WO2013018609A1 - スフィンゴミエリンの測定方法及び測定用キット - Google Patents

スフィンゴミエリンの測定方法及び測定用キット Download PDF

Info

Publication number
WO2013018609A1
WO2013018609A1 PCT/JP2012/068807 JP2012068807W WO2013018609A1 WO 2013018609 A1 WO2013018609 A1 WO 2013018609A1 JP 2012068807 W JP2012068807 W JP 2012068807W WO 2013018609 A1 WO2013018609 A1 WO 2013018609A1
Authority
WO
WIPO (PCT)
Prior art keywords
phospholipase
react
sphingomyelin
reacts
kit
Prior art date
Application number
PCT/JP2012/068807
Other languages
English (en)
French (fr)
Inventor
豪秀 木村
一人 宮内
英之 桑田
Original Assignee
協和メデックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和メデックス株式会社 filed Critical 協和メデックス株式会社
Priority to CN201280037421.0A priority Critical patent/CN103717748A/zh
Priority to JP2013526840A priority patent/JP6071883B2/ja
Priority to US14/232,427 priority patent/US9051600B2/en
Priority to CA2842893A priority patent/CA2842893C/en
Priority to EP12820448.4A priority patent/EP2740801B1/en
Priority to KR1020147000846A priority patent/KR101943673B1/ko
Publication of WO2013018609A1 publication Critical patent/WO2013018609A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/61Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving triglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03017Choline oxidase (1.1.3.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01005Lysophospholipase (3.1.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/04004Phospholipase D (3.1.4.4)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
    • G01N2333/918Carboxylic ester hydrolases (3.1.1)
    • G01N2333/92Triglyceride splitting, e.g. by means of lipase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids

Definitions

  • the present invention relates to a method for measuring sphingomyelin and a measurement kit.
  • HDL high-density lipoprotein
  • LDL low-density lipoprotein
  • VLDL very low-density lipoprotein
  • DLDL chylomicron
  • Lipoproteins mainly include three types of phospholipids, that is, phosphatidylcholine (hereinafter abbreviated as PC), lysophosphatidylcholine (hereinafter abbreviated as LPC), and sphingomyelin (hereinafter abbreviated as SM). Yes.
  • PC phosphatidylcholine
  • LPC lysophosphatidylcholine
  • SM sphingomyelin
  • PC and SM are the main phospholipids, accounting for about 70% and 20% of the total phospholipids, respectively.
  • SM is known to accumulate in human and animal model atheroma. LDL present in human arteriosclerotic lesions contains a larger amount of SM than LDL in plasma (Non-patent Document 1).
  • Non-Patent Documents 2 to 4 Plasma SM and SM / PC ratio are independent risk factors for ischemic heart disease.
  • Non-Patent Document 5 As a method for measuring SM, a method using thin layer chromatography and a method using high performance liquid chromatography (Non-Patent Document 5) have been reported, but the operation is complicated and takes a long time for measurement, etc. Have the disadvantages. In addition, an enzymatic measurement method using bacterial sphingomylinase has also been reported (Patent Document 1, Non-Patent Document 2).
  • sphingomyelin is hydrolyzed to phosphorylcholine and n-acylsphingosine by bacterial sphingomyelinase, the resulting phosphorylcholine is hydrolyzed to choline by alkaline phosphatase, and the resulting choline is reacted with choline oxidase.
  • sphingomyelin is measured by measuring the generated hydrogen peroxide.
  • this measurement method has problems such as the influence on the measurement of other measurement items due to the use of alkaline phosphatase and the specificity that sphingomyelinase reacts with LPC together with SM ( Non-patent document 6).
  • An object of the present invention is to provide a method and a kit for simply and accurately measuring SM in a specimen.
  • the present inventors have intensively studied, and in a method for selectively measuring SM in a specimen containing PC, LPC and SM, LPC is reacted with lysophospholipase or monoglycerolipase.
  • the present invention was completed by finding that SM can be specifically measured by using phospholipase D which does not react with glycerol-3-phosphorylcholine and free fatty acid produced but reacts with SM. That is, the present invention relates to the following [1] to [17].
  • the sample does not react with SM and LPC, but reacts with phospholipase D, lysophospholipase or monoglycerolipase, oxidized coenzyme, choline dehydrogenase, and reduced coenzyme oxidase that react with PC
  • the resulting hydrogen peroxide is eliminated, and then phospholipase D, oxidized coenzyme, choline dehydrogenase, and reduced cofactor that do not react with glycerol-3-phosphorylcholine and free fatty acid but react with SM.
  • a method for measuring SM in a specimen characterized by measuring hydrogen peroxide produced by reacting with an enzyme oxidase.
  • the reaction is carried out in the presence of catalase, and phospholipase D, oxidized coenzyme, choline dehydrogenase, and reduced coenzyme oxidase that do not react with glycerol-3-phosphorylcholine and free fatty acid but react with SM
  • [5] The method according to [3] or [4], wherein the catalase inhibitor is an azide.
  • Elimination of hydrogen peroxide is performed in the presence of one of a peroxidase and a pair of oxidative coupling chromogens, and the measurement of hydrogen peroxide is peroxidase and a pair of oxidative coupling chromogens.
  • [7] The method according to any one of [1] to [5], wherein the hydrogen peroxide is measured in the presence of peroxidase and a leuco chromogen.
  • a first reagent containing phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, and catalase that does not react with SM and does not react with PC, glycerol-3-phosphorylcholine, and free fatty acid A kit for measuring SM in a specimen, comprising: a phospholipase D that does not react with SM and a second reagent containing a catalase inhibitor that reacts with SM.
  • a kit for measuring sphingomyelin in a sample is a kit for measuring sphingomyelin in a sample.
  • a sphingomyelin in a sample comprising: one reagent, a phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, and a second reagent containing a catalase inhibitor Measurement kit.
  • Phospholipase D lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, peroxidase, which does not react with SM and LPC, react with PC Phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with sphingomyelin, the first reagent containing one of oxidative coupling chromogen, and oxidative coupling chromogen
  • a kit for measuring SM in a specimen comprising a second reagent containing the other reagent.
  • the present invention provides a method and kit for measuring SM in a sample simply and accurately.
  • FIG. 3 is a graph showing “absorbance” of SM, LPC and PC phospholipids with respect to standard solutions in the kit of Example 1 (kits A to F).
  • the vertical axis represents absorbance (mAbs), and the horizontal axis represents each kit (kits A to F).
  • represents SM
  • represents PC
  • the enclosed dotted line represents LPC.
  • the correlation diagram between the measurement using the kit of Example 2 and the measurement using a control kit is shown.
