WO2013018967A1 - 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지 - Google Patents

고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지 Download PDF

Info

Publication number
WO2013018967A1
WO2013018967A1 PCT/KR2012/000745 KR2012000745W WO2013018967A1 WO 2013018967 A1 WO2013018967 A1 WO 2013018967A1 KR 2012000745 W KR2012000745 W KR 2012000745W WO 2013018967 A1 WO2013018967 A1 WO 2013018967A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
sensitized solar
solar cell
compound
hole transport
Prior art date
Application number
PCT/KR2012/000745
Other languages
English (en)
French (fr)
Inventor
박태호
송인영
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US14/236,402 priority Critical patent/US20140318626A1/en
Priority to CN201280038674.XA priority patent/CN103748097B/zh
Priority to JP2014523829A priority patent/JP5925316B2/ja
Publication of WO2013018967A1 publication Critical patent/WO2013018967A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a high conductivity hole transport material having reduced photoelectron recombination reaction and a dye-sensitized solar cell using the same. More specifically, the novel hole transport material which reduces the recombination reaction of the photoelectrons and at the same time improves the conductivity, and the corrosive, wherein the polymer conductive layer is formed through photoelectrochemical polymerization or thermal polymerization of the hole transport material It relates to a solid state dye-sensitized solar cell that does not use iodine and iodine ions.
  • a dye-sensitized solar cell is a semiconductor electrode coated with a semiconductor consisting of porous titanium dioxide (TiO 2 ) nanoparticles doped with fluorine (F) or indium (In) and the dye is adsorbed on a highly conductive inorganic oxide electrode And a counter electrode coated with platinum (Pt) or carbon (C) and an electrolyte filled between the two electrodes. That is, the fuel-sensitized solar cell has a structure using a photoelectrochemical reaction by inserting an inorganic oxide layer in which dye is adsorbed and an electrolyte or a hole transport material between a transparent electrode and a metal electrode.
  • Dye-sensitized solar cells have a high photoelectric conversion efficiency that is comparable to that of amorphous silicon-based solar cells, whereas the manufacturing cost is about 20% lower than that of silicon solar cells. See US Pat. No. 4,927,721 and US Pat. No. 5,350,644.
  • solid-state dye-sensitized solar cells using solid electrolytes or hole transport materials have a short lifespan, which is a disadvantage of dye-sensitized solar cells using solution electrolytes, and a rapid decrease in efficiency due to leakage of solution electrolytes. It has been reported that it can be supplemented.
  • the dye-sensitized solar cell published by Yanagida's research team in 1997, uses a photoelectron characteristic on a dye-adsorbed semiconductor electrode to coat a conductive material with photoelectropolymerization, and a counter electrode is placed on the semiconductor electrode coated with the conductive material.
  • the coating of the conductive material by photoelectropolymerization is carried out by irradiating light of a wavelength capable of exciting the dye and holding a semiconductor electrode on which the dye is adsorbed and a counter electrode such as platinum in a solution in which the precursor and the electrolyte of the conductive material are dissolved. It is formed by applying a voltage to both electrodes.
  • the principle of the photoelectropolymerization is that electrons and holes are generated in the dye excited by light, and the precursor dissolved in the electrolyte solution is oxidized around the dye by the current or voltage between both electrodes applied together, and polymerization proceeds.
  • the dye-sensitized solar cell device formed in such a structure when the light is irradiated to the titanium oxide layer adsorbed by the dye, the dye absorbing the photons forms an exciton and is converted from the ground state to the excited state . At this time, the electron-hole pairs are separated from each other, electrons are injected into the inorganic oxide layer of the semiconductor electrode, and holes move to the hole transport material layer. The injected electrons move to the counter electrode through the conducting wire of the external circuit, generate a current, and are reduced by the hole transport material to form a circuit while continuously moving the electrons in the excited state.
  • an object of the present invention is to provide a hole transport material capable of reducing the recombination reaction of photoelectrons and at the same time improving conductivity, and a novel compound therefor.
  • an object of the present invention is to provide a solid-state dye-sensitized solar cell having a polymer layer formed by the polymerization of the compound, while eliminating the use of iodine and iodine salts significantly improved photoelectric conversion efficiency.
  • the present invention provides a hole transport material obtained by polymerizing a compound represented by the following general formula (1) or (2):
  • R 1 , R 2 and R 4 are each independently hydrogen, an ethylene glycol oligomer containing 1-20 carbon atoms, C 1 -C 20 alkyl, C 1 -C 20 heteroalkyl, C 3 -C 20 cyclo Alkyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 aryl, or C 1 -C 20 heteroaryl;
  • R 3 is hydrogen or a halide atom;
  • n is a natural number 1-5 and may include a hetero atom in place of a hydrogen atom;
  • m is 1 or 2;
  • X is a nitrogen atom, a sulfur atom, or a selenium atom.
  • R 1 , R 2, and R 4 is preferably an ethylene glycol oligomer containing 1-20 carbon atoms. More preferably, one of R 1 and R 2 in Formula (1) is an ethylene glycol oligomer containing 1-20 carbon atoms, and one of R 1 , R 2 and R 4 in Formula (2) is carbon It is an ethylene glycol oligomer containing 1-20 atoms.
  • Examples of the compound of formula (1) or (2) include 1,4-bis-2- (3,4-ethylenedioxytinyl) -2- (2-methoxyethoxy) benzene, 1,4-bis -2- (3,4-ethylenedioxytinyl) -2- [2- (2-methoxyethoxy) ethoxy] benzene, 1,4-bis-2- (3,4-ethylenedioxytinyl) -2- ⁇ 2- [2- (2-methoxyethoxy) ethoxy] ethoxy ⁇ benzene, 1,4-bis [2- (3,4-ethylenedioxy) tinyl] -2,5-bis Triethylene glycol methyl ether benzene (bis-EDOT-TB), 1,4-dibromo-2,5-bis [(3,4-ethylenedioxy) thiophenyl] -2,5-bistetraethyleneglycolbenzene , 1,4-dibromo-2,5-bis [(3,4-ethylenedi
  • the present invention provides a solid-state dye-sensitized solar cell that solves the shortcomings of the conventional solution-phase dye-sensitized solar cell using iodine and iodine salt by forming a hole transport material of the polymer by photoelectropolymerization or thermal polymerization of the compound on the metal oxide surface do.
  • the solid-state dye-sensitized solar cell includes a semiconductor electrode, a counter electrode, and a hole transport material
  • the semiconductor electrode includes a metal oxide semiconductor
  • the dye is adsorbed on the porous thin film of Formula (1).
  • the metal oxide semiconductor is in the form of fine particles, and it is preferable that dye molecules and reactive compounds are evenly dispersed in the porous thin film.
  • the conductive polymer thin film when R 1 , R 2 or R 4 in the formula (1) or (2) is an ethylene glycol oligomer containing 1-20 carbon atoms, chelate of metal ions is possible and It has improved conductivity properties after polymerization.
  • the conductive polymer thin film also strongly fixes the dye molecules to the metal oxide surface.
  • the solid-state dye-sensitized solar cell the conductive first electrode; An inorganic oxide semiconductor electrode on which one or more dye molecules are adsorbed on the first electrode; A conductive material layer on the inorganic oxide semiconductor electrode, wherein the conductive material layer comprises a compound of Formulas (1) and / or (2); And a counter electrode including a metal on the conductive material layer.
