WO2013018751A1 - 希土類焼結磁石用原料合金鋳片及びその製造方法 - Google Patents

希土類焼結磁石用原料合金鋳片及びその製造方法 Download PDF

Info

Publication number
WO2013018751A1
WO2013018751A1 PCT/JP2012/069301 JP2012069301W WO2013018751A1 WO 2013018751 A1 WO2013018751 A1 WO 2013018751A1 JP 2012069301 W JP2012069301 W JP 2012069301W WO 2013018751 A1 WO2013018751 A1 WO 2013018751A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
mass
raw material
alloy
rare earth
Prior art date
Application number
PCT/JP2012/069301
Other languages
English (en)
French (fr)
Inventor
田畑 進也
和雅 新谷
拓也 鬼村
Original Assignee
株式会社三徳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三徳 filed Critical 株式会社三徳
Priority to US14/236,195 priority Critical patent/US9865382B2/en
Priority to KR1020147005464A priority patent/KR101922188B1/ko
Priority to EP12820207.4A priority patent/EP2740551B1/en
Priority to JP2013526906A priority patent/JP6104162B2/ja
Priority to CN201280048482.7A priority patent/CN103842112B/zh
Publication of WO2013018751A1 publication Critical patent/WO2013018751A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0651Casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a raw material alloy slab for a rare earth sintered magnet and a method for producing the same.
  • R 2 Fe 14 B-based rare earth sintered magnets having a high magnetic flux density are being actively developed.
  • R 2 Fe 14 B-based rare earth sintered magnets are obtained by pulverizing a raw material alloy for a rare earth sintered magnet obtained by melting and casting a raw material to obtain an alloy powder for the magnet, which is magnetically molded, sintered, Obtained by aging treatment.
  • pulverization of a raw material alloy for a rare earth sintered magnet is performed by combining hydrogen pulverization performed by occluding and releasing hydrogen in the raw material alloy and jet mill pulverization performed by causing the raw material alloys to collide with each other in a jet stream.
  • the raw material alloy for rare earth sintered magnet includes an R 2 Fe 14 B-based compound phase (hereinafter sometimes abbreviated as a 2-14-1 main phase) as the main phase, and the 2-14-1 main phase.
  • R-rich phase hereinafter sometimes abbreviated as R-rich phase
  • R-rich phase which is a phase containing many rare earth metal elements, and more boron than the 2-14-1 main phase.
  • B-rich phase a B-rich phase (hereinafter sometimes abbreviated as B-rich phase).
  • the alloy structure of the raw material alloy for rare earth sintered magnet formed by the 2-14-1 main phase, R-rich phase, and B-rich phase determines the grindability of the raw material alloy and the characteristics of the obtained rare earth sintered magnet. It is known to affect
  • Patent Document 1 discloses a quenching roll for producing a rare earth alloy. It is described that by controlling the Sm value and Ra value of the surface of the cooling roll, the minor axis grain size of the rare earth alloy ribbon produced using the cooling roll can be made uniform at the center and both ends of the ribbon. ing.
  • Patent Document 2 discloses a method for producing a rare earth-containing alloy ribbon. The manufacturing method uses a chill crystal and an R— by using a chill roll on which the surface of the chill roll has substantially linear irregularities having a specific Rz value in a direction that forms an angle of 30 ° or more with respect to the roll rotation direction. It is described that the dispersion state of the rich phase can reduce an extremely fine region.
  • An object of the present invention is to provide a raw material alloy slab for a rare earth sintered magnet in which generation of chill crystals is suppressed and the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase are extremely uniform. There is. Another subject of this invention is providing the manufacturing method of the raw material alloy slab for rare earth sintered magnets which can obtain the said slab industrially.
  • the strip casting method using a cooling roll it has been conventionally performed to homogenize the structure of the alloy slab obtained by controlling the surface state of the cooling roll.
  • the inventors of the present invention have an aspect ratio in which dendrites grow in a circular shape centering on the generation point of crystal nuclei observed on the cooling roll surface side of the alloy slab, and a particle size of 30 ⁇ m or more.
  • the present invention was completed by confirming that a close relationship exists between the number of crystals and the alloy structure having a cross section substantially perpendicular to the surface of the slab in contact with the roll cooling surface.
  • a raw material alloy slab for a rare earth sintered magnet having a roll cooling surface obtained by a strip casting method using a cooling roll satisfying the following (1) to (3) (hereinafter referred to as the present invention): Which may be abbreviated as “alloy slabs”.
  • alloy slabs which may be abbreviated as “alloy slabs”.
  • At least one R selected from the group consisting of rare earth metal elements including yttrium is 27.0 to 33.0% by mass, boron is 0.90 to 1.30% by mass, and iron is A step of preparing a raw material alloy molten metal comprising the remaining M, and cooling and solidifying the raw material alloy molten metal with a cooling roll having a surface roughness Ra value of 2 to 15 ⁇ m and an Rsk value of ⁇ 0.5 or more and less than 0.
  • a method for producing a raw material alloy slab for a rare earth sintered magnet is prepared. Furthermore, according to the present invention, an alloy slab having a roll cooling surface satisfying the above (1) to (3) obtained by a strip casting method using a cooling roll is prepared, and the alloy slab is pulverized.
  • a method for producing a rare earth sintered magnet is provided, in which the obtained alloy powder is subjected to magnetic field forming, sintering, and aging treatment.
  • the generation of chill crystals is suppressed, the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase are extremely uniform, and the alloy slab is used.
  • a rare earth sintered magnet having superior magnet characteristics can be obtained.
  • the manufacturing method of the present invention employs a process of cooling and solidifying the molten alloy having the specific composition with a cooling roll having a specific surface structure, the alloy cast of the present invention can be easily manufactured industrially. it can.
  • 4 is a copy of a microscope observation image of a roll cooling surface of an alloy slab obtained in Example 1.
  • 2 is a copy of a microscopic observation image of a cross-sectional structure of an alloy slab obtained in Example 1.
  • 4 is a copy of a microscopic observation image of a roll cooling surface of an alloy slab obtained in Comparative Example 1.
  • 2 is a copy of a microscopic observation image of a cross-sectional structure of an alloy slab obtained in Comparative Example 1.
  • the alloy slab of the present invention is (1) at least one R selected from the group consisting of rare earth metal elements containing yttrium, 27.0-33.0 mass%, boron 0.90-1.30 mass% And the balance M comprising iron.
  • the content ratio of the remaining portion M is R and the remaining portion of boron, but the alloy slab of the present invention may include an unavoidable impurity in addition to these.
  • the rare earth metal element containing yttrium means lanthanoids having element numbers 57 to 71 and yttrium having element number 39.
  • the R is not particularly limited, and preferred examples include lanthanum, cerium, praseodymium, neodymium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, ytterbium, or a mixture of two or more thereof.
  • R preferably contains praseodymium or neodymium as a main component and contains at least one heavy rare earth element selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium, and ytterbium.
  • terbium has the greatest effect.
  • dysprosium alone or with gadolinium, terbium, holmium, etc. in consideration of cost and effect.
  • the content ratio of R is 27.0 to 33.0% by mass.
  • R is less than 27.0% by mass, the liquid phase amount necessary for densification of the sintered body of the rare earth sintered magnet is insufficient, the density of the sintered body is lowered, and the magnetic properties are lowered.
  • the content ratio of R is preferably 29.0 to 33.0% by mass.
  • the content ratio of R when the alloy slab of the invention is used is preferably 27.0 to 29.0% by mass.
  • the content of boron is 0.90 to 1.30% by mass. If boron is less than 0.90% by mass, the ratio of the 2-14-1 main phase decreases and the residual magnetization decreases. If it exceeds 1.30% by mass, the ratio of the B-rich phase increases, Both properties and corrosion resistance are reduced.
  • the remainder M contains iron as an essential element.
  • the content of iron in the balance M is usually 50% by mass or more, preferably 60 to 72% by mass, particularly preferably 64 to 70% by mass.
  • the balance M may contain at least one selected from the group consisting of transition metals other than iron, silicon and carbon, if necessary, and also contains inevitable impurities in industrial production such as oxygen and nitrogen. It may be included.
  • the transition metal other than iron is not particularly limited. For example, at least one selected from the group consisting of cobalt, aluminum, chromium, titanium, vanadium, zirconium, hafnium, manganese, copper, tin, tungsten, niobium, and gallium is preferable. Can be mentioned.