  • the vertical axis represents the SM concentration (mg / dL) in the sample determined by measurement using Example 2, and the horizontal axis represents the SM concentration (mg / dL) in the sample determined by measurement using the control kit.
  • It is a graph which shows the relationship between SM density
  • the vertical axis represents absorbance (mAbs), and the horizontal axis represents SM concentration (mg / dL).
  • the SM measurement method of the present invention is a method that does not require an SM separation operation.
  • the sample is reacted with phospholipase D, lysophospholipase or monoglycerolipase, which reacts with PC and does not react with SM and LPC, and choline oxidase, and hydrogen peroxide produced
  • phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, and reacts with choline oxidase, and measures hydrogen peroxide produced.
  • This is a method for measuring SM in a specimen.
  • a method including the following steps is exemplified.
  • a specimen is reacted with phospholipase D, lysophospholipase or monoglycerolipase, which does not react with SM and LPC but reacts with PC, and choline oxidase, and hydrogen peroxide, glycerol-3-phosphorylcholine, and Producing free fatty acids;
  • SM in the reaction solution after step (2) is reacted with phospholipase D and choline oxidase which do not react with SM but react with SM without reacting with glycerol-3-phosphorylcholine and free fatty acid.
  • Producing and (4) A step of measuring the hydrogen peroxide generated in step (3).
  • the SM concentration in the sample can be determined by performing the measurement according to the above process and comparing the obtained measurement value with the calibration curve prepared previously.
  • the choline oxidase used in step (3) may be the choline oxidase used in step (1) or a choline oxidase newly added.
  • Table 1 shows the principle diagram of the SM measurement method of the present invention according to the above process.
  • step (1) of the above method PC does not react with SM and LPC, but is converted to choline by phospholipase D that reacts with PC, and converted to hydrogen peroxide by choline oxidase.
  • LPC is converted into glycerol-3-phosphorylcholine and free fatty acid by lysophospholipase or monoglycerolipase.
  • the hydrogen peroxide generated in step (1) is erased in step (2).
  • the elimination of hydrogen peroxide means the conversion of hydrogen peroxide generated from PC into a substance that does not affect the measurement of SM.
  • the hydrogen peroxide can be erased by, for example, reacting hydrogen peroxide generated from PC with catalase and converting the hydrogen peroxide to water, or by converting hydrogen peroxide generated from PC to peroxidase and a pair of oxidation cups described later. This can be done by reacting with one of the ring-type chromogens to convert it into a colorless substance.
  • step (3) SM is converted to choline by phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, and choline is further converted into hydrogen peroxide by choline oxidase. Converted.
  • glycerol-3-phosphorylcholine and free fatty acid produced in step (2) do not react with glycerol-3-phosphorylcholine and free fatty acid and do not react with phospholipase D that reacts with SM, Hydrogen peroxide is produced from the remaining SM. Hydrogen peroxide generated from this SM is measured in step (4).
  • the SM measurement method of the present invention includes a phospholipase D, lysophospholipase or monoglycerolipase that does not react with SM and LPC but reacts with PC, oxidized coenzyme, choline dehydrogenase, and Reacts with reduced coenzyme oxidase, eliminates hydrogen peroxide produced, then reacts with phospholipase D, oxidized coenzyme, choline dehydration, which does not react with glycerol-3-phosphorylcholine and free fatty acids, but reacts with SM
  • a method including the following steps is exemplified.
  • the sample does not react with SM and LPC but reacts with phospholipase D, lysophospholipase or monoglycerolipase, oxidized coenzyme, choline dehydrogenase, and reduced coenzyme oxidase that react with PC Generating hydrogen peroxide, reduced coenzyme, glycerol-3-phosphorylcholine, and free fatty acid;
  • SM in the reaction solution after step (2) does not react with glycerol-3-phosphorylcholine and free fatty acid, but reacts with SM.
  • Phospholipase D oxidized coenzyme, choline dehydrogenase, and Reacting with reduced coenzyme oxidase to produce hydrogen peroxide and reduced coenzyme; and (4) A step of measuring the hydrogen peroxide generated in step (3).
  • the SM concentration in the sample can be determined by performing the measurement according to the above process and comparing the obtained measurement value with the calibration curve prepared previously.
  • the choline dehydrogenase, oxidized coenzyme, and reduced coenzyme oxidase used in step (3) include choline dehydrogenase, oxidized coenzyme, and reduced coenzyme used in step (1).
  • a type coenzyme oxidase or a newly added one may be used.
  • Table 2 shows the principle diagram of the SM measurement method of the present invention according to the above process.
  • step (1) of the above method PC does not react with SM and LPC, but is converted to choline by phospholipase D that reacts with PC, and is converted into choline oxidase, oxidized coenzyme and reduced coenzyme oxidase. Converted to hydrogen peroxide.
  • LPC is converted into glycerol-3-phosphorylcholine and free fatty acid by lysophospholipase or monoglycerolipase.
  • the hydrogen peroxide generated in step (1) is erased in step (2).
  • the elimination of hydrogen peroxide means the conversion of hydrogen peroxide generated from PC into a substance that does not affect the measurement of SM.
  • the hydrogen peroxide can be erased by, for example, reacting hydrogen peroxide generated from PC with catalase and converting the hydrogen peroxide to water, or by converting hydrogen peroxide generated from PC to peroxidase and a pair of oxidation cups described later. This can be done by reacting with one of the ring-type chromogens to convert it into a colorless substance.
  • step (3) SM is converted to choline by phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, and choline is further converted into hydrogen peroxide by choline oxidase. Converted.
  • glycerol-3-phosphorylcholine and free fatty acid produced in step (2) do not react with glycerol-3-phosphorylcholine and free fatty acid and do not react with phospholipase D that reacts with SM, Hydrogen peroxide is produced from the remaining SM. Hydrogen peroxide generated from this SM is measured in step (4).
  • step (1) and step (2) can be performed stepwise or simultaneously, but are preferably performed simultaneously.
  • the reaction temperature in step (1) and step (2) is usually 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is usually 1 to 60 minutes, preferably 2 to 30 minutes.
  • step (2) when hydrogen peroxide generated in step (1) is eliminated using catalase, the reaction in step (3) is preferably performed in the presence of a catalase inhibitor.
  • catalase inhibitors include azides.
  • the azide include lithium azide, sodium azide, potassium azide and the like.
  • step (4) the hydrogen peroxide produced in step (3) is reacted with, for example, peroxidase and a leuco chromogen or a pair of oxidative coupling chromogens described below, and the absorbance of the dye produced is measured. Can be measured.
  • the hydrogen peroxide generated in step (1) is erased using peroxidase and one of a pair of oxidative coupling chromogens, the other oxidation is performed in the reaction of step (3). It is preferable to add a coupling type chromogen.
