WO2013021413A1 - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
WO2013021413A1
WO2013021413A1 PCT/JP2011/004476 JP2011004476W WO2013021413A1 WO 2013021413 A1 WO2013021413 A1 WO 2013021413A1 JP 2011004476 W JP2011004476 W JP 2011004476W WO 2013021413 A1 WO2013021413 A1 WO 2013021413A1
Authority
WO
WIPO (PCT)
Prior art keywords
trajectory
radiation
stage
circular orbit
circular
Prior art date
Application number
PCT/JP2011/004476
Other languages
English (en)
French (fr)
Inventor
雄介 田川
功裕 上野
博志 大原
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201180072550.9A priority Critical patent/CN103733053B/zh
Priority to PCT/JP2011/004476 priority patent/WO2013021413A1/ja
Priority to JP2013527745A priority patent/JP5999516B2/ja
Priority to TW101117431A priority patent/TWI480022B/zh
Publication of WO2013021413A1 publication Critical patent/WO2013021413A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4476Constructional features of apparatus for radiation diagnosis related to motor-assisted motion of the source unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/309Accessories, mechanical or electrical features support of sample holder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates to a radiographic apparatus that performs radiography by acquiring tomographic images based on a plurality of projection images.
  • this type of X-ray inspection apparatus includes a stage S on which an object O is placed and an X-ray tube T ( Radiation irradiating means) and an X-ray detector D (radiation detecting means).
  • the stage S is a rotation stage having a rotation mechanism, and rotationally drives the rotation stage around the axis of the rotation axis Ax.
  • X-ray inspection targets include mounting boards, through-holes / patterns / solder joints in multilayer boards, electronic components before mounting such as integrated circuits (IC: Integrated Circuit) placed on pallets, metal There are castings such as video decks.
  • IC integrated circuit
  • the rotation stage S and the X-ray tube T and the X-ray detector D are arranged in an axial direction inclined by a certain angle (lamino angle) with respect to the rotation axis Ax for rotationally driving the rotation stage S. It arrange
  • the X-ray tube T is fixedly arranged, and the rotary stage S is rotationally driven around the axis of the rotary axis Ax.
  • the X-ray detector D detects X-rays irradiated from the X-ray tube T and transmitted through the object O from an oblique direction inclined by the lamino angle, and on the detection surface of the X-ray detector D based on the detection.
  • a projected image is obtained.
  • a projection image is acquired from a plurality of angles by acquiring a projection image each time the rotary stage S is rotationally driven.
  • FIG. 9 there is known a method for realizing photographing from an oblique direction with an apparatus that does not have a special rotation mechanism in the stage S (see, for example, Patent Documents 2 and 3).
  • the stage S together with the object O is translated (moves straight) along a plane perpendicular to the rotation axis Ax (horizontal plane in FIG. 9) so as to draw a circular orbit, and the same rotation is synchronized with the movement of the stage S.
  • a plurality of projection images are acquired, and further, a tomographic image is acquired based on the plurality of projection images.
  • the relative geometric relationship between the X-ray tube, the object, and the X-ray detector at the time of imaging in FIG. 9 is the same as in FIG. 8 (the object and the rotary stage are driven to rotate around the axis of the rotation axis Ax.
  • the images are taken in an oblique direction by synchronously driving them so as to be the same as in FIG.
  • the direction of the stage S can be fixed.
  • the degree of freedom of the drive system is greater than that of the CT-dedicated apparatus having only one degree of freedom of stage rotation, and the drive accuracy of each drive system is increased. Is important.
  • the stage and the X-ray detector are independent drive mechanisms, a highly accurate positioning and synchronization mechanism and control are required to obtain an ideal tomographic scanning trajectory. There is a problem that it becomes expensive.
  • two orthogonal drive systems (X-axis and Y-axis of the orthogonal coordinate system) are driven by a sine wave (90 ° out of phase). Each position may be controlled so that a sine wave is obtained.
  • P X in FIG. 10 is an X-coordinate value
  • P Y is a Y coordinate value.
  • the driving amount is a position where the gain of the sine wave is large (the angles ⁇ in the Y coordinate in FIG. 10 are around 0 °, 180 °, 360 °, and in the X coordinate.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a radiation imaging apparatus that can maintain driving accuracy at low cost.
  • the present invention has the following configuration. That is, the radiation imaging apparatus of the present invention is irradiated with a stage on which an object is placed, radiation irradiation means and radiation detection means arranged to face each other with the stage interposed therebetween, and the radiation irradiation means.
  • a radiation imaging apparatus comprising: a calculation unit that calculates a tomographic image based on a plurality of projection images obtained by detecting radiation transmitted through the object by the radiation detection unit; A combination of the linear drive mechanisms, and a combined drive means for driving at least one of the radiation irradiating means and the stage, and a combined drive means for combining at least one of the radiation irradiating means and the stage in a path in which the orbits of the linear drive mechanisms are combined in a circular orbit.
  • Control means for controlling, and the control means sets the absolute value of the movement amount per unit step to a predetermined value having a positive real number value or “0”.
  • Each of the linear drive mechanisms is controlled, and a trajectory ranging from a small circular orbit having a half size of the circular orbit to a large circular orbit having a size twice as large as the concentric circle of the circular orbit.
  • Each linear drive mechanism is controlled so that at least one of the radiation irradiating means and the stage is driven by using a trajectory according to the circular trajectory.
  • the above-described tomographic image in the present invention is a three-dimensional tomographic image including a plurality of tomographic images, and of course includes a case of a single tomographic image.
  • the control means sets the absolute value of the movement amount per unit step to a predetermined value having a positive real value or “0”, or to each linear drive mechanism. To control each. By this control, the amount of movement equal to or greater than the predetermined value or the amount of movement of “0” (that is, the stopped state) is obtained without performing minute driving at a position where the driving direction of the linear drive mechanism is reversed.
  • control means removes the restriction of the circular orbit and, from the small circular orbit having a half size of the concentric circle of the circular orbit, under the restriction that the minute driving is not performed at the position where the driving direction of the linear drive mechanism is reversed.
  • Each of the linear drives so as to drive at least one of the radiation irradiating means and the stage, with a trajectory in a range up to a large circular orbit having a size twice as large as a concentric circle of the circular orbit as a trajectory according to the circular orbit. Control each mechanism. As a result, it is possible to maintain the drive accuracy without performing a minute drive at a position where the drive direction of the linear drive mechanism is reversed.
  • each straight drive mechanism (drive system)
  • the position control is simple, and the driving accuracy can be easily maintained.
  • the mechanically required rigidity condition is eased by improving the driving accuracy, the cost can be reduced, and low cost can be realized in each linear drive mechanism (drive system).
  • An example of the above-described invention is the predetermined amount (having a positive real number value) with a movement amount per unit step such that the synthesis of the trajectory by the two rectilinear drive mechanisms each driving rectilinearly in the Cartesian coordinate system becomes the circular trajectory.
  • Each linear drive mechanism is controlled in a straight line with the amount of movement per unit step set to “0” only in the region where the drive direction of each linear drive mechanism is reversed while maintaining the value or more. Is to control each. In other words, only in the region where the driving direction of each linear drive mechanism is reversed, the travel amount per unit step is set to “0” as a straight trajectory, and in the other regions, the trajectory is the same as the circular trajectory. It is possible to minimize the influence of the false image that occurs when the lens comes off, and to improve the driving accuracy in the problematic region (the region in which the driving direction of the linear driving mechanism is reversed).
  • the track conforming to the circular track is a track ranging from the small circular track to the large circular track, and a rectangular track
  • the control means includes only one straight drive mechanism.
  • the amount of movement per unit step is set to “0” to control the remaining straight drive mechanism, thereby driving the straight track of the rectangular track.
  • a detection drive means for driving the radiation detection means in synchronism with the radiation irradiation means by the synthesis drive means and at least one drive of the stage.
  • the detection driving means detects the radiation detection means so that the radiation emitted from the radiation irradiation means passes through the target point of the object and is detected at the center of the radiation detection means. More preferably, it is driven.
  • the detection driving means By capturing the point of interest at the center of the radiation detection means, it is possible to reconstruct (back projection) at almost the same position (point of interest) when calculating a tomographic image, which is sufficient based on the center of the field of view. A wide range of tomographic images can be obtained.
  • the control means removes the restriction of the circular orbit and halves the concentric circle of the circular orbit under the restriction that the micro drive is not performed at the position where the drive direction of the linear drive mechanism is reversed.