  • the alloy slab of the present invention allows inevitable impurities, but contains alkali metal elements, alkaline earth metal elements, and zinc (hereinafter, these may be abbreviated as volatile elements). Is preferably 0.10% by mass or less in total. More preferably, the total amount of volatile elements is 0.05% by mass or less, and most preferably 0.01% by mass or less. When the total amount of volatile elements exceeds 0.10% by mass, chill crystals are generated, and the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase may be made to be an extremely uniform alloy. May be difficult. The following points can be considered as the reason.
  • the raw material alloy for R 2 Fe 14 B-based rare earth sintered magnet exceeds 1200 ° C.
  • the raw material is heated and melted at a high temperature of 1200 ° C. or higher.
  • the evaporation temperature of the alkali metal element, alkaline earth metal element and zinc is low, when the volatile element in the alloy exceeds 0.10% by mass, a large amount of evaporation occurs.
  • a part of the evaporated element is deposited on the surface of the cooling roll.
  • the evaporated volatile element is in a state of reacting with a small amount of oxygen in the furnace.
  • the volatile element present on the roll surface reacts with the roll base material to form a film mainly composed of the volatile element on the roll surface. It is presumed that since this film prevents heat conduction between the molten metal and the cooling roll, the crystal growth of the generated nuclei cannot be sufficiently controlled. If the generated nuclei cannot grow sufficiently, the nuclei are released from the roll surface due to convection of the molten metal and become chill crystals.
  • the alloy slab of the present invention is a slab having a roll cooling surface obtained by a strip casting method using a cooling roll, particularly an alloy having a roll cooling surface on one side obtained by using a single roll.
  • a slab is preferred.
  • the opposite side of the roll cooling surface is solidified without being in contact with the cooling roll, and is called a free surface.
  • the roll cooling surface means a surface in which the raw material alloy molten metal comes into contact with the cooling roll surface during production and is cooled and solidified.
  • the thickness of the alloy slab of the present invention is usually about 0.1 to 1.0 mm, more preferably about 0.2 to 0.6 mm.
  • the alloy slab of the present invention (2) in a microscopic image obtained by observing the roll cooling surface at a magnification of 100 times, dendrites grew in a circular shape centering on the generation point of a crystal nucleus crossing a line segment corresponding to 880 ⁇ m And satisfying the requirement of having 5 or more crystals having an aspect ratio of 0.5 to 1.0 and a grain size of 30 ⁇ m or more. More preferably, the number of the crystals is 8 or more and 15 or less. Usually, the number of industrially obtained crystals is 30 or less. When the number of the crystals is 5 or more, the growth of the generated crystal nuclei is hardly inhibited and the degree of growth can be controlled.
  • a closed curve is obtained. This is one crystal, and the average of the short axis length and long axis length of the closed curve is the particle size. Further, the value of (short axis length / long axis length) is defined as an aspect ratio. Three line segments corresponding to 880 ⁇ m are drawn so as to equally divide the observed image into four, and the aspect ratio in which dendrites grow circularly around the generation point of the crystal nucleus crossing each line segment is 0.5. Count the number of crystals with a diameter of ⁇ 1.0 and a particle size of 30 ⁇ m or more. Let these average values be the number of the crystals.
  • the alloy cast of the present invention is (3) a requirement that an average interval between R-rich phases is 1 ⁇ m or more and less than 10 ⁇ m in a microscopic image obtained by observing a cross section substantially perpendicular to the roll cooling surface at a magnification of 200 times Meet. More preferably, the average interval between the R-rich phases is 3 ⁇ m or more and 6 ⁇ m or less.
  • the alloy slab of the present invention preferably has a small variation in the R-rich phase interval.
  • the pulverized alloy powder can be made to have a uniform particle size having a desired distribution.
  • the value obtained by dividing the standard deviation of the interval of the R-rich phase, which is an index of the variation in the interval of the R-rich phase, by the average interval of the R-rich phase is preferably 0.20 or less, more preferably 0.18 or less. is there.
  • the average interval between the R-rich phases can be obtained by the following method.
  • the R-rich phase exists as a grain boundary phase of dendrites composed of a 2-14-1 main phase.
  • the R-rich phase usually exists in a linear shape, but may exist in an island shape depending on the thermal history of the casting process. Even if the R-rich phase exists in an island shape, if they are continuously present so as to form a line, the island-like R-rich phase is connected to the linear R-rich phase.
  • the alloy slab of the present invention preferably contains no ⁇ -Fe phase, but may contain it in a range that does not have a significant adverse effect on grindability. Normally, the ⁇ -Fe phase appears at a position where the cooling rate of the alloy is slow. For example, when an alloy slab is produced by a strip casting method using a single roll, the ⁇ -Fe phase appears on the free surface side. In the case of containing an ⁇ -Fe phase, it is preferable to deposit with a particle size of 3 ⁇ m or less, and preferably less than 5% by volume.
  • the alloy slab of the present invention contains almost no equiaxed crystal grains, that is, chill crystals, but may be contained within a range that does not significantly affect the magnetic properties.
  • the chill crystal appears mainly at a position where the cooling rate of the alloy slab is high.
  • the volume ratio is preferably less than 5%.
  • the alloy slab of the present invention is industrially obtained by, for example, the following production method of the present invention.
  • at least one R selected from the group consisting of rare earth metal elements including yttrium is 27.0 to 33.0% by mass
  • boron is 0.90 to 1.30% by mass
  • iron is A step of preparing a raw material alloy molten metal comprising the remaining M, and cooling and solidifying the raw material alloy molten metal with a cooling roll having a surface roughness Ra value of 2 to 15 ⁇ m and an Rsk value of ⁇ 0.5 or more and less than 0.
  • the remaining part M contained in the raw material alloy molten metal may include a remaining part M other than the above-described iron.
  • R, boron, M as a raw material or an alloy containing these is blended according to the desired composition of the alloy.
  • the raw material alloy melt obtained by heating and melting the blended raw material in a vacuum atmosphere or an inert gas atmosphere is cooled and solidified by a strip casting method using a single roll or a twin roll.
  • the cooling roll is preferably a single roll.
  • the total content of alkali metal element, alkaline earth metal element and Zn in the raw material is preferably 0.15% by mass or less. More preferably, the total content of volatile elements is 0.10% by mass or less, and most preferably 0.05% by mass or less.
  • the content of volatile elements in the resulting alloy slab can be easily controlled to be 0.10% by mass or less.
  • the volatile element is removed from the system before it is deposited on the cooling roll by a step of evacuation when heating / dissolving.
  • Volatile elements are mainly mixed from raw materials containing R. It is expected to be mixed from the R separation and refining process. By selecting the raw materials, it is possible to control the content of volatile elements that have not been conventionally recognized as an inevitable impurity.
  • the Ra value of the surface roughness of the cooling roll is 2 to 15 ⁇ m, and the Rsk value is ⁇ 0.5 or more and less than 0. More preferably, the Rsk value is ⁇ 0.4 or more and less than 0.
  • a chill roll having a surface roughness Rsk value of ⁇ 0.5 or more and less than 0 it is possible to suppress generation of crystal nuclei generated from the roll surface. That is, precipitation of chill crystals can be suppressed.
  • the number of nuclei generated can be controlled by controlling the Ra value.
  • the requirement (2) in the alloy slab of the present invention can be controlled. .
  • the surface properties of the cooling roll can be controlled by polishing, laser processing, transfer, thermal spraying, shot blasting, and the like.
  • polishing a method of polishing in a specific direction using a polishing paper and then polishing in a direction of 80 ° to 90 ° with respect to the specific direction using a coarser number of polishing paper. It can be carried out.
  • the polishing is performed without changing the count of the polishing paper, the Rsk value becomes smaller than ⁇ 0.5, and the precipitation of chill crystals may not be suppressed.
  • thermal spraying it can be performed by controlling the shape of the thermal spray material and the thermal spraying conditions. Specifically, it can be performed by partially mixing a non-standard and high melting point thermal spray material as the thermal spray material. In the case of shot blasting, it can be performed by controlling the shape of the projection material and the projection conditions. Specifically, it can be performed by using a projection material having a different particle diameter or using an atypical projection material.
