WO2013018751A1 - 希土類焼結磁石用原料合金鋳片及びその製造方法 - Google Patents
希土類焼結磁石用原料合金鋳片及びその製造方法 Download PDFInfo
- Publication number
- WO2013018751A1 WO2013018751A1 PCT/JP2012/069301 JP2012069301W WO2013018751A1 WO 2013018751 A1 WO2013018751 A1 WO 2013018751A1 JP 2012069301 W JP2012069301 W JP 2012069301W WO 2013018751 A1 WO2013018751 A1 WO 2013018751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roll
- mass
- raw material
- alloy
- rare earth
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0648—Casting surfaces
- B22D11/0651—Casting wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/068—Flake-like particles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to a raw material alloy slab for a rare earth sintered magnet and a method for producing the same.
- R 2 Fe 14 B-based rare earth sintered magnets having a high magnetic flux density are being actively developed.
- R 2 Fe 14 B-based rare earth sintered magnets are obtained by pulverizing a raw material alloy for a rare earth sintered magnet obtained by melting and casting a raw material to obtain an alloy powder for the magnet, which is magnetically molded, sintered, Obtained by aging treatment.
- pulverization of a raw material alloy for a rare earth sintered magnet is performed by combining hydrogen pulverization performed by occluding and releasing hydrogen in the raw material alloy and jet mill pulverization performed by causing the raw material alloys to collide with each other in a jet stream.
- the raw material alloy for rare earth sintered magnet includes an R 2 Fe 14 B-based compound phase (hereinafter sometimes abbreviated as a 2-14-1 main phase) as the main phase, and the 2-14-1 main phase.
- R-rich phase hereinafter sometimes abbreviated as R-rich phase
- R-rich phase which is a phase containing many rare earth metal elements, and more boron than the 2-14-1 main phase.
- B-rich phase a B-rich phase (hereinafter sometimes abbreviated as B-rich phase).
- the alloy structure of the raw material alloy for rare earth sintered magnet formed by the 2-14-1 main phase, R-rich phase, and B-rich phase determines the grindability of the raw material alloy and the characteristics of the obtained rare earth sintered magnet. It is known to affect
- Patent Document 1 discloses a quenching roll for producing a rare earth alloy. It is described that by controlling the Sm value and Ra value of the surface of the cooling roll, the minor axis grain size of the rare earth alloy ribbon produced using the cooling roll can be made uniform at the center and both ends of the ribbon. ing.
- Patent Document 2 discloses a method for producing a rare earth-containing alloy ribbon. The manufacturing method uses a chill crystal and an R— by using a chill roll on which the surface of the chill roll has substantially linear irregularities having a specific Rz value in a direction that forms an angle of 30 ° or more with respect to the roll rotation direction. It is described that the dispersion state of the rich phase can reduce an extremely fine region.
- An object of the present invention is to provide a raw material alloy slab for a rare earth sintered magnet in which generation of chill crystals is suppressed and the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase are extremely uniform. There is. Another subject of this invention is providing the manufacturing method of the raw material alloy slab for rare earth sintered magnets which can obtain the said slab industrially.
- the strip casting method using a cooling roll it has been conventionally performed to homogenize the structure of the alloy slab obtained by controlling the surface state of the cooling roll.
- the inventors of the present invention have an aspect ratio in which dendrites grow in a circular shape centering on the generation point of crystal nuclei observed on the cooling roll surface side of the alloy slab, and a particle size of 30 ⁇ m or more.
- the present invention was completed by confirming that a close relationship exists between the number of crystals and the alloy structure having a cross section substantially perpendicular to the surface of the slab in contact with the roll cooling surface.
- a raw material alloy slab for a rare earth sintered magnet having a roll cooling surface obtained by a strip casting method using a cooling roll satisfying the following (1) to (3) (hereinafter referred to as the present invention): Which may be abbreviated as “alloy slabs”.
- alloy slabs which may be abbreviated as “alloy slabs”.
- At least one R selected from the group consisting of rare earth metal elements including yttrium is 27.0 to 33.0% by mass, boron is 0.90 to 1.30% by mass, and iron is A step of preparing a raw material alloy molten metal comprising the remaining M, and cooling and solidifying the raw material alloy molten metal with a cooling roll having a surface roughness Ra value of 2 to 15 ⁇ m and an Rsk value of ⁇ 0.5 or more and less than 0.
- a method for producing a raw material alloy slab for a rare earth sintered magnet is prepared. Furthermore, according to the present invention, an alloy slab having a roll cooling surface satisfying the above (1) to (3) obtained by a strip casting method using a cooling roll is prepared, and the alloy slab is pulverized.
- a method for producing a rare earth sintered magnet is provided, in which the obtained alloy powder is subjected to magnetic field forming, sintering, and aging treatment.
- the generation of chill crystals is suppressed, the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase are extremely uniform, and the alloy slab is used.
- a rare earth sintered magnet having superior magnet characteristics can be obtained.
- the manufacturing method of the present invention employs a process of cooling and solidifying the molten alloy having the specific composition with a cooling roll having a specific surface structure, the alloy cast of the present invention can be easily manufactured industrially. it can.
- 4 is a copy of a microscope observation image of a roll cooling surface of an alloy slab obtained in Example 1.
- 2 is a copy of a microscopic observation image of a cross-sectional structure of an alloy slab obtained in Example 1.
- 4 is a copy of a microscopic observation image of a roll cooling surface of an alloy slab obtained in Comparative Example 1.