  • a trajectory in a range from a small circular orbit having a size of 2 to a concentric circle having a size twice as large as that of the circular orbit is defined as a trajectory according to the circular orbit, and at least one of the radiation irradiation means and the stage is Each linear drive mechanism is controlled to drive. As a result, driving accuracy can be maintained at low cost.
  • FIG. 5B is a schematic diagram illustrating a regular triangle circumscribing a circle and a regular triangle inscribed in a great circle orbit and circumscribed in a circle orbit, and FIG.
  • a regular triangle that divides a regular hexagon by connecting the diagonal of the regular hexagon and passing through the center of the circular or great circular orbit, a side that connects the diagonal of the regular hexagon and does not pass through the center of the circular or great circular orbit, and the corresponding side -It is the schematic which also illustrated the right triangle formed with the edge
  • (A) is a normal circular orbit for comparison of (b) and (c) and an X coordinate value and a Y coordinate value when realizing a circular orbit
  • (b) is a trajectory obtained by shortcutting a circular orbit and its An X coordinate value and a Y coordinate value when realizing the trajectory
  • (c) are a quadrature trajectory and an X coordinate value and a Y coordinate value when realizing the trajectory.
  • (A)-(d) are each form of the track
  • (A)-(e) are each drive form for implementing the diagonal imaging
  • FIG. 1 is a schematic configuration diagram of an X-ray inspection apparatus according to the embodiment
  • FIG. 2 is a block diagram of the X-ray inspection apparatus according to the embodiment.
  • an X-ray inspection apparatus will be described as an example of a radiation imaging apparatus.
  • an X-ray inspection apparatus 1 includes a stage 2 on which an object O is placed, and an X-ray tube 3 and an X-ray detector arranged so as to face each other with the stage 2 interposed therebetween. 4 is provided.
  • the X-ray detector 4 is not particularly limited, as exemplified by an image intensifier (II) or a flat panel X-ray detector (FPD: “Flat” Panel “Detector”). In the present embodiment, a flat panel X-ray detector (FPD) will be described as an example of the X-ray detector 4.
  • the stage 2 corresponds to the stage in the present invention
  • the X-ray tube 3 corresponds to the radiation irradiation means in the present invention
  • the X-ray detector 4 corresponds to the radiation detection means in the present invention.
  • the FPD is composed of a plurality of detection elements arranged vertically and horizontally corresponding to pixels.
  • the detection elements detect X-rays and output detected X-ray data (charge signals) as X-ray detection signals.
  • the X-rays irradiated from the X-ray tube 3 and transmitted through the object O are detected by the X-ray detector 4 made of FPD and output an X-ray detection signal, and the pixel value based on the X-ray detection signal Are arranged in correspondence with the pixels to obtain a projection image projected on the detection surface of the X-ray detector 4.
  • X-ray inspection apparatus tilting the detector rotation mechanism 5 for rotating the X-ray detector 4 around arrow R 1, the X-ray detector 4 in the arrow R 2 direction And a detector tilting mechanism 6 to be operated.
  • the detector tilting mechanism 6 includes an arcuate guide portion 6a that supports the X-ray detector 4, and a rotary motor 6b (see FIG. 2).
  • the rotary motor 6b is driven to rotate, and thus the detector tilt mechanism 6 extends along the guide portion 6a.
  • X-ray detector 4 is tilted in the arrow R 2 direction of Te.
  • the detector rotation mechanism 5 corresponds to the detection drive means in this invention.
  • Detector rotation mechanism 5 is composed of a rotary motor 5a (see FIG. 2), by rotating the motor 5a rotationally drives the guide portion 6a of the detector tilt mechanism 6 around the arrow R 1, is supported by the guide portion 6a X-ray detector 4 is also rotated about arrow R 1.
  • the detector rotation mechanism 5 rotates the X-ray detector 4 around the arrow R 1 in synchronization with the drive of the stage 2.
  • the detector rotation mechanism 5 moves the X-ray detector 4 to the arrow so that X-rays emitted from the X-ray tube 3 pass through the target point of the object O and are detected at the center of the radiation detector 4. for rotating about the R 1.
  • the X-ray inspection apparatus 1 includes a stage drive mechanism 7 that drives the stage 2 straightly in an orthogonal coordinate system X, Y, and Z (see FIG. 1), and a plurality of projection images.
  • a tomographic image calculation unit 8 that calculates and calculates a tomographic image based thereon, a controller 9 that performs overall control thereof, and outputs a tomographic image obtained by the tomographic image calculation unit 8 (display output on a monitor or print output on a printer)
  • an image output unit 10 for performing the operation.
  • the stage drive mechanism 7 includes an X-axis linear motor 7a that linearly drives the stage 2 in the X direction (here, horizontal drive), a Y-axis linear motor 7b that linearly drives the stage 2 in the Y direction (here, horizontal drive), and a stage. 2 is composed of a Z-axis rectilinear motor 7c that linearly drives in the Z direction (in this case, lift drive).
  • the stage 2 is driven by a trajectory in which the synthesis of the trajectories by the X-axis rectilinear motor 7a and the Y-axis rectilinear motor 7b is based on a circular trajectory. The trajectory according to the circular trajectory will be described later in detail.
  • the stage drive mechanism 7 corresponds to the composite drive means in the present invention
  • the X-axis linear motor 7a, the Y-axis linear motor 7b, and the Z-axis linear motor 7c correspond to the linear drive mechanism in the present invention
  • the tomographic image calculation unit 8 Corresponds to the calculation means in the present invention
  • the controller 9 corresponds to the control means in the present invention.
  • the tomographic image calculation unit 8 calculates and calculates a tomographic image based on a plurality of projection images.
  • the controller 9 comprehensively controls each part constituting the X-ray inspection apparatus 1, and in particular, a rotation motor 5 a of the detector rotation mechanism 5, a rotation motor 6 b of the detector tilting mechanism 6, and an X-axis rectilinear motor of the stage drive mechanism 7. 7a, Y-axis rectilinear motor 7b and Z-axis rectilinear motor 7c are respectively controlled.
  • the controller 9 may control the X-ray tube 3 to be tiltable according to the tilting of the X-ray detector 4. Specific control by the controller 9 will also be described in detail later.
  • the tomographic image calculation unit 8 and the controller 9 described above are configured by a central processing unit (CPU) and the like.
  • a tomographic image calculation unit 8 shown in FIG. 2 acquires a projection image from a plurality of angles by acquiring a projection image each time the stage 2 is driven in a trajectory according to a circular orbit, and the tomographic image calculation unit 8 shown in FIG. Compute and calculate a tomographic image.
  • FIG. 3A shows a circular orbit, a concentric circle of a circular orbit having a half size, a circular orbit of a concentric circle having a size twice as large, a circular orbit inscribed in a small circle.
  • FIG. 3B is a schematic diagram illustrating an equilateral triangle circumscribing the circular orbit and an equilateral triangle inscribed in the great circle orbit and circumscribing the circular orbit;
  • Regular hexagons inscribed in the trajectory, connecting the diagonals of the regular hexagons, equilateral triangles that divide the regular hexagons along the sides that pass through the center of the circular or great circular orbits, and connecting the diagonals of the regular hexagons to the centers of the circular or great circular orbits
  • a circular orbit that is half the size of the concentric circle of the standard circular orbit is called a “small circular orbit”, and doubled by the concentric circle of the standard circular orbit.
  • the trajectory in the range from the small circle orbit to the great circle orbit is defined as a trajectory according to the circular orbit. Therefore, a trajectory that does not draw inside the small circular orbit and does not draw outside the great circular orbit is a trajectory according to the circular orbit.
  • the small circular orbit is a concentric circle of the (standard) circular orbit and half the size
  • the large circular orbit is a circular orbit that is twice the size of the (standard) concentric circle. The reason is as follows.
  • the circle inscribed in the regular polygon is the smallest.
  • the regular polygon is a regular triangle, and the circle inscribed in the regular triangle. It is.
  • the circle that circumscribes the regular polygon is the largest when the regular polygon is an equilateral triangle.
  • a circumscribed circle As shown in FIG.
  • Right triangle TR 4 becomes a triangle bisected by a line with a perpendicular line is drawn from the apexes of an equilateral triangle TR 3 (a portion of the side AB), the length of the hypotenuse of a right triangle TR 4 are circular orbit C B radial
  • the length of the side perpendicular to the perpendicular is the radius of the circular trajectory C (which is standard).
  • the length of the hypotenuse of a right triangle TR 4: the length of the side perpendicular to the vertical line is 2: 1 relationship. Therefore, as shown in FIG.
  • (the standard) a large circular orbit C B circular orbit C when replaced the circular orbit C is a circular path having twice the size in concentric circular orbit C S.
  • the circular orbit C S becomes a small circular path having half the size in the concentric circular orbit C.
  • FIG. 4 (a) is a normal circular orbit for comparison with FIG. 4 (b) and FIG. 4 (c), and the X coordinate value and the Y coordinate value when realizing the circular orbit.
  • FIG. I s a trajectory obtained by shortcutting a circular trajectory and an X coordinate value / Y coordinate value when the trajectory is realized
  • FIG. 4C is an X coordinate value / Y coordinate value when realizing a quadrangular trajectory and the trajectory. It is. 4 (a) to 4 (c), the horizontal axis represents ⁇ in FIGS. 4 (a) to 4 (c), and the starting point ( ⁇ ) indicated by the black circles in FIGS. 4 (a) to 4 (c).
  • the conventional ordinary circular orbit has a sine wave (sin wave) because the X coordinate value P X and the Y coordinate value P Y draw a circular orbit as described in FIG. ) Therefore, the driving amount (absolute value of the movement amount per unit step) is a region where the gain of the sine wave is large (the angle ⁇ at the Y coordinate in FIG. 4A is around 0 °, 180 °, 360 °, X The angle ⁇ in the coordinates becomes smaller at around 90 ° and 270 °, respectively, and the driving directions of the X-axis linear motor 7a and the Y-axis linear motor 7b (see FIG. 1) are reversed.