  • the conductive material layer is preferably formed by photoelectropolymerization or thermal polymerization of the compounds of formulas (1) and / or (2).
  • the present invention is a step of applying a compound of the formula (1) and / or (2) on the semiconductor electrode through a photoelectropolymerization or thermal polymerization reaction, and positioning the second electrode on the junction or applying a second electrode material It provides a method for producing a solid-state dye-sensitized solar cell comprising a.
  • the compound of formula (1) is prepared comprising the step of reacting a compound represented by formula (3) with a compound represented by formula (4):
  • R is hydrogen or alkyl
  • X is a halogen group element
  • m is an integer from 1-10
  • n is an integer of 1-5 and X is a halogen group element.
  • the present invention provides a new hole transport material having a structure that complements the hole transport capacity and the high recombination reaction rate acting as an important element in a solid state fuel-sensitized solar cell.
  • the hole transport material layer is formed around the dye to be in efficient contact with the dye, and simultaneously improves the conductivity due to structural planarity due to ethylene glycol and delays the recombination reaction by the metal ion chelate, thereby simultaneously shorting current and filling coefficient.
  • FIG. 1 is a cross-sectional view showing the structure of a dye-sensitized solar cell device manufactured according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a titanium oxide electrode into which a hole transport material layer manufactured according to an embodiment of the present invention is introduced.
  • the hole transport material according to the present invention is formed using a compound represented by the following formula (1) or (2):
  • R 1 , R 2 and R 4 are each independently hydrogen, an ethylene glycol oligomer containing 1-20 carbon atoms, C 1 -C 20 alkyl, C 1 -C 20 heteroalkyl, C 3 -C 20 cyclo Alkyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 aryl, or C 1 -C 20 heteroaryl;
  • R 3 is hydrogen or a halide atom;
  • n is a natural number 1-5 and may include a hetero atom in place of a hydrogen atom;
  • m is 1 or 2;
  • X is a nitrogen atom, a sulfur atom, or a selenium atom.
  • R 1 , R 2 and R 4 are ethylene glycol oligomer containing 1-20 carbon atoms.
  • the compound is, for example, 1,4-bis-2- (3,4-ethylenedioxytinyl) -2- (2-methoxyethoxy) benzene, 1,4-bis-2- (3,4-ethylene Dioxytinyl) -2- [2- (2-methoxyethoxy) ethoxy] benzene, 1,4-bis-2- (3,4-ethylenedioxytinyl) -2- ⁇ 2- [2- (2-methoxyethoxy) ethoxy] ethoxy ⁇ benzene, 1,4-bis [2- (3,4-ethylenedioxy) tinyl] -2,5-bistriethyleneglycolmethylether benzene (bis- EDOT-TB), 1,4-dibromo-2,5-bis [(3,4-ethylenedioxy) thiophenyl] -2,5-bistetraethyleneglycolbenzene, 1,4-dibromo- 2,5-bis [(3,4-ethylenedioxy) thiopheny
  • FIG. 1 is a conductive hole transport material layer formed by photoelectropolymerization or thermal polymerization of a compound of formula (1) or (2) of the present invention is applied to a metal oxide semiconductor electrode adsorbed with dye molecules according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing the layer structure of a solid-state dye-sensitized solar cell device.
  • a first electrode 1002 is present on a first substrate 1001 that is a transparent substrate, and an inorganic oxide layer 1003 and a dye are disposed on the first electrode 1002.
  • a layer 1004, a conductive hole transport material layer 1005 into which ethylene glycol is introduced, an ionic electrolyte and an additive layer 1006, and a second electrode 1007 are sequentially present.
  • the second electrode 1007 is a multilayer thin film coated with a metal such as gold (Au) or silver (Ag).
  • the first substrate 1001 may be made of glass, or a transparent polymer material such as polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polypropylene (PP), polyamide (PI), and tri acetyl cellulose (TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polypropylene
  • PI polyamide
  • TAC tri acetyl cellulose
  • the substrate is made of glass.
  • the first electrode 1002 is a transparent electrode which is a metal oxide formed on one surface of the first substrate 1001, which is a transparent substrate.
  • the first electrode 1002 functions as a cathode.
  • the work function of the first electrode is smaller than that of the second electrode 1007 and has transparency and conductivity.
  • the first electrode 1002 may be formed by applying to one surface of the first substrate 1001 using a method known in the art, such as sputtering and spin coating.
  • As the material of the first electrode 1002 for example, indium-tin oxide (ITO), fluorine doped tin oxide (FTO), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3, or the like may be used. May be preferably ITO or FTO.
  • the inorganic oxide layer 1003 of the device is preferably formed of a metal oxide in the form of nanoparticles.
  • metal oxides are for example titanium oxide, scandium oxide, vanadium oxide, zinc oxide, gallium oxide, yttrium oxide, zirconium oxide, niobium oxide, molybdenum oxide, indium oxide, tin oxide, lanthanide oxide, tungsten oxide, iridium oxide, for example.
  • transition metal oxides alkaline earth metal oxides such as magnesium oxide, strontium oxide, aluminum oxide and the like.
  • the material of the inorganic oxide layer is titanium oxide in the form of nanoparticles.
  • the inorganic oxide layer 1003 is coated on the first electrode 1002 by coating a paste containing an inorganic oxide on one surface of the first electrode 1002 and then performing heat treatment.
  • the paste is coated on one surface of the first electrode 1002 by a doctor blade method or a screen printing method to a thickness of about 5-30 ⁇ m, preferably about 10-15 ⁇ m.
  • a spin coating method, a spray method, a wet coating method, or the like can be used.
  • a photosensitive dye is chemically adsorbed on the inorganic oxide layer 1003 to form a dye layer 1004.
  • the photosensitive dye adsorbed to the inorganic oxide layer 1003, which is preferably a porous film is a material capable of absorbing light in the ultraviolet and visible light regions.
  • dyes such as ruthenium complexes can be used and include photosensitive dyes consisting of ruthenium complexes such as ruthenium 535 dyes, ruthenium 535 bis-TBA dyes, ruthenium 620-1H3TBA dyes and the like.
  • the dye is preferably a ruthenium 535 bis-TBA dye.
  • the photosensitive dye that can be chemically adsorbed to the inorganic oxide layer 1003 may be any dye having charge separation function in addition to the ruthenium dye, such as xanthene dyes, cyanine dyes, porphyrin dyes, anthraquinone dyes, and organic dyes. And the like can be used.
  • the dye may be selected from alcohols, nitriles, halogenated hydrocarbons, ethers, amides, esters, ketones, N-methylpyrrolidone, and the like.
  • a method of immersing a photoelectrode coated with the inorganic oxide layer 1003 may be used.
  • a hole transport material layer 1005 is formed on which ethylene glycol is introduced to perform hole transport of the device and to prevent recombination.
  • the hole transport material layer 1005 may be formed by a photopolymerization reaction of the compound of Formula (1) or (2) structure.
  • the anion used is BF 4 -, ClO 4 -, Br -, (CF 3 SO 2) 2 N - , etc., capable of ionic electrolyte It is suitable to have a salt form in pairs with ammonium compounds such as imidazolium, tetra-alkyl ammonium, pyridinium, triazolium, which are cations, but not limited thereto. Does not. Moreover, these compounds can be mixed and used 2 or more. Li, Na, K, Mg, Ca, Cs and the like may be used as the metal cation forming the metal salt.
  • an ionic liquid electrolyte combining Li (CF 3 SO 2 ) 2 N and imidazolium bistrifluorosulfonimide may be used.
  • Compounds that can be used as ionic liquids in the electrolytes that can be used in accordance with the present invention include n-methylididazolium bistrifluorosulfonimide, n-ethylimidazolium bistrifluorosulfonimide, 1-benzyl 2-methylimidazolium bistrifluorosulfonimide, 1-ethyl3-methylimidazolium bistrifluorosulfonimide, 1-butyl-3-methylimidazolium bistrifluorosulfonimide, and the like.
