が形成され、全体として歯車構造をなしている。このウェーハ保持用キャリア15には複数個の保持孔17が設けられている。ラップされるウェーハWはこの保持孔17内に配置され、保持される。
 ウェーハを保持するキャリア15は上下定盤11、12の間に挟み込まれ、対向しながら回転する上下定盤11、12の間で遊星歯車運動、すなわち、自転及び公転する。ラッピングを行うには、スラリーと呼ばれる酸化アルミニウム(Al)、炭化珪素(SiC)等の研磨砥粒と界面活性剤を含む水などの液体の混濁液をノズルから上定盤11に設けられた貫通孔18を介して上下定盤11、12の間隙に流してウェーハWと上下定盤11、12の間に砥粒を送り込み、上下定盤11、12の形状をウェーハWに転写している。
 ここで高平坦度を得るためには上下定盤の形状を正確にウェーハに転写する必要があり、相対運動を行っているウェーハと上下定盤の間のスラリーの動きは無視できない存在である。スラリー中の砥粒は絶えず磨耗し粒径と切れ味が変化するので、スラリーの動きに偏りがありスラリーの流れの悪いところでは、粒径が小さく切れ味が悪い砥粒でラップする部分ができ、この部分は厚くなってしまう。このため上下定盤には一定間隔で方眼状に溝を設け、ここから不要なスラリーや切りくずを排出している。
 また、上下定盤及びキャリアは使用するにつれ磨耗するため、一定期間使用した後に交換する必要がある。
特開平10-180624号公報
 上記したラッピング装置などの両面を同時に加工する加工装置では、全体の取代(或いは、削代)は一定であっても、表裏(上下)の取代のバランスが知らないうちにずれる可能性がある。例えば、上下定盤及びキャリアの磨耗などにより、表裏両面の取代が経時変化していく可能性がある。
 一般的に、ラッピング工程などの両面を同時に加工する工程における取代の管理は、加工前後のウェーハの中心厚さを測定し、この厚さの変化などで評価する。しかし、この評価方法では、全体の取代は把握できるものの、表裏取代をそれぞれ区別して評価することはできない。
 そこで従来では、例えば、図9に示すように、ダミーのウェーハを用意し、両面にレーザーマークなどを印字し、加工前後でそのドット深さがどのように変化したかをレーザー顕微鏡を用いて確認し表裏取代を評価している。
 この従来の評価方法では、ウェーハの両面、特に表面(通常デバイスが形成される面)側にレーザーマークを打つ必要があるため、製品そのものを直接評価することができず、ダミーのウェーハで確認する必要がある。
 また、この方法はレーザーマークの印字やドット深さの測定などに手間がかかるので、簡便に評価することが困難である。従って、測定頻度を増やすことが困難であった。またドットにスラリーが入った場合など、ドット深さの測定精度が悪化する。さらに、ウェーハの加工前も比較的平らな状態でない場合にはレーザー顕微鏡でドット深さを確認する際の測定精度が悪く、ばらつきが大きくなってしまう。例えば、加工前のスライスウェーハにはソーマークと呼ばれる凹凸があり、この凹凸の影響により測定精度が悪くなってしまうことがある。
 なお、生産性向上や原単位の削減を行う場合、取代は少なくしたほうが好ましいため、品質を維持するためのぎりぎりの取代に設定することが望ましい。
 このように取代が少ない場合、特に加工の表裏取代の差などが問題となってくる。例えば、表裏取代の差が大きく変動すると、前工程の履歴(スライス工程のソーマークなど)が取代不足で残ってしまう可能性があるからである。また経時変化して表裏取代差が変動したことに気付かないと大量の不良を出す可能性がある。そこで、取代が少ない場合、表裏取代差の管理も頻度を増やす必要がある。
 また、原料のウェーハ形状がフラットでない場合、ウェーハ面内(特に外周部)での取代差や、面内がテーパー状に加工されていないか確認する必要がある。