  • the hydrogen peroxide produced in step (3) is reacted with a pair of oxidative coupling type chromogens in the presence of peroxidase in step (4), and the absorbance of the produced dye is determined. It can be measured by measuring.
  • step (3) and step (4) can be performed stepwise or simultaneously, but are preferably performed simultaneously.
  • the reaction temperature in step (3) and step (4) is usually 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is usually 1 to 60 minutes, preferably 2 to 30 minutes.
  • the measurement method of the present invention can be applied to dry chemistry and point of care testing (POCT), but is preferably performed in an aqueous medium described later.
  • POCT point of care testing
  • hydrogen peroxide generated from SM SM can also be measured by converting to a dye, measuring the absorbance (A2) of the reaction solution, and subtracting the absorbance (A1) from the absorbance (A2).
  • a fluorescent substance eg, 4-hydroxyphenylacetic acid, 3- (4-hydroxyphenyl) propionic acid, coumarin, etc.
  • a luminescent substance eg, luminol compound, lucigenin compound instead of an oxidative coloring type chromogen Etc.
  • SM can be measured by measuring the fluorescence intensity of the reaction solution, and when using a luminescent substance, the luminescent intensity is measured. Also, SM can be measured by measuring hydrogen peroxide generated from PC and hydrogen peroxide generated from SM with a hydrogen peroxide electrode. These methods are also included in the measurement method of the present invention.
  • the hydrogen peroxide generated in the step (3) is converted into the presence of a catalase inhibitor and a peroxidase in the step (4). It can also be measured by reacting with a fluorescent substance or a luminescent substance and measuring the intensity of the generated fluorescence or luminescence. Examples of the fluorescent substance and the luminescent substance include the aforementioned fluorescent substance and luminescent substance.
  • specimen in the present invention examples include whole blood, plasma, serum, cerebrospinal fluid, saliva, amniotic fluid, urine, sweat, pancreatic juice and the like, and plasma and serum are preferred.
  • the phospholipase D that does not react with SM and LPC in the present invention and reacts with PC is not particularly limited as long as it is phospholipase D that reacts with PC but does not react with SM or LPC.
  • Examples thereof include phospholipase D derived from plants or microorganisms, and phospholipase D produced by genetic engineering techniques.
  • Examples of the phospholipase D derived from microorganisms include phospholipase D derived from Streptomyces sp.
  • phospholipase D a commercial item can also be used.
  • Examples of commercially available phospholipase D include phospholipase D (PLDP; manufactured by Asahi Kasei Co., Ltd.).
  • two or more types of phospholipase D that does not react with SM and LPC but reacts with PC can be used in combination.
  • the lysophospholipase in the present invention is not particularly limited as long as it has a hydrolytic activity for LPC, and examples thereof include lysophospholipases derived from animals, plants or microorganisms, lysophospholipases produced by genetic engineering techniques, and the like. . Moreover, a commercial item can also be used as lysophospholipase. Examples of commercially available lysophospholipase include lysophospholipase (LYPL; manufactured by Asahi Kasei Corporation).
  • the monoglycerolipase in the present invention is not particularly limited as long as it has a hydrolytic activity for LPC.
  • monoglycerolipase derived from animals, plants or microorganisms, monoglycerolipase produced by a genetic engineering technique, etc. Is mentioned.
  • a commercial item can also be used as monoglycero lipase.
  • Examples of commercially available monoglycerolipase include monoglycerolipase (MGLP; manufactured by Asahi Kasei Corporation).
  • two or more kinds of lysophospholipase or monoglycerolipase can be used in combination.
  • the concentration of phospholipase D in the reaction solution that does not react with SM and reacts with PC in the reaction solution is not particularly limited as long as the concentration of SM of the present invention can be measured. Usually, it is 0.001 to 200,000 U / L, and preferably 0.005 to 100,000 U / L.
  • the concentration of lysophospholipase or monoglycerolipase in the reaction solution in the SM measurement method of this reaction is not particularly limited as long as it is a concentration that enables measurement of SM of the present invention, and is usually 0.001 to 200,000 U / L. Yes, 0.005 to 100,000 U / L is preferable.
  • the choline oxidase in the present invention is not particularly limited as long as it is an enzyme having the ability to oxidize choline to generate hydrogen peroxide.
  • Choline oxidase produced by the above can also be used.
  • Commercial products such as choline oxidase (CLOD; manufactured by Kyowa Hakko) and choline oxidase (CHO-301; manufactured by Toyobo Co., Ltd.) can also be used.
  • CLOD choline oxidase
  • CHO-301 manufactured by Toyobo Co., Ltd.
  • two or more choline oxidases can be used in combination.
  • the concentration of choline oxidase in the reaction solution in the SM measurement method of this reaction is not particularly limited as long as it is a concentration that enables measurement of SM of the present invention, and is usually 0.001 to 200,000 U / L. 0.005 to 20,000 U / L is preferred.
  • phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM is phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM.
  • phospholipase D derived from animals, plants or microorganisms, lipoprotein lipase having phospholipase D activity, phospholipase D produced by genetic engineering techniques, and the like can also be used.
  • examples of the phospholipase D derived from microorganisms include, for example, phospholipase D derived from Streptomyces chromofuscus.
  • a commercially available product can also be used as phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM.
  • Examples of phospholipase D that does not react with commercially available glycerol-3-phosphorylcholine and free fatty acid but reacts with SM include phospholipase D (PLD; manufactured by Asahi Kasei Co., Ltd.).
  • PLD phospholipase D
  • two or more kinds of phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM can be used in combination.
  • the concentration in the reaction solution of phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid and reacts with SM in the method for measuring SM in this reaction is a concentration that enables measurement of SM of the present invention. If there is no particular limitation, it is usually 0.001 to 500,000 U / L, preferably 0.005 to 250,000 U / L.
  • the choline dehydrogenase in the present invention is not particularly limited as long as it is an enzyme having the ability to oxidize choline in the presence of an oxidized coenzyme to produce a reduced coenzyme.
  • it is derived from an animal, plant or microorganism.
  • choline dehydrogenase produced by a genetic engineering technique can also be used.
  • two or more choline dehydrogenases can be used in combination.
  • the concentration of choline dehydrogenase in the reaction solution in the SM measurement method of this reaction is not particularly limited as long as it is a concentration that enables measurement of SM of the present invention, and is usually 0.001 to 200,000 U / L. 0.005 to 100,000 U / L is preferable.
  • Examples of the oxidized coenzyme used in the measurement using choline dehydrogenase include NAD (P) + and thio-NAD (P) + .