  • 1-ethyl-3-methylimidazolium bistrifluorosulfonimide which can be used in combination with Li (CF 3 SO 2 ) 2 N.
  • a solid electrolyte without using a solvent in the electrolyte composition may be configured.
  • the second electrode 1007 is an electrode applied to the back surface of the second substrate 1008 or to the ionic liquid electrolyte and the additive layer 1006, and may be used as an anode of a device.
  • the second electrode 1007 may be applied or coated onto the back surface of the second substrate 1008 using a method of sputtering or spin coating, and may be applied to the ionic liquid electrolyte and the additive layer 1006 using a brush. have.
  • the material that can be used for the second electrode 1007 is a material having a larger work function value than the material used for the first electrode 1002 and includes platinum (Pt), gold (Au), silver (Ag), and carbon (C). And preferably silver (Ag).
  • the second substrate 1008 is a transparent material similar to the first substrate 1001, and may be made of a transparent material such as glass or plastic, including PET, PEN, PP, PI, TAC, and the like. It is made of glass.
  • the hole transport material layer 1005 receives electrons from the ionic electrolyte and additive layer 1006 and the second electrode 1007 to complete the device circuit.
  • the manufacturing process of the dye-sensitized solar cell device according to an embodiment of the present invention is as follows.
  • an inorganic oxide preferably a colloidal titanium oxide
  • a first substrate 1001 such as a transparent glass to which a first electrode material such as ITO or FTO is applied
  • a first electrode material such as ITO or FTO
  • the first substrate 1001, the first electrode 1002, and the inorganic oxide layer 1003 from which the organic material is removed are sequentially formed / coated to form a photoelectrode.
  • a dye for example, a ruthenium-based dye Z907
  • a dye solution was prepared ethanol solution to prepare a dye solution, and then the inorganic oxide layer was applied to the transparent solution.
  • a dye layer 1004 is formed by adsorbing a dye by inserting the photoelectrode as a substrate.
  • the substrate is a metal salt electrolyte having a molar ratio of about 0.05-1 and a precursor of a hole transport material having a molar ratio of about 0.005-0.05, represented by the formula (1) or (2) of the present invention, on a transparent substrate onto which dye is adsorbed. It is supported in this solution, and the light and voltage are applied to polymerize the precursor to form a layer for transferring the material 1005.
  • the second electrode 1007 formed on the second substrate 1008 or the second electrode 1007 material To apply a solid-state dye-sensitized solar cell device.
  • a composition for forming a TiO 2 (Solaronix) porous film was applied using a doctor blade method on a florin-doped ITO coated transparent glass substrate having a substrate resistance of 15 ⁇ / ⁇ . After drying, heat treatment was performed at 500 ° C. for 30 minutes to form a porous membrane including TiO 2 . At this time, the thickness of the prepared porous membrane was about 6 ⁇ m. Next, 0.30 mM ruthenium (4,4-dicarboxy-2,2'-bipyridyl) as a dye was prepared using acetonitrile and tert-butanol (1: 1 volume ratio) as a solvent.
  • the dye was adsorbed onto the porous membrane by immersion in 4,4-dinonyl-22bipyridyl) (NCS) solution for 18 hours.
  • NCS 4,4-dinonyl-22bipyridyl
  • the first electrode on which the dye was adsorbed onto the porous membrane was prepared by using a 0.1 M lithium bistrifluorosulfonimide electrolyte and 0.01 M 1,4-bis [2- (3,4-ethylenedioxy) tinyl]-.
  • 1-ethyl-3-methylimidazolium bistrifluorosulfonimide ionic liquid electrolyte in which 0.2 M lithium bistrifluorosulfonimide and tert-butylpyridine are added to the semiconductor electrode coated with the hole transport material After dropping 3 drops were stored in a nitrogen atmosphere for 24 hours.
  • the ionic liquid electrolyte layer of the semiconductor electrode is wiped with a wipeol to form a thin thin film, silver paste is applied and dried, and silver wire is attached using a paste to prepare a solid-state dye-sensitized solar cell. Prepared.
  • Example 2 It is the same as that of Example 1 except having performed the time of a photoelectric reaction by 30 minutes.
  • Example 3 is the same as Example 3 except that the time of the photoelectric reaction is carried out for 30 minutes.
  • Example 1 0.01 M of 1,4-dibromo-2,5-bis [(3,4-ethylenedioxy) thiophenyl] -2,5 on a first electrode having dye adsorbed to the porous membrane prepared in Example 1 -A few drops of a solution of bistetraethylene glycol benzene dissolved in ethanol was dropped, followed by thermal polymerization at 80 ° C. for 30 minutes. Thereafter, a few drops of the solution were dropped on the produced film, followed by thermal polymerization at 80 ° C. for 24 hours, and then the preparation was performed in the same manner as in Example 1.
  • 1,4-dibromo-2,5-bis [(3,4-ethylenedioxy) thiophenyl] triethyleneglycolbenzene which has a structure different from that of the hole transport material precursor used in Example 5, was used.
  • a composition for forming a TiO 2 (Solaronix) porous film was applied using a doctor blade method on a florin-doped ITO coated transparent glass substrate having a substrate resistance of 15 ⁇ / ⁇ . After drying, heat treatment was performed at 500 ° C. for 30 minutes to form a porous membrane including TiO 2 . At this time, the thickness of the prepared porous membrane was about 6 ⁇ m. Next, 0.30 mM ruthenium (4,4-dicarboxy-2,2'-bipyridyl) as a dye was prepared using acetonitrile and tert-butanol (1: 1 volume ratio) as a solvent.
  • the dye was adsorbed onto the porous membrane by immersion in 4,4-dinonyl-22bipyridyl) (NCS) solution for 18 hours.
  • NCS 4,4-dinonyl-22bipyridyl
  • the first electrode having the dye adsorbed on the porous membrane was immersed in a solution of 0.1 M lithium bistrifluorosulfonimide electrolyte and 0.01 M bis-3,4-ethylenedioxythiophene dissolved in acetonitrile.
  • the platinum wire was connected to the counter electrode and photovoltaic reaction was performed for 20 minutes by applying a voltage of +0.2 V based on the Ag / AgCl reference electrode. It was.
  • 1-ethyl-3-methylimidazolium bistrifluorosulfonimide ionic liquid electrolyte in which 0.2 M lithium bistrifluorosulfonimide and tert-butylpyridine are added to the semiconductor electrode coated with the hole transport material After dropping 3 drops were stored in a nitrogen atmosphere for 24 hours.
  • the ionic liquid electrolyte layer of the semiconductor electrode is wiped with a wipeol to form a thin thin film, silver paste is applied and dried, and silver wire is attached using a paste to prepare a solid-state dye-sensitized solar cell. Prepared.
  • the hole transport material of the present invention has a structure that complements the hole transport capacity and the high recombination reaction rate acting as an important element in the solid-state dye-sensitized solar cell.
  • the holes generated by the excited dyes move to the hole transport material layer, and the recombination reaction decreases as they move away from the interface quickly, and likewise chelates the metal, thus delaying the recombination of electrons and holes through the charge screening effect of the cation of the metal salt. .
  • the photoelectric conversion efficiency can be improved by improving the current and the filling factor at the same time, thereby providing a technology for developing a high-efficiency solid-state dye-sensitized solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 광전자의 재결합 반응을 감소시키는 고 전도도 정공전달물질 및 이를 이용한 고상 염료감응 태양전지를 제공한다. 상기 정공전달물질은 본 발명에 따른 화학식 (1) 또는 (2)의 구조를 갖는 화합물을 이용하여 형성된다. 상기 고상 염료감응 태양전지는 상기 화합물을 무기 산화물층에 광전기중합 또는 열중합에 의해 도포함으로써 형성된 정공전달물질층을 포함한다.