- 2 is a copy of a microscopic observation image of a cross-sectional structure of an alloy slab obtained in Comparative Example 1.
- the alloy slab of the present invention is (1) at least one R selected from the group consisting of rare earth metal elements containing yttrium, 27.0-33.0 mass%, boron 0.90-1.30 mass% And the balance M comprising iron.
- the content ratio of the remaining portion M is R and the remaining portion of boron, but the alloy slab of the present invention may include an unavoidable impurity in addition to these.
- the rare earth metal element containing yttrium means lanthanoids having element numbers 57 to 71 and yttrium having element number 39.
- the R is not particularly limited, and preferred examples include lanthanum, cerium, praseodymium, neodymium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, ytterbium, or a mixture of two or more thereof.
- R preferably contains praseodymium or neodymium as a main component and contains at least one heavy rare earth element selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium, and ytterbium.
- terbium has the greatest effect.
- dysprosium alone or with gadolinium, terbium, holmium, etc. in consideration of cost and effect.
- the content ratio of R is 27.0 to 33.0% by mass.
- R is less than 27.0% by mass, the liquid phase amount necessary for densification of the sintered body of the rare earth sintered magnet is insufficient, the density of the sintered body is lowered, and the magnetic properties are lowered.
- the content ratio of R is preferably 29.0 to 33.0% by mass.
- the content ratio of R when the alloy slab of the invention is used is preferably 27.0 to 29.0% by mass.
- the content of boron is 0.90 to 1.30% by mass. If boron is less than 0.90% by mass, the ratio of the 2-14-1 main phase decreases and the residual magnetization decreases. If it exceeds 1.30% by mass, the ratio of the B-rich phase increases, Both properties and corrosion resistance are reduced.
- the remainder M contains iron as an essential element.
- the content of iron in the balance M is usually 50% by mass or more, preferably 60 to 72% by mass, particularly preferably 64 to 70% by mass.
- the balance M may contain at least one selected from the group consisting of transition metals other than iron, silicon and carbon, if necessary, and also contains inevitable impurities in industrial production such as oxygen and nitrogen. It may be included.
- the transition metal other than iron is not particularly limited. For example, at least one selected from the group consisting of cobalt, aluminum, chromium, titanium, vanadium, zirconium, hafnium, manganese, copper, tin, tungsten, niobium, and gallium is preferable. Can be mentioned.
- the alloy slab of the present invention allows inevitable impurities, but contains alkali metal elements, alkaline earth metal elements, and zinc (hereinafter, these may be abbreviated as volatile elements). Is preferably 0.10% by mass or less in total. More preferably, the total amount of volatile elements is 0.05% by mass or less, and most preferably 0.01% by mass or less. When the total amount of volatile elements exceeds 0.10% by mass, chill crystals are generated, and the shape of the 2-14-1 main phase and the dispersion state of the R-rich phase may be made to be an extremely uniform alloy. May be difficult. The following points can be considered as the reason.
- the raw material alloy for R 2 Fe 14 B-based rare earth sintered magnet exceeds 1200 ° C.
- the raw material is heated and melted at a high temperature of 1200 ° C. or higher.
- the evaporation temperature of the alkali metal element, alkaline earth metal element and zinc is low, when the volatile element in the alloy exceeds 0.10% by mass, a large amount of evaporation occurs.
- a part of the evaporated element is deposited on the surface of the cooling roll.
- the evaporated volatile element is in a state of reacting with a small amount of oxygen in the furnace.
- the volatile element present on the roll surface reacts with the roll base material to form a film mainly composed of the volatile element on the roll surface. It is presumed that since this film prevents heat conduction between the molten metal and the cooling roll, the crystal growth of the generated nuclei cannot be sufficiently controlled. If the generated nuclei cannot grow sufficiently, the nuclei are released from the roll surface due to convection of the molten metal and become chill crystals.
- the alloy slab of the present invention is a slab having a roll cooling surface obtained by a strip casting method using a cooling roll, particularly an alloy having a roll cooling surface on one side obtained by using a single roll.
- a slab is preferred.
- the opposite side of the roll cooling surface is solidified without being in contact with the cooling roll, and is called a free surface.
- the roll cooling surface means a surface in which the raw material alloy molten metal comes into contact with the cooling roll surface during production and is cooled and solidified.
- the thickness of the alloy slab of the present invention is usually about 0.1 to 1.0 mm, more preferably about 0.2 to 0.6 mm.
- the alloy slab of the present invention (2) in a microscopic image obtained by observing the roll cooling surface at a magnification of 100 times, dendrites grew in a circular shape centering on the generation point of a crystal nucleus crossing a line segment corresponding to 880 ⁇ m And satisfying the requirement of having 5 or more crystals having an aspect ratio of 0.5 to 1.0 and a grain size of 30 ⁇ m or more. More preferably, the number of the crystals is 8 or more and 15 or less. Usually, the number of industrially obtained crystals is 30 or less. When the number of the crystals is 5 or more, the growth of the generated crystal nuclei is hardly inhibited and the degree of growth can be controlled.
- a closed curve is obtained. This is one crystal, and the average of the short axis length and long axis length of the closed curve is the particle size. Further, the value of (short axis length / long axis length) is defined as an aspect ratio. Three line segments corresponding to 880 ⁇ m are drawn so as to equally divide the observed image into four, and the aspect ratio in which dendrites grow circularly around the generation point of the crystal nucleus crossing each line segment is 0.5. Count the number of crystals with a diameter of ⁇ 1.0 and a particle size of 30 ⁇ m or more. Let these average values be the number of the crystals.