  • Examples of the reduced coenzyme produced by the reaction of choline dehydrogenase include NAD (P) H and thio-NAD (P) H.
  • the concentration of the oxidized coenzyme used in the SM measurement method of the present invention in the reaction solution is not particularly limited as long as it is a concentration that enables the measurement of SM of the present invention, and is generally 0.01 to 400 mmol / L. 0.1-100 mmol / L is preferable.
  • the reduced coenzyme oxidase in the present invention is not particularly limited as long as it is an enzyme having the ability to generate hydrogen peroxide from the reduced coenzyme produced by the reaction of choline dehydrogenase.
  • NAD (P) H examples include oxidase.
  • a commercially available product can also be used as the reduced coenzyme oxidase.
  • Examples of commercially available reduced coenzyme oxidase include NADH-oxidase (manufactured by Cosmo Bio).
  • the concentration of the reduced coenzyme oxidase used in the SM measurement method of the present invention in the reaction solution is not particularly limited as long as it is a concentration that enables measurement of SM of the present invention, and is usually 0.01 to 400,000 U. / L, preferably 0.02 to 200,000 U / L.
  • the catalase used in the SM measurement method of the present invention is not particularly limited as long as it is an enzyme capable of converting hydrogen peroxide into water and oxygen molecules.
  • Catalase produced by various techniques can also be used.
  • a catalase a commercial item can also be used. Examples of commercially available catalase include catalase (CAT; manufactured by Kikkoman), catalase (CAT-R; manufactured by Kikkoman), catalase derived from calf liver (manufactured by Sigma-Aldrich), and the like.
  • two or more types of catalase can be used in combination.
  • the concentration of catalase used in the SM measurement method of the present invention in the reaction solution is not particularly limited as long as it is a concentration capable of measuring the SM of the present invention, and is usually 0.001 to 1,000,000 U / L. 0.01 to 500,000 U / L is preferable.
  • the aqueous medium used in the present invention is not particularly limited as long as it is an aqueous medium that enables the SM measurement method of the present invention, and examples thereof include deionized water, distilled water, and a buffer solution. Is preferred.
  • the buffer used in the buffer include tris (hydroxymethyl) aminomethane buffer, phosphate buffer, borate buffer, Good's buffer, and the like.
  • Good buffering agents include, for example, 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminodiacetic acid (ADA) Piperazine-N, N'-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) ), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfone Acid (TES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPE
  • the peroxidase used in the present invention is not particularly limited as long as it is a peroxidase that enables the SM measurement method of the present invention, and examples include peroxidase derived from horseradish.
  • the concentration of the peroxidase used in the SM measurement method of the present invention in the reaction solution is not particularly limited as long as it enables the measurement of SM of the present invention, and is usually 0.01 to 500,000 U / L. 1 to 200,000 U / L is preferred.
  • the leuco chromogen used in the SM measurement method of the present invention is not particularly limited as long as it is a leuco chromogen that enables the SM measurement method of the present invention.
  • the leuco chromogen has a function of reacting with hydrogen peroxide in the presence of peroxidase to produce a dye alone.
  • leuco chromogens examples include 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine (CCAP), 10-N-methylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine (MCDP), N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine sodium salt (DA-64), 10-N- (carboxymethylaminocarbonyl) -3,7 -Bis (dimethylamino) -10H-phenothiazine sodium salt (DA-67), 4,4'-bis (dimethylamino) diphenylamine, bis [3-bis (4-chlorophenyl) methyl-4-dimethylaminophenyl] amine ( BCMA).
  • CCAP 10-N-carboxymethylcarbamoyl-3,7-bis (di
  • the concentration of the leuco chromogen used in the SM measurement method of the present invention in the reaction solution is not particularly limited as long as it is a concentration capable of measuring the SM of the present invention, and is usually 0.001 to 5 g / L, preferably 0.01-1 g / L.
  • the oxidative coupling coloring chromogen used in the SM measuring method of the present invention is not particularly limited as long as it is an oxidative coupling coloring chromogen that enables the SM measuring method of the present invention.
  • the oxidative coupling chromogen has the function of reacting with hydrogen peroxide in the presence of peroxidase to produce a dye. In the reaction for producing the dye, a combination of a pair of oxidative coupling chromogens is used.
  • the oxidative coupling chromogen also has a function of reacting with hydrogen peroxide in the presence of peroxidase to convert hydrogen peroxide into a colorless substance.
  • a pair of oxidative coupling chromogens In the reaction for converting hydrogen peroxide into a colorless substance, only one of a pair of oxidative coupling chromogens is used.
  • Examples of the combination of a pair of oxidative coupling chromogens include a combination of a coupler and an aniline, and a combination of a coupler and a phenol.
  • Examples of the coupler include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazine.
  • Examples of anilines include N- (3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- (2-hydroxy -3-sulfopropyl) -3.5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N- (3 -Sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methylaniline, N, N -Di (3-sulfopropyl)
  • phenols include phenol, 4-chlorophenol, 3-methylphenol, 3-hydroxy-2,4,6-triiodobenzoic acid (HTIB) and the like.
  • concentration in the reaction solution of the oxidative coupling chromogenic chromogen used in the SM measurement method of the present invention is not particularly limited as long as it is a concentration that enables the measurement of SM of the present invention. 5 g / L, preferably 0.01 to 1 g / L.
  • the SM measuring kit of the present invention is used in the SM measuring method of the present invention.
  • Examples of the SM measurement kit of the present invention include a two-reagent kit, a three-reagent kit, and the like, and a two-reagent kit composed of a first reagent and a second reagent is preferable.
  • the SM measurement kit of the present invention may be lyophilized or dissolved in an aqueous medium.
  • an aqueous medium the above-mentioned aqueous medium etc. are mentioned, for example.
  • the phospholipase D lysophospholipase or monoglycerolipase, choline oxidase, glycerol-3-phosphorylcholine and free fatty acid which do not react with the aforementioned SM and LPC but react with PC Reactive phospholipase D, oxidized coenzyme, choline dehydrogenase, reduced coenzyme oxidase, catalase, catalase inhibitor, leuco chromogen, oxidative coupling chromogenic chromogen Can be used.
  • phospholipase D that does not react with SM and LPC but reacts with PC is included in the first reagent.
  • Lysophospholipase or monoglycerolipase is included in the first reagent.
  • Phospholipase D which does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, is included in the second reagent.
  • Choline oxidase is contained in the first reagent, but may be further contained in the second reagent.
  • Choline dehydrogenase is contained in the first reagent, but may be further contained in the second reagent.
  • the oxidized coenzyme is included in the first reagent, but may be further included in the second reagent.
  • the reduced coenzyme oxidase is included in the first reagent, but may be further included in the second reagent.