 本発明は前述のような問題に鑑みてなされたもので、シリコンウェーハ等のウェーハの表裏両面を同時に加工して所定の取代で除去する、例えばラッピングなどの加工プロセスにおいて、製品となるウェーハを用いて表裏両面の取代をそれぞれ別々に短時間で簡便に評価でき、それによって表裏取代がそれぞれ調整されたウェーハの製造を可能にする、取代の評価方法と、ウェーハの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、外周が面取りされたウェーハの表裏両面を所定の取代で除去する加工プロセスにおいて、加工後の前記ウェーハの取代を評価する取代の評価方法であって、加工前後の前記ウェーハの表裏面それぞれの面取り幅の変化量に基づいて前記ウェーハの表裏面それぞれの取代を算出して評価することを特徴とする取代の評価方法が提供される。
 このような評価方法であれば、製品となるウェーハを直接評価することができ、表裏両面の取代をそれぞれ別々に短時間で簡便に評価できる。また、測定頻度を容易に増やすことができ、測定時間を増やすことなく測定精度を容易に向上できる。
 このとき、加工前の前記ウェーハの表面の面取り角をθ1、裏面の面取り角をθ2としたとき、前記ウェーハの表裏面それぞれの取代を以下の式、表面取代=(加工前のウェーハ表面の面取り幅―加工後のウェーハ表面の面取り幅)×tanθ1、裏面取代=(加工前のウェーハ裏面の面取り幅―加工後のウェーハ裏面の面取り幅)×tanθ2、によって算出することができる。
 このようにすれば、それぞれの表裏両面の取代を容易に評価できる。
 またこのとき、前記加工プロセスを両面ラッピング、両頭研削、両面研磨のいずれかとすることができる。
 このように、本発明の評価方法は、ウェーハの表裏両面を同時に加工して所定の取代で除去する様々な加工プロセスに適応できる。
 また、本発明によれば、少なくとも、ウェーハの外周を面取りする工程と、前記ウェーハの表裏両面を所定の取代で除去する加工を施す工程と、加工後の前記ウェーハの取代を評価する工程とを有するウェーハの製造方法において、さらに、前記ウェーハの表裏両面の加工工程の前後に、前記ウェーハの表裏面それぞれの面取り幅を測定する工程を有し、前記ウェーハの取代を評価する工程において、前記ウェーハの表裏面の加工前後に測定した前記ウェーハの表裏面それぞれの面取り幅の変化量に基づいて前記ウェーハの表裏面それぞれの取代を算出して評価することを特徴とするウェーハの製造方法が提供される。
 このような製造方法であれば、製品となるウェーハを用いて表裏両面の取代をそれぞれ別々に短時間で簡便に評価して、その評価結果を基に表裏面それぞれの取代が別々に調整されたウェーハを製造できる。
 このとき、加工前の前記ウェーハの表面の面取り角をθ1、裏面の面取り角をθ2としたとき、前記ウェーハの表裏面それぞれの取代を以下の式、表面取代=(加工前のウェーハ表面の面取り幅―加工後のウェーハ表面の面取り幅)×tanθ1、裏面取代=(加工前のウェーハ裏面の面取り幅―加工後のウェーハ裏面の面取り幅)×tanθ2、によって算出して、それぞれの表裏両面の取代を評価する。
 またこのとき、前記ウェーハの取代の評価工程における評価結果に基づいて前記ウェーハの表裏面それぞれの取代を調整するために、次回の前記ウェーハの表裏面の加工工程における加工条件を調整する工程を有することが好ましい。
 このような方法であれば、ウェーハの表裏面の取代差を管理しながら安定した品質のウェーハを製造できる。
 またこのとき、前記ウェーハの表裏両面の加工が、両面ラッピング、両頭研削、両面研磨のいずれかによって行われることができる。
 このように、本発明の製造方法は、ウェーハの表裏両面を同時に加工して所定の取代で除去する様々な加工プロセスに適応できる。
 本発明では、外周が面取りされたウェーハの表裏両面を所定の取代で除去する加工プロセスにおいて、加工前後のウェーハの表裏面それぞれの面取り幅の変化量に基づいてウェーハの表裏面それぞれの取代を算出して評価するので、製品となるウェーハを直接評価することができ、表裏両面の取代をそれぞれ別々に短時間で簡便に評価できる。