- the alloy cast of the present invention is (3) a requirement that an average interval between R-rich phases is 1 ⁇ m or more and less than 10 ⁇ m in a microscopic image obtained by observing a cross section substantially perpendicular to the roll cooling surface at a magnification of 200 times Meet. More preferably, the average interval between the R-rich phases is 3 ⁇ m or more and 6 ⁇ m or less.
- the alloy slab of the present invention preferably has a small variation in the R-rich phase interval.
- the pulverized alloy powder can be made to have a uniform particle size having a desired distribution.
- the value obtained by dividing the standard deviation of the interval of the R-rich phase, which is an index of the variation in the interval of the R-rich phase, by the average interval of the R-rich phase is preferably 0.20 or less, more preferably 0.18 or less. is there.
- the average interval between the R-rich phases can be obtained by the following method.
- the R-rich phase exists as a grain boundary phase of dendrites composed of a 2-14-1 main phase.
- the R-rich phase usually exists in a linear shape, but may exist in an island shape depending on the thermal history of the casting process. Even if the R-rich phase exists in an island shape, if they are continuously present so as to form a line, the island-like R-rich phase is connected to the linear R-rich phase.
- the alloy slab of the present invention preferably contains no ⁇ -Fe phase, but may contain it in a range that does not have a significant adverse effect on grindability. Normally, the ⁇ -Fe phase appears at a position where the cooling rate of the alloy is slow. For example, when an alloy slab is produced by a strip casting method using a single roll, the ⁇ -Fe phase appears on the free surface side. In the case of containing an ⁇ -Fe phase, it is preferable to deposit with a particle size of 3 ⁇ m or less, and preferably less than 5% by volume.
- the alloy slab of the present invention contains almost no equiaxed crystal grains, that is, chill crystals, but may be contained within a range that does not significantly affect the magnetic properties.
- the chill crystal appears mainly at a position where the cooling rate of the alloy slab is high.
- the volume ratio is preferably less than 5%.
- the alloy slab of the present invention is industrially obtained by, for example, the following production method of the present invention.
- at least one R selected from the group consisting of rare earth metal elements including yttrium is 27.0 to 33.0% by mass
- boron is 0.90 to 1.30% by mass
- iron is A step of preparing a raw material alloy molten metal comprising the remaining M, and cooling and solidifying the raw material alloy molten metal with a cooling roll having a surface roughness Ra value of 2 to 15 ⁇ m and an Rsk value of ⁇ 0.5 or more and less than 0.
- the remaining part M contained in the raw material alloy molten metal may include a remaining part M other than the above-described iron.
- R, boron, M as a raw material or an alloy containing these is blended according to the desired composition of the alloy.
- the raw material alloy melt obtained by heating and melting the blended raw material in a vacuum atmosphere or an inert gas atmosphere is cooled and solidified by a strip casting method using a single roll or a twin roll.
- the cooling roll is preferably a single roll.
- the total content of alkali metal element, alkaline earth metal element and Zn in the raw material is preferably 0.15% by mass or less. More preferably, the total content of volatile elements is 0.10% by mass or less, and most preferably 0.05% by mass or less.
- the content of volatile elements in the resulting alloy slab can be easily controlled to be 0.10% by mass or less.
- the volatile element is removed from the system before it is deposited on the cooling roll by a step of evacuation when heating / dissolving.
- Volatile elements are mainly mixed from raw materials containing R. It is expected to be mixed from the R separation and refining process. By selecting the raw materials, it is possible to control the content of volatile elements that have not been conventionally recognized as an inevitable impurity.
- the Ra value of the surface roughness of the cooling roll is 2 to 15 ⁇ m, and the Rsk value is ⁇ 0.5 or more and less than 0. More preferably, the Rsk value is ⁇ 0.4 or more and less than 0.
- a chill roll having a surface roughness Rsk value of ⁇ 0.5 or more and less than 0 it is possible to suppress generation of crystal nuclei generated from the roll surface. That is, precipitation of chill crystals can be suppressed.
- the number of nuclei generated can be controlled by controlling the Ra value.
- the requirement (2) in the alloy slab of the present invention can be controlled. .
- the surface properties of the cooling roll can be controlled by polishing, laser processing, transfer, thermal spraying, shot blasting, and the like.
- polishing a method of polishing in a specific direction using a polishing paper and then polishing in a direction of 80 ° to 90 ° with respect to the specific direction using a coarser number of polishing paper. It can be carried out.
- the polishing is performed without changing the count of the polishing paper, the Rsk value becomes smaller than ⁇ 0.5, and the precipitation of chill crystals may not be suppressed.
- thermal spraying it can be performed by controlling the shape of the thermal spray material and the thermal spraying conditions. Specifically, it can be performed by partially mixing a non-standard and high melting point thermal spray material as the thermal spray material. In the case of shot blasting, it can be performed by controlling the shape of the projection material and the projection conditions. Specifically, it can be performed by using a projection material having a different particle diameter or using an atypical projection material.
- the alloy cast slab cooled and solidified by the cooling roll can be appropriately crushed, heated and maintained at a temperature, and cooled by a known method after peeling from the cooling roll.
- Example 1 In consideration of the yield, finally Nd 23.5% by mass, Dy 6.7% by mass, B 0.95% by mass, Al 0.15% by mass, Co 1.0% by mass, Cu 0.2% by mass, balance iron alloy slab
- the raw materials were blended and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere to obtain a molten raw material alloy.