  • the alloy cast slab cooled and solidified by the cooling roll can be appropriately crushed, heated and maintained at a temperature, and cooled by a known method after peeling from the cooling roll.
  • Example 1 In consideration of the yield, finally Nd 23.5% by mass, Dy 6.7% by mass, B 0.95% by mass, Al 0.15% by mass, Co 1.0% by mass, Cu 0.2% by mass, balance iron alloy slab
  • the raw materials were blended and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere to obtain a molten raw material alloy.
  • the obtained molten alloy was cast by a strip casting method using a water-cooled copper single roll casting apparatus to obtain an alloy slab having a thickness of about 0.3 mm.
  • the cooling roll used was polished on the surface using # 120 abrasive paper in the roll rotation direction, and then polished using # 60 abrasive paper at an angle of 90 ° with respect to the roll rotation direction.
  • the Ra value of the surface roughness of the cooling roll was 3.01 ⁇ m, and the Rsk value was ⁇ 0.44.
  • the raw material was selected so that the volatile element in the raw material was 0.05% by mass or less, and the volatile element in the obtained alloy slab was 0.01% by mass or less.
  • the aspect ratio in which dendrite grew in a circular shape centering on the generation point of the crystal nucleus crossing the line segment corresponding to 880 ⁇ m was 0.5 to 1.
  • the number of crystals having a diameter of 0.0 and a particle size of 30 ⁇ m or more was fifteen. Further, when the cross-sectional structure of the alloy slab was observed, chill crystals were not observed. The average interval of the R-rich phase was 4.51 ⁇ m, and the standard deviation of the interval of the R-rich phase divided by the average interval of the R-rich phase was 0.15.
  • a copy of a microscopic observation image of the roll cooling surface of the obtained alloy slab is shown in FIG. 1, and a copy of a microscopic observation image of a cross-sectional structure substantially perpendicular to the roll cooling surface is shown in FIG.
  • the obtained alloy slab was used as a raw material to produce a sintered magnet.
  • the obtained sintered magnet had a residual magnetization (Br) of 12.65 kG and an intrinsic coercive force (iHc) of 26.49 kOe.
  • Example 2 Polishing in the roll rotation direction was changed to # 60, and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to polishing paper of # 30, and a cooling roll having Ra and Rsk values shown in Table 1 was used. In the same manner as in Example 1, an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 An alloy slab and a sintered magnet were produced in the same manner as in Example 1 except that shot blasting was used in place of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 1 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked material were fired in the same manner as in Example 1 except that a cooling roll having the Ra value and Rsk value shown in Table 1 was used. A magnetized magnet was produced. The volatile elements in the obtained alloy slab were 0.11% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 Casting the alloy in the same manner as in Example 1 except that the surface of the cooling roll was polished only in the rotation direction of the roll using # 60 abrasive paper and the cooling roll having the Ra value and Rsk value shown in Table 1 was used. Pieces and sintered magnets were prepared. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • FIG. 3 shows a copy of a microscopic observation image of the roll cooling surface of the obtained alloy slab
  • FIG. 4 shows a copy of a cross-sectional microstructure observation image.
  • Comparative Example 2 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked steel were fired in the same manner as in Comparative Example 1 except that a cooling roll having the Ra value and Rsk value shown in Table 1 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.12% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example # Except for using # 60 abrasive paper and polishing so as to intersect each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having Ra and Rsk values shown in Table 1.
  • Example 1 An alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In consideration of the yield, finally Nd 29.6% by mass, Dy 2.4% by mass, B 1.0% by mass, Al 0.15% by mass, Co 1.0% by mass, Cu 0.2% by mass, balance iron alloy slab
  • Dy 2.4% by mass B 1.0% by mass
  • Al 0.15% by mass Co 1.0% by mass
  • Cu 0.2% by mass balance iron alloy slab
  • Example 5 In the same manner as in Example 1, except that the raw material was blended and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere to obtain a raw material alloy melt, A sintered magnet was produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 Polishing in the roll rotation direction was changed to # 60 and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to # 30 polishing paper, respectively, except that a cooling roll having Ra and Rsk values shown in Table 2 was used.
  • a cooling roll having Ra and Rsk values shown in Table 2 was used.
  • an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 An alloy slab and a sintered magnet were produced in the same manner as in Example 5 except that shot blasting was used in place of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 2 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked steel were fired in the same manner as in Example 5 except that a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A magnetized magnet was produced. The volatile elements in the obtained alloy slab were 0.11% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 5 Cast the alloy roll in the same manner as in Example 5 except that the surface of the cooling roll was polished only in the rotational direction of the roll using # 60 abrasive paper and the cooling roll having the Ra value and Rsk value shown in Table 2 was used. Pieces and sintered magnets were prepared. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 6 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and an alloy slab and a fired product were produced in the same manner as in Comparative Example 5 except that a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.12% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 7 Alloying in the same manner as in Example 5 except that a # 60 abrasive paper was used to polish at an angle of 45 ° with respect to the roll rotation direction, and a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 8 Except for using # 60 abrasive paper and polishing so as to cross each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having the Ra value and Rsk value shown in Table 2. In the same manner as in Example 5, alloy cast pieces and sintered magnets were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 9 In consideration of the yield, finally, Nd18.2% by mass, Dy10.8% by mass, B0.92% by mass, Al0.15% by mass, Co1.0% by mass, Cu0.2% by mass, balance iron alloy slab So as to obtain a molten alloy in an argon gas atmosphere using an alumina crucible in a high-frequency melting furnace to obtain a molten alloy of raw materials so that the volatile elements in the raw material become 0.07% by mass.
  • An alloy slab and a sintered magnet were produced in the same manner as in Example 1 except that the raw materials were selected. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 10 Polishing in the roll rotation direction was changed to # 60, and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to # 30 polishing paper, and a cooling roll having Ra values and Rsk values shown in Table 3 was used. In the same manner as in Example 9, an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 11 An alloy cast piece and a sintered magnet were produced in the same manner as in Example 9 except that shot blasting was used instead of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 3 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 12 The raw material was selected so that the volatile elements in the raw material were 0.95% by mass, and the alloy slab and the baked steel were fired in the same manner as in Example 9 except that a cooling roll having the Ra value and Rsk value shown in Table 3 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.13% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 10 The raw material was selected so that the volatile element in the raw material was 0.95% by mass, and an alloy slab and fired as in Comparative Example 9 except that a cooling roll having the Ra value and Rsk value shown in Table 3 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.13% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 11 An alloy was prepared in the same manner as in Example 9 except that polishing paper of # 60 was used to polish at an angle of 45 ° with respect to the roll rotation direction, and a cooling roll having Ra and Rsk values shown in Table 3 was used. A slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 12 Except for using # 60 abrasive paper and polishing so as to cross each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having Ra and Rsk values shown in Table 3. In the same manner as in Example 9, alloy cast pieces and sintered magnets were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.