本発明の取代の評価方法を説明する説明図である。 本発明のウェーハの製造方法の一例を示すフロー図である。 本発明のウェーハの製造方法で用いることができるラッピング装置の一例を示す概略図である。 実施例2-4におけるウェーハの取代評価位置を説明する説明図である。 実施例2の結果を示す図である。 実施例3の結果を示す図である。 実施例4の結果を示す図である。 一般的に用いられるラッピング装置の概略図である。(A)装置の概略図。(B)装置の上面概略図。 従来の表裏取代の評価方法を説明する説明図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 ウェーハ両面を所定の取代で除去する加工プロセスにおいて、例えば、ラッピング工程では、前工程のスライス工程で発生した加工変質層(歪み、ダメージ)を除去するため、一定の取代で加工している。この取代は生産性や原材料のコストなどを考慮すると少ないほうが好ましい。
 取代が十分多い加工の場合、表裏の取代差が多少あったとしても、加工後の品質には影響がないため、加工前後の厚さ変化から全体の取代を算出する従来の方法を用いることができる。
 しかし、近年、少ない取代で加工する場合が増えてきており、この場合、全体の取代はもちろん、例えば、デバイスが形成される表面の品質を安定させるために必要な取代量を確保する必要がある。すなわち、表裏両面それぞれで狙った取代を確保し、ソーマークなどのような前工程の履歴を除去するように制御する必要がある。そのため、表裏の取代差を管理することが重要である。
 しかし、取代を加工前後のウェーハの厚さの変化によって管理する従来の方法では、表裏取代差(バランス)などを簡便に評価することが困難である。
 そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、ウェーハの表裏面それぞれの面取り幅の変化量に基づいてウェーハの表裏面それぞれの取代を簡単に算出できることに想到し、本発明を完成させた。
 以下に本発明の取代の評価方法について説明する。
 図1は、本発明の取代の評価方法を説明する説明図である。
 図1に示すように、評価するウェーハの外周は面取りされている。ここで、表面側の面取り幅はX1、面取り角はθ1であり、裏面側の面取り幅はX2、面取り角はθ2である。
 本発明の取代の評価方法は、このような外周が面取りされたウェーハの表裏両面を所定の取代で除去する加工を施す加工プロセスにおいて、加工後のウェーハの取代を評価する方法である。
 まず、加工前におけるウェーハの面取り幅X1、X2及び面取り角θ1、θ2を面取り形状測定装置によって測定する。
 次に、ウェーハの表裏両面を加工して所定量除去する。そして、加工後におけるウェーハの面取り幅X1、X2を面取り形状測定装置によって再び測定する。
 その後、加工前後のウェーハの表裏両面の面取り幅の変化量に基づいてウェーハの表裏面それぞれの取代を算出して評価する。
 具体的には、以下の式によって取代を算出する。
 表面取代=(加工前のウェーハ表面の面取り幅X1―加工後のウェーハ表面の面取り幅X1)×tanθ1
 裏面取代=(加工前のウェーハ裏面の面取り幅X2―加工後のウェーハ裏面の面取り幅X2)×tanθ2
 このような評価方法であれば、ダミーのウェーハを用いることなく、製品となるウェーハを直接評価することができるので、評価精度を向上でき、コストを削減できる。また、表裏両面の取代をそれぞれ別々に短時間で簡便に評価できる。また、測定精度を向上するために、複数のウェーハを測定したり、ウェーハ面内の複数の位置の面取り幅に基づいて取代を評価したりして測定頻度を増やすことを容易に行え、これによって多大な評価時間がかかることもない。
 ここで、上記した加工プロセスを両面ラッピング、両頭研削、両面研磨のいずれかとすることができる。
 このように、本発明の評価方法は、ウェーハの表裏両面を同時に加工して所定の取代で除去する様々な加工プロセスに適応できる。
 次に本発明のウェーハの製造方法について説明する。
 図2に本発明のウェーハの製造方法の一例のフロー図を示す。
 図1に示すように、まず、ウェーハの外周を面取りする(図2のA)。この工程は特に限定されず、従来の方法と同様にして面取りを行うことができる。
 次に、加工前におけるウェーハの面取り幅X1、X2及び面取り角θ1、θ2を面取り形状測定装置によって測定する(図2のB)。この測定は、面取り品質の評価のために、一般的に面取り後に行われている従来の方法で行うことができる。