- the obtained molten alloy was cast by a strip casting method using a water-cooled copper single roll casting apparatus to obtain an alloy slab having a thickness of about 0.3 mm.
- the cooling roll used was polished on the surface using # 120 abrasive paper in the roll rotation direction, and then polished using # 60 abrasive paper at an angle of 90 ° with respect to the roll rotation direction.
- the Ra value of the surface roughness of the cooling roll was 3.01 ⁇ m, and the Rsk value was ⁇ 0.44.
- the raw material was selected so that the volatile element in the raw material was 0.05% by mass or less, and the volatile element in the obtained alloy slab was 0.01% by mass or less.
- the aspect ratio in which dendrite grew in a circular shape centering on the generation point of the crystal nucleus crossing the line segment corresponding to 880 ⁇ m was 0.5 to 1.
- the number of crystals having a diameter of 0.0 and a particle size of 30 ⁇ m or more was fifteen. Further, when the cross-sectional structure of the alloy slab was observed, chill crystals were not observed. The average interval of the R-rich phase was 4.51 ⁇ m, and the standard deviation of the interval of the R-rich phase divided by the average interval of the R-rich phase was 0.15.
- a copy of a microscopic observation image of the roll cooling surface of the obtained alloy slab is shown in FIG. 1, and a copy of a microscopic observation image of a cross-sectional structure substantially perpendicular to the roll cooling surface is shown in FIG.
- the obtained alloy slab was used as a raw material to produce a sintered magnet.
- the obtained sintered magnet had a residual magnetization (Br) of 12.65 kG and an intrinsic coercive force (iHc) of 26.49 kOe.
- Example 2 Polishing in the roll rotation direction was changed to # 60, and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to polishing paper of # 30, and a cooling roll having Ra and Rsk values shown in Table 1 was used. In the same manner as in Example 1, an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- Example 3 An alloy slab and a sintered magnet were produced in the same manner as in Example 1 except that shot blasting was used in place of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 1 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- Example 4 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked material were fired in the same manner as in Example 1 except that a cooling roll having the Ra value and Rsk value shown in Table 1 was used. A magnetized magnet was produced. The volatile elements in the obtained alloy slab were 0.11% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- Comparative Example 1 Casting the alloy in the same manner as in Example 1 except that the surface of the cooling roll was polished only in the rotation direction of the roll using # 60 abrasive paper and the cooling roll having the Ra value and Rsk value shown in Table 1 was used. Pieces and sintered magnets were prepared. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- FIG. 3 shows a copy of a microscopic observation image of the roll cooling surface of the obtained alloy slab
- FIG. 4 shows a copy of a cross-sectional microstructure observation image.
- Comparative Example 2 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked steel were fired in the same manner as in Comparative Example 1 except that a cooling roll having the Ra value and Rsk value shown in Table 1 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.12% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- Example # Except for using # 60 abrasive paper and polishing so as to intersect each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having Ra and Rsk values shown in Table 1.
- Example 1 An alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
- Example 5 In consideration of the yield, finally Nd 29.6% by mass, Dy 2.4% by mass, B 1.0% by mass, Al 0.15% by mass, Co 1.0% by mass, Cu 0.2% by mass, balance iron alloy slab
- Dy 2.4% by mass B 1.0% by mass
- Al 0.15% by mass Co 1.0% by mass
- Cu 0.2% by mass balance iron alloy slab
- Example 5 In the same manner as in Example 1, except that the raw material was blended and melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere to obtain a raw material alloy melt, A sintered magnet was produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Example 6 Polishing in the roll rotation direction was changed to # 60 and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to # 30 polishing paper, respectively, except that a cooling roll having Ra and Rsk values shown in Table 2 was used.
- a cooling roll having Ra and Rsk values shown in Table 2 was used.
- an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Example 7 An alloy slab and a sintered magnet were produced in the same manner as in Example 5 except that shot blasting was used in place of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 2 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Example 8 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and the alloy slab and the baked steel were fired in the same manner as in Example 5 except that a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A magnetized magnet was produced. The volatile elements in the obtained alloy slab were 0.11% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Comparative Example 5 Cast the alloy roll in the same manner as in Example 5 except that the surface of the cooling roll was polished only in the rotational direction of the roll using # 60 abrasive paper and the cooling roll having the Ra value and Rsk value shown in Table 2 was used. Pieces and sintered magnets were prepared. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Comparative Example 6 The raw material was selected so that the volatile elements in the raw material were 0.90% by mass, and an alloy slab and a fired product were produced in the same manner as in Comparative Example 5 except that a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.12% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Comparative Example 7 Alloying in the same manner as in Example 5 except that a # 60 abrasive paper was used to polish at an angle of 45 ° with respect to the roll rotation direction, and a cooling roll having the Ra value and Rsk value shown in Table 2 was used. A slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Comparative Example 8 Except for using # 60 abrasive paper and polishing so as to cross each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having the Ra value and Rsk value shown in Table 2. In the same manner as in Example 5, alloy cast pieces and sintered magnets were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
- Example 9 In consideration of the yield, finally, Nd18.2% by mass, Dy10.8% by mass, B0.92% by mass, Al0.15% by mass, Co1.0% by mass, Cu0.2% by mass, balance iron alloy slab So as to obtain a molten alloy in an argon gas atmosphere using an alumina crucible in a high-frequency melting furnace to obtain a molten alloy of raw materials so that the volatile elements in the raw material become 0.07% by mass.