Description

고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지
본 발명은 광전자의 재결합(photoelectron recombination) 반응이 감소한 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지에 관련된다. 보다 상세하게는 광전자의 재결합 반응을 감소시키고 동시에 전도도가 향상된 신규한 정공전달물질과, 상기 정공전달물질의 광전기중합(photoelectrochemical polymerization) 또는 열중합(thermal polymerization)을 통해 고분자 전도성 층이 형성된, 부식성의 요오드와 요오드 이온을 사용하지 않는 고상(solid state) 염료감응 태양전지에 관한 것이다.
태양광을 에너지로 전환하여 직접적으로 전기를 생산하는 소자를 태양전지 소자라 한다. 이것은 1839년 프랑스의 물리학자 Becquerel에 의하여 발견된 광기전력을 시작으로, 이후 유사한 현상이 셀레늄 같은 고체에서 발견된 사실에 기초한다. 1991년 스위스 그라첼(Gratzel) 연구팀은 나노결정 구조의 아나타제 TiO2 기반의 반도체 박막에 Ru(phophyrine) 염료를 화학적으로 흡착시키고 요오드와 요오드염을 포함하는 용액을 전해질로 사용하여 제조된, 광전변환효율(light-to-electrical conversion efficiency)이 약 10%인 염료감응 태양전지(DSSC)를 발표하였다. 염료감응 태양전지는 우수한 광전변환효율로 인해 현재 실리콘 다이오드를 대체할 수 있는 가장 진보한 기술 중 하나로 인식된다.
일반적으로 염료감응 태양전지는 불소(F) 또는 인듐(In)으로 도핑되어 고 전도성을 띠는 무기 산화물 전극에 염료가 흡착된 다공성의 이산화티탄(TiO2) 나노입자로 이루어진 반도체가 코팅된 반도체 전극과, 백금(Pt) 또는 탄소(C)가 코팅된 상대 전극과, 상기 두 전극 사이에 채워진 전해질로 구성된다. 즉, 연료감응 태양전지는 투명 전극과 금속 전극 사이에 염료가 흡착된 무기 산화물층과 전해질 또는 정공전달물질을 삽입하여 광전기화학 반응을 이용하는 구조를 갖는다. 염료감응 태양전지는 제조 단가가 실리콘 태양전지의 약 20% 정도로 저렴한데 비하여, 비정질 실리콘 계열의 태양전지에 비견할만한 높은 광전변환효율을 나타내고 있어 상업화 가능성이 매우 높은 것으로 보고되고 있다. 미국 특허 제4,927,721호 및 미국 특허 제5,350,644호 참조.
이러한 염료감응 태양전지 중 고체 전해질 또는 정공전달물질(HTM)을 사용하는 고상 염료감응 태양전지는 용액 전해질을 사용하는 염료감응 태양전지의 단점인 짧은 수명과 용액 전해질의 누액으로 인한 급격한 효율의 감소를 보완할 수 있다고 보고된 바 있다. 1997년 야나기다(Yanagida) 연구팀이 발표한 염료감응 태양전지는 염료가 흡착된 반도체 전극에 광전기 특성을 이용하여 전도성 물질을 광전기중합으로 코팅하고, 상기 전도성 물질이 코팅된 반도체 전극 위에 상대 전극이 올라가기 전에 금속염을 포함하는 이온성 액체 전해질을 소량 도포한 구조이다. Murakoshi K, Kogure R, Wada Y, and Yanagida S, Chem. Lett., 5, 471 (1997) 참조.
광전기중합에 의한 전도성 물질의 코팅은 염료가 흡착된 반도체 전극과 백금 같은 상대 전극을 전도성 물질의 전구체와 전해질이 녹아있는 용액에 담지한 채, 염료를 여기시킬 수 있는 파장의 광을 조사하고 전류 또는 전압을 양 전극에 가하여 형성된다. 광전기중합의 원리는 광에 의해 여기된 염료에서 전자와 정공이 생성되고, 함께 가해진 양 전극 간의 전류 또는 전압에 의하여 전해질 용액에 녹아있는 전구체가 염료 주변에서 산화되어 중합이 진행되는 것이다.
이와 같은 구조로 형성된 염료감응 태양전지 소자의 구동 원리를 살펴보면, 염료가 흡착된 티타늄 산화물층에 광을 조사하면, 광자들을 흡수한 염료가 엑시톤(exciton)을 형성하고 기저 상태에서 여기 상태로 변환된다. 이때 전자-정공 쌍이 각각 분리되어, 전자는 반도체 전극의 무기 산화물층으로 주입되고 정공은 정공전달물질층으로 이동한다. 그리고 주입된 전자는 외부 회로의 도선을 통하여 상대 전극으로 이동하면서 전류를 발생시키고 정공전달물질에 의하여 환원되어 여기 상태의 전자를 계속적으로 이동시키면서 회로를 구성한다.
염료감응 태양전지의 광전변환효율을 증가시키기 위해서는 단락전류, 개방전압 및 최대출력을 증가시켜야 한다. 고상 염료감응 태양전지는 반도체 산화물에 주입된 전자와 정공전달물질로 이동된 정공 간의 재결합 반응이 크기 때문에, 재결합 반응을 방지하는 것이 위의 요소들의 향상에 기여하는 바가 크다. 이에 따라, 광전자와 정공의 재결합을 방지하거나 정공전달물질의 능력을 향상시키는 방법들이 개발되었다. 첫 번째로, 염료 또는 p-형 반도체의 정공전달물질에 리튬염을 킬레이트하는 에틸렌글리콜을 도입하여 계면의 스크린 효과를 통한 재결합 반응을 방지하는 기술이 있다. Henry J. Snaith, Adam J. Moule, Cedric Klein, Klaus Meerholz, Richard H. Friend, and Michael Gratzel, Nano Letters, 7, 3372 (2007); Taiho Park, Saif A. Haque, Roberto J. Potter, Andrew B. Holmes, and James R. Durrant, Chem. Comm. 11, 2878 (2003) 참조. 두 번째로 광전기중합용 정공전달물질을 도핑하는데 쓰이는 염의 음이온, 예를 들면 설폰이미드를 사용하여 정공전달물질의 전도도를 향상시키고 그에 따른 단락전류 및 개방전압을 증대시키는 방법이 제시되고 있다. Jiangbin Xia, Naruhiko Masaki, Monica Lira-Cantu, Yukyeong Kim, Kejian Jiang, and Shozo Yanagida, J. Am. Chem. Soc., 130, 1258 (2008) 참조. 그러나 위의 두 가지의 장점을 동시에 만족시키는 고상 염료감응 태양전지 소자를 제작하는 것은 어렵다.
따라서 본 발명은 광전자의 재결합 반응을 감소시키고 동시에 전도도를 향상시킬 수 있는 정공전달물질 및 이를 위한 신규한 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명의 목적은 상기 화합물의 중합에 의해 형성된 고분자 층을 갖는, 요오드와 요오드염을 사용을 제거하면서도 광전변환효율이 획기적으로 향상된 고상 염료감응 태양전지를 제공하는 것이다.
본 발명은 하기 화학식 (1) 또는 화학식 (2)로 표현되는 화합물을 중합한 정공전달물질을 제공한다:
Figure PCTKR2012000745-appb-I000001
여기서, R1, R2 및 R4는 각각 독립적으로 수소, 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머, C1-C20알킬, C1-C20헤테로알킬, C3-C20사이클로알킬, C1-C20헤테로사이클로알킬, C1-C20아릴, 또는 C1-C20헤테로아릴이고; R3은 수소 또는 할라이드 원자이고; n은 자연수 1-5이며 수소 원자 대신에 헤테로 원자를 포함할 수 있고; m은 1 또는 2이고; X는 질소 원자, 황 원자, 또는 셀레늄 원자이다.
상기 화학식 (1) 또는 (2)에서 R1, R2 및 R4 중 적어도 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머인 것이 바람직하다. 좀더 바람직하게는 상기 화학식 (1)에서 R1 및 R2 중 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머이고, 상기 화학식 (2)에서 R1, R2 및 R4 중 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머이다.
상기 화학식 (1) 또는 (2)의 화합물의 예로는 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-(2-메톡시에톡시)벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-[2-(2-메톡시에톡시)에톡시]벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-{2-[2-(2-메톡시에톡시)에톡시]에톡시}벤젠, 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠 (bis-EDOT-TB), 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]-2,5-비스테트라에틸렌글리콜벤젠, 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]트리에틸렌글리콜벤젠 등을 포함하지만, 이에 한정되지는 않는다.