  • Catalase is included in the first reagent.
  • the catalase inhibitor is included in the second reagent.
  • Peroxidase is contained in the first reagent, but may be further contained in the second reagent.
  • the leuco chromogen is contained in the second reagent.
  • one of the pair of oxidative coupling chromogens is contained in the first reagent, On the other hand, an embodiment included in the second reagent is preferable.
  • the concentration of phospholipase D in the first reagent which does not react with SM and LPC in the SM measurement kit of the present invention and reacts with PC is usually 0.002 to 400,000 U / L, and 0.01 to 200,000 U / L. Is preferred.
  • the content of the first reagent of phospholipase D that does not react with SM and LPC but reacts with PC is the concentration in the state dissolved in an aqueous medium.
  • the content is 0.002 to 400,000 U / L, preferably 0.01 to 200,000 U / L.
  • the concentration of lysophospholipase or monoglycerolipase in the first reagent in the SM measurement kit of the present invention is usually 0.002 to 400,000 U / L, preferably 0.01 to 200,000 U / L.
  • the concentration of lysophospholipase or monoglycerolipase in the first reagent is usually 0.002 to 400,000 U / L, preferably in a state dissolved in an aqueous medium. Is 0.01 ⁇ 200,000200U / L.
  • the concentration of choline oxidase in the first reagent in the SM measurement kit of the present invention is usually 0.002 to 400,000 U / L, preferably 0.01 to 200,000 U / L.
  • the content of the choline oxidase in the first reagent is usually 0.002 to 400,000 U / L, preferably 0.01 to The content is 200,000 U / L.
  • the concentration of phospholipase D in the second reagent which does not react with glycerol-3-phosphorylcholine and free fatty acid in the SM measurement kit of the present invention and reacts with SM is usually 0.004 to 800,000 U / L, 0.02 ⁇ 400,000 U / L is preferred.
  • the content of the phospholipase D that does not react with glycerol-3-phosphorylcholine and free fatty acid and reacts with SM in the second reagent is dissolved in an aqueous medium.
  • the content is usually 0.004 to 800,000 U / L, preferably 0.02 to 400,000 U / L.
  • the concentration of choline dehydrogenase in the first reagent in the SM measurement kit of the present invention is usually 0.002 to 400,000 U / L, preferably 0.01 to 200,000 U / L.
  • the content of choline dehydrogenase in the first reagent is usually 0.002 to 400,000 U / L, preferably 0.01 when dissolved in an aqueous medium. The content becomes ⁇ 200,000 U / L.
  • the concentration of the oxidized coenzyme in the first reagent in the SM measurement kit of the present invention is usually 0.02 to 800 mmol / L, preferably 0.2 to 200 mmol / L.
  • the content of oxidized coenzyme in the first reagent is usually 0.02-800 mmol / L, preferably 0.2, in the state dissolved in an aqueous medium. The content is ⁇ 200 mmol / L.
  • the concentration of the reduced coenzyme oxidase in the first reagent in the SM measurement kit of the present invention is usually 0.02 to 800,000 U / L, preferably 0.04 to 400,000 U / L.
  • the content of the reduced coenzyme oxidase in the first reagent is usually 0.02 to 800,000 U / L, preferably in a state dissolved in an aqueous medium. Is a content of 0.04-400,000 U / L.
  • the concentration of catalase in the first reagent in the SM measurement kit of the present invention is usually 0.002 to 1,500,000 U / L, preferably 0.02 to 750,000 U / L.
  • the content of catalase in the first reagent is usually 0.002 to 1,500,000 U / L, preferably 0.02 to 750,000 U when dissolved in an aqueous medium. The content is / L.
  • the concentration of peroxidase in the first reagent in the SM measurement kit of the present invention is usually 0.01 to 500,000 U / L, preferably 1 to 200,000 U / L.
  • the content of peroxidase in the first reagent is usually 0.01 to 500,000 U / L when dissolved in an aqueous medium, and 1 to 200,000 U. The content is / L.
  • the concentration of the leuco chromogen in the second reagent in the SM measurement kit of the present invention is usually 0.002 to 7.5 ⁇ g / L, preferably 0.02 to 1.5 ⁇ g / L.
  • the content of the leuco chromogen in the second reagent is usually 0.002 to 7.5 g / L in the state dissolved in an aqueous medium, preferably The content is 0.02 to 1.5 g / L.
  • the concentration of the oxidative coupling chromogen in the first reagent and the second reagent in the SM measurement kit of the present invention is usually 0.002 to 7.5 g / L, preferably 0.02 to 1.5 g / L.
  • the content of the oxidatively coupled chromogenic chromogen in the first reagent and the second reagent is usually 0.002 to the concentration in a state dissolved in an aqueous medium.
  • the content is 7.5 g / L, preferably 0.02 to 1.5 g / L.
  • the SM measurement kit of the present invention may contain an aqueous medium, a stabilizer, a preservative, an interference substance influence inhibitor, a reaction accelerator, a surfactant and the like, if necessary.
  • an aqueous medium the above-mentioned aqueous medium etc. are mentioned, for example.
  • the stabilizer include ethylenediaminetetraacetic acid (EDTA), sucrose, calcium chloride, glycine, sodium glutamate, and tryptophan.
  • the preservative include sodium azide, antibiotics, bioace and the like.
  • Examples of the inhibitor for the influence of interfering substances include ascorbate oxidase for suppressing the influence of ascorbic acid, and ferrocyanide for suppressing the influence of bilirubin.
  • Examples of the reaction accelerator include enzymes such as colipase and salts such as sodium sulfate and sodium chloride.
  • Examples of the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Examples of nonionic surfactants include polyoxyethylene surfactants.
  • Kit 1 First reagent Does not react with SM and LPC, does not react with phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, catalase, peroxidase second reagent that reacts with PC, but does not react with glycerol-3-phosphorylcholine and free fatty acids , Phospholipase D that reacts with SM, catalase inhibitor, leuco chromogen, kit 2 First reagent Does not react with SM and LPC, does not react with phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, catalase, peroxidase second reagent that reacts with PC, but does not react with glycerol-3-phosphorylcholine and free fatty acids
  • Kit 3 First reagent: Reactive phospholipase D, lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, catalase, peroxidase second reagent that does not react with SM and LPC but reacts with PC Phospholipase D, catalase inhibitor, leuco chromogen, kit 4 which does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM First reagent: Reactive phospholipase D, lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, catalase, peroxidase second reagent that does not react with SM and LPC but reacts with PC Phospholipase D, choline dehydrogenase, cho
  • Kit 5 First reagent SM and LPC do not react, but react with PC Phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, peroxidase, one of a pair of oxidative coupling chromogens Second reagent Glycerol 3-Phospholipase D that does not react with phosphorylcholine and free fatty acid but reacts with SM, kit 6 First reagent SM and LPC do not react, but react with PC Phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, peroxidase, one of a pair of oxidative coupling chromogens Second reagent Glycerol 3-Phospholipase D, choline oxidase, the other chromophore chromogen that does not react with phosphorylcholine and free fatty acids but reacts with SM
  • Kit 7 1st reagent It does not react with SM and LPC, but reacts with PC.