  • the composition of the trajectory by the X-axis linear motor 7a and the Y-axis linear motor 7b is the circular orbit shown in FIG.
  • the effect of the above-mentioned static friction and backlash becomes large, and it becomes difficult to ensure driving accuracy.
  • the trajectory according to the circular trajectory is not limited, and a small circular trajectory C S (FIG. 3 (a)) that is a concentric half of the circular trajectory C (see FIG. 3 (a)) is half.
  • the trajectory in a range from a reference circle) to a great circle orbit C B (see FIG. 3A) that is a concentric circle of the circle orbit C and has a size twice as large as that of the circle orbit C is a trajectory according to the circular orbit.
  • a tomographic image is calculated and calculated based on a plurality of projection images obtained in each trajectory shown in FIG. 4 other than FIG. 4A, it is almost the same as a tomographic image reconstructed with a standard circular trajectory. It has been confirmed that this will result.
  • the controller 9 sets the X-axis linear motor 7a and the Y-axis linear motor 7b. To control each.
  • each of the X-axis linear motor 7a and the Y-axis linear motor 7b that are linearly driven in the Cartesian coordinate system maintains a predetermined value or more with a driving amount such that the synthesis of the trajectory becomes the circular trajectory.
  • the X-axis linear motor 7a and Y-axis linear motor 7b are controlled respectively, and the drive amount is set to “0” only in the region where the driving directions of the X-axis linear motor 7a and Y-axis linear motor 7b are reversed.
  • Each X-axis linear motor 7a and Y-axis linear motor 7b are controlled by the linear track.
  • the drive amount absolute value of the movement amount per unit step
  • the controller 9 controls the X-axis linear motor 7a and the Y-axis linear motor 7b, respectively.
  • the square trajectory is trajectory ranging from small circular orbit C S to large circular orbit C B, the controller 9, X-axis linear motors 7a, one of the Y-axis linear motor 7b
  • the driving is performed on the rectilinear track of the rectangular track.
  • X-coordinate value P X is (straight X direction) varies by controlling only the X-axis linear motors 7a case, the drive amount of the Y-axis linear motor 7b " 0 ”is set, the Y coordinate value PY is fixed, and a stop state is set.
  • Y coordinate value P Y varies case, X-coordinate value in the driving amount in the X-axis linear motor 7a "0" and the P X to the fixed to the stop state.
  • the position control is simplified by setting the movement amount to “0” (that is, the stop state), and operating only by the remaining straight drive mechanism (motor) and driving straight to realize the rectangular track. Driving accuracy is improved.
  • it since it is a straight traveling track, it can be driven in a shorter time than a circular track, and the data collection time related to imaging can be shortened.
  • the controller 9 sets the absolute value (driving amount) of the movement amount per unit step to a predetermined value having a positive real number value or more.
  • each linear drive mechanism (X-axis linear motor 7a, Y-axis linear motor 7b).
  • the amount of movement equal to or greater than the predetermined value or the amount of movement of “0” (that is, the amount of movement of “0”) (ie, the amount of movement equal to or greater than the predetermined value) is not driven at a position where the driving direction of the linear drive mechanism (X-axis linear motor 7a, Y-axis linear motor 7b) is reversed. Stop state).
  • the controller 9 removes the restriction of the circular orbit and, under the restriction that the minute drive is not performed at the position where the drive direction of the rectilinear drive mechanism (X-axis rectilinear motor 7a, Y-axis rectilinear motor 7b) is reversed,
  • the stage 2 is driven with a trajectory ranging from a small circular orbit having a half size of a concentric circle to a large circular orbit having a size twice as large as a concentric circle of the circular orbit as a trajectory according to the circular orbit.
  • each linear drive mechanism (X-axis rectilinear motor 7a, Y-axis rectilinear motor 7b) is controlled.
  • the driving accuracy can be maintained without performing minute driving at a position where the driving direction of the rectilinear drive mechanism (X-axis rectilinear motor 7a, Y-axis rectilinear motor 7b) is reversed.
  • each straight drive mechanism (drive system)
  • the position control is simple, and the driving accuracy can be easily maintained.
  • the mechanically required rigidity condition is eased by improving the driving accuracy, the cost can be reduced, and low cost can be realized in each linear drive mechanism (drive system).
  • a detector rotating mechanism 5 for driving the X-ray detector 4 in synchronization with the driving of the stage 2 is provided.
  • an imaging field of view can be secured, and a tomographic image of a wider area can be calculated.
  • the detector rotation mechanism 5 When the detector rotation mechanism 5 is provided, preferably, the X-rays emitted from the X-ray tube 3 pass through the point of interest of the object O and are detected at the central portion of the X-ray detector 4.
  • the detector rotating mechanism 5 drives the X-ray detector 4.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the X-ray inspection apparatus has been described as an example of the radiation imaging apparatus.
  • radiation Is not limited to X-rays, and may be radiation other than X-rays ( ⁇ rays, ⁇ rays, ⁇ rays, etc.).
  • the object is not particularly limited. As described above, mounting boards, through holes / patterns / solder joints on multilayer boards, electronic parts before mounting such as integrated circuits (ICs) placed on pallets, castings of metals, moldings such as video decks What is necessary is just to perform radiography with respect to a target object, as exemplified by goods.
  • ICs integrated circuits
  • the trajectory according to the circular trajectory is the trajectory shown in FIG. 4B or 4C.
  • the trajectory is composed of a combination of two or more linear drive mechanisms, and is a unit step.
  • the absolute value (drive amount) of the hit movement amount is set to a predetermined value having a positive real number value or more or “0” to control each linear drive mechanism, and from the small circular orbit described above to the above large circle
  • the trajectory in the range up to the circular trajectory is a trajectory according to the circular trajectory, it is not limited to these. For example, as shown in FIG.
  • FIG. 5 (a) it may be a rectangular orbit having a vertex in the direction of the drive axis (in this case, the X-axis and Y-axis), or as shown in FIG. In other areas, a circular vertex that is a circular orbit may be a protruding orbit.
  • FIG. 5 (c) it may be a rectangular orbit that circumscribes the circular orbit (a square orbit in FIG. 5 (c)), or as shown in FIG. 5 (d), a circular orbit. It may be an equilateral triangular orbit that is inscribed or circumscribed.
  • the two X-axis linear motor 7a and Y-axis linear motor 7b shown in FIG. 2 are controlled to draw a trajectory according to a circular trajectory (along the horizontal plane).
  • Draw a trajectory according to a circular trajectory along the vertical plane while keeping the horizontal posture the object can be placed on the stage (for example, by a support member) even in the vertical posture, or a modification (8) described later
  • the radiation irradiation means X-ray tube 3 in the embodiment
  • the X-axis rectilinear motor 7a and the Z-axis rectilinear motor 7c are controlled respectively, or the Y-axis rectilinear motor 7b and the Z-axis rectilinear motor 7c are controlled so as to draw a trajectory according to the circular trajectory. Also good.
  • each linear drive mechanism in the embodiment, two X-axis linear motors
  • a trajectory according to a circular trajectory along a horizontal plane is drawn.
  • 7a and Y-axis rectilinear motors 7b are controlled respectively, but each rectilinear drive mechanism is controlled so as to draw a trajectory according to a circular trajectory along the vertical plane as in the above-described modification (4).
  • each straight drive mechanism may be controlled so as to draw a trajectory according to a circular trajectory along the slope.
  • combined drive means comprising a combination of the two X-axis rectilinear motors 7a and 7b shown in FIG.
  • each of the combined drive means composed of a combination of three or more straight drive mechanisms may be controlled.
  • a Z-axis rectilinear motor 7c may be combined in addition to the X-axis rectilinear motor 7a and the Y-axis rectilinear motor 7b.
  • the present invention is not limited to the orthogonal coordinate system.
  • the radiation irradiation means (X-ray tube 3 in the embodiment) and the radiation detection means (X-ray detector 4 in the embodiment) from the oblique direction inclined by the lamino angle.
  • the radiation irradiation means (X-ray tube 3) and the radiation detection means (X-ray detector 4) were provided. You may arrange. Further, the radiation irradiation means may be arranged on the upper side and the radiation detection means may be arranged on the lower side.
  • the stage 2 is driven as shown in FIG. 1. However, if at least one of the radiation irradiation means (X-ray tube 3 in the embodiment) and the stage 2 is driven, the stage 2 is driven. It is not limited to only driving. For example, as shown in FIG. 6B or 6E, only the radiation irradiation means (X-ray tube 3) may be driven, or as shown in FIG. Both the X-ray tube 3) and the stage 2 may be driven.
  • the radiation detection means (X-ray detector 4 in the embodiment) is driven in synchronization with the drive of the stage 2, but FIG. As shown in FIG. 6E, imaging may be performed without driving the radiation detection means (X-ray detector 4). In this case, there is an effect that no special drive mechanism is required for the radiation detection means (X-ray detector 4).
  • the radiation (X-ray in the embodiment) passes through the target point of the object O, and the center of the radiation detection means (X-ray detector 4 in the embodiment).
  • the structure is such that it is detected at a portion, as shown in FIG. 6D or 6E, if the radiation detection means (X-ray detector 4) is very large, the radiation detection means ( There is no need to detect radiation (X-rays) at the center of the X-ray detector 4).