Abstract

 チル晶の発生が抑制され、かつ2-14-1系主相の形状、並びにR-rich相の分散状態が極めて均一な希土類焼結磁石用原料合金鋳片及びその製造法を提供する。本発明の合金鋳片は、以下の(1)~(3)を満たす、冷却ロールを用いたストリップキャスティング法により得られた、ロール冷却面を有する。(1)Yを含む希土類金属元素の少なくとも1種のR、B、及び鉄を含む残部Mを特定割合で含む。(2)ロール冷却面を100倍で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、特定のアスペクト比と粒径を有する結晶を5個以上有する。(3)ロール冷却面に略垂直な断面を200倍で観察した顕微鏡観察像における、R-rich相の平均間隔が1μm以上10μm未満である。

Description

希土類焼結磁石用原料合金鋳片及びその製造方法
 本発明は、希土類焼結磁石用原料合金鋳片及びその製造方法に関する。
 電子機器の小型化・軽量化、また、近年顕在化している地球温暖化に対処するための省エネルギー化、省資源化の社会的ニーズより、自動車、風力発電等に使用する各種モーターに用いる磁石の更なる高磁気特性化が要望されている。なかでも磁束密度の高いR2Fe14B系の希土類焼結磁石の開発が活発に行われている。
 一般にR2Fe14B系の希土類焼結磁石は、原料を溶解、鋳造して得られた希土類焼結磁石用原料合金を粉砕し、磁石用合金粉末を得、これを磁場成形、焼結、時効処理して得られる。一般に希土類焼結磁石用原料合金の粉砕は、該原料合金に水素を吸蔵、放出させて行う水素粉砕と、ジェット気流中で原料合金同士を衝突させて行うジェットミル粉砕とを組み合わせて行われている。希土類焼結磁石用原料合金には、主相としてR2Fe14B系化合物相(以下、2-14-1系主相と略記することがある)と、該2-14-1系主相と比較して多くの希土類金属元素を含む相であるR-rich相(以下、R-rich相と略記することがある)と、該2-14-1系主相と比較して多くのボロンを含む相であるB-rich相(以下、B-rich相と略記することがある)とが含まれる。2-14-1系主相、R-rich相およびB-rich相が形成する希土類焼結磁石用原料合金の合金組織の形態が、該原料合金の粉砕性や得られる希土類焼結磁石の特性に影響を及ぼすことが知られている。
 特許文献1には、希土類系合金製造用急冷ロールが開示されている。同冷却ロールの表面のSm値およびRa値を制御することにより、同冷却ロールを用いて作製した希土類合金薄帯の短軸粒径が薄帯の中央部と両端部で均一にできることが記載されている。
 特許文献2には、希土類含有合金薄帯の製造方法が開示されている。同製造方法は、冷却ロール表面にロール回転方向に対し30°以上の角度をなす方向に特定のRz値を示す略線状の凹凸を形成させた冷却ロールを用いることにより、チル晶およびR-rich相の分散状態が極端に細かな領域を減少できることが記載されている。
特開2002-59245号公報 特開2004-181531号公報
 本発明の課題は、チル晶の発生が抑制され、かつ2-14-1系主相の形状、並びにR-rich相の分散状態が極めて均一な希土類焼結磁石用原料合金鋳片を提供することにある。
 本発明の別の課題は、上記鋳片を工業的に得ることができる希土類焼結磁石用原料合金鋳片の製造方法を提供することにある。
 冷却ロールを用いるストリップキャスティング法において、冷却ロールの表面状態を制御することにより得られる合金鋳片の組織を均一化することは従来から行われていた。しかしながら、冷却ロール面側に観察される結晶核の発生点を中心として円状にデンドライトが成長した結晶の合金組織に対する影響については、何ら検討されていなかった。本発明者らは、合金鋳片の冷却ロール面側に観察される結晶核の発生点を中心として円状にデンドライトが成長したアスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶の数と該鋳片のロール冷却面と接していた面に略垂直な断面の合金組織の間に密接な関係が存在することを確認し、本発明を完成した。
 本発明によれば、以下の(1)~(3)を満たす、冷却ロールを用いたストリップキャスティング法により得られた、ロール冷却面を有する希土類焼結磁石用原料合金鋳片(以下、本発明の合金鋳片と略すことがある)が提供される。
 (1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる。
 (2)ロール冷却面を100倍の倍率で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、アスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶を5個以上有する。
 (3)ロール冷却面に略垂直な断面を200倍の倍率で観察した顕微鏡観察像における、R-rich相の平均間隔が、1μm以上10μm未満である。
 また本発明によれば、イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む、希土類焼結磁石用原料合金鋳片の製造方法が提供させる。
 更に本発明によれば、冷却ロールを用いたストリップキャスティング法により得られた、上記(1)~(3)を満たしたロール冷却面を有する合金鋳片を準備し、該合金鋳片を粉砕し、得られた合金粉末を磁場成形、焼結、時効処理する、希土類焼結磁石の製造方法が提供される。
 本発明の合金鋳片は、チル晶の発生が抑制され、2-14-1系主相の形状、並びにR-rich相の分散状態が極めて均一であって、同合金鋳片を使用することにより優れた磁石特性を有する希土類焼結磁石を得ることができる。また、本発明の製造方法は、上記特定組成の合金溶湯を、特定表面構造の冷却ロールにより冷却、固化する工程を採用するので、工業的に本発明の合金鋳片を容易に製造することができる。
実施例1で得られた合金鋳片のロール冷却面の顕微鏡観察像の写しである。 実施例1で得られた合金鋳片の断面組織の顕微鏡観察像の写しである。 比較例1で得られた合金鋳片のロール冷却面の顕微鏡観察像の写しである。 比較例1で得られた合金鋳片の断面組織の顕微鏡観察像の写しである。
 以下、本発明を更に詳細に説明する。
 本発明の合金鋳片は、(1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる、という要件を満たす。ここで、残部Mの含有割合は、R及びボロンの残部であるが、本発明の合金鋳片は、これら以外に不可避な不純分を含んでいても良い。
 前記イットリウムを含む希土類金属元素とは、元素番号57から71のランタノイド及び元素番号39のイットリウムを意味する。前記Rは特に限定されないが、例えば、ランタン、セリウム、プラセオジム、ネオジム、イットリウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、イッテルビウム又はこれらの2種以上の混合物が好ましく挙げられる。特に、Rとして、プラセオジムまたはネオジムを主成分として含有し、かつガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム及びイッテルビウムからなる群より選ばれる少なくとも1種の重希土類元素を含むことが好ましい。
 これらの重希土類元素は、磁気特性のうち主に保磁力を向上させることができる。中でもテルビウムはもっとも大きな効果を示す。しかし、テルビウムは高価であるため、コストと効果を考慮するとジスプロシウムを単体、またはガドリウム、テルビウム、ホルミウム等と共に用いることが好ましい。