 次に、ウェーハの表裏両面を、例えば両面ラッピングなどの加工を行って所定の取代で除去する(図2のC)。この工程も特に限定されず、従来の方法と同様にして加工を行うことができる。例えば、両面ラッピングを行う場合の例を以下に説明する。
 図3は本発明のウェーハの製造方法で用いることができるラッピング装置の一例を示す概略図である。図3に示すように、ラッピング装置1は上下方向に相対向して設けられた下定盤12及び上定盤11を有している。上定盤11は停止したままで、下定盤12が不図示の駆動手段によって回転する。下定盤12はその中心部上面にサンギア13を有し、その周縁部には環状のインターナルギア14が設けられている。
 また、ウェーハ保持用キャリア15の外周面には上記サンギア13及びインターナルギア14と噛合するギア部16が形成され、全体として歯車構造をなしている。このウェーハ保持用キャリア15には複数個の保持孔17が設けられている。ラップされるウェーハWはこの保持孔17内に配置され、保持される。
 ウェーハを保持するキャリア15は上下定盤11、12の間に挟み込まれ、回転する下定盤12と停止したままの上定盤11の間で遊星歯車運動、すなわち、自転及び公転する。ラッピングを行うには、スラリーと呼ばれる酸化アルミニウム(Al)、炭化珪素(SiC)等の研磨砥粒と界面活性剤を含む水などの液体の混濁液をノズルから上定盤11に設けられた貫通孔を介して上下定盤11、12の間隙に流してウェーハWと上下定盤11、12の間に砥粒を送り込み、ウェーハWの両面をラッピングする。
 このようにして表裏両面の所定量が除去された加工後のウェーハの面取り幅X1、X2を面取り形状測定装置によって測定する(図2のD)。
 次に、加工後のウェーハの取代を評価する(図2のE)。
 この工程では、上記した本発明の取代の評価方法と同様に、加工前後のウェーハの表裏両面の面取り幅の変化量に基づいてウェーハの表裏面それぞれの取代を算出して評価する。
 具体的には、上記した本発明の取代の評価方法と同様に、以下の式によって取代を算出する。
 表面取代=(加工前のウェーハ表面の面取り幅―加工後のウェーハ表面の面取り幅)×tanθ1
 裏面取代=(加工前のウェーハ裏面の面取り幅―加工後のウェーハ裏面の面取り幅)×tanθ2
 このような製造方法であれば、ダミーのウェーハを用いることなく、製品となるウェーハを直接評価することができるので、測定精度を向上でき、コストを削減できる。その評価結果を基に表裏面それぞれの取代を別々に管理、調整しながらウェーハを製造できる。
 またこのとき、ウェーハの取代の評価工程における評価結果に基づいてウェーハの表裏面それぞれの取代を調整するために、次回のウェーハの表裏面の加工工程における加工条件を調整する工程(図2のF)を有することが好ましい。
 例えば、図3に示すようなラッピング装置を用いてラッピングを行う場合を例に説明する。上記したように、ラッピング装置は、上定盤が停止した状態で下定盤が自転し、キャリアが自転公転する。
 ウェーハから見ると、下定盤の自転速度とキャリアの公転速度の差が、ウェーハの下面をラップする能力になる。また、上定盤は停止しているので、キャリアの公転速度がウェーハの上面をラップする能力になる。そこで、これら回転速度、特にキャリアの公転速度を調整することで、ラッピングにおける表裏取代差を任意に調整できる。また、回転数以外の加工条件、例えばスラリー流量などの条件を組み合わせて調整することもできる。
 このような方法であれば、ウェーハの表裏面の取代差を管理しながら安定した品質のウェーハを製造できる。
 また、様々な加工条件下での表裏取代の変化などを事前に本発明の評価方法で評価しておくことで、例えば定盤の磨耗等による経時変化などによって表裏取代の差が管理値を外れた場合に、表裏取代の差を調整することができる。このように表裏取代の差の事前の評価(日常点検)の頻度増加とフィードバック(調整)の実施により、品質が安定したウェーハを供給できるウェーハ製造方法となる。
 また、上記したウェーハの表裏両面の加工は、両面ラッピングの他に、両頭研削、両面研磨によって行うこともできる。