Abstract

 この発明の放射線撮影装置として、実施例ではX線検査装置を例に採って説明しており、対象物を載置するステージ2を駆動する際に、2つ以上の直進駆動機構(X軸/Y軸直進モータ7a,7b)の組み合わせからなるステージ駆動機構7により、各々の直進駆動機構(X軸/Y軸直進モータ7a,7b)による軌道の合成が円軌道に準じた軌道でステージ2を動かす。このとき、単位ステップ当たりの移動量の絶対値(駆動量)を、正の実数の値を有する所定値以上または"0"にして、各々の直線駆動機構(X軸/Y軸直進モータ7a,7b)をそれぞれ制御し、円軌道の同心円で半分の大きさを有する小円軌道から、円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を円軌道に準じた軌道として、ステージ2を動かすので、低コストで、駆動精度を保つことができる。

Description

放射線撮影装置
 この発明は、複数の投影画像に基づいて断層画像を取得して放射線撮影を行う放射線撮影装置に関する。
 放射線撮影装置として、X線検査装置を例に採って説明する。従来、この種のX線検査装置は、図7に示すように、対象物Oを載置するステージSと、そのステージSを間に挟んで互いに対向するように配置されたX線管T(放射線照射手段)およびX線検出器D(放射線検出手段)とを備えている。ステージSは、回転機構を有する回転ステージとなっており、回転軸Axの軸心周りに回転ステージを回転駆動する。
 なお、X線検査の対象物としては、実装基板、多層基板のスルーホール/パターン/はんだ接合部、パレット上に配置された集積回路(IC: Integrated Circuit)のような実装前の電子部品、金属などの鋳物、ビデオデッキのような成型品などがある。
 特に、Ball Grid Array(BGA)や配線などの非常に微細な構造を有する対象物に対する断層撮影によりX線検査を行う際には、拡大率を大きくして撮影する必要がある。しかし、拡大率を大きくするには、X線管に代表される放射線源と対象物とを近づけて撮影する必要があるので、対象物が平面に広い形状の場合にはX線管と対象物とが互いに干渉してしまう恐れがある。その結果、干渉を避けるために拡大率をあまり上げることができない。
 そこで、図8に示すように、回転ステージSと、回転ステージSを回転駆動する回転軸Axに対して一定角度(ラミノ角)傾いた軸方向にX線管TとX線検出器Dとを配置する(例えば、特許文献1参照)。図8の場合には、X線管Tを固定で配置し、回転軸Axの軸心周りに回転ステージSを回転駆動する。データ取得時には、ラミノ角傾いた斜め方向からX線管Tから照射されて対象物Oを透過したX線をX線検出器Dが検出して、それに基づいてX線検出器Dの検出面に投影された投影画像を取得する。回転ステージSを回転駆動する度に投影画像を取得することで複数の角度からの投影画像を取得する。
 このように、ラミノ角傾いた斜め方向にX線管とX線検出器とを配置して斜め方向から撮影することで、X線管と、回転ステージひいては対象物とを近づけることができ、X線管と対象物とが互いに干渉することなく高拡大率の投影画像が得られるという利点がある。しかし、駆動系の自由度の制約があるので、任意の位置から対象物の投影画像を取得するのが難しく、用途がCT(Computed Tomography)に限定されてしまうという欠点がある。
 そこで、例えば図9に示すように、ステージSに特別な回転機構を有さない装置で、斜め方向からの撮影を実現する方法が知られている(例えば、特許文献2、3参照)。図9では、対象物OとともにステージSを回転軸Axに垂直な平面(図9では水平面)で円軌道を描くように平行移動(直進移動)させ、ステージSの移動に同期させて同一の回転軸Axの軸心周りにX線検出器Dを回転駆動することで、複数の投影画像を取得し、さらには複数の投影画像に基づいて断層画像を取得する。
 このように、図9における撮影時のX線管、対象物およびX線検出器の相対的な幾何関係が、図8の場合(対象物および回転ステージが回転軸Axの軸心周りに回転駆動した場合)と同じになるようにそれぞれを同期駆動することで、斜め方向からの撮影を実現している。なお、図9の場合には図8と相違して、ステージSの向きを一定に固定することができる。また、斜め方向からの撮影を実現する装置構成については、図9以外にも多数あり、例えばステージ(および対象物)を固定して、X線管およびX線検出器を駆動する方法などがある(例えば、特許文献4参照)。
特開2005-106515号公報 特開2010-2221号公報 特開2006-162335号公報 特許第4409043号
 しかしながら、図9に示すように、斜め方向からCT撮影する場合には、CT専用装置においてステージ回転の1自由度のみであるのに比べて駆動系の自由度が多く、各駆動系の駆動精度が重要となる。特に、ステージとX線検出器とが互いに独立した駆動機構となっているので、理想的な断層撮影の走査軌道を得るために、高精度な位置決め、同期が可能な機構と制御とが必要になり、高価になるという問題点がある。
 具体的に説明すると、X線管とステージとを近づけて高拡大率で撮影するほど、ステージの駆動精度が投影画像に与える影響が大きくなる。このため、高拡大率で斜め方向からCT撮影する場合には、ステージが高精度で円軌道を描くように動作する必要がある。このようなステージの高精度な駆動の実現のためには、メカが高剛性であること、微小な位置制御(位置決め)が可能であることが必要になり、コストが高くなるという問題点がある。
 また、ステージが円軌道を描くように動作するには、図10に示すように直交する2軸(直交座標系のX軸,Y軸)の駆動系が、90°位相がずれた正弦波(sin波)となるようにそれぞれの位置の制御をすればよい。図10中のPはX座標値であり、PはY座標値である。しかし、撮影時にある回転角度で等間隔にサンプリングする場合、駆動量はsin波のゲインが大きくなる位置(図10中のY座標における角度θが0°,180°,360°付近、X座標における角度θが90°,270°付近)で各軸の駆動量が小さくなり、しかも駆動方向が反転する必要がある。このように、駆動方向が反転する位置で微小駆動するので、静止摩擦やバックラッシュの影響が大きくなり、駆動精度の確保が難しくなるという問題がある。
 これらの問題は、ステージとX線検出器とを駆動して斜め方向からCT撮影する場合だけに限らない。例えば、X線管とX線検出器とを駆動して斜め方向からCT撮影する場合でも、高拡大率で斜めCT機能を実現しようとするためには、X線管が高精度で円軌道を描く必要があるという同じ問題を有している。
 この発明は、このような事情に鑑みてなされたものであって、低コストで、駆動精度を保つことができる放射線撮影装置を提供することを目的とする。
 この発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、この発明の放射線撮影装置は、対象物を載置するステージと、そのステージを間に挟んで互いに対向するように配置された放射線照射手段および放射線検出手段と、前記放射線照射手段から照射されて前記対象物を透過した放射線を前記放射線検出手段で検出することにより得られた複数の投影画像に基づいて、断層画像を演算する演算手段とを備えた放射線撮影装置であって、2つ以上の直進駆動機構の組み合わせからなり、各々の直進駆動機構による軌道の合成が円軌道に準じた軌道で、前記放射線照射手段、前記ステージの少なくとも一方を駆動する合成駆動手段と、その合成駆動手段を制御する制御手段とを備え、制御手段は、単位ステップ当たりの移動量の絶対値を、正の実数の値を有する所定値以上または“0”にして、各々の直線駆動機構をそれぞれ制御するとともに、前記円軌道の同心円で半分の大きさを有する小円軌道から、前記円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を前記円軌道に準じた軌道として、前記放射線照射手段、前記ステージの少なくとも一方を駆動するように、各々の直線駆動機構をそれぞれ制御することを特徴とするものである。
 ここで、本発明における上述の断層画像とは、複数の断層画像を含む3次元断層画像であり、もちろん、1枚の断層画像の場合も含むものである。
 2つ以上の直進駆動機構により、もし円軌道を実現する際には、直進駆動機構の駆動方向が反転する位置で必ず微小駆動するので、静止摩擦やバックラッシュの影響が大きくなり駆動精度を保つことができない。そこで、この発明に係る放射線撮影装置によれば、制御手段は、単位ステップ当たりの移動量の絶対値を、正の実数の値を有する所定値以上または“0”にして、各々の直線駆動機構をそれぞれ制御する。この制御により、直進駆動機構の駆動方向が反転する位置で微小駆動せずに、当該所定値以上の移動量あるいは“0”の移動量(すなわち停止状態)となる。また、制御手段は、円軌道という制約を外して、直進駆動機構の駆動方向が反転する位置で微小駆動しないという制約の下で、当該円軌道の同心円で半分の大きさを有する小円軌道から、当該円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を当該円軌道に準じた軌道として、放射線照射手段、ステージの少なくとも一方を駆動するように、各々の直線駆動機構をそれぞれ制御する。これにより、直進駆動機構の駆動方向が反転する位置で微小駆動することなく、駆動精度を保つことができる。また、“0”の移動量(すなわち停止状態)にして、残りの直進駆動機構のみで動作させて直進駆動するという動きを採り入れた軌道とすることで、各々の直進駆動機構(駆動系)での位置制御が簡易なものとなり、駆動精度も保ちやすくなるという効果がある。また、駆動精度がよくなることでメカ的に必要な剛性の条件が緩和されるので、コストダウンにもつながり、各々の直進駆動機構(駆動系)において低コストを実現することができる。