 前記Rの含有割合は、27.0~33.0質量%である。Rが27.0質量%未満では、希土類焼結磁石の焼結体の緻密化に必要な液相量が不足して焼結体の密度が低下し、磁気特性が低下する。一方、33.0質量%を超えると、焼結体内部のR-rich相の割合が高くなり、耐食性が低下する。また、必然的に2-14-1系主相の体積割合が少なくなるため、残留磁化が低下する。
 本発明の合金鋳片を単一合金法に用いる場合のRの含有割合は、29.0~33.0質量%が好ましく、2合金法の2-14-1系主相用の合金として本発明の合金鋳片を用いる場合のRの含有割合は、27.0~29.0質量%が好ましい。
 前記ボロンの含有割合は、0.90~1.30質量%である。ボロンが0.90質量%未満では、2-14-1系主相の割合が減少し、残留磁化が低下し、1.30質量%を超えると、B-rich相の割合が増加し、磁気特性及び耐食性が共に低下する。
 前記残部Mは、必須元素として鉄を含む。残部M中の鉄の含有割合は、通常50質量%以上、好ましくは60~72質量%、特に好ましくは64~70質量%である。残部Mは、必要に応じて、鉄以外の遷移金属、珪素及び炭素からなる群より選ばれる少なくとも1種を含んでいても良く、また、酸素、窒素等の工業生産上における不可避な不純分を含んでいても良い。
 前記鉄以外の遷移金属は特に限定されないが、例えば、コバルト、アルミニウム、クロム、チタン、バナジウム、ジルコニウム、ハフニウム、マンガン、銅、錫、タングステン、ニオブ及びガリウムからなる群より選ばれる少なくとも1種が好ましく挙げられる。
 本発明の合金鋳片は、不可避な不純分を許容するものではあるが、アルカリ金属元素、アルカリ土類金属元素、亜鉛(以下、これらをまとめて揮発元素と略記することがある)の含有量については、合計で0.10質量%以下であることが好ましい。さらに好ましくは揮発元素の合計量で0.05質量%以下、最も好ましくは0.01質量%以下である。揮発元素の合計量が0.10質量%を超えると、チル晶が発生し、また2-14-1系主相の形状、並びにR-rich相の分散状態を極めて均一な合金とすることが困難となるおそれがある。その理由としては以下の点が考えられる。
 R2Fe14B系希土類焼結磁石用原料合金の融点は1200℃を超えることから、原料の加熱・溶解は1200℃以上の高温で行う。その際、アルカリ金属元素、アルカリ土類金属元素および亜鉛の蒸発温度は低いため、合金中の揮発元素が0.10質量%を超えるような場合、多量に蒸発が生じる。蒸発した元素の一部は冷却ロール表面に析出する。もしくは、蒸発した揮発元素が炉内の微量な酸素等と反応した状態となっている。揮発元素が表面に析出した冷却ロールを用いて原料溶湯を急冷・凝固する際、ロール表面に存在する揮発元素とロール母材が反応しロール表面に揮発元素を主とする皮膜を形成する。この皮膜により溶湯と冷却ロールとの間の熱伝導を妨げられるため、発生した核の結晶成長を十分に制御できなくなると推測される。発生した核が十分に成長できないと溶湯の対流などによりロール表面から核が遊離しチル晶となる。
 本発明の合金鋳片は、冷却ロールを用いたストリップキャスティング法により得られた、ロール冷却面を有する鋳片であって、特に、単ロールを用いて得られた片側にロール冷却面を有する合金鋳片が好ましい。単ロールを用いた場合、ロール冷却面の反対側は冷却ロールと接触せずに凝固されており、フリー面という。ここで、ロール冷却面とは、製造時に原料合金溶湯が冷却ロール表面に接触し、冷却、凝固した面を意味する。
 本発明の合金鋳片の厚みは、通常0.1~1.0mm程度であり、さらに好ましくは0.2~0.6mm程度である。
 本発明の合金鋳片は、(2)ロール冷却面を100倍の倍率で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、アスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶を5個以上有する、という要件を満たす。さらに好ましくは、該結晶の数が8個以上、15個以下である。通常、工業的に得られる該結晶の数は30個以下である。該結晶の数が、5個以上である場合、生成した結晶核の成長が阻害されにくく、かつ成長度合いを制御できる。したがって、断面組織は、チル晶の発生がほとんどなく、かつ2-14-1系主相の形状、並びにR-rich相の分散状態が極めて均一になる。上述した通り、揮発元素の含有量を同時に制御した場合、揮発元素による悪影響が抑制される効果と相俟って、極めて均一な組織を有する合金鋳片となり、このような合金鋳片を用いて作製した磁石は高い磁気特性を有する。
 前記結晶の数の測定は以下のようにして行う。100倍の倍率で観察した顕微鏡観察像において結晶核の発生点から円状にデンドライトが成長した結晶の境を描くと閉じられた曲線となる。これを1つの結晶とし、閉じられた曲線の短軸長と長軸長の平均を粒径とする。また(短軸長/長軸長)の値をアスペクト比とする。該観察像を均等に4分割するように880μmに相当する3本の線分を引き、それぞれの線分を横切る結晶核の発生点を中心として円状にデンドライトが成長したアスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶の数を数える。これらの平均値を該結晶の数とする。
 本発明の合金鋳片は、(3)ロール冷却面に略垂直な断面を200倍の倍率で観察した顕微鏡観察像における、R-rich相の平均間隔が、1μm以上10μm未満である、という要件を満たす。さらに好ましくはR-rich相の平均間隔は、3μm以上6μm以下である。
 合金鋳片のR-rich相の平均間隔を1μm以上10μm未満とすることで、磁石製造の粉砕工程において、該合金鋳片を水素粉砕、ジェットミル粉砕を行った場合、得られる合金粉末中に結晶方位の異なる複数の結晶粒が存在する確立が低くなるため好ましい。
 本発明の合金鋳片は、R-rich相の間隔のばらつきが小さいことが好ましい。ばらつきが小さいと、粉砕後の合金粉末を目的の分布を持った均一な粒度とすることができる。R-rich相の間隔のばらつきの指標であるR-rich相の間隔の標準偏差をR-rich相の平均間隔で割った値は、0.20以下が好ましく、さらに好ましくは0.18以下である。このような、均一な合金粉末を使用することにより、磁石製造の焼結工程において異常に大きな粒成長を引き起こすことがなくなり、磁石の保磁力を向上させることができる。
 上記R-rich相の平均間隔は、次の方法により求めることができる。
 まず、本発明の合金鋳片のロール冷却面に略垂直(鋳片の厚み方向に平行)となる断面組織写真を光学顕微鏡により200倍の倍率で撮影する。R-rich相は2-14-1系主相からなるデンドライトの粒界相として存在している。R-rich相は、通常は線状に存在するが、鋳造過程の熱履歴等によっては島状に存在する場合もある。R-rich相が島状に存在しても、それらが明らかに線をなすように連続して存在する場合は、それらの島状のR-rich相をつなぎ、線状のR-rich相と同様に考慮する。
 本発明の合金鋳片のロール冷却面と接した面に略垂直な方向に均等に4分割する3本の440μmに相当する線分を引き、その線分を横切るR-rich相の点数を数え、線分の長さ440μmをその点数で割る。10個の合金鋳片に関し、同様に測定し、計30点の測定値を得、これらの平均値をR-rich相の平均間隔とする。また該30点の測定値から標準偏差を算出する。