 このように、本発明の製造方法は、ウェーハの表裏両面を同時に加工して所定の取代で除去する様々な加工プロセスに適応できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図2に示すような本発明のウェーハの製造方法に従ってシリコンウェーハを1枚製造し、本発明の取代の評価方法でその取代を評価した。
 まず、ウェーハに面取り加工を施した後、表面側及び裏面側における面取り幅及び面取り角を面取り形状測定装置(KOBELCO社製LEP2200)を用いて測定した。取代を評価したウェーハの位置は、図4に示す90°の位置を評価した。
 その結果、表面側の面取り幅X1は326.0μm、面取り角θ1は26.2°、裏面側の面取り幅X2は352.8μm、面取り角θ2は25.19°であった。
 次に、図3に示すようなラッピング装置を用いてウェーハにラッピング加工を施した。この際、狙い取代を片面25μmとし、表裏両面の取代が均一になるように加工条件を調整した。
 次に、加工後のウェーハの表面側及び裏面側における面取り幅を面取り形状測定装置を用いて測定した。
 その結果、表面側の面取り幅X1は276.4μm、裏面側の面取り幅X2は299.4μmであった。
 測定した加工前後の面取り幅を用いて以下の式から取代を算出した。
  表面取代=(326.0―276.4)×tan(26.2°)=24.4μm
  裏面取代=(352.8―299.4)×tan(25.19°)=25.1μm
 また、表裏取代差を以下のように評価できた。
  表裏取代差=(表面取代―裏面取代)=(24.4―25.1)=-0.7μm
 今回用いたラッピング装置では表裏取代がほぼ均一であり、狙い通りであることが分かった。上記した評価は、後述する比較例における従来の方法に比べ短時間で行うことができた。
 このように、本発明の取代の評価方法は、製品となるウェーハを用いて表裏両面の取代をそれぞれ別々に短時間で簡便に評価できることが確認できた。
 (実施例2)
 実施例1と同様に本発明の取代の評価方法により4枚のシリコンウェーハの取代を評価した。但し、取代を評価したウェーハの位置を以下のように8箇所とした。すなわち、図4に示すような、ウェーハ面内の9.1、45、90、135、180、225、270、315°の位置を評価した。
 その結果を表1に示す。また、全体取代、取代差、取代差の平均値及びばらつき(標準偏差σ)を図5に示す。
 このように、本発明は複数のウェーハを複数の位置の面取り幅に基づいて取代を容易に評価することができ、例えば平均値を求めることなどによってより信頼性のある評価を行うことができることが分かる。このように測定頻度を増やして評価することによって、加工前のウェーハのスライス形状の影響やウェーハ面内の取代差の分布(σ)なども容易に推測できる。例えば、取代差の平均からは使用したラッピング装置にどの程度表裏取代差が起こりえるかが確認でき、取代差のばらつきからはウェーハが傾いてラッピングされていないかなどの評価ができる。図5の取代差の平均値の結果から、使用したラッピング装置では、表面の取代が裏面の取代に比べ1~2μm程度多いことが分かる。
 これに対し、後述する比較例では、測定時間が多くかかり、評価するウェーハ数を増やすことが困難である。
(実施例3)
 実施例1と同様に本発明のウェーハの製造方法に従ってシリコンウェーハを製造し、実施例2と同様に本発明の取代の評価方法によりシリコンウェーハの取代を8箇所の位置で評価した。但し、表面の取代が裏面より2μm程度大きくなる条件のラッピング装置を用いた。そして、取代差の平均値と分布(σ)を求めた。この平均値と分布(σ)に管理値を設定し、ウェーハの製造及び評価を繰り返してその推移を確認した。ここで、平均値の管理値を3.5μm、分布(σ)の管理値を2.5μmに設定した。
 その結果を図6に示す。図6(A)(B)に示すように、平均値と分布(σ)は多少のばらつきはあるものの、全て管理値以下に収まっていることが分かる。このことにより、安定した加工が行われていることが確認できた。
(実施例4)
 実施例1と同様に本発明のウェーハの製造方法に従ってシリコンウェーハを製造し、実施例2と同様に本発明の取代の評価方法によりシリコンウェーハの取代を8箇所の位置で評価した。そして、取代差の平均値を管理しながらシリコンウェーハの製造及び評価を繰り返した。ここでは、取代差の平均値の管理値を3.5μmに設定した。