- An alloy slab and a sintered magnet were produced in the same manner as in Example 1 except that the raw materials were selected. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Example 10 Polishing in the roll rotation direction was changed to # 60, and polishing at an angle of 90 ° with respect to the rotation direction of the roll was changed to # 30 polishing paper, and a cooling roll having Ra values and Rsk values shown in Table 3 was used. In the same manner as in Example 9, an alloy slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Example 11 An alloy cast piece and a sintered magnet were produced in the same manner as in Example 9 except that shot blasting was used instead of the abrasive paper and a cooling roll having the Ra value and Rsk value shown in Table 3 was used. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Example 12 The raw material was selected so that the volatile elements in the raw material were 0.95% by mass, and the alloy slab and the baked steel were fired in the same manner as in Example 9 except that a cooling roll having the Ra value and Rsk value shown in Table 3 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.13% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Comparative Example 10 The raw material was selected so that the volatile element in the raw material was 0.95% by mass, and an alloy slab and fired as in Comparative Example 9 except that a cooling roll having the Ra value and Rsk value shown in Table 3 was used. A magnetized magnet was produced. The volatile element in the obtained alloy slab was 0.13% by mass. In addition, each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Comparative Example 11 An alloy was prepared in the same manner as in Example 9 except that polishing paper of # 60 was used to polish at an angle of 45 ° with respect to the roll rotation direction, and a cooling roll having Ra and Rsk values shown in Table 3 was used. A slab and a sintered magnet were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
- Comparative Example 12 Except for using # 60 abrasive paper and polishing so as to cross each other at an angle of 45 ° and ⁇ 45 ° with respect to the roll rotation direction, and using a cooling roll having Ra and Rsk values shown in Table 3. In the same manner as in Example 9, alloy cast pieces and sintered magnets were produced. Each measurement was performed in the same manner as in Example 1. The results are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Continuous Casting (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
一般にR2Fe14B系の希土類焼結磁石は、原料を溶解、鋳造して得られた希土類焼結磁石用原料合金を粉砕し、磁石用合金粉末を得、これを磁場成形、焼結、時効処理して得られる。一般に希土類焼結磁石用原料合金の粉砕は、該原料合金に水素を吸蔵、放出させて行う水素粉砕と、ジェット気流中で原料合金同士を衝突させて行うジェットミル粉砕とを組み合わせて行われている。希土類焼結磁石用原料合金には、主相としてR2Fe14B系化合物相(以下、2-14-1系主相と略記することがある)と、該2-14-1系主相と比較して多くの希土類金属元素を含む相であるR-rich相(以下、R-rich相と略記することがある)と、該2-14-1系主相と比較して多くのボロンを含む相であるB-rich相(以下、B-rich相と略記することがある)とが含まれる。2-14-1系主相、R-rich相およびB-rich相が形成する希土類焼結磁石用原料合金の合金組織の形態が、該原料合金の粉砕性や得られる希土類焼結磁石の特性に影響を及ぼすことが知られている。
特許文献2には、希土類含有合金薄帯の製造方法が開示されている。同製造方法は、冷却ロール表面にロール回転方向に対し30°以上の角度をなす方向に特定のRz値を示す略線状の凹凸を形成させた冷却ロールを用いることにより、チル晶およびR-rich相の分散状態が極端に細かな領域を減少できることが記載されている。
本発明の別の課題は、上記鋳片を工業的に得ることができる希土類焼結磁石用原料合金鋳片の製造方法を提供することにある。
(1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる。
(2)ロール冷却面を100倍の倍率で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、アスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶を5個以上有する。
(3)ロール冷却面に略垂直な断面を200倍の倍率で観察した顕微鏡観察像における、R-rich相の平均間隔が、1μm以上10μm未満である。
また本発明によれば、イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む、希土類焼結磁石用原料合金鋳片の製造方法が提供させる。
更に本発明によれば、冷却ロールを用いたストリップキャスティング法により得られた、上記(1)~(3)を満たしたロール冷却面を有する合金鋳片を準備し、該合金鋳片を粉砕し、得られた合金粉末を磁場成形、焼結、時効処理する、希土類焼結磁石の製造方法が提供される。
本発明の合金鋳片は、(1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる、という要件を満たす。ここで、残部Mの含有割合は、R及びボロンの残部であるが、本発明の合金鋳片は、これら以外に不可避な不純分を含んでいても良い。