 上述した発明の一例は、直交座標系でそれぞれ直進駆動する2つの直進駆動機構による軌道の合成が当該円軌道となるような単位ステップ当たりの移動量で(正の実数の値を有する)当該所定値以上を保ちつつ各々の直線駆動機構をそれぞれ制御するとともに、各々の直線駆動機構の駆動方向が反転する領域のみ、単位ステップ当たりの移動量を“0”にして直進軌道で各々の直線駆動機構をそれぞれ制御することである。つまり、各々の直線駆動機構の駆動方向が反転する領域のみ、単位ステップ当たりの移動量を“0”にして直進軌道として、他の領域では当該円軌道と同じ軌道とすることで、円軌道から外れるときに生じる偽像の影響をできるだけ小さくして、かつ問題となる領域(直線駆動機構の駆動方向が反転する領域)での駆動精度を向上させることができる。
 上述した発明の他の一例は、円軌道に準じた軌道は、当該小円軌道から当該大円軌道までの範囲の軌道、かつ四角形軌道であって、制御手段は、1つの直進駆動機構のみを制御するとともに、単位ステップ当たりの移動量を“0”にして残りの直進駆動機構を制御することで、当該四角形軌道の直進軌道で駆動することである。“0”の移動量(すなわち停止状態)にして、残りの直進駆動機構のみで動作させて直進駆動して当該四角形軌道を実現することで位置制御が簡易なものとなり、駆動精度が向上する。また、直進軌道であるので、円軌道よりも短時間で駆動することが可能で、撮影に関するデータ収集時間の短縮が可能となる。
 上述したこれらの発明において、上述の合成駆動手段による放射線照射手段、ステージの少なくとも一方の駆動に同期させて、放射線検出手段を駆動する検出用駆動手段を備えるのが好ましい。放射線検出手段も動作させることで撮影視野を確保することができ、より広い領域の断層画像を算出することができる。
 検出用駆動手段を備えた場合において、放射線照射手段から照射された放射線が対象物の注目点を透過して放射線検出手段の中心部分で検出されるように、検出用駆動手段は放射線検出手段を駆動するのがより好ましい。注目点を放射線検出手段の中心部分で捉えることで、断層画像を算出する際にほぼ同じ位置(注目点)で再構成(バックプロジェクション)することが可能となり、撮影視野の中心を基準とした十分広い範囲の断層画像を得ることができる。
 この発明に係る放射線撮影装置によれば、制御手段は、円軌道という制約を外して、直進駆動機構の駆動方向が反転する位置で微小駆動しないという制約の下で、当該円軌道の同心円で半分の大きさを有する小円軌道から、当該円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を当該円軌道に準じた軌道として、放射線照射手段、ステージの少なくとも一方を駆動するように、各々の直線駆動機構をそれぞれ制御する。その結果、低コストで、駆動精度を保つことができる。
実施例に係るX線検査装置の概略構成図である。 実施例に係るX線検査装置のブロック図である。 (a)は、円軌道の他に、円軌道の同心円で半分の大きさを有する小円軌道、円軌道の同心円で2倍の大きさを有する大円軌道、円軌道に内接し小円軌道に外接する正三角形および大円軌道に内接し円軌道に外接する正三角形を併せて図示した概略図、(b)は、円軌道および大円軌道の他に、大円軌道に内接する正六角形、正六角形の対角を結び円軌道・大円軌道の中心を通る辺で正六角形を分割した正三角形、正六角形の対角を結び円軌道・大円軌道の中心を通らない辺および当該辺・正三角形の辺・大円軌道の中心を通る辺で形成された直角三角形を併せて図示した概略図である。 (a)は、(b)および(c)の比較のための通常の円軌道および円軌道を実現するときのX座標値・Y座標値、(b)は、円軌道をショートカットした軌道およびその軌道を実現するときのX座標値・Y座標値、(c)は、四角形軌道およびその軌道を実現するときのX座標値・Y座標値である。 (a)~(d)は、変形例に係る円軌道に準じた軌道の各形態である。 (a)~(e)は、変形例に係る斜め撮影を実施するための各駆動形態である。 従来の撮影の概略図である。 従来の斜め撮影の概略図である。 ステージを平行移動させ、ステージの移動に同期させてX線検出器を回転駆動させたときの従来の斜め撮影の概略図である。 通常の円軌道を実現するときのX座標値・Y座標値である。
 以下、図面を参照してこの発明の実施例を説明する。図1は、実施例に係るX線検査装置の概略構成図であり、図2は、実施例に係るX線検査装置のブロック図である。本実施例では、放射線撮影装置として、X線検査装置を例に採って説明する。
 図1に示すように、X線検査装置1は、対象物Oを載置するステージ2と、そのステージ2を間に挟んで互いに対向するように配置されたX線管3およびX線検出器4とを備えている。X線検出器4については、イメージインテンシファイア(I.I)やフラットパネル型X線検出器(FPD: Flat Panel Detector)などに例示されるように、特に限定されない。本実施例では、X線検出器4としてフラットパネル型X線検出器(FPD)を例に採って説明する。ステージ2は、この発明におけるステージに相当し、X線管3は、この発明における放射線照射手段に相当し、X線検出器4は、この発明における放射線検出手段に相当する。
 FPDは、画素に対応して縦横に並べられた複数の検出素子からなり、X線を検出素子が検出して、検出されたX線のデータ(電荷信号)をX線検出信号として出力する。このようにして、X線管3から照射されて対象物Oを透過したX線をFPDからなるX線検出器4が検出してX線検出信号を出力し、X線検出信号に基づく画素値を画素に対応してそれぞれ並べることで、X線検出器4の検出面に投影された投影画像を取得する。
 その他に、X線検査装置1は、図1に示すように、X線検出器4を矢印R周りに回転駆動する検出器回転機構5と、X線検出器4を矢印R方向に傾動させる検出器傾動機構6とを備えている。検出器傾動機構6は、X線検出器4を支持する円弧状のガイド部6a、および回転モータ6b(図2を参照)からなり、回転モータ6bが回転駆動することで、ガイド部6aに沿ってX線検出器4が矢印R方向に傾動する。検出器回転機構5は、この発明における検出用駆動手段に相当する。
 検出器回転機構5は、回転モータ5a(図2を参照)からなり、回転モータ5aが検出器傾動機構6のガイド部6aを矢印R周りに回転駆動することで、ガイド部6aに支持されたX線検出器4も矢印R周りに回転駆動する。また、本実施例では、検出器回転機構5は、ステージ2の駆動に同期させてX線検出器4を矢印R周りに回転駆動する。特に、X線管3から照射されたX線が対象物Oの注目点を透過して放射線検出器4の中心部分で検出されるように、検出器回転機構5はX線検出器4を矢印R周りに回転駆動する。
 その他に、X線検査装置1は、図2に示すように、ステージ2を直交座標系X,Y,Z(図1を参照)でそれぞれ直進駆動するステージ駆動機構7と、複数の投影画像に基づいて断層画像を算出して演算する断層画像算出部8と、これらを統括制御するコントローラ9と、断層画像算出部8で得られた断層画像を出力(モニタに表示出力あるいはプリンタに印刷出力)する画像出力部10とを備えている。ステージ駆動機構7は、ステージ2をX方向に直進駆動(ここでは水平駆動)するX軸直進モータ7a、ステージ2をY方向に直進駆動(ここでは水平駆動)するY軸直進モータ7b、およびステージ2をZ方向に直進駆動(ここでは昇降駆動)するZ軸直進モータ7cからなる。本実施例では、各々のX軸直進モータ7a,Y軸直進モータ7bによる軌道の合成が円軌道に準じた軌道で、ステージ2を駆動する。円軌道に準じた軌道については、詳しく後述する。ステージ駆動機構7は、この発明における合成駆動手段に相当し、X軸直進モータ7a,Y軸直進モータ7bおよびZ軸直進モータ7cは、この発明における直進駆動機構に相当し、断層画像算出部8は、この発明における演算手段に相当し、コントローラ9は、この発明における制御手段に相当する。
 断層画像算出部8は、複数の投影画像に基づいて断層画像を算出して演算する。コントローラ9は、X線検査装置1を構成する各部分を統括制御し、特に、検出器回転機構5の回転モータ5a、検出器傾動機構6の回転モータ6b、ステージ駆動機構7のX軸直進モータ7a,Y軸直進モータ7bおよびZ軸直進モータ7cをそれぞれ制御する。図1ではX線管3は固定位置であったが、X線検出器4の傾動に応じてX線管3を傾斜可能にコントローラ9は制御してもよい。コントローラ9による具体的な制御についても、詳しく後述する。上述の断層画像算出部8やコントローラ9は、中央演算処理装置(CPU)などで構成されている。