본 발명은 상기 화합물을 금속 산화물 표면에서 광전기중합하거나 열중합하여 고분자의 정공전달물질을 형성시킴으로써 기존의 요오드와 요오드염을 사용하는 용액상 염료감응 태양전지의 단점을 해결한 고상 염료감응 태양전지를 제공한다.
본 발명은 일 측면에서, 상기 고상 염료감응 태양전지는 반도체 전극, 상대 전극 및 정공전달물질을 포함하고, 상기 반도체 전극은, 금속 산화물 반도체를 포함하고 염료가 흡착된 다공성 박막에 상기 화학식 (1) 및/또는 (2)의 화합물의 광전기중합 또는 열중합으로 형성된 전도성 고분자 박막을 포함한다.
상기 금속 산화물 반도체는 미립자 형태인 것이 바람직하고, 상기 다공성 박막에는 염료 분자와 반응형 화합물이 고르게 분산되어 있는 것이 바람직하다. 상기 전도성 고분자 박막은, 상기 화학식 (1) 또는 (2)에서 R1, R2 또는 R4가 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머인 경우, 금속 이온의 킬레이트가 가능하고 상기 화합물의 중합 후 향상된 전도도 특성을 지닌다. 상기 전도성 고분자 박막은 또한 염료 분자를 금속 산화물 표면에 강하게 고정시킨다.
본 발명의 일 측면에서, 고상 염료감응 태양전지는, 전도성 제1 전극; 상기 제1 전극 위에, 1종 또는 2종 이상의 염료 분자가 흡착된 무기 산화물 반도체 전극; 상기 무기 산화물 반도체 전극 위에, 상기 화학식 (1) 및/또는 (2)의 화합물을 포함하는 전도성 물질층; 및 상기 전도성 물질층 위에, 금속을 포함하는 상대 전극;을 포함한다. 상기 전도성 물질층은 상기 화학식 (1) 및/또는 (2)의 화합물의 광전기중합 또는 열중합 반응에 의해 바람직하게 형성된다.
본 발명은 상기 반도체 전극 위에 광전기중합 또는 열중합 반응을 통하여 상기 화학식 (1) 및/또는 (2)의 화합물을 도포하고, 그 위에 제2 전극을 위치시켜 접합하거나 제2 전극 물질을 도포하는 단계를 포함하는 고상 염료감응 태양전지의 제조 방법을 제공한다.
본 발명의 일 측면에 따라서, 상기 화학식 (1)의 화합물은 하기 화학식 (3)으로 표현되는 화합물과 하기 화학식 (4)로 표현되는 화합물을 반응시키는 단계를 포함하여 제조된다:
Figure PCTKR2012000745-appb-I000002
여기서 R은 수소 또는 알킬, X는 할로겐족 원소, m은 1-10의 정수임; 및
Figure PCTKR2012000745-appb-I000003
여기서 n은 1-5 정수, X는 할로겐족 원소임.
본 발명은 고상 연료감응 태양전지에서 중요한 요소로 작용하는 정공전달능력 및 그에 따른 높은 재결합반응률을 보완하는 구조를 갖는 새로운 정공전달물질을 제공한다.
또한, 본 발명에서 정공전달물질층은 염료 주변에 형성되어 염료와 효율적으로 접촉하고, 에틸렌글리콜로 인한 구조상의 평면성에 의한 전도도 향상과 금속 이온 킬레이트에 의한 재결합반응 지연으로 단락전류와 충진계수를 동시에 향상시켜서, 광전자변환효율이 크게 향상된 고효율, 저비용 및 장기안정성의 염료감응 태양전지를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따라 제조된 염료감응 태양전지 소자의 구조를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따라 제조된 정공전달물질층이 도입된 티타늄 산화물 전극을 도시한 단면도이다.
도 3은 본 발명에 따른 실시예와 비교예의 전압-전류 특성을 비교한 그래프이다.
A . 정공전달물질
본 발명에 따른 정공전달물질은 하기 화학식 (1) 또는 (2)로 표현되는 화합물을 이용하여 형성된다:
Figure PCTKR2012000745-appb-I000004
여기서, R1, R2 및 R4는 각각 독립적으로 수소, 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머, C1-C20알킬, C1-C20헤테로알킬, C3-C20사이클로알킬, C1-C20헤테로사이클로알킬, C1-C20아릴, 또는 C1-C20헤테로아릴이고; R3은 수소 또는 할라이드 원자이고; n은 자연수 1-5이며 수소 원자 대신에 헤테로 원자를 포함할 수 있고; m은 1 또는 2이고; X는 질소 원자, 황 원자, 또는 셀레늄 원자이다.
상기 화학식(1) 또는 (2)의 치환기에 있어서, 바람직하게는 R1, R2 및 R4 중 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머이다.
상기 화합물은 예컨대, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-(2-메톡시에톡시)벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-[2-(2-메톡시에톡시)에톡시]벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-{2-[2-(2-메톡시에톡시)에톡시]에톡시}벤젠, 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠 (bis-EDOT-TB), 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]-2,5-비스테트라에틸렌글리콜벤젠, 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]트리에틸렌글리콜벤젠 등을 포함한다.
B. 화합물의 합성
Figure PCTKR2012000745-appb-I000005
Bis-EDOT) 2,2’-비스(3,4,-에틸렌디옥시티오펜)
둥근바닥플라스크에 무수 THF 30 mL와 7.0 mM의 3,4-에틸렌디옥시티오펜 (1)을 넣은 후 플라스크 안을 질소가스로 치환한다. 앞서 언급한 용액을 -78 ℃로 낮춘 후 2.5 M의 부틸리튬 7 mL을 천천히 떨어뜨린 후 45분간 교반한다. 용액이 노란색의 투명한 용액이 되면 7.0 mM의 CuCl2을 한번에 넣어준 후 서서히 온도를 가하여 45 ℃를 맞추고 2시간 동안 동일 온도에서 교반한다. 반응 종료 후 감압회전증발기를 이용하여 THF를 제거한 후 증류수와 디클로로메탄을 넣어 유기용액층을 추출한다. 추출한 용액은 다시 한번 감압회전증발기를 이용하여 제거한 후 건조 실리카겔에 클로로포름을 전개액으로 사용하여 컬럼크로마토그래피를 하여 흰색의 고체를 얻는다. 수율: 70%; mp 183-185 °C; 1H NMR (CDCl3) δ6.93 (s, 2H), 4.34-4.32 (m, 4H), 4.25-4.23 (m, 4H); 이외의 데이터는 다음의 참고문헌의 데이터와 일치한다. Sotzing, G. A., Reynolds, J. R., and Steel, P. J., Adv. Mater., 9, 795-798 (1997).
Tosylated TEG) 트리에틸렌글리콜메틸에스터 설폰톨루엔
50 mL의 디클로로메탄 용매에 57.8 mM의 토실클로라이드를 넣은 후 교반을 한다. 0 ℃에서 교반을 유지한 채 61 mM의 트리에틸렌글리콜메틸에테르와 91.3 mM의 트리에틸아민을 100 mL의 디클로로메탄에 녹인 용액을 조금씩 떨어뜨린 후 5시간 동안 교반을 더 진행한다. 반응 종료 후 0.1 M의 염산수용액에 부어 미반응물을 제거한 후 물층을 디클로로메탄으로 추출한다. 이 후 모아진 유기층을 황산마그네슘을 이용하여 물을 제거한 후 감압회전증발기를 통해 옅은 노란색의 물질을 얻어낸다. 수율: 93 %, 1H NMR (DMSO d6) δ7.76-7.79 (d, 2H), 7.46-7.49 (d, 2H), 4.08-4.11 (t, 2H), 3.54-3.57 (t, 2H), 3.33-3.47 (m, 8H), 3.23 (s, 3H), 2.41 (s, 3H). 이외의 데이터는 다음의 참고문헌의 데이터와 일치한다. Gentilini, C., Boccalan, M., and Pasquato, L., Eur. J. Org. Chem., 3308 (2008).
4) 1,4-디브로모-2,5-비스-트리에틸렌글리콜메틸에테르-벤젠
50 mM의 수산화칼륨을 넣은 에탄올 용액 30 mL에 24.5 mM의 1,4-디브로모-2,5-하이드록시벤젠 (3)을 60 mL의 THF에 녹인 용액을 질소분위기에서 천천히 첨가한다. 상온에서 3시간 동안 교반을 한 뒤 50 mM의 트리에틸렌글리콜메틸에스터 설폰톨루엔을 60 mL의 THF에 녹여 천천히 첨가하고 온도를 50 ℃까지 올려 24시간 동안 교반한다. 반응 종료 후 염화나트륨 수용액과 에테르를 넣어 유기층을 따로 분리한 후 황산마그네슘으로 물을 제거한다. 이 후 컬럼크로마토그래피를 이용하여 헥산:에틸아세테이드 1:1의 용액을 전개액으로 하여 옅은 노란색의 액체를 얻는다. 수율: 91%; 1H NMR (CDCl3) δ7.31 (s, 2H), 3.76-3.80 (t, 4H), 3.61-3.66 (m, 12H), 3.52-3.54 (t, 4H), 3.42-3.46 (t, 4H), 3.36 (s, 6H); 13C NMR (CDCl3) δ150.3, 119.2, 111.4, 71.9, 71.1,70.7, 70.6, 70.2, 69.6, 59.0; Elem. anal. calcd for C, 42.87; H, 5.76; found for C, 42.87; H, 5.76; m/e calcd for C20H32Br2O8, 558.0464, found for 559.0440 ([M]+).