これらの重希土類元素は、磁気特性のうち主に保磁力を向上させることができる。中でもテルビウムはもっとも大きな効果を示す。しかし、テルビウムは高価であるため、コストと効果を考慮するとジスプロシウムを単体、またはガドリウム、テルビウム、ホルミウム等と共に用いることが好ましい。
本発明の合金鋳片を単一合金法に用いる場合のRの含有割合は、29.0~33.0質量%が好ましく、2合金法の2-14-1系主相用の合金として本発明の合金鋳片を用いる場合のRの含有割合は、27.0~29.0質量%が好ましい。
前記鉄以外の遷移金属は特に限定されないが、例えば、コバルト、アルミニウム、クロム、チタン、バナジウム、ジルコニウム、ハフニウム、マンガン、銅、錫、タングステン、ニオブ及びガリウムからなる群より選ばれる少なくとも1種が好ましく挙げられる。
本発明の合金鋳片の厚みは、通常0.1~1.0mm程度であり、さらに好ましくは0.2~0.6mm程度である。
合金鋳片のR-rich相の平均間隔を1μm以上10μm未満とすることで、磁石製造の粉砕工程において、該合金鋳片を水素粉砕、ジェットミル粉砕を行った場合、得られる合金粉末中に結晶方位の異なる複数の結晶粒が存在する確立が低くなるため好ましい。
まず、本発明の合金鋳片のロール冷却面に略垂直(鋳片の厚み方向に平行)となる断面組織写真を光学顕微鏡により200倍の倍率で撮影する。R-rich相は2-14-1系主相からなるデンドライトの粒界相として存在している。R-rich相は、通常は線状に存在するが、鋳造過程の熱履歴等によっては島状に存在する場合もある。R-rich相が島状に存在しても、それらが明らかに線をなすように連続して存在する場合は、それらの島状のR-rich相をつなぎ、線状のR-rich相と同様に考慮する。
本発明の合金鋳片のロール冷却面と接した面に略垂直な方向に均等に4分割する3本の440μmに相当する線分を引き、その線分を横切るR-rich相の点数を数え、線分の長さ440μmをその点数で割る。10個の合金鋳片に関し、同様に測定し、計30点の測定値を得、これらの平均値をR-rich相の平均間隔とする。また該30点の測定値から標準偏差を算出する。
本発明の製造方法は、イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む。
前記原料合金溶湯に含まれる残部Mは、上述の鉄以外の残部Mを含むことができる。
また、溶射の場合、溶射材の形状、溶射条件を制御することにより行うことができる。具体的には、溶射材として非定型で高融点の溶射材を一部混合することで行うことができる。ショットブラストの場合、投射材の形状、投射条件を制御することにより行うことができる。具体的には、粒径の異なる投射材を使用したり、非定型の投射材を用いることで行うことができる。
実施例1
歩留まりを考慮し、最終的にNd23.5質量%、Dy6.7質量%、B0.95質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得た。得られた合金溶湯を、水冷式の銅製単ロール鋳造装置を用いてストリップキャスティング法により鋳造し、厚さ約0.3mmの合金鋳片を得た。
使用した冷却ロールは、表面を#120の研磨紙を使用してロールの回転方向を研磨し、次いで、#60の研磨紙を使用してロールの回転方向に対し90°の角度で研磨して、冷却ロールの表面粗さのRa値を3.01μm、Rsk値を-0.44とした。原料中の揮発元素は0.05質量%以下となるように原料を選定し、得られた合金鋳片中の揮発元素は0.01質量%以下であった。
得られた合金鋳片のロール冷却面を上述の方法で観察したところ、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長したアスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶の数は15個であった。また合金鋳片の断面組織を観察したところ、チル晶は観察されなかった。R-rich相の平均間隔は4.51μm、R-rich相の間隔の標準偏差をR-rich相の平均間隔で割った値は0.15であった。図1に得られた合金鋳片のロール冷却面の顕微鏡観察像の写しを、図2にロール冷却面に略垂直な断面組織の顕微鏡観察像の写しを示す。
得られた合金鋳片を原料として使用し、焼結磁石を作製した。得られた焼結磁石の残留磁化(Br)は12.65kG、固有保磁力(iHc)は26.49kOeであった。これらの結果を表1に示す。
ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
研磨紙の代わりにショットブラストを使用し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
原料中の揮発元素を0.90質量%となるように原料を選定し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.11質量%であった。また、実施例1と同様に各測定を行った。結果を表1に示す。
#60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。図3に、得られた合金鋳片のロール冷却面の顕微鏡観察像の写しを、図4に断面組織の顕微鏡観察像の写しを示す。
原料中の揮発元素を0.90質量%となるように原料を選定し、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例1と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.12質量%であった。また、実施例1と同様に各測定を行った。結果を表1に示す。
#60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
#60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表1に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表1に示す。
歩留まりを考慮し、最終的にNd29.6質量%、Dy2.4質量%、B1.0質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得た以外は、実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
研磨紙の代わりにショットブラストを使用し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
原料中の揮発元素を0.90質量%となるように原料を選定し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.11質量%であった。また、実施例1と同様に各測定を行った。結果を表2に示す。
#60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
原料中の揮発元素を0.90質量%となるように原料を選定し、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例5と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.12質量%であった。また、実施例1と同様に各測定を行った。結果を表2に示す。
#60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
#60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表2に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例5と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表2に示す。
歩留まりを考慮し、最終的にNd18.2質量%、Dy10.8質量%、B0.92質量%、Al0.15質量%、Co1.0質量%、Cu0.2質量%、残部鉄の合金鋳片が得られるように、原料を配合し、アルゴンガス雰囲気中で、アルミナるつぼを使用して高周波溶解炉で溶解し、原料合金溶湯を得、原料中の揮発元素を0.07質量%となるように原料を選定した以外は、実施例1と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
ロール回転方向の研磨を#60、ロールの回転方向に対し90°の角度の研磨を#30の研磨紙にそれぞれ変更し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