 これらを繰り返すうち、図7に示すように、平均値が管理値3.5μmを超える場合があったため、その評価結果に基づいてウェーハの表裏面それぞれの取代を調整するために、加工条件を以下のように調整した。具体的には、使用したラッピング装置のサンギアとインターナルギアの回転数を調整してキャリアの公転数を調整した。
 その結果、図7後半のように、取代差の平均値を管理値3.5μm以下に抑えてウェーハを製造することができた。
 このように、本発明のウェーハの製造方法により、表裏両面の取代をそれぞれ別々に評価し、その評価結果を基に表裏面それぞれの取代が別々に調整されたウェーハを製造できる。また、ウェーハの表裏面の取代差を管理しながら安定した品質のウェーハを製造できる。
(比較例)
 取代の評価工程以外は実施例1と同様な条件でシリコンウェーハを1枚製造し、図9に示すようなウェーハにレーザーマークを印字して評価する従来の方法で取代を評価した。
 まず、製造したウェーハの中からダミーのウェーハを用意し、このウェーハの両面にレーザーマークを印字した。ここで、印字はハードレーザーマーカーで50μm程度のドット深さで行った。
 レーザーマークの印字後、レーザー顕微鏡で任意の位置のドット深さを確認した。その結果、表面側に印字したドットは53.5μm、裏面側に印字したドットは54.5μmであった。
 次に、実施例1で用いたものと同一のラッピング装置を用い、実施例1と同様の条件でウェーハにラッピング加工を施した。
 次に、加工後のウェーハのレーザーマークのドット深さを確認した。ここで、確認位置は加工前に確認した際の位置と同一とした。その結果、レーザーマーク内にスラリーと思われる異物が入っており正確な深さが確認できなかった。そのため、ウェーハを洗浄しその異物を除去してから再度ドット深さを確認した。
 その結果、表面側に印字したドットは29.2μm、裏面側に印字したドットは29.6μmであった。これらのドット深さの変化から、表面側の取代は24.3μm、裏面側の取代は24.9μmであることが分かった。また、表裏取代差は-0.6μmであった。
 このように、レーザーマークを用いた従来の方法によって、実施例1とほぼ同様の取代で加工されていることが確認できたが、この従来の方法では、製品となるウェーハを直接評価できず、またレーザーマークの印字、加工後にレーザーマーク内に入ったスラリーなどの異物除去のための洗浄が必要であり、評価に非常に時間がかかってしまった。
 また、ドットを印字した場所でしか測定できないので、評価精度を向上するためにはレーザーマークをたくさん印字する必要があり、この場合には特に長時間を要する。特に、外周部の取代の平均を正確に評価する場合にはより多くのドット深さを測定する必要があるために非常に長時間を要する。このように、従来の評価方法は、容易に実施することができない。
Figure JPOXMLDOC01-appb-T000001
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  外周が面取りされたウェーハの表裏両面を所定の取代で除去する加工プロセスにおいて、加工後の前記ウェーハの取代を評価する取代の評価方法であって、
     加工前後の前記ウェーハの表裏面それぞれの面取り幅の変化量に基づいて前記ウェーハの表裏面それぞれの取代を算出して評価することを特徴とする取代の評価方法。
  2.  加工前の前記ウェーハの表面の面取り角をθ1、裏面の面取り角をθ2としたとき、前記ウェーハの表裏面それぞれの取代を以下の式、
     表面取代=(加工前のウェーハ表面の面取り幅―加工後のウェーハ表面の面取り幅)×tanθ1、
     裏面取代=(加工前のウェーハ裏面の面取り幅―加工後のウェーハ裏面の面取り幅)×tanθ2、
     によって算出することを特徴とする請求項1に記載の取代の評価方法。
  3.  前記加工プロセスが、両面ラッピング、両頭研削、両面研磨のいずれかであることを特徴とする請求項1又は請求項2に記載の取代の評価方法。