Bis-EDOT-TB) 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠
30 mL의 부틸리튬을 -78 ℃, 질소 상태의 조건에서 30 mM의 EDOT을 75 mL의 THF에 녹인 용액에 천천히 떨어뜨린다. 용액의 색깔이 노란색으로 바뀌면 용액을 33 mM의 ZnCl2를 75 mL의 THF에 녹인 용액에 20분 동안 천천히 넣은 후 1시간 동안 교반하여 EDOT-ZnCl (2)의 혼합체를 만든다. 이후 이 혼합체를 6.91 mM의 1,4-디브로모-2,5-비스-트리에틸렌글리콜메틸에테르-벤젠과 0.03 mM의 Pd(PPh3)4가 50 mL의 THF에 녹아있는 용액에 천천히 넣은 후 온도를 서서히 가하여 50 ℃로 맞춘 뒤 3일간 교반한다. 반응 종료 후 1 M의 염산 수용액으로 미반응물을 제거한 후 디클로로메탄으로 추출하여 황산마그네슘으로 물을 제거한다. 이후 실리카 패드로 여과하여 디클로로메탄에서 재결정을 하여 주황색의 결정을 얻는다. 수율: 84 %; mp 85.0-86.2; 1H NMR (CDCl3) δ7.69 (s, 2H), 6.36 (s, 2H) 4.31-4.29 (m, 4H), 4.26-4.24 (m, 4H), 4.22-4.20 (t, 4H), 3.96-3.93 (t, 4H), 3.77-3.74 (m, 4H), 3.69-3.63 (m, 8H), 3.55-3.52 (m, 4H), 3.37 (s, 6H); 13C NMR (CDCl3); Elem. Anal. calcd for C, 56.29; H, 6.20; S, 9.39; found for C, 56.28; H, 6.16, S, 9.37; m/e calcd for C32H42O12S2, 682.2118, found for 683.4300 ([M]+).
C. 고상 염료감응 태양전지의 구조 및 제작
도 1은 본 발명의 화학식 (1) 또는 (2)의 화합물을 광전기중합 또는 열중합하여 형성된 전도성 정공전달물질층이 염료 분자가 흡착된 금속 산화물 반도체 전극에 도포된, 본 발명의 일 실시예에 따른 고상 염료감응 태양전지 소자의 층 구조를 개략적으로 나타낸 도면이다. 도 1을 참조하면, 상기 염료감응 태양전지 소자는 투명 기판인 제1 기판(1001) 위에 제1 전극(1002)이 존재하고, 상기 제1 전극(1002) 위로, 무기 산화물층(1003), 염료층(1004), 에틸렌글리콜이 도입된 전도성 정공전달물질층(1005), 이온성 전해질 및 첨가물층(1006), 그리고 제2 전극(1007)이 순차적으로 존재한다. 상기 제2 전극(1007)은 금(Au), 은(Ag) 같은 금속으로 도포되어 있는 다층 박막 형태이다.
상기 제1 기판(1001)은 유리, 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polypropylene), PI(polyamide), TAC(tri acetyl cellulose) 같은 투명한 고분자 물질로 제조될 수 있다. 바람직하게는 상기 기판은 유리로 제조된다.
제1 전극(1002)은 투명 기판인 제1 기판(1001)의 일면에 형성되는 금속 산화물인 투명한 전극이다. 제1 전극(1002)은 음극으로 기능한다. 제1 전극의 일함수(work function)는 제2 전극(1007)에 비해 작으며 투명성 및 전도성을 갖는다. 제1 전극(1002)은 스퍼터링, 스핀코팅 등 당해 기술분야에서 알려진 방법을 사용하여 제1 기판(1001)의 일면에 도포함으로써 형성될 수 있다. 제1 전극(1002)의 재료로서 예컨대 ITO(indium-tin oxide), FTO(fluorine doped tin oxide), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 등이 사용될 수 있으며, 바람직하게는 ITO 또는 FTO이다.
소자의 무기 산화물층(1003)은 나노입자 형태의 금속 산화물로 형성되는 것이 바람직하다. 이러한 금속 산화물은 예를 들어 티타늄 산화물, 스칸듐 산화물, 바나듐 산화물, 아연 산화물, 갈륨 산화물, 이트륨 산화물, 지르코늄 산화물, 니오브 산화물, 몰리브덴 산화물, 인듐 산화물, 주석 산화물, 란탄족 산화물, 텅스텐 산화물, 이리듐 산화물 같은 전이금속 산화물은 물론이고, 마그네슘 산화물, 스트론튬 산화물 같은 알칼리토금속 산화물, 알루미늄 산화물 등을 포함한다. 바람직하게는, 상기 무기 산화물층의 물질은 나노입자 형태의 티타늄 산화물이다.
상기 무기 산화물층(1003)은 무기 산화물을 포함하는 페이스트를 상기 제1 전극(1002)의 일면에 코팅처리한 후 열처리함으로써 제1 전극(1002) 상에 도포된다. 일반적으로 상기 페이스트는 닥터블레이드법 또는 스크린 프린트 방법으로 약 5-30 ㎛, 바람직하게는 약 10-15 ㎛의 두께로 제1 전극(1002)의 일면에 코팅처리된다. 그 외에도, 통상의 기술자에게 이해되는 바와 같이, 스핀코팅 방법, 스프레이 방법, 습식코팅 방법 등을 사용할 수 있다.
상기 무기 산화물층(1003)에는 광감응 염료가 화학적으로 흡착되어 염료층(1004)이 형성된다. 도 2를 참조하면, 바람직하게는 다공성 막인 무기 산화물층(1003)에 흡착되는 광감응 염료는 자외선 및 가시광선 영역의 광을 흡수할 수 있는 물질이다. 이러한 물질로서 루테늄 복합체 같은 염료가 사용될 수 있고, 예컨대 루테늄 535 염료, 루테늄 535 비스-TBA 염료, 루테늄 620-1H3TBA 염료 등의 루테늄 착체로 이루어지는 광감응 염료를 포함한다. 상기 염료는 바람직하게는 루테늄 535 비스-TBA 염료이다. 무기 산화물층(1003)에 화학적으로 흡착될 수 있는 감광응 염료는 루테늄계 염료 외에도 전하 분리 기능을 갖는 임의의 염료 예컨대, 크산텐계 염료, 시아닌계 염료, 포르피린계 염료, 안트라퀴논계 염료, 유기 염료 등이 사용될 수 있다.
상기 염료를 무기 산화물층(1003)에 흡착시키기 위해서 통상적인 방법이 사용될 수 있으나, 바람직하게는 상기 염료를 알코올, 니트릴, 할로겐화탄화수소, 에테르, 아미드, 에스테르, 케톤, N-메틸피롤리돈 등의 용매에 용해시키거나, 아세토나이트릴과 t-부탄올의 공용매에 용해시킨 뒤, 무기 산화물층(1003)이 도포된 광전극을 침지하는 방법을 사용할 수 있다.
염료가 흡착된 상기 무기 산화물층(1003)의 상부에는 소자의 정공전달을 수행하고 및 재결합 방지를 위한 에틸렌글리콜이 도입된 정공전달물질층(1005)이 형성된다. 상기 정공전달물질층(1005)은 상기 화학식 (1) 또는 (2) 구조의 화합물을 광중합 반응을 통해 형성될 수 있다.
본 발명에 따른 소자의 이온성 전해질 및 첨가물층(1006)에 있어서, 사용되는 음이온은 BF4 -, ClO4 -, Br-, (CF3SO2)2N- 등으로, 이온성 전해질이 가능한 양이온인 이미다졸리움(imidazolium), 테트라알킬암모늄(tetra-alkyl ammonium), 피리디니움(pyridinium), 트리아졸리움(triazolium) 등의 암모늄 화합물과 짝을 이루어 염의 형태를 가지는 것이 적합하지만, 이에 한정되지는 않는다. 또한, 이와 같은 화합물을 2 이상 혼합하여 사용할 수 있다. 금속염을 이루는 금속 양이온으로는 Li, Na, K, Mg, Ca, Cs 등이 사용될 수 있다.
특히 바람직하게는 Li(CF3SO2)2N와 이미다졸리움 비스트리플로로설폰이미드를 조합한 이온성 액체 전해질이 사용될 수 있다. 본 발명에 따라 사용될 수 있는 전해질 중 이온성 액체로 사용될 수 있는 화합물로는 n-메틸이디다졸리움 비스트리플로로설폰이미드, n-에틸이미다졸리움 비스트리플로로설폰이미드, 1-벤질-2-메틸이미다졸리움 비스트리플로로설폰이미드, 1-에틸3-메틸이미다졸리움 비스트리플로로설폰이미드, 1-부틸-3-메틸이미다졸리움 비스트리플로로설폰이미드 등이고, 특히 바람직한 것은 1-에틸-3-메틸이미다졸리움 비스트리플로로설폰이미드로서, Li(CF3SO2)2N와 조합하여 사용할 수 있다. 이와 같은 이온성 액체 즉, 용해염을 사용하는 경우 전해질 조성물에 용매를 사용하지 않는 고체형 전해질을 구성할 수 있다.