研磨紙の代わりにショットブラストを使用し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
原料中の揮発元素を0.95質量%となるように原料を選定し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.13質量%であった。また、実施例1と同様に各測定を行った。結果を表3に示す。
#60の研磨紙を用いて、ロールの回転方向にのみ冷却ロールの表面を研磨し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
原料中の揮発元素を0.95質量%となるように原料を選定し、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は比較例9と同様にして合金鋳片及び焼結磁石を作製した。得られた合金鋳片中の揮発元素は0.13質量%であった。また、実施例1と同様に各測定を行った。結果を表3に示す。
#60の研磨紙を用いロール回転方向に対し45°の角度をなすように研磨を行い、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
#60の研磨紙を用いロール回転方向に対し45°と-45°の角度で互いに交差するように研磨を行い、表3に示すRa値及びRsk値とした冷却ロールを用いた以外は実施例9と同様にして合金鋳片及び焼結磁石を作製した。実施例1と同様に各測定を行った。結果を表3に示す。
Claims (6)
- 以下の(1)~(3)を満たす、冷却ロールを用いたストリップキャスティング法により得られた、ロール冷却面を有する希土類焼結磁石用原料合金鋳片。
(1)イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる。
(2)ロール冷却面を100倍の倍率で観察した顕微鏡観察像において、880μmに相当する線分を横切る結晶核の発生点を中心として円状にデンドライトが成長した、アスペクト比が0.5~1.0、かつ粒径が30μm以上の結晶を5個以上有する。
(3)ロール冷却面に略垂直な断面を200倍の倍率で観察した顕微鏡観察像における、R-rich相の平均間隔が、1μm以上10μm未満である。 - 前記(1)において残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選ばれる少なくとも1種を含む請求項1の原料合金鋳片。
- 前記(1)において、R、ボロン及び残部M以外に、アルカリ金属元素、アルカリ土類金属元素および亜鉛からなる群より選ばれる少なくとも1種の不純分を含み、その合計含有量が0.10質量%以下である請求項1又は2の原料合金鋳片。
- イットリウムを含む希土類金属元素からなる群より選ばれる少なくとも1種のRを27.0~33.0質量%、ボロンを0.90~1.30質量%、及び鉄を含む残部Mからなる原料合金溶湯を準備する工程と、前記原料合金溶湯を、表面粗さのRa値が2~15μm、かつRsk値が-0.5以上0未満である冷却ロールにより冷却・凝固させる工程とを含む、希土類焼結磁石用原料合金鋳片の製造方法。
- 前記原料合金溶湯の残部Mが、鉄以外の遷移金属元素、珪素及び炭素からなる群より選ばれる少なくとも1種を含む請求項4の製造方法。
- 前記原料合金溶湯が、R、ボロン及び残部M以外に、アルカリ金属元素、アルカリ土類金属元素および亜鉛からなる群より選ばれる少なくとも1種の不純分を含み、その合計含有量が0.15質量%以下である請求項4又は5の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013526906A JP6104162B2 (ja) | 2011-08-03 | 2012-07-30 | 希土類焼結磁石用原料合金鋳片及びその製造方法 |
US14/236,195 US9865382B2 (en) | 2011-08-03 | 2012-07-30 | Alloy flakes as starting material for rare earth sintered magnet and method for producing same |
KR1020147005464A KR101922188B1 (ko) | 2011-08-03 | 2012-07-30 | 희토류 소결 자석용 원료 합금 주편 및 그 제조 방법 |
CN201280048482.7A CN103842112B (zh) | 2011-08-03 | 2012-07-30 | 用于稀土烧结磁铁的原料合金铸片及其制造方法 |
EP12820207.4A EP2740551B1 (en) | 2011-08-03 | 2012-07-30 | Alloy flakes as starting material for rare earth sintered magnet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011180954 | 2011-08-03 | ||
JP2011-180954 | 2011-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018751A1 true WO2013018751A1 (ja) | 2013-02-07 |
Family
ID=47629274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069301 WO2013018751A1 (ja) | 2011-08-03 | 2012-07-30 | 希土類焼結磁石用原料合金鋳片及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9865382B2 (ja) |
EP (1) | EP2740551B1 (ja) |
JP (1) | JP6104162B2 (ja) |
KR (1) | KR101922188B1 (ja) |
CN (1) | CN103842112B (ja) |
WO (1) | WO2013018751A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002531A1 (ja) * | 2010-07-02 | 2012-01-05 | 株式会社三徳 | 希土類焼結磁石用合金鋳片の製造方法 |
CN104674115A (zh) | 2013-11-27 | 2015-06-03 | 厦门钨业股份有限公司 | 一种低b的稀土磁铁 |
CN104952574A (zh) | 2014-03-31 | 2015-09-30 | 厦门钨业股份有限公司 | 一种含W的Nd-Fe-B-Cu系烧结磁铁 |
CN105321647B (zh) * | 2014-07-30 | 2018-02-23 | 厦门钨业股份有限公司 | 稀土磁铁用急冷合金和稀土磁铁的制备方法 |
KR102265282B1 (ko) * | 2014-12-26 | 2021-06-15 | 재단법인 포항산업과학연구원 | 고규소 철계 박판 및 그 제조방법 |
JP7400578B2 (ja) * | 2020-03-24 | 2023-12-19 | Tdk株式会社 | 合金薄帯および磁性コア |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08150442A (ja) * | 1994-11-28 | 1996-06-11 | Sumitomo Metal Ind Ltd | 金属薄板の連続鋳造用ロール |
JPH08264363A (ja) * | 1995-03-24 | 1996-10-11 | Hitachi Metals Ltd | 希土類永久磁石の製造方法 |
JP2002059245A (ja) | 2000-08-09 | 2002-02-26 | Sumitomo Metal Ind Ltd | 希土類系合金製造用急冷ロール |
JP2004181531A (ja) | 2002-11-22 | 2004-07-02 | Showa Denko Kk | 希土類含有合金薄片の製造方法、希土類磁石用合金薄片、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末、及びボンド磁石並びに金属組織評価方法 |