  • One second reagent of ring chromogenic chromogen, phospholipase D which does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, the other of a pair of oxidative coupling chromogen, kit 8 1st reagent It does not react with SM and LPC, but reacts with PC.
  • Phospholipase D lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, peroxidase, a pair of oxidized cups
  • Phospholipase D choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, which does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, The other of a pair of oxidative coupling chromogens
  • First reagent SM and LPC do not react, but react with PC Phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, peroxidase, one of a pair of oxidative coupling chromogens
  • Second reagent Glycerol 3-Phospholipase D that reacts with phosphorylcholine and free fatty acids but does not react with SM, peroxidase, another oxidative coupling chromogen
  • kit 10 First reagent SM and LPC do not react, but react with PC Phospholipase D, lysophospholipase or monoglycerolipase, choline oxidase, peroxidase, one of a pair of oxidative coupling chromogens Second reagent Glycerol 3-phosphorylcholine and phospholipase D that does not react with free fatty acids but reacts with SM, choline oxida
  • Kit 11 1st reagent It does not react with SM and LPC, but reacts with PC.
  • Phospholipase D lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, peroxidase, a pair of oxidized cups
  • One second reagent of ring chromogenic chromogen Reacts with glycerol-3-phosphorylcholine and free fatty acid, but reacts with SM Phospholipase D, peroxidase, a pair of oxidative coupling chromogenic chromogen 12 1st reagent It does not react with SM and LPC, but reacts with PC.
  • Phospholipase D lysophospholipase or monoglycerolipase, choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, peroxidase, a pair of oxidized cups
  • Phospholipase D choline dehydrogenase, oxidized coenzyme, reduced coenzyme oxidase, which does not react with glycerol-3-phosphorylcholine and free fatty acid but reacts with SM, Peroxidase, the other of a pair of oxidative coupling chromogens
  • PIPES manufactured by Dojindo Laboratories
  • EMSE manufactured by Daito Chemix
  • calcium chloride dihydrate manufactured by Wako Pure Chemical Industries
  • 4-AA manufactured by Saikyo Kasei Co., Ltd.
  • peroxidase POD; manufactured by Toyobo Co., Ltd.
  • Catalase manufactured by Kikkoman
  • CLOD Choline oxidase; manufactured by Kyowa Hakko
  • sodium azide manufactured by Wako Pure Chemical Industries
  • MGLP monoglycerol lipase; manufactured by Asahi Kasei
  • PLDP manufactured by Asahi Kasei
  • PLD Alahi Kasei
  • phosphatidylcholine Sigma-Aldrich
  • lysophosphatidylcholine Sigma-Aldrich
  • SM Sigma-Ald
  • Kits comprising the following first reagent and second reagent shown in Table 3 were prepared.
  • First reagent PIPES (pH 7.0) 15 g / L EMSE 0.3 g / L Triton X-100 0.05 g / L MGLP
  • Second reagent PIPES (pH 7.5) 15 g / L 4-AA 0.5 g / L Sodium azide 0.2 g / L POD 20 kU / L Calcium chloride dihydrate 0.3 g / L CLOD 30 kU / L PLDP or PLD
  • kit A ⁇ Measurement using kit A to absorbance with respect to standard solution> Using a physiological saline (phospholipid: 0.0 mg / dL) and an SM standard solution as a sample, using a kit A as a kit, an “absorbance” with respect to the SM standard solution using a Hitachi 7170S type automatic analyzer. It was determined by the following method.
  • the reaction cell saline and (2.5 [mu] L) was added and the first reagent (240 [mu] L), warmed for 5 minutes at 37 ° C., absorbance (E1 saline) the main 600 nm wavelength of the reaction mixture, the sub-wavelength 700 nm in measured, then added a second reagent (80 [mu] L) to the reaction solution, after was further heated for 5 minutes at 37 ° C., absorbance of the reaction solution (E2 saline) main wavelength 600 nm, with reference wavelength 700 nm It was measured. The value obtained by subtracting the E1 raw diet from the E2 raw diet was taken as the ⁇ E raw diet .
  • kits B to F were used to determine the “absorbance” for each standard solution in each kit.
  • the “absorbance” for each standard solution in each kit is shown in FIG.
  • Kit A when “kit A” was used, “absorbance” was not obtained for any phospholipid, indicating that none of the phospholipids reacted with choline oxidase. From the reaction using Kit B, it was found that PLDP specifically reacts with PC to produce choline. From the reaction using kit C, it was found that PLD reacts with any phospholipid to produce choline.
  • Kit D From the reaction using Kit D, it was found that none of the phospholipids produced choline by the reaction with MGLP.
  • First reagent PIPES (pH 6.25) 15 g / L EMSE 0.3 g / L Catalase 300 kU / L PLDP 10 kU / L MGLP 10 kU / L CLOD 10 kU / L Triton X-100 0.05 g / L
  • Second reagent PIPES (pH 7.5) 15 g / L 4-AA 0.5 g / L Sodium azide 0.2 g / L POD 20 kU / L PLD 4 kU / L CLOD 10 kU / L Calcium chloride dihydrate 0.3 g / L Triton X-100 8 g / L
  • the SM concentration in each sample of 28 human serum samples was determined by the following procedure.
  • the control kit was used based on the SM concentration (x) in each sample determined by measurement using the control kit and the SM concentration (y) in each sample determined by measurement using the kit of Example 2.
  • the correlation diagram shown in FIG. 2 was obtained. As shown in this correlation diagram, the relationship shown in Equation (II) is established between x and y, and the correlation coefficient (r) is 0.8445, which proves that there is a good correlation between the two measurements. did.
  • a 10-stage dilution series was prepared using an SM standard solution (SM concentration: 100 mg / dL), and the absorbance of each diluted specimen was measured by the same method as in Example 3. The result is shown in FIG.