 図1に示すように、X線管3、対象物OおよびX線検出器4を配置することで、図9と同様に、ラミノ角傾いた斜め方向にX線管3とX線検出器4とを配置して斜め方向から撮影することができる。そして、X線管3と、ステージ2ひいては対象物Oとを近づけることができ、X線管3と対象物Oとが互いに干渉することなく高拡大率の投影画像を得ることができる。ステージ2を円軌道に準じた軌道で駆動する度に投影画像を取得することで複数の角度からの投影画像を取得し、図2に示す断層画像算出部8は、複数の投影画像に基づいて断層画像を算出して演算する。
 ここで、円軌道に準じた軌道の範囲について、図3を参照して説明する。図3(a)は、円軌道の他に、円軌道の同心円で半分の大きさを有する小円軌道、円軌道の同心円で2倍の大きさを有する大円軌道、円軌道に内接し小円軌道に外接する正三角形および大円軌道に内接し円軌道に外接する正三角形を併せて図示した概略図であり、図3(b)は、円軌道および大円軌道の他に、大円軌道に内接する正六角形、正六角形の対角を結び円軌道・大円軌道の中心を通る辺で正六角形を分割した正三角形、正六角形の対角を結び円軌道・大円軌道の中心を通らない辺および当該辺・正三角形の辺・大円軌道の中心を通る辺で形成された直角三角形を併せて図示した概略図である。
 円軌道に準じた軌道は無制限でなく、本明細書では、標準となる円軌道の同心円で半分の大きさを有する円軌道を「小円軌道」、標準となる円軌道の同心円で2倍の大きさを有する円軌道を「大円軌道」とそれぞれ定義づけると、小円軌道から大円軌道までの範囲の軌道を円軌道に準じた軌道とする。したがって、小円軌道よりも内側に描くことなく、かつ大円軌道よりも外側に描くことがない軌道が、円軌道に準じた軌道となる。ここで、小円軌道を(標準となる)円軌道の同心円で半分の大きさを有する円軌道とし、大円軌道を(標準となる)円軌道の同心円で2倍の大きさを有する円軌道としたのは、以下の理由である。
 (標準となる)円軌道に内接する正多角形を考えると、その正多角形に内接する円が最も小さくなるのは、その正多角形は正三角形であって、その正三角形に内接する円である。逆に、(標準となる)円軌道に外接する正多角形を考えると、その正多角形に外接する円が最も大きくなるのは、その正多角形は正三角形であって、その正三角形に外接する円である。図3(a)に示すように、標準となる円軌道をCとし、(標準となる)円軌道Cに内接する正三角形をTRとし、その正三角形TRに内接する円軌道をCとし、(標準となる)円軌道Cに外接する正三角形をTRとし、その正三角形TRに外接する円軌道をCとする。
 (標準となる)円軌道Cの径、正三角形TRに外接する円軌道Cの径の関係についてのみ着目する。図3(b)に示すように、円軌道Cに内接する正六角形をHEXとし、正六角形HEXの対角を結び円軌道C・Cの中心を通る辺で正六角形HEXを分割した正三角形をTRとすると、正六角形HEXが6つの正三角形TRに分割される。一方、図3(b)に示すように、正六角形HEXの対角を結び円軌道C・Cの中心を通らない辺をABとし、当該辺AB・正三角形TRの辺・円軌道Cの中心を通る辺で形成された直角三角形をTRとする(図3(b)の太枠を参照)。
 直角三角形TRは、正三角形TRの頂点から垂線(辺ABの一部)を下ろした線で二等分された三角形となり、直角三角形TRの斜辺の長さが円軌道Cの半径となり、垂線と直交する辺の長さが(標準となる)円軌道Cの半径となる。直角三角形TRの斜辺の長さ:垂線と直交する辺の長さは2:1の関係である。したがって、図3(b)に示すように、(標準となる)円軌道Cの半径をrとすると、垂線と直交する辺の長さは円軌道Cの半径rと等しく、直角三角形TRの斜辺の長さは2rとなり、その結果、円軌道Cの半径は直角三角形TRの斜辺の長さ2rと等しくなる。
 つまり、図3(a)の正三角形TRに外接する円軌道Cの半径は2rで、(標準となる)円軌道Cの半径rの2倍となり、円軌道Cは、円軌道Cの同心円で2倍の大きさを有する大円軌道となる。よって、大円軌道Cを(標準となる)円軌道Cの同心円で2倍の大きさを有する円軌道とする。同様の理由で、(標準となる)円軌道Cを(図3(a)の正三角形TRに内接する)円軌道Cに置き換え、大円軌道Cを(標準となる)円軌道Cに置き換えた場合には、円軌道Cは、円軌道Cの同心円で2倍の大きさを有する円軌道となる。言い換えれば、円軌道Cは、円軌道Cの同心円で半分の大きさを有する小円軌道となる。
 次に、具体的な円軌道に準じた軌道の例について、図4を参照して説明する。図4(a)は、図4(b)および図4(c)の比較のための通常の円軌道および円軌道を実現するときのX座標値・Y座標値であり、図4(b)は、円軌道をショートカットした軌道およびその軌道を実現するときのX座標値・Y座標値であり、図4(c)は、四角形軌道およびその軌道を実現するときのX座標値・Y座標値である。図4(a)~図4(c)の横軸は、図4(a)~図4(c)中のθを、図4(a)~図4(c)の黒丸が示す始点(θ=0°)から図4(a)~図4(c)の矢印が示す終点(θ=360°)までとった角度軸であり、図4(a)~図4(c)の縦軸は、X座標値・Y座標値である。また、図4(a)の円軌道を実現するときのX座標値・Y座標値は、図10に示すX座標値・Y座標値と同じである。
 従来の通常の円軌道は、図4(a)に示すように、図10で述べたのと同様にX座標値P,Y座標値Pが円軌道を描くために正弦波(sin波)となる。したがって、駆動量(単位ステップ当たりの移動量の絶対値)は、sin波のゲインが大きくなる領域(図4(a)中のY座標における角度θが0°,180°,360°付近、X座標における角度θが90°,270°付近)でそれぞれ小さくなって、X軸直進モータ7a,Y軸直進モータ7b(図1を参照)の駆動方向がそれぞれ反転する。したがって、X軸直進モータ7a,Y軸直進モータ7bによりステージ2を直進駆動して、もしX軸直進モータ7a,Y軸直進モータ7bによる軌道の合成が図4(a)に示す円軌道の場合には、上述した静止摩擦やバックラッシュの影響が大きくなり、駆動精度の確保が難しくなる。
 そこで、図4(a)以外の図4に示すように円軌道という制約を外して、軌道の少なくとも一部に直線的な軌道(直進駆動)を採り入れる。そして、円軌道でみられる駆動方向が反転する位置での微小駆動をなくすことが可能な軌道の例は多数存在し、これらの軌道を「円軌道に準じた軌道」とする。なお、標準となる円軌道からあまりにも外れすぎる(例えば短軸の4倍を超えた長さの長軸を有した楕円などの場合)と、外れすぎた場合に得られた複数の投影画像に基づいて断層画像を算出して演算すると、標準となる円軌道で再構成された断層画像に対して正しい値が得られなくなる。これは、極端な例を考えれば、CTと斜めCTとの断層画像が異なることからも分かる.
 そこで、上述したように円軌道に準じた軌道は無制限でなく、円軌道C(図3(a)を参照)の同心円で半分の大きさを有する小円軌道C(図3(a)を参照)から、円軌道Cの同心円で2倍の大きさを有する大円軌道C(図3(a)を参照)までの範囲の軌道を円軌道に準じた軌道とする。また、図4(a)以外の図4に示す各軌道で得られた複数の投影画像に基づいて断層画像を算出して演算すると、標準となる円軌道で再構成された断層画像とほぼ同じ結果になることが確認されている。
 例えば、図4(b)に示すように、X座標値P,Y座標値Pが円軌道をショートカットした軌道を描く場合には、駆動方向が反転する位置での微小駆動量よりも大きく、正の実数の値を有する所定値を設定する。そして、駆動量(単位ステップ当たりの移動量の絶対値)を、当該所定値以上または“0”にして、コントローラ9(図2を参照)は各々のX軸直進モータ7a,Y軸直進モータ7bをそれぞれ制御する。
 より具体的には、直交座標系でそれぞれ直進駆動する2つのX軸直進モータ7a,Y軸直進モータ7bによる軌道の合成が当該円軌道となるような駆動量で当該所定値以上を保ちつつ各々の2つのX軸直進モータ7a,Y軸直進モータ7bをそれぞれ制御するとともに、各々のX軸直進モータ7a,Y軸直進モータ7bの駆動方向が反転する領域のみ、駆動量を“0”にして直進軌道で各々のX軸直進モータ7a,Y軸直進モータ7bをそれぞれ制御する。つまり、各々のX軸直進モータ7a,Y軸直進モータ7bの駆動方向が反転する領域のみ、駆動量を“0”にして(円軌道をショートカットした)直進軌道として、他の領域では当該円軌道と同じ軌道とする。したがって、図面の右に示すように、駆動方向が反転する領域のみ“0”となり、他の領域ではsin波となる。このように、駆動方向が反転する領域のみ、駆動量を“0”にして直進軌道として、他の領域では当該円軌道と同じ軌道とすることで、円軌道から外れるときに生じる偽像の影響をできるだけ小さくして、かつ問題となる領域(X軸直進モータ7a,Y軸直進モータ7bの駆動方向が反転する領域)での駆動精度を向上させることができる。
 また、例えば、図4(c)に示すように、X座標値P,Y座標値Pが四角形軌道(図4(c)では円軌道に内接する正方形軌道)を描く場合には、同様に正の実数の値を有する所定値を設定する。そして、駆動量(単位ステップ当たりの移動量の絶対値)を、当該所定値以上または“0”にして、コントローラ9は各々のX軸直進モータ7a,Y軸直進モータ7bをそれぞれ制御する。