상기 제2 전극(1007)은 제2 기판(1008)의 이면에 도포되거나 이온성 액체 전해질 및 첨가물층(1006)에 도포되는 전극으로서, 소자의 양극으로 사용할 수 있다. 스퍼터링 또는 스핀코팅의 방법을 사용하여 제2 전극(1007)을 제2 기판(1008)의 이면으로 도포하거나 코팅할 수 있고, 붓을 이용하여 이온성 액체 전해질 및 첨가물층(1006)에 도포할 수 있다.
제2 전극(1007)에 사용될 수 있는 물질은 상기 제 1 전극(1002)에 사용된 물질보다 일함수 값이 큰 물질로서 백금(Pt), 금(Au), 은(Ag), 탄소(C) 등이고, 바람직하게는 은(Ag)이다. 상기 제2 기판(1008)은 상기 제1 기판(1001)과 유사한 투명 물질로서, 유리, 또는 PET, PEN, PP, PI, TAC 등을 포함하는 플라스틱 같은 투명 물질로 제조될 수 있으며, 바람직하게는 유리로 제조된다.
한편, 전자는 광에 의해 여기된 염료로부터 무기 산화물에 전이되고, 정공은 산화된 염료로부터 정공전달물질로 이동된다. 이에 따라 정공전달물질층(1005)은 이온성 전해질 및 첨가물층(1006)과 제2 전극(1007)으로부터 전자를 받아 소자의 회로를 완성한다.
본 발명의 일 실시예에 따른 염료감응 태양전지 소자의 제작 공정은 다음과 같다.
우선, ITO, FTO 같은 제1 전극 물질이 도포되어 있는 투명 유리 같은 제1 기판(1001) 상에 바람직하게는 콜로이드 상태의 티타늄 산화물인 무기 산화물을 약 5-30 ㎛의 두께로 도포하거나 캐스팅하고, 약 450-550 ℃의 온도로 소성하여 유기물이 제거된 제1 기판(1001)-제1 전극(1002)-무기 산화물층(1003)이 차례로 도포/적층된 광전극을 형성한다. 이어서, 형성된 무기 산화물층(1003)에 염료를 흡착시키기 위하여, 미리 준비한 에탄올 용액에 염료, 예를 들어 루테늄계 염료 Z907를 첨가하여 염료 용액을 제조한 뒤, 이 용액에 무기 산화물층이 도포된 투명 기판인 상기 광전극을 넣어서 염료를 흡착시켜 염료층(1004)을 형성한다.
그 뒤, 상기 기판을 염료가 흡착된 투명 기판에 본 발명의 화학식 (1) 또는 (2)로 표시되는, 몰비가 약 0.005-0.05인 정공전달물질의 전구체와 몰비가 약 0.05-1인 금속염 전해질이 포함된 용액에 담지하고 광 및 전압을 가하여 상기 전구체를 중합함으로써 전공전달물질층(1005)를 형성한다. 상기 정공전달물질이 도포된 반도체 전극에 상기 이온성 액체 전해질 및 금속염 첨가물(1006)을 도포한 후, 제2 기판(1008)에 형성된 제2 전극(1007)과 접합 또는 제2 전극(1007) 물질을 도포하여 고상 염료감응 태양전지 소자를 제작한다.
실시예
실시예 1
TiO2(Solaronix) 다공성 막 형성용 조성물을 기판 저항이 15 Ω/□인 플로린-도핑된 ITO가 코팅된 투명 유리 기판 위에 닥터블레이드법을 이용하여 도포하였다. 건조 후 500 ℃에서 30 분간 열처리하여 TiO2를 포함하는 다공성 막을 형성하였다. 이때 제조된 다공성 막의 두께는 약 6 ㎛이었다. 다음으로 상기 다공성 막이 형성된 제1 전극을 아세토니트릴과 tert-부탄올(1:1 부피비)을 용매로 하여 염료로서 0.30 mM의 루테늄(4,4-디카르복시-2,2′-바이피리딜)(4,4-디노닐-22바이피리딜)(NCS) 용액에 18시간 침지시켜 다공성 막에 염료를 흡착시켰다. 다음으로 상기 다공성 막에 염료가 흡착된 제1 전극을 0.1 M의 리튬비스트리플로로설폰이미드 전해질과 0.01 M의 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠 (bis-EDOT-TB)을 아세토니트릴에 녹인 용액에 침지한 후 제1 전극의 후면에 22 mW의 세기와 520-1000 nm의 파장을 가진 광을 조사한 채 백금 와이어를 상대 전극으로 연결하여 Ag/AgCl 기준전극 기준 +0.2 V의 전압을 가하여 20분간 광전기 반응을 진행하였다. 상기 정공전달물질이 도포된 반도체 전극에 0.2 M의 리튬비스트리플로로설폰이미드와 tert-부틸피리딘을 첨가한 1-에틸-3-메틸이미다졸리움 비스트리플로로설폰이미드 이온성 액체 전해질을 3방울 떨어뜨린 후 24시간 동안 질소 분위기에서 보관하였다.
제2전극을 도포하기 전에 반도체 전극의 이온성 액체 전해질층을 와이프올로 닦아내어 얇은 박막 형태로 형성시키고, 실버페이스트를 도포하여 건조한 후 실버와이어를 페이스트를 이용하여 부착하여 고상 염료감응 태양전지를 제조하였다.
실시예 2
광전기 반응의 시간을 30분으로 실시한 것을 제외하면 상기 실시예 1과 동일하다.
실시예 3
실시예 1에서 사용된 정공전달물질 전구체와 다른 구조인 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-{2-[2-(2-메톡시에톡시)에톡시]에톡시}벤젠을 사용하였다. 그리고 광전기 반응을 동일 조건에서 실행하여 염료감응 태양전지를 제조한 것을 제외하면 실시예 2와 동일하다.
실시예 4
실시예 3에서 광전기 반응의 시간을 30분으로 실시한 것을 제외하면 실시예 3과 동일하다.
실시예 5
실시예 1에서 제작된 다공성 막에 염료가 흡착된 제1 전극에 0.01 M의 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]-2,5-비스테트라에틸렌글리콜벤젠을 에탄올에 녹인 용액을 몇 방울 떨어뜨린 후 30분간 80 ℃에서 열중합하였다. 이후 제작된 필름 위에 상기 용액을 다시 몇 방울 떨어뜨린 후 24시간 동안 80 ℃에서 열중합을 한 후 실시예 1에서 진행한 방법대로 제조하였다.
실시예 6
실시예 5에서 사용된 정공전달물질 전구체와 다른 구조인 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]트리에틸렌글리콜벤젠을 사용하였다.
비교예 1
TiO2 (Solaronix) 다공성 막 형성용 조성물을 기판저항이 15 Ω/□인 플로린-도핑된 ITO가 코팅된 투명 유리 기판 위에 닥터블레이드법을 이용하여 도포하였다. 건조 후 500 ℃에서 30분간 열처리하여 TiO2를 포함하는 다공성 막을 형성하였다. 이때 제조된 다공성 막의 두께는 약 6 ㎛이었다. 다음으로 상기 다공성 막이 형성된 제1 전극을 아세토니트릴과 tert-부탄올(1:1 부피비)을 용매로 하여 염료로서 0.30 mM의 루테늄(4,4-디카르복시-2,2′-바이피리딜)(4,4-디노닐-22바이피리딜)(NCS) 용액에 18시간 침지시켜 다공성 막에 염료를 흡착시켰다. 다음으로 상기 다공성 막에 염료가 흡착된 제1 전극을 0.1 M의 리튬비스트리플로로설폰이미드 전해질과 0.01 M의 비스-3,4-에틸렌디옥시티오펜을 아세토니트릴에 녹인 용액에 침지한 후 제1 전극의 후면에 22 mW의 세기와 520-1000 nm의 파장을 가진 광을 조사한 채 백금 와이어를 상대전극으로 연결하여 Ag/AgCl 기준전극 기준 +0.2 V의 전압을 가하여 20분간 광전기 반응을 진행하였다. 상기 정공전달물질이 도포된 반도체 전극에 0.2 M의 리튬비스트리플로로설폰이미드와 tert-부틸피리딘을 첨가한 1-에틸-3-메틸이미다졸리움 비스트리플로로설폰이미드 이온성 액체 전해질을 3방울 떨어뜨린 후 24시간 동안 질소 분위기에서 보관하였다.
제2전극을 도포하기 전에 반도체 전극의 이온성 액체 전해질층을 와이프올로 닦아내어 얇은 박막 형태로 형성시키고, 실버페이스트를 도포하여 건조한 후 실버와이어를 페이스트를 이용하여 부착하여 고상 염료감응 태양전지를 제조하였다.
비교예 2
광전기 반응 시간을 30분으로 실행한 것을 제외하면 비교예 1과 동일하다.
비교예 3
비교예 1에서 제작된 다공성 막에 염료가 흡착된 제1 전극에 0.01 M의 2,5-디브로모-3,4-에틸렌디옥시티오펜을 에탄올에 녹인 용액을 몇 방울 떨어뜨린 후 30분간 80 ℃에서 열중합을 하였다. 이 후 제작된 필름 위에 상기 용액을 다시 몇 방울 떨어뜨린 후 24시간 동안 80 ℃에서 열중합을 한 후 비교예1에서 진행한 방법대로 제조하였다.
상기 실시예 및 비교예에 따라 제조된 고상 연료감응 태양전지의 특성은 하기 표 1에 나타난 바와 같다. 전류밀도는 도 3에 그래프로 도시된 바와 같다.
Figure PCTKR2012000745-appb-T000001
평가 및 고찰
본 발명의 정공전달물질은 고상 염료감응 태양전지에서 중요한 요소로 작용하는 정공전달능력 및 그에 따른 높은 재결합 반응률을 보완하는 구조를 갖는다. 여기된 염료가 생성한 정공은 정공전달물질층으로 이동되어 계면에서 빠르게 멀어질수록 재결합 반응이 줄어들고, 마찬가지로 금속을 킬레이트하므로 인하여 금속염의 양이온이 가지는 전하 스크리닝 효과를 통한 전자와 정공의 재결합을 지연시킨다. 이로써 단략전류와 충진계수를 동시에 향상시켜서 광전자변환효율이 향상될 수 있어 고효율의 고상 염료감응 태양전지 개발을 위한 기술을 제공할 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (18)