  • a method for measuring SM in blood and a measurement kit effective for diagnosis of arteriosclerosis and the like are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 検体中のスフィンゴミエリンを簡便かつ正確に測定するための方法、及び、キットを提供することにある。 検体を、スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、コリン酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のスフィンゴミエリンの測定方法。

Description

スフィンゴミエリンの測定方法及び測定用キット
 本発明は、スフィンゴミエリンの測定方法及び測定用キットに関する。
 血液中には、高密度リポ蛋白(以下、HDLと略記する)、低密度リポ蛋白(以下、LDLと略記する)、超低密度リポ蛋白(以下、VLDLと略記する)、カイロミクロン(以下、CMと略記する)等のリポ蛋白が含まれている。各リポ蛋白は、コレステロール、トリグリセライド、リン脂質、蛋白質等の構成成分の割合が異なっており、生体内で異なる作用を有する。リポ蛋白には、主に3種類のリン脂質、すなわち、ホスファチジルコリン(以下、PCと略記する)、リゾホスファチジルコリン(以下、LPCと略記する)、スフィンゴミエリン(以下、SMと略記する)が含まれている。
 これら3種類のリン脂質の中では、PC及びSMが主要なリン脂質であり、それぞれ全リン脂質の約7割及び2割を占めている。SMは、ヒト及び動物モデルのアテロームに蓄積することが知られている。ヒトの動脈硬化巣に存在するLDLには、血漿中のLDLと比べて、SMが多量に含有されている(非特許文献1)。
 一方、ヒトの臨床研究においても、血漿中のSM、及びSM/PC比率が、虚血性心疾患に対する独立した危険因子であることが示されている(非特許文献2~4)。
 これまでに、SMの測定方法としては、薄層クロマトグラフィーを用いる方法や高速液体クロマトグラフィーを用いる方法(非特許文献5)が報告されているが、操作が煩雑で測定に長時間を要する等の欠点を有している。また、細菌由来のスフィンゴミリナーゼを利用した酵素的測定法も報告されている(特許文献1、非特許文献2)。本測定法は、スフィンゴミエリンを細菌のスフィンゴミエリナーゼにより、ホスホリルコリン及びn-アシルスフィンゴシンに加水分解し、生成したホスホリルコリンをアルカリ性ホスファターゼによりコリンに加水分解して、生成したコリンをコリンオキシダーゼと反応させ、生成した過酸化水素を測定することにより、スフィンゴミエリンを測定する方法である。しかしながら、本測定法は、アルカリ性ホスファターゼの使用に起因する、他の測定項目の測定への影響や、スフィンゴミエリナーゼがSMと共に、LPCにも反応するという特異性等の問題を有している(非特許文献6)。
特表2009-519713号公報
Circulation, Vol. 110(22), p. 3465-3471 (2004). Arterioscler Thromb Vasc Biol., Vol. 20, p. 2614-2618 (2000). Nutrition & Metabolism, Vol. 3, p. 5 (2006). Am. J. Epidemiol., Vol. 163, p. 903-912 (2006). Dairy Sci., Vol. 88, p. 482-488 (2005). Biol. Pharm. Bull. Vol. 27, p. 1725-1729 (2004).
 本発明の目的は、検体中のSMを簡便かつ正確に測定するための方法、及び、キットを提供することにある。
 本発明者らは上記課題を解決するために鋭意検討を行い、PC、LPC及びSMを含有する検体中のSMを選択的に測定する方法において、LPCをリゾホスホリパーゼ若しくはモノグリセロリパーゼと反応させて生成する、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応しないが、SMとは反応するホスホリパーゼDを用いることにより、SMを特異的に測定することができることを見出して本発明を完成させた。すなわち、本発明は、以下の[1]~[17]に関する。
[1] 検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、コリン酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のSMの測定方法。
[2] 検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のSMの測定方法。
[3] 検体と、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素との反応をカタラーゼの存在下に行い、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、コリン酸化酵素の反応をカタラーゼ阻害剤の存在下に行う、[1]記載の方法。
[4] 検体と、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素との反応をカタラーゼの存在下に行い、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素の反応をカタラーゼ阻害剤の存在下に行う、[2]記載の方法。
[5] カタラーゼ阻害剤が、アジ化物である[3]又は[4]記載の方法。
[6] 過酸化水素の消去をペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方の存在下に行い、過酸化水素の測定をペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の存在下に行う、[1]又は[2]記載の方法。
[7] 過酸化水素の測定をペルオキシダーゼ、及び、ロイコ型色原体の存在下に行う、[1]~[5]のいずれかに記載の方法。
[8] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDが、Streptomyces sp.由来のホスホリパーゼDである、[1]~[7]のいずれかに記載の方法。
[9] グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDが、Streptomyces chromofuscus由来のホスホリパーゼDである、[1]~[8]のいずれかに記載の方法。
[10] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、及び、カタラーゼを含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、カタラーゼ阻害剤を含む第2試薬とを含むことを特徴とする、検体中のSM測定用キット。
[11] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方を含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、酸化カップリング発色型色原体のもう一方を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
[12] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、及び、カタラーゼを含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、カタラーゼ阻害剤を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
[13] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方を含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、酸化カップリング発色型色原体のもう一方を含む第2試薬とを含むことを特徴とする、検体中のSM測定用キット。
[14] カタラーゼ阻害剤が、アジ化物である[10]又は[12]記載のキット。
[15] ペルオキシダーゼとロイコ型色原体が、それぞれ、第1試薬及び第2試薬の別々の試薬に含まれる、[10]、[12]又は[14]記載のキット。
[16] SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDが、Streptomyces sp.由来のホスホリパーゼDである、[10]~[15]のいずれかに記載のキット。
[17] グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDが、Streptomyces chromofuscus由来のホスホリパーゼDである、[10]~[16]のいずれかに記載のキット。
 本発明により、検体中のSMを簡便かつ正確に測定するための方法及びキットが提供される。