 本発明の合金鋳片は、α-Fe相を含有しない方が好ましいが、粉砕性に大きな悪影響を及ぼさない範囲で含有していてもよい。通常は、α-Fe相は合金の冷却速度の遅い位置に現れる。例えば、単ロールを用いたストリップキャスティング法で合金鋳片を製造する場合、α-Fe相はフリー面側に現れる。α-Fe相を含有する場合は、3μm以下の粒径で析出することが好ましく、体積率で5%未満であることが好ましい。
 本発明の合金鋳片は、微細な等軸結晶粒、即ち、チル晶をほとんど含有しないが、磁気特性に大きな影響を及ぼさない範囲で含有していてもよい。チル晶は、主に合金鋳片の冷却速度の速い位置に現れる。例えば、単ロールを用いたストリップキャスティング法で合金鋳片を製造する場合、チル晶はロール冷却面近傍に現れる。チル晶を含有する場合は、体積率で5%未満であることが好ましい。
 本発明の合金鋳片は、例えば、下記の本発明の製造方法により工業的に得られる。
 本発明の製造方法は、イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む。
 前記原料合金溶湯に含まれる残部Mは、上述の鉄以外の残部Mを含むことができる。
 本発明の製造方法は、まず所望する合金の組成に応じて、原料となるR、ボロン、Mの単体もしくはこれらを含有する合金を配合する。次いで、配合した原料を真空雰囲気又は不活性ガス雰囲気下、加熱・溶解して得られた原料合金溶湯を、単ロールまたは双ロールを用いるストリップキャスティング法により冷却・凝固させる。冷却ロールは単ロールが好ましい。
 本発明の製造方法において、前記原料中のアルカリ金属元素、アルカリ土類金属元素およびZnの含有量は合計で0.15質量%以下とすることが好ましい。さらに好ましくは、揮発元素の含有量を合計で0.10質量%以下、最も好ましくは0.05質量%以下とする。揮発元素の含有量を合計で0.15質量%以下とした場合、得られる合金鋳片中の揮発元素の含有量が合計で0.10質量%以下に制御しやすい。好ましくは、加熱・溶解する際に真空引きを行う工程により、揮発元素が冷却ロールに析出する前に系外に除去する。揮発元素は、主にRを含有する原料から混入する。Rの分離、精錬の工程より混入されていると予想される。原料を選別することで、従来、不可避的な不純分として意識されなかった揮発元素の含有量を制御することができる。
 本発明の製造方法において、上述の通り、冷却ロールの表面粗さのRa値は2~15μm、Rsk値は-0.5以上0未満である。さらに好ましくはRsk値は-0.4以上0未満である。表面粗さのRsk値が-0.5以上0未満である冷却ロールを用いることにより、生成する結晶核がロール表面から遊離することを抑制できる。すなわちチル晶の析出を抑制できる。また、表面粗さのRa値が2~8μmの冷却ロールを用いることが好ましい。Ra値を制御することで、核発生数を制御することができる。表面粗さのRa値が2~15μm、Rsk値が-0.5以上0未満である冷却ロールを用いることで、特に、本発明の合金鋳片における(2)の要件を制御することができる。
 冷却ロールの表面性状の制御は、研磨、レーザー加工、転写、溶射、ショットブラスト等により行うことができる。例えば、研磨で行う場合、研磨紙を用いて特定の方向に研磨した後、それよりも粗い番手の研磨紙を用いて、該特定方向に対し80°~90°の方向に研磨を行う方法で行うことができる。研磨紙の番手を変えずに前記研磨を行った場合、Rsk値が-0.5より小さくなり、チル晶の析出を抑制できないおそれがある。また、冷却ロール表面の凹凸が線状になりやすいため、デンドライトの成長が円状となりにくく、前記結晶の数を5個以上に制御することができないおそれがある。
 また、溶射の場合、溶射材の形状、溶射条件を制御することにより行うことができる。具体的には、溶射材として非定型で高融点の溶射材を一部混合することで行うことができる。ショットブラストの場合、投射材の形状、投射条件を制御することにより行うことができる。具体的には、粒径の異なる投射材を使用したり、非定型の投射材を用いることで行うことができる。
 本発明の製造方法において、前記冷却ロールで冷却、凝固した合金鋳片は、冷却ロールから剥離した後、公知の方法により、適宜、破砕、加熱・温度保持、冷却を行うことができる。
 次に実施例により本発明を詳述するが、本発明はこれらに限定されない。
 実施例1
 歩留まりを考慮し、最終的にNd23.5質量%、Dy6.7質量%、B0.95質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得た。得られた合金溶湯を、水冷式の銅製単ロール鋳造装置を用いてストリップキャスティング法により鋳造し、厚さ約0.3mmの合金鋳片を得た。
 使用した冷却ロールは、表面を#120の研磨紙を使用してロールの回転方向を研磨し、次いで、#60の研磨紙を使用してロールの回転方向に対し90°の角度で研磨して、冷却ロールの表面粗さのRa値を3.01μm、Rsk値を-0.44とした。原料中の揮発元素は0.05質量%以下となるように原料を選定し、得られた合金鋳片中の揮発元素は0.01質量%以下であった。
 得られた合金鋳片のロール冷却面を上述の方法で観察したところ、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長したアスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶の数は15個であった。また合金鋳片の断面組織を観察したところ、チル晶は観察されなかった。R-rich相の平均間隔は4.51μm、R-rich相の間隔の標準偏差をR-rich相の平均間隔で割った値は0.15であった。図1に得られた合金鋳片のロール冷却面の顕微鏡観察像の写しを、図2にロール冷却面に略垂直な断面組織の顕微鏡観察像の写しを示す。
 得られた合金鋳片を原料として使用し、焼結磁石を作製した。得られた焼結磁石の残留磁化(Br)は12.65kG、固有保磁力(iHc)は26.49kOeであった。これらの結果を表1に示す。
 実施例2
 ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
 実施例3
 研磨紙の代わりにショットブラストを使用し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
 実施例4
 原料中の揮発元素を0.90質量%となるように原料を選定し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.11質量%であった。また、実施例1と同様に各測定を行った。結果を表1に示す。
 比較例1
 #60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。図3に、得られた合金鋳片のロール冷却面の顕微鏡観察像の写しを、図4に断面組織の顕微鏡観察像の写しを示す。
 比較例2
 原料中の揮発元素を0.90質量%となるように原料を選定し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例1と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.12質量%であった。また、実施例1と同様に各測定を行った。結果を表1に示す。
 比較例3
 #60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