  1. 하기 화학식 (1) 또는 화학식 (2)로 표현되는 화합물:
    Figure PCTKR2012000745-appb-I000006

    여기서, R1, R2 및 R4는 각각 독립적으로 수소, 탄소 원자 1-20개를 포함하는 에틸렌글리콜올리고머, 탄소 원자 1-20개를 포함하는 프로필렌글리콜올리고머, C1-C20알킬, C1-C20헤테로알킬, C3-C20사이클로알킬, C1-C20헤테로사이클로알킬, C1-C20아릴, 또는 C1-C20헤테로아릴이고; R3은 수소 또는 할라이드 원자이고; n은 자연수 1-5이며 수소 원자 대신에 헤테로 원자를 포함할 수 있고; m은 1 또는 2이고; X는 질소 원자, 황 원자, 또는 셀레늄 원자임.
  2. 제1항에 있어서, 상기 화학식 (1)에서 R1 및 R2 중 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머이고, 상기 화학식 (2)에서 R1, R2 및 R4 중 하나는 탄소 원자 1-20개를 포함하는 에틸렌글리콜 올리고머인 화합물.
  3. 제1항에 있어서, 상기 화합물은 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-(2-메톡시에톡시)벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-[2-(2-메톡시에톡시)에톡시]벤젠, 1,4-비스-2-(3,4-에틸렌다이옥시티닐)-2-{2-[2-(2-메톡시에톡시)에톡시]에톡시}벤젠, 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠, 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]-2,5-비스테트라에틸렌글리콜벤젠, 또는 1,4-디브로모-2,5-비스[(3,4-에틸렌디옥시)티오페닐]트리에틸렌글리콜벤젠인 화합물.
  4. 제1항에 있어서, 상기 화합물은 1,4-비스[2-(3,4-에틸렌디옥시)티닐]-2,5-비스트리에틸렌글리콜메틸에테르 벤젠인 화합물.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 하나 이상의 화합물을 포함하는 용액.
  6. 제5항에 있어서, 상기 용액은 상기 화합물은 몰 농도가 0.005-0.5인 용액.
  7. 제5항 또는 제6항에 있어서, 상기 용액은 리튬 전해질을 포함하는 용액.
  8. 염료가 흡착된 무기 산화물 반도체 전극에 제1항 내지 제4항 중 어느 한 항에 따른 하나 이상의 화합물이 중합된 정공전달층이 형성된 것을 특징으로 하는 고상 염료감응 태양전지.
  9. 제8항에 있어서, 상기 무기 산화물 반도체 전극은 TiO2 나노 입자인 것을 특징으로 하는 고상 염료감응 태양전지.
  10. 제8항 또는 제9항에 있어서, 상기 염료는 루테늄계 염료, 크산텐계 염료, 시아닌계 염료, 포르피린계 염료, 안트라퀴논계 염료, 또는 유기 염료를 포함하는 것을 특징으로 하는 고상 염료감응 태양전지.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서, 상기 전공전달층은 리튬 이온으로 도핑된 것을 특징으로 하는 고상 염료감응 태양전지.
  12. 제8항 내지 제11항 중 어느 한 항에 있어서, 상기 전공전달층에 이온성 액체 전해질층이 형성된 것을 특징으로 하는 고상 염료감응 태양전지.
  13. 제8항 내지 제12항 중 어느 한 항에 있어서, 상기 전공전달층은 광전기중합층인 것을 특징으로 하는 고상 염료감응 태양전지.
  14. 고상 염료감응 태양전지를 제조하는 방법에 있어서,
    염료 분자가 흡착된 무기 산화물 반도체 전극 위에 제1항 내지 제4항 중 어느 한 항에 따른 하나 이상의 화합물을 포함하는 전공전달층을 형성하는 단계;
    상기 전공전달층에 이온성 액체 전해질층을 형성하는 단계; 및
    제2 전극을 형성하는 단계;
    를 포함하는 고상 염료감응 태양전지 제조 방법.
  15. 제14항에 있어서, 상기 전공전달층을 형성하는 단계는 상기 화합물을 광전기중합 또는 열중합하는 단계를 포함하는 고상 염료감응 태양전지 제조 방법.
  16. 제14항 또는 제15항에 있어서, 상기 이온성 액체 전해질은 Li 이온을 포함하는 고상 염료감응 태양전지 제조 방법.
  17. 제1항에 따른 화학식 (1)의 화합물을 제조하는 방법으로서, 하기 화학식 (3)으로 표현되는 화합물과 하기 화학식 (4)로 표현되는 화합물을 반응시키는 단계를 포함하는 방법:
    Figure PCTKR2012000745-appb-I000007

    여기서 R은 수소 또는 알킬, X는 할로겐족 원소, m은 1-10의 정수임; 및
    Figure PCTKR2012000745-appb-I000008

    여기서 n은 1-5 정수, X는 할로겐족 원소임.
  18. 하기 화학식(3)으로 표현되는 화합물:
    Figure PCTKR2012000745-appb-I000009

    여기서 R은 수소 또는 알킬, X는 할로겐족 원소, m은 1-10의 정수임.
PCT/KR2012/000745 2011-08-04 2012-01-31 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지 WO2013018967A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/236,402 US20140318626A1 (en) 2011-08-04 2012-01-31 High-conductivity hole transport material and dye-sensitized solar cell using same
CN201280038674.XA CN103748097B (zh) 2011-08-04 2012-01-31 高电导性的空穴传输材料以及利用其的染料敏化太阳能电池
JP2014523829A JP5925316B2 (ja) 2011-08-04 2012-01-31 高伝導性正孔伝達物質およびこれを用いた色素増感太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110077700A KR101351303B1 (ko) 2011-08-04 2011-08-04 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지
KR10-2011-0077700 2011-08-04

Publications (1)

Publication Number Publication Date
WO2013018967A1 true WO2013018967A1 (ko) 2013-02-07

Family

ID=47629463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000745 WO2013018967A1 (ko) 2011-08-04 2012-01-31 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지

Country Status (5)

Country Link
US (1) US20140318626A1 (ko)
JP (1) JP5925316B2 (ko)
KR (1) KR101351303B1 (ko)
CN (1) CN103748097B (ko)
WO (1) WO2013018967A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952625A (zh) * 2014-03-31 2015-09-30 现代自动车株式会社 含有吡啶类添加剂的具有长期稳定性的固态染料敏化太阳能电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893493B1 (ko) * 2013-12-23 2018-08-30 한국화학연구원 무/유기 하이브리드 페로브스카이트 화합물 전구물질
KR101538972B1 (ko) * 2014-05-15 2015-07-24 포항공과대학교 산학협력단 블록공중합체 및 광전기 중합에 의한 그의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110105449A (ko) * 2010-03-19 2011-09-27 도레이첨단소재 주식회사 염료감응태양전지용 고분자전해질 및 이를 이용한 염료감응태양전지의 제조방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IRVAIN, JENNIFER A. ET AL.: "Low oxidation potential conducting polymers based on 1,4- bis[2-(3,4-ethylenedioxy)thienyl]-2,5-dialkoxybenzenes", SYNTHETIC METALS, vol. 102, no. 1-3, 1999, pages 965 - 966 *
IRVAIN, JENNIFER A. ET AL.: "Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 39, no. 13, 2001, pages 2164 - 2178 *
IRVAIN, JENNIFER A. ET AL.: "Low-oxidation-potential conducting polymers: alternating substituted para-phenylene and 3,4-ethylenedioxythiophene repeat units", POLYMER, vol. 39, no. 11, 1998, pages 2339 - 2347 *
SONMEZ, GURSEL ET AL.: "A highly stable, new electrochromic polymer: Poly(1,4-bis(2- (3' ,4'-ethylenedioxy)thienyl)-2-methoxy-5-2'-ethylhexyloxybenzene)", ADVANCED FUNCTIONAL MATERIALS, vol. 13, no. 9, 2003, pages 726 - 731 *
SONMEZ, GURSEL ET AL.: "Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency", CHEMISTRY OF MATERIALS, vol. 16, no. 4, 2004, pages 574 - 580 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952625A (zh) * 2014-03-31 2015-09-30 现代自动车株式会社 含有吡啶类添加剂的具有长期稳定性的固态染料敏化太阳能电池

Also Published As

Publication number Publication date
JP2014529582A (ja) 2014-11-13
KR20130015615A (ko) 2013-02-14
JP5925316B2 (ja) 2016-05-25
US20140318626A1 (en) 2014-10-30
CN103748097B (zh) 2017-03-15
CN103748097A (zh) 2014-04-23
KR101351303B1 (ko) 2014-01-16

Similar Documents

Publication Publication Date Title
Benesperi et al. The researcher's guide to solid-state dye-sensitized solar cells
KR101352024B1 (ko) 신규한 티오펜계 염료 및 이의 제조방법
JP5023866B2 (ja) 色素増感光電変換素子およびその製造方法ならびに電子機器
Karthikeyan et al. Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance
Chu et al. Structural planarity and conjugation effects of novel symmetrical acceptor–donor–acceptor organic sensitizers on dye-sensitized solar cells
Mishra et al. A Thiophene‐Based Anchoring Ligand and Its Heteroleptic Ru (II)‐Complex for Efficient Thin‐Film Dye‐Sensitized Solar Cells
Vaghasiya et al. Role of a phenothiazine/phenoxazine donor in solid ionic conductors for efficient solid state dye sensitized solar cells
JP5206092B2 (ja) 光電変換素子及び太陽電池
JP2009269987A (ja) 新規化合物、光電変換素子及び太陽電池
US20140137945A1 (en) Pigment sensitization solar cell
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
Yu et al. Restrain recombination by spraying pyrolysis TiO2 on NiO film for quinoxaline-based p-type dye-sensitized solar cells
Bagheri et al. Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells
KR101351303B1 (ko) 고 전도도 정공전달물질 및 이를 이용한 염료감응 태양전지
JP4822383B2 (ja) 色素増感光電変換素子
JP2010277991A (ja) 光電変換素子及び太陽電池
JP5347329B2 (ja) 光電変換素子及び太陽電池
JP5233318B2 (ja) 光電変換素子及び太陽電池
JP5217475B2 (ja) 光電変換素子及び太陽電池
KR100969676B1 (ko) 신규한 줄로리딘계 염료 및 이의 제조방법
JP4230182B2 (ja) 色素増感光電変換素子及びこれを用いた太陽電池
KR101380837B1 (ko) 신규한 디티오펜피롤로이소인돌 유도체, 이의 제조방법 및 이를 포함하는 유기태양전지
JP2010168511A (ja) 新規化合物、光電変換素子及び太陽電池
JP5392765B2 (ja) 光電変換素子用の色素、光電変換素子及び色素増感太陽電池
KR20100128096A (ko) 신규한 루테늄계 염료 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236402

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12819547

Country of ref document: EP

Kind code of ref document: A1