  4.  少なくとも、ウェーハの外周を面取りする工程と、前記ウェーハの表裏両面を所定の取代で除去する加工を施す工程と、加工後の前記ウェーハの取代を評価する工程とを有するウェーハの製造方法において、
     さらに、前記ウェーハの表裏両面の加工工程の前後に、前記ウェーハの表裏面それぞれの面取り幅を測定する工程を有し、
     前記ウェーハの取代を評価する工程において、前記ウェーハの表裏面の加工前後に測定した前記ウェーハの表裏面それぞれの面取り幅の変化量に基づいて前記ウェーハの表裏面それぞれの取代を算出して評価することを特徴とするウェーハの製造方法。
  5.  加工前の前記ウェーハの表面の面取り角をθ1、裏面の面取り角をθ2としたとき、前記ウェーハの表裏面それぞれの取代を以下の式、
     表面取代=(加工前のウェーハ表面の面取り幅―加工後のウェーハ表面の面取り幅)×tanθ1、
     裏面取代=(加工前のウェーハ裏面の面取り幅―加工後のウェーハ裏面の面取り幅)×tanθ2、
     によって算出することを特徴とする請求項4に記載のウェーハの製造方法。
  6.  前記ウェーハの取代の評価工程における評価結果に基づいて前記ウェーハの表裏面それぞれの取代を調整するために、次回の前記ウェーハの表裏面の加工工程における加工条件を調整する工程を有することを特徴とする請求項4又は請求項5に記載のウェーハの製造方法。
  7.  前記ウェーハの表裏両面の加工が、両面ラッピング、両頭研削、両面研磨のいずれかによって行われることを特徴とする請求項4乃至請求項6のいずれか1項に記載のウェーハの製造方法。
PCT/JP2012/004571 2011-08-12 2012-07-18 取代の評価方法及びウェーハの製造方法 WO2013024565A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177094A JP2013039632A (ja) 2011-08-12 2011-08-12 取代の評価方法及びウェーハの製造方法
JP2011-177094 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024565A1 true WO2013024565A1 (ja) 2013-02-21

Family

ID=47714904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004571 WO2013024565A1 (ja) 2011-08-12 2012-07-18 取代の評価方法及びウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP2013039632A (ja)
TW (1) TW201321133A (ja)
WO (1) WO2013024565A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664694A (zh) * 2021-07-29 2021-11-19 山西烁科晶体有限公司 碳化硅双面抛光中硅面及碳面去除厚度的测定方法
CN114083430A (zh) * 2021-11-10 2022-02-25 南通大学 一种精确获得晶片双面研磨中上下面去除量的有效方法
WO2024098612A1 (zh) * 2022-11-10 2024-05-16 上海中欣晶圆半导体科技有限公司 一种改善衬底抛光片外延后裂片的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141324A (zh) * 2018-08-30 2019-01-04 杭州中芯晶圆半导体股份有限公司 一种精确测量硅片上下面去除量的方法
CN113601376A (zh) * 2021-08-10 2021-11-05 山西烁科晶体有限公司 碳化硅双面抛光中单面抛光速率的测定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297129A (ja) * 2004-04-12 2005-10-27 Mitsui Chemicals Inc 研磨量測定方法