 比較例4
 #60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例5
 歩留まりを考慮し、最終的にNd29.6質量%、Dy2.4質量%、B1.0質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得た以外は、実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
 実施例6
 ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
 実施例7
 研磨紙の代わりにショットブラストを使用し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
 実施例8
 原料中の揮発元素を0.90質量%となるように原料を選定し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.11質量%であった。また、実施例1と同様に各測定を行った。結果を表2に示す。
 比較例5
 #60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
 比較例6
 原料中の揮発元素を0.90質量%となるように原料を選定し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例5と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.12質量%であった。また、実施例1と同様に各測定を行った。結果を表2に示す。
 比較例7
 #60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
 比較例8
 #60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例9
 歩留まりを考慮し、最終的にNd18.2質量%、Dy10.8質量%、B0.92質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得、原料中の揮発元素を0.07質量%となるように原料を選定した以外は、実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
 実施例10
 ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
 実施例11
 研磨紙の代わりにショットブラストを使用し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
 実施例12
 原料中の揮発元素を0.95質量%となるように原料を選定し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.13質量%であった。また、実施例1と同様に各測定を行った。結果を表3に示す。
 比較例9
 #60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
 比較例10
 原料中の揮発元素を0.95質量%となるように原料を選定し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例9と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.13質量%であった。また、実施例1と同様に各測定を行った。結果を表3に示す。
 比較例11
 #60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
 比較例12
 #60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  以下の(1)~(3)を満たす、冷却ロールを用いたストリップキャスティング法により得られた、ロール冷却面を有する希土類焼結磁石用原料合金鋳片。
     (1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる。
     (2)ロール冷却面を100倍の倍率で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、アスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶を5個以上有する。
     (3)ロール冷却面に略垂直な断面を200倍の倍率で観察した顕微鏡観察像における、R-rich相の平均間隔が、1μm以上10μm未満である。
  2.  前記(1)において残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選ばれる少なくとも1種を含む請求項1の原料合金鋳片。
  3.  前記(1)において、R、ボロン及び残部M以外に、アルカリ金属元素、アルカリ土類金属元素および亜鉛からなる群より選ばれる少なくとも1種の不純分を含み、その合計含有量が0.10質量%以下である請求項1又は2の原料合金鋳片。
  4.  イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む、希土類焼結磁石用原料合金鋳片の製造方法。
  5.  前記原料合金溶湯の残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選ばれる少なくとも1種を含む請求項4の製造方法。
  6.  前記原料合金溶湯が、R、ボロン及び残部M以外に、アルカリ金属元素、アルカリ土類金属元素および亜鉛からなる群より選ばれる少なくとも1種の不純分を含み、その合計含有量が0.15質量%以下である請求項4又は5の製造方法。
PCT/JP2012/069301 2011-08-03 2012-07-30 希土類焼結磁石用原料合金鋳片及びその製造方法 WO2013018751A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/236,195 US9865382B2 (en) 2011-08-03 2012-07-30 Alloy flakes as starting material for rare earth sintered magnet and method for producing same
KR1020147005464A KR101922188B1 (ko) 2011-08-03 2012-07-30 희토류 소결 자석용 원료 합금 주편 및 그 제조 방법
EP12820207.4A EP2740551B1 (en) 2011-08-03 2012-07-30 Alloy flakes as starting material for rare earth sintered magnet
JP2013526906A JP6104162B2 (ja) 2011-08-03 2012-07-30 希土類焼結磁石用原料合金鋳片及びその製造方法
CN201280048482.7A CN103842112B (zh) 2011-08-03 2012-07-30 用于稀土烧结磁铁的原料合金铸片及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-180954 2011-08-03
JP2011180954 2011-08-03