WO2012002531A1 (ja) * | 2010-07-02 | 2012-01-05 | 株式会社三徳 | 希土類焼結磁石用合金鋳片の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1880782B1 (en) | 2000-10-06 | 2015-01-07 | Santoku Corporation | A method for evaluating a raw alloy for a magnet |
WO2003052778A1 (en) | 2001-12-18 | 2003-06-26 | Showa Denko K.K. | Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet |
JP2004043921A (ja) * | 2002-07-15 | 2004-02-12 | Showa Denko Kk | 希土類含有合金薄片、その製造方法、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末およびボンド磁石 |
EP1632299B1 (en) * | 2003-04-22 | 2019-06-05 | Hitachi Metals, Ltd. | Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet |
US20050098239A1 (en) * | 2003-10-15 | 2005-05-12 | Neomax Co., Ltd. | R-T-B based permanent magnet material alloy and R-T-B based permanent magnet |
CN100400199C (zh) * | 2004-03-31 | 2008-07-09 | 株式会社三德 | 稀土类烧结磁铁用合金铸片及其制造方法和稀土类烧结磁铁 |
WO2005095024A1 (ja) * | 2004-03-31 | 2005-10-13 | Santoku Corporation | 希土類焼結磁石用合金鋳片の製造法、希土類焼結磁石用合金鋳片及び希土類焼結磁石 |
KR101474946B1 (ko) | 2007-07-27 | 2014-12-19 | 히다찌긴조꾸가부시끼가이사 | R-Fe-B계 희토류 소결 자석 |
-
2012
- 2012-07-30 EP EP12820207.4A patent/EP2740551B1/en active Active
- 2012-07-30 US US14/236,195 patent/US9865382B2/en active Active
- 2012-07-30 WO PCT/JP2012/069301 patent/WO2013018751A1/ja active Application Filing
- 2012-07-30 JP JP2013526906A patent/JP6104162B2/ja active Active
- 2012-07-30 KR KR1020147005464A patent/KR101922188B1/ko active IP Right Grant
- 2012-07-30 CN CN201280048482.7A patent/CN103842112B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08150442A (ja) * | 1994-11-28 | 1996-06-11 | Sumitomo Metal Ind Ltd | 金属薄板の連続鋳造用ロール |
JPH08264363A (ja) * | 1995-03-24 | 1996-10-11 | Hitachi Metals Ltd | 希土類永久磁石の製造方法 |
JP2002059245A (ja) | 2000-08-09 | 2002-02-26 | Sumitomo Metal Ind Ltd | 希土類系合金製造用急冷ロール |
JP2004181531A (ja) | 2002-11-22 | 2004-07-02 | Showa Denko Kk | 希土類含有合金薄片の製造方法、希土類磁石用合金薄片、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末、及びボンド磁石並びに金属組織評価方法 |
WO2012002531A1 (ja) * | 2010-07-02 | 2012-01-05 | 株式会社三徳 | 希土類焼結磁石用合金鋳片の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2740551A4 |
Also Published As
Publication number | Publication date |
---|---|
US9865382B2 (en) | 2018-01-09 |
EP2740551A1 (en) | 2014-06-11 |
JPWO2013018751A1 (ja) | 2015-03-05 |
CN103842112B (zh) | 2017-09-01 |
KR101922188B1 (ko) | 2018-11-26 |
US20140134040A1 (en) | 2014-05-15 |
CN103842112A (zh) | 2014-06-04 |
KR20140050088A (ko) | 2014-04-28 |
EP2740551B1 (en) | 2019-10-16 |
EP2740551A4 (en) | 2015-11-11 |
JP6104162B2 (ja) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5908836B2 (ja) | 希土類焼結磁石用合金鋳片の製造方法 | |
JP5949775B2 (ja) | R−t−b系焼結磁石及びその製造方法、並びに回転機 | |
US11145443B2 (en) | R-T-B-based magnet material alloy and method for producing the same | |
JP6104162B2 (ja) | 希土類焼結磁石用原料合金鋳片及びその製造方法 | |
US20100230013A1 (en) | R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnet | |
EP2513917B1 (en) | Rare earth magnet and manufacturing method therefor | |
JP2018103211A (ja) | 希土類−遷移金属系強磁性合金の製造方法および希土類−遷移金属系強磁性合金 | |
JP5299737B2 (ja) | R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石 | |
JP2018174311A (ja) | R−t−b系焼結磁石の製造方法 | |
JP3492823B2 (ja) | 磁石合金製造用急冷ロール | |
US20210062310A1 (en) | Alloys, magnetic materials, bonded magnets and methods for producing the same | |
JP4303074B2 (ja) | 希土類焼結磁石用原料合金の製造方法 | |
JP3721831B2 (ja) | 希土類磁石用合金及びその製造方法 | |
JP2005270988A (ja) | 希土類合金薄帯の製造方法、希土類合金薄帯及び希土類磁石 | |
JP7318624B2 (ja) | 希土類磁石及びその製造方法 | |
JP2023070057A (ja) | 異方性希土類焼結磁石及びその製造方法 | |
JPH08176755A (ja) | 希土類磁石用合金及びその製造方法 | |
JP2004214390A (ja) | 希土類磁石の製造法、希土類磁石用原料合金及び粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12820207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013526906 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14236195 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147005464 Country of ref document: KR Kind code of ref document: A |