 より具体的には、この四角形軌道は、小円軌道Cから大円軌道Cまでの範囲の軌道であり、コントローラ9は、X軸直進モータ7a,Y軸直進モータ7bのいずれか1つのモータのみを制御するとともに、駆動量を“0”にして残りのモータを制御することで、当該四角形軌道の直進軌道で駆動する。例えば、図面の右に示すように、X軸直進モータ7aのみを制御してX座標値Pが変動する(X方向に直進する)場合には、Y軸直進モータ7bでの駆動量を“0”にしてY座標値Pを固定にして停止状態にする。逆に、Y軸直進モータ7bのみを制御してY座標値Pが変動する(Y方向に直進する)場合には、X軸直進モータ7aでの駆動量を“0”にしてX座標値Pを固定にして停止状態にする。このように、“0”の移動量(すなわち停止状態)にして、残りの直進駆動機構(モータ)のみで動作させて直進駆動して当該四角形軌道を実現することで位置制御が簡易なものとなり、駆動精度が向上する。また、直進軌道であるので、円軌道よりも短時間で駆動することが可能で、撮影に関するデータ収集時間の短縮が可能となる。
 このように、2つ以上の直進駆動機構(本実施例ではX軸直進モータ7a,Y軸直進モータ7b)により、もし図4(a)に示す円軌道を実現する際には、直進駆動機構の駆動方向が反転する位置で必ず微小駆動するので、静止摩擦やバックラッシュの影響が大きくなり駆動精度を保つことができない。そこで、上述の構成を備えた本実施例に係るX線検査装置によれば、コントローラ9は、単位ステップ当たりの移動量の絶対値(駆動量)を、正の実数の値を有する所定値以上または“0”にして、各々の直線駆動機構(X軸直進モータ7a,Y軸直進モータ7b)をそれぞれ制御する。この制御により、直進駆動機構(X軸直進モータ7a,Y軸直進モータ7b)の駆動方向が反転する位置で微小駆動せずに、当該所定値以上の移動量あるいは“0”の移動量(すなわち停止状態)となる。
 また、コントローラ9は、円軌道という制約を外して、直進駆動機構(X軸直進モータ7a,Y軸直進モータ7b)の駆動方向が反転する位置で微小駆動しないという制約の下で、当該円軌道の同心円で半分の大きさを有する小円軌道から、当該円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を当該円軌道に準じた軌道として、ステージ2を駆動するように、各々の直線駆動機構(X軸直進モータ7a,Y軸直進モータ7b)をそれぞれ制御する。これにより、直進駆動機構(X軸直進モータ7a,Y軸直進モータ7b)の駆動方向が反転する位置で微小駆動することなく、駆動精度を保つことができる。
 また、“0”の移動量(すなわち停止状態)にして、残りの直進駆動機構のみで動作させて直進駆動するという動きを採り入れた軌道とすることで、各々の直進駆動機構(駆動系)での位置制御が簡易なものとなり、駆動精度も保ちやすくなるという効果がある。また、駆動精度がよくなることでメカ的に必要な剛性の条件が緩和されるので、コストダウンにもつながり、各々の直進駆動機構(駆動系)において低コストを実現することができる。
 本実施例では、好ましくは、ステージ2の駆動に同期させて、X線検出器4を駆動する検出器回転機構5を備えている。X線検出器4も動作させることで撮影視野を確保することができ、より広い領域の断層画像を算出することができる。
 検出器回転機構5を備えた場合において、好ましくは、X線管3から照射されたX線が対象物Oの注目点を透過してX線検出器4の中心部分で検出されるように、検出器回転機構5はX線検出器4を駆動する。注目点をX線検出器4の中心部分で捉えることで、断層画像を算出する際にほぼ同じ位置(注目点)で再構成(バックプロジェクション)することが可能となり、撮影視野の中心を基準とした十分広い範囲の断層画像を得ることができる。
 この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、放射線撮影装置として、X線検査装置を例に採って説明したが、複数の投影画像に基づいて断層画像を取得して放射線撮影を行う装置であれば、放射線についてはX線に限定されず、X線以外の放射線(α線、β線、γ線など)であってもよい。
 (2)対象物については特に限定されない。上述したように実装基板、多層基板のスルーホール/パターン/はんだ接合部、パレット上に配置された集積回路(IC)のような実装前の電子部品、金属などの鋳物、ビデオデッキのような成型品などに例示されるように、対象物に対する放射線撮影を行うのであればよい。
 (3)上述した実施例では、円軌道に準じた軌道は、図4(b)や図4(c)に示す軌道であったが、2つ以上の直進駆動機構の組み合わせからなり、単位ステップ当たりの移動量の絶対値(駆動量)を、正の実数の値を有する所定値以上または“0”にして、各々の直線駆動機構をそれぞれ制御するとともに、上述の小円軌道から上述の大円軌道までの範囲の軌道を円軌道に準じた軌道とするのであれば、これらに限定されない。例えば、図5(a)に示すように、駆動軸(この場合、X軸、Y軸)方向に頂点を有する四角形軌道でもよいし、図5(b)に示すように、反転する領域のみ頂点を有し、それ以外の領域では円軌道である円頂点はみ出し軌道であってもよい。その他にも、図5(c)に示すように、円軌道に外接する四角形軌道(図5(c)では正方形軌道)であってもよいし、図5(d)に示すように、円軌道に内接あるいは外接する正三角形軌道であってもよい。
 (4)上述した実施例では、(水平面に沿った)円軌道に準じた軌道を描くのに、図2に示す2つのX軸直進モータ7a,Y軸直進モータ7bをそれぞれ制御したが、ステージを水平姿勢のままで鉛直面に沿った円軌道に準じた軌道を描く、鉛直姿勢にしてもステージに対して(例えば支持部材により)対象物が載置可能、あるいは後述する変形例(8)のように放射線照射手段(実施例ではX線管3)の方を駆動するのであれば、図1に示すように水平面をXY平面とし、Z軸を鉛直軸としたときに、鉛直面に沿った円軌道に準じた軌道を描くように、X軸直進モータ7a,Z軸直進モータ7c(図2を参照)をそれぞれ制御、あるいはY軸直進モータ7b,Z軸直進モータ7cをそれぞれ制御してもよい。
 (5)上述した実施例では、円軌道に準じた軌道を描くのに、水平面に沿った円軌道に準じた軌道を描くように、各々の直進駆動機構(実施例では2つのX軸直進モータ7a,Y軸直進モータ7b)をそれぞれ制御したが、上述の変形例(4)のように鉛直面に沿った円軌道に準じた軌道を描くように、各々の直進駆動機構をそれぞれ制御してもよいし、斜面に沿った円軌道に準じた軌道を描くように、各々の直進駆動機構をそれぞれ制御してもよい。
 (6)上述した実施例では、円軌道に準じた軌道を描くのに、図2に示す2つのX軸直進モータ7a,Y軸直進モータ7bの組み合わせからなる合成駆動手段(実施例ではステージ駆動機構7)をそれぞれ制御したが、3つ以上の直進駆動機構の組み合わせからなる合成駆動手段をそれぞれ制御してもよい。円軌道に準じた軌道を描くのに、例えば、X軸直進モータ7a,Y軸直進モータ7bの他にZ軸直進モータ7c(図2を参照)を組み合わせてもよい。また、直交座標系に限定されず、例えば、X軸直進モータ7a,Y軸直進モータ7bおよびZ軸直進モータ7cのいずれか少なくとも1つのモータと、これらの軸に対して斜め方向の軸に沿って直進駆動するモータとを組み合わせてもよい。
 (7)上述した実施例では、図1に示すように、ラミノ角傾いた斜め方向からの放射線照射手段(実施例ではX線管3)と放射線検出手段(実施例ではX線検出器4)とを配置して斜め方向から撮影したが、各々の図6(a)~図6(e)に示すように放射線照射手段(X線管3)および放射線検出手段(X線検出器4)を配置してもよい。また、放射線照射手段を上側に配置し、放射線検出手段を下側に配置してもよい。
 (8)上述した実施例では、図1に示すように、ステージ2を駆動したが、放射線照射手段(実施例ではX線管3)、ステージ2の少なくとも一方を駆動するのであれば、ステージ2のみの駆動に限定されない。例えば、図6(b)あるいは図6(e)に示すように、放射線照射手段(X線管3)のみを駆動してもよいし、図6(c)に示すように、放射線照射手段(X線管3)およびステージ2の双方を駆動してもよい。
 (9)上述した実施例では、図1に示すように、ステージ2の駆動に同期させて、放射線検出手段(実施例ではX線検出器4)を駆動したが、図6(c)~図6(e)に示すように、放射線検出手段(X線検出器4)を駆動させずに撮影を行ってもよい。この場合には、放射線検出手段(X線検出器4)に対して特別な駆動機構が不要という効果を奏する。
 (10)上述した実施例では、図1に示すように、放射線(実施例ではX線)が対象物Oの注目点を透過して放射線検出手段(実施例ではX線検出器4)の中心部分で検出されるような構造であったが、図6(d)あるいは図6(e)に示すように、放射線検出手段(X線検出器4)が広大であれば、必ずしも放射線検出手段(X線検出器4)の中心部分で放射線(X線)を検出する必要はない。
 2 … ステージ
 3 … X線管
 4 … X線検出器
 5 … 検出器回転機構
 7 … ステージ駆動機構
 7a … X軸直進モータ
 7b … Y軸直進モータ
 7c … Z軸直進モータ
 8 … 断層画像算出部
 9 … コントローラ
 C … 標準となる円軌道
 C … 大円軌道
 C … 小円軌道
 O … 対象物