Publications (1)

Publication Number Publication Date
WO2013018751A1 true WO2013018751A1 (ja) 2013-02-07

Family

ID=47629274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069301 WO2013018751A1 (ja) 2011-08-03 2012-07-30 希土類焼結磁石用原料合金鋳片及びその製造方法

Country Status (6)

Country Link
US (1) US9865382B2 (ja)
EP (1) EP2740551B1 (ja)
JP (1) JP6104162B2 (ja)
KR (1) KR101922188B1 (ja)
CN (1) CN103842112B (ja)
WO (1) WO2013018751A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589445B1 (en) * 2010-07-02 2019-10-02 Santoku Corporation Method for producing alloy flakes for a rare earth sintered magnet
CN104674115A (zh) 2013-11-27 2015-06-03 厦门钨业股份有限公司 一种低b的稀土磁铁
CN104952574A (zh) 2014-03-31 2015-09-30 厦门钨业股份有限公司 一种含W的Nd-Fe-B-Cu系烧结磁铁
CN105321647B (zh) * 2014-07-30 2018-02-23 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
KR102265282B1 (ko) * 2014-12-26 2021-06-15 재단법인 포항산업과학연구원 고규소 철계 박판 및 그 제조방법
JP7400578B2 (ja) * 2020-03-24 2023-12-19 Tdk株式会社 合金薄帯および磁性コア

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150442A (ja) * 1994-11-28 1996-06-11 Sumitomo Metal Ind Ltd 金属薄板の連続鋳造用ロール
JPH08264363A (ja) * 1995-03-24 1996-10-11 Hitachi Metals Ltd 希土類永久磁石の製造方法
JP2002059245A (ja) 2000-08-09 2002-02-26 Sumitomo Metal Ind Ltd 希土類系合金製造用急冷ロール
JP2004181531A (ja) 2002-11-22 2004-07-02 Showa Denko Kk 希土類含有合金薄片の製造方法、希土類磁石用合金薄片、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末、及びボンド磁石並びに金属組織評価方法
WO2012002531A1 (ja) * 2010-07-02 2012-01-05 株式会社三徳 希土類焼結磁石用合金鋳片の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478687C (zh) 2000-10-06 2009-04-15 日立金属株式会社 磁体用原料合金的评价方法
JP2004043921A (ja) * 2002-07-15 2004-02-12 Showa Denko Kk 希土類含有合金薄片、その製造方法、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末およびボンド磁石
CN1306527C (zh) * 2001-12-18 2007-03-21 昭和电工株式会社 用于稀土磁体的合金薄片及其生产方法、用于稀土烧结磁体的合金粉末、稀土烧结磁体、用于结合磁体的合金粉末和结合磁体
EP1632299B1 (en) * 2003-04-22 2019-06-05 Hitachi Metals, Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
US20050098239A1 (en) * 2003-10-15 2005-05-12 Neomax Co., Ltd. R-T-B based permanent magnet material alloy and R-T-B based permanent magnet
CN100400199C (zh) 2004-03-31 2008-07-09 株式会社三德 稀土类烧结磁铁用合金铸片及其制造方法和稀土类烧结磁铁
US7722726B2 (en) * 2004-03-31 2010-05-25 Santoku Corporation Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
US8177921B2 (en) 2007-07-27 2012-05-15 Hitachi Metals, Ltd. R-Fe-B rare earth sintered magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150442A (ja) * 1994-11-28 1996-06-11 Sumitomo Metal Ind Ltd 金属薄板の連続鋳造用ロール
JPH08264363A (ja) * 1995-03-24 1996-10-11 Hitachi Metals Ltd 希土類永久磁石の製造方法
JP2002059245A (ja) 2000-08-09 2002-02-26 Sumitomo Metal Ind Ltd 希土類系合金製造用急冷ロール
JP2004181531A (ja) 2002-11-22 2004-07-02 Showa Denko Kk 希土類含有合金薄片の製造方法、希土類磁石用合金薄片、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末、及びボンド磁石並びに金属組織評価方法
WO2012002531A1 (ja) * 2010-07-02 2012-01-05 株式会社三徳 希土類焼結磁石用合金鋳片の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740551A4

Also Published As

Publication number Publication date
JP6104162B2 (ja) 2017-03-29
US20140134040A1 (en) 2014-05-15
KR101922188B1 (ko) 2018-11-26
CN103842112A (zh) 2014-06-04
US9865382B2 (en) 2018-01-09
JPWO2013018751A1 (ja) 2015-03-05
EP2740551B1 (en) 2019-10-16
CN103842112B (zh) 2017-09-01
KR20140050088A (ko) 2014-04-28
EP2740551A1 (en) 2014-06-11
EP2740551A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5908836B2 (ja) 希土類焼結磁石用合金鋳片の製造方法
JP5949775B2 (ja) R−t−b系焼結磁石及びその製造方法、並びに回転機
US11145443B2 (en) R-T-B-based magnet material alloy and method for producing the same
JP6104162B2 (ja) 希土類焼結磁石用原料合金鋳片及びその製造方法
US20100230013A1 (en) R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnet
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
JP2018103211A (ja) 希土類−遷移金属系強磁性合金の製造方法および希土類−遷移金属系強磁性合金
CN106103776B (zh) 含稀土的合金铸片、其制造方法和烧结磁体
JP5299737B2 (ja) R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石
JP3492823B2 (ja) 磁石合金製造用急冷ロール
US20210062310A1 (en) Alloys, magnetic materials, bonded magnets and methods for producing the same
JP4303074B2 (ja) 希土類焼結磁石用原料合金の製造方法
JP3721831B2 (ja) 希土類磁石用合金及びその製造方法
JP2005270988A (ja) 希土類合金薄帯の製造方法、希土類合金薄帯及び希土類磁石
JP7318624B2 (ja) 希土類磁石及びその製造方法
JP2023070057A (ja) 異方性希土類焼結磁石及びその製造方法
JPH08176755A (ja) 希土類磁石用合金及びその製造方法
JP2004214390A (ja) 希土類磁石の製造法、希土類磁石用原料合金及び粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005464

Country of ref document: KR

Kind code of ref document: A