JP2010021394A (ja) * 2008-07-11 2010-01-28 Sumco Corp 半導体ウェーハの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297129A (ja) * 2004-04-12 2005-10-27 Mitsui Chemicals Inc 研磨量測定方法
JP2010021394A (ja) * 2008-07-11 2010-01-28 Sumco Corp 半導体ウェーハの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664694A (zh) * 2021-07-29 2021-11-19 山西烁科晶体有限公司 碳化硅双面抛光中硅面及碳面去除厚度的测定方法
CN114083430A (zh) * 2021-11-10 2022-02-25 南通大学 一种精确获得晶片双面研磨中上下面去除量的有效方法
CN114083430B (zh) * 2021-11-10 2024-02-09 南通大学 一种精确获得晶片双面研磨中上下面去除量的有效方法
WO2024098612A1 (zh) * 2022-11-10 2024-05-16 上海中欣晶圆半导体科技有限公司 一种改善衬底抛光片外延后裂片的方法

Also Published As

Publication number Publication date
TW201321133A (zh) 2013-06-01
JP2013039632A (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5614397B2 (ja) 両面研磨方法
TWI422465B (zh) Double - sided grinding of workpiece and double - sided grinding of workpiece
WO2013024565A1 (ja) 取代の評価方法及びウェーハの製造方法
JP5967040B2 (ja) 鏡面研磨ウェーハの製造方法
JP5494552B2 (ja) 両頭研削方法及び両頭研削装置
JP4780142B2 (ja) ウェーハの製造方法
US20090311863A1 (en) Method for producing semiconductor wafer
JP2009302409A (ja) 半導体ウェーハの製造方法
JP5724958B2 (ja) 両頭研削装置及びワークの両頭研削方法
JP5979081B2 (ja) 単結晶ウェーハの製造方法
JP6493253B2 (ja) シリコンウェーハの製造方法およびシリコンウェーハ
JP2010021394A (ja) 半導体ウェーハの製造方法
JP2002231665A (ja) エピタキシャル膜付き半導体ウエーハの製造方法
WO2013031090A1 (ja) シリコンウェーハの研磨方法及び研磨装置
JP7359203B2 (ja) 酸化ガリウム基板、および酸化ガリウム基板の製造方法
KR101328775B1 (ko) 실리콘 에피택셜 웨이퍼의 제조 방법
JP5282440B2 (ja) 評価用ウェーハ及び両面研磨の研磨代の評価方法
JP6471686B2 (ja) シリコンウェーハの面取り方法、シリコンウェーハの製造方法およびシリコンウェーハ
JP2011140075A (ja) 両面研削装置を用いたガラス基板の研削方法、及び該研削方法を用いたガラス基板の製造方法
JP2008036771A (ja) 硬脆材料基板用ホイール型回転砥石
JP2015153999A (ja) 半導体ウェーハの製造方法
JP7168113B1 (ja) ウェーハの両面研磨方法
CN109414799A (zh) 双面研磨装置
JP2003347257A (ja) 半導体ウエーハのラッピング方法
JP2006315136A (ja) サファイア研削用カップ型回転砥石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823925

Country of ref document: EP

Kind code of ref document: A1