Claims (5)

  1.  対象物を載置するステージと、
     そのステージを間に挟んで互いに対向するように配置された放射線照射手段および放射線検出手段と、
     前記放射線照射手段から照射されて前記対象物を透過した放射線を前記放射線検出手段で検出することにより得られた複数の投影画像に基づいて、断層画像を演算する演算手段と
     を備えた放射線撮影装置であって、
     2つ以上の直進駆動機構の組み合わせからなり、各々の直進駆動機構による軌道の合成が円軌道に準じた軌道で、前記放射線照射手段、前記ステージの少なくとも一方を駆動する合成駆動手段と、
     その合成駆動手段を制御する制御手段とを備え、
     制御手段は、
     単位ステップ当たりの移動量の絶対値を、正の実数の値を有する所定値以上または“0”にして、各々の直線駆動機構をそれぞれ制御するとともに、
     前記円軌道の同心円で半分の大きさを有する小円軌道から、前記円軌道の同心円で2倍の大きさを有する大円軌道までの範囲の軌道を前記円軌道に準じた軌道として、前記放射線照射手段、前記ステージの少なくとも一方を駆動するように、各々の直線駆動機構をそれぞれ制御することを特徴とする放射線撮影装置。
  2.  請求項1に記載の放射線撮影装置において、
     前記制御手段は、
     直交座標系でそれぞれ直進駆動する2つの前記直進駆動機構による軌道の合成が前記円軌道となるような単位ステップ当たりの移動量で前記所定値以上を保ちつつ各々の直線駆動機構をそれぞれ制御するとともに、
     各々の直線駆動機構の駆動方向が反転する領域のみ、前記単位ステップ当たりの移動量を“0”にして直進軌道で各々の直線駆動機構をそれぞれ制御することを特徴とする放射線撮影装置。
  3.  請求項1に記載の放射線撮影装置において、
     前記円軌道に準じた軌道は、前記小円軌道から前記大円軌道までの範囲の軌道、かつ四角形軌道であって、
     前記制御手段は、1つの前記直進駆動機構のみを制御するとともに、前記単位ステップ当たりの移動量を“0”にして残りの直進駆動機構を制御することで、前記四角形軌道の直進軌道で駆動することを特徴とする放射線撮影装置。
  4.  請求項1から請求項3のいずれかに記載の放射線撮影装置において、
     前記合成駆動手段による前記放射線照射手段、前記ステージの少なくとも一方の駆動に同期させて、前記放射線検出手段を駆動する検出用駆動手段を備えることを特徴とする放射線撮影装置。
  5.  請求項4に記載の放射線撮影装置において、
     前記放射線照射手段から照射された放射線が前記対象物の注目点を透過して前記放射線検出手段の中心部分で検出されるように、前記検出用駆動手段は放射線検出手段を駆動することを特徴とする放射線撮影装置。
PCT/JP2011/004476 2011-08-05 2011-08-05 放射線撮影装置 WO2013021413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180072550.9A CN103733053B (zh) 2011-08-05 2011-08-05 射线摄影装置
PCT/JP2011/004476 WO2013021413A1 (ja) 2011-08-05 2011-08-05 放射線撮影装置
JP2013527745A JP5999516B2 (ja) 2011-08-05 2011-08-05 放射線撮影装置
TW101117431A TWI480022B (zh) 2011-08-05 2012-05-16 放射線攝影裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004476 WO2013021413A1 (ja) 2011-08-05 2011-08-05 放射線撮影装置

Publications (1)

Publication Number Publication Date
WO2013021413A1 true WO2013021413A1 (ja) 2013-02-14

Family

ID=47667967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004476 WO2013021413A1 (ja) 2011-08-05 2011-08-05 放射線撮影装置

Country Status (4)

Country Link
JP (1) JP5999516B2 (ja)
CN (1) CN103733053B (ja)
TW (1) TWI480022B (ja)
WO (1) WO2013021413A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121633A (ja) * 2003-08-27 2005-05-12 Matsushita Electric Ind Co Ltd X線検査装置及びx線検査方法
WO2009078415A1 (ja) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X線検査装置および方法
WO2010074030A1 (ja) * 2008-12-22 2010-07-01 オムロン株式会社 X線検査方法およびx線検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891285B2 (ja) * 2002-11-01 2007-03-14 株式会社島津製作所 X線透視装置
US7099432B2 (en) * 2003-08-27 2006-08-29 Matsushita Electric Industrial Co., Ltd. X-ray inspection apparatus and X-ray inspection method
JP2006158027A (ja) * 2004-11-26 2006-06-15 Hanshin Electric Co Ltd 家庭内電力システム
KR101110145B1 (ko) * 2006-12-01 2012-01-31 가부시키가이샤 시마즈세이사쿠쇼 X선 투시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121633A (ja) * 2003-08-27 2005-05-12 Matsushita Electric Ind Co Ltd X線検査装置及びx線検査方法
WO2009078415A1 (ja) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X線検査装置および方法
WO2010074030A1 (ja) * 2008-12-22 2010-07-01 オムロン株式会社 X線検査方法およびx線検査装置

Also Published As

Publication number Publication date
CN103733053A (zh) 2014-04-16
JPWO2013021413A1 (ja) 2015-03-05
TW201306803A (zh) 2013-02-16
TWI480022B (zh) 2015-04-11
JP5999516B2 (ja) 2016-09-28
CN103733053B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6471151B2 (ja) X線検査システム及びそのようなx線検査システムを用いて試験対象物を回転する方法
JP4640589B2 (ja) X線撮影装置
US9606072B2 (en) Radiation inspecting apparatus
CN111728624B (zh) X射线摄影装置
JP4561990B2 (ja) X線撮影装置
JP4724760B2 (ja) X線撮影装置
KR20170005781A (ko) 마이크로칩 x선 단층촬영 시스템 및 이를 이용한 검사방법
JP4636258B2 (ja) X線撮影装置
JP2005058758A (ja) X線画像補正方法及び装置
JP4016265B2 (ja) X線ct装置
JP2006300672A (ja) X線ct装置
JP5999516B2 (ja) 放射線撮影装置
JP5881006B2 (ja) 断層撮影装置
JP2011064662A (ja) 透視用テーブル付ct装置
JP4590702B2 (ja) X線検査装置
JP4894359B2 (ja) X線断層撮像装置及びx線断層撮像方法
JP4045443B2 (ja) 傾斜型x線ct装置における回転中心軸の較正方法および傾斜型x線ct装置
JP4155866B2 (ja) X線断層撮像装置
JP2006292462A (ja) コンピュータ断層撮影装置
JP4926734B2 (ja) 放射線検査装置、放射線検査方法および放射線検査プログラム
JP2010227470A (ja) 放射線ct装置
JP5415885B2 (ja) 放射線ct装置および画像処理装置
JPS63307341A (ja) X線断層撮影装置
KR20210109304A (ko) 동적 제어가 가능한 콜리메이터를 구비한 콘빔 ct 장치
US9304092B2 (en) Apparatus for examining test bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870609

Country of ref document: EP

Kind code of ref document: A1