実施例1のキット(キットA~F)におけるSM、LPC及びPCの各リン脂質の標準液に対する「吸光度」を示す図である。縦軸は吸光度(mAbs)を、横軸は各キット(キットA~F)を表す。□はSMを、■はPCを、囲み点線はLPCを表す。 実施例2のキットを用いた測定と、対照キットを用いた測定との間の相関図を示す。縦軸は実施例2を用いた測定により決定された検体中のSM濃度(mg/dL)を、横軸は対照キットを用いた測定により決定された検体中のSM濃度(mg/dL)を表す。 実施例2のキットを用いた測定における、SM濃度と吸光度との間の関係を示すグラフである。縦軸は吸光度(mAbs)を、横軸はSM濃度(mg/dL)を表す。
<SMの測定方法>
 本発明のSM測定方法は、SMの分離操作を必要としない方法である。
 本発明のSMの測定方法は、検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、コリン酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のSMの測定方法である。具体的には、下記の工程を含む方法が挙げられる。
(1)検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素と反応させ、過酸化水素、グリセロール-3-ホスホリルコリン、及び、遊離脂肪酸を生成させる工程;
(2)工程(1)で生成した過酸化水素を消去する工程;
(3)工程(2)後の反応液中のSMを、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、及び、コリン酸化酵素と反応させ、過酸化水素を生成させる工程;及び、
(4)工程(3)で生成した過酸化水素を測定する工程。
 上記工程(1)における検体として、SM濃度が既知である標準品を用いて、上記工程により測定を行い、SM濃度と測定値との間の関係を示す検量線を作成した後、実際の検体を用いて、上記工程により測定を行い、得られた測定値を先に作成した検量線に照らし合わせることにより、検体中のSM濃度を決定することができる。
 また、工程(3)で使用されるコリン酸化酵素としては、工程(1)で使用されるコリン酸化酵素でも、あらたに添加されるコリン酸化酵素でもよい。
 上記工程による本発明のSMの測定方法の原理図を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記方法の工程(1)において、PCは、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDによりコリンに変換され、コリン酸化酵素により過酸化水素に変換される。また、LPCは、リゾホスホリパーゼ又はモノグリセロリパーゼによりグリセロール-3-ホスホリルコリンと遊離脂肪酸に変換される。工程(1)で生成した過酸化水素は、工程(2)において消去される。本発明の測定方法において、過酸化水素の消去とは、PCから生成した過酸化水素を、SMの測定に影響を及ぼさない物質に変換することを意味する。過酸化水素の消去は、例えばPCから生成した過酸化水素をカタラーゼと反応させ、過酸化水素を水に変換することによって、あるいは、PCから生成した過酸化水素をペルオキシダーゼと後述の一対の酸化カップリング型色原体の一方と反応させて無色の物質に変換することによって行うことができる。
 次に、工程(3)において、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDにより、SMはコリンに変換され、コリンはさらにコリン酸化酵素により過酸化水素に変換される。ここで、工程(2)で生じたグリセロール-3-ホスホリルコリンと遊離脂肪酸は、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDとは反応しないため、反応液中に残存するSMから過酸化水素が生じることになる。このSMから生じた過酸化水素が工程(4)で測定される。
 また、本発明のSMの測定方法は、検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のSMの測定方法である。具体的には、下記の工程を含む方法が挙げられる。
(1)検体を、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、過酸化水素、還元型補酵素、グリセロール-3-ホスホリルコリン、及び、遊離脂肪酸を生成させる工程;
(2)工程(1)で生成した過酸化水素を消去する工程;
(3)工程(2)後の反応液中のSMを、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、過酸化水素及び還元型補酵素を生成させる工程;及び、
(4)工程(3)で生成した過酸化水素を測定する工程。
 上記工程(1)における検体として、SM濃度が既知である標準品を用いて、上記工程により測定を行い、SM濃度と測定値との間の関係を示す検量線を作成した後、実際の検体を用いて、上記工程により測定を行い、得られた測定値を先に作成した検量線に照らし合わせることにより、検体中のSM濃度を決定することができる。
 また、工程(3)で使用されるコリン脱水素酵素、酸化型補酵素、及び、還元型補酵素酸化酵素としては、工程(1)で使用されるコリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素でも、あらたに添加されるものでもよい。
 上記工程による本発明のSMの測定方法の原理図を第2表に示す。
Figure JPOXMLDOC01-appb-T000002
 上記方法の工程(1)において、PCは、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDによりコリンに変換され、コリン酸化酵素、酸化型補酵素及び還元型補酵素酸化酵素により過酸化水素に変換される。また、LPCは、リゾホスホリパーゼ又はモノグリセロリパーゼによりグリセロール-3-ホスホリルコリンと遊離脂肪酸に変換される。工程(1)で生成した過酸化水素は、工程(2)において消去される。本発明の測定方法において、過酸化水素の消去とは、PCから生成した過酸化水素を、SMの測定に影響を及ぼさない物質に変換することを意味する。過酸化水素の消去は、例えばPCから生成した過酸化水素をカタラーゼと反応させ、過酸化水素を水に変換することによって、あるいは、PCから生成した過酸化水素をペルオキシダーゼと後述の一対の酸化カップリング型色原体の一方と反応させて無色の物質に変換することによって行うことができる。
 次に、工程(3)において、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDにより、SMはコリンに変換され、コリンはさらにコリン酸化酵素により過酸化水素に変換される。ここで、工程(2)で生じたグリセロール-3-ホスホリルコリンと遊離脂肪酸は、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDとは反応しないため、反応液中に残存するSMから過酸化水素が生じることになる。このSMから生じた過酸化水素が工程(4)で測定される。
 本発明の測定方法において、工程(1)と工程(2)は、段階的に行うことも、同時に行うこともできるが、同時に行うことが好ましい。工程(1)と工程(2)の反応温度は、通常、10~50℃であり、20~40℃が好ましく、反応時間は、通常、1~60分間であり、2~30分間が好ましい。
 工程(2)において、工程(1)で生成した過酸化水素をカタラーゼを用いて消去する場合、工程(3)の反応はカタラーゼ阻害剤の存在下で行うことが好ましい。カタラーゼ阻害剤としては、例えばアジ化物等が挙げられる。アジ化物としては、例えばアジ化リチウム、アジ化ナトリウム、アジ化カリウム等が挙げられる。
 工程(4)において、工程(3)で生成した過酸化水素は、例えばペルオキシダーゼと、後述のロイコ型色原体又は一対の酸化カップリング型色原体と反応させ、生成した色素の吸光度を測定することにより測定することができる。特に、工程(1)で生成した過酸化水素の消去を、ペルオキシダーゼと一対の酸化カップリング型色原体の一方とを用いて行う場合には、工程(3)の反応において、もう一方の酸化カップリング型色原体を添加することが好ましい。この場合、工程(3)で生成した過酸化水素は、工程(4)において、当該過酸化水素を、ペルオキシダーゼ存在下、一対の酸化カップリング型色原体と反応させ、生成した色素の吸光度を測定することにより、測定することができる。
 本発明の測定方法において、工程(3)と工程(4)は、段階的に行うことも、同時に行うこともできるが、同時に行うことが好ましい。工程(3)と工程(4)の反応温度は、通常、10~50℃であり、20~40℃が好ましく、反応時間は、通常、1~60分間であり、2~30分間が好ましい。
 本発明の測定方法は、ドライケミストリーやポイントオブケアテスティング(POCT)にも適用できるが、後述の水性媒体中で行われることが好ましい。
 尚、PCから生成した過酸化水素をペルオキシダーゼと後述の酸化発色型色原体と反応させて色素に変換し、反応液の吸光度(A1)を測定した後、SMから生成した過酸化水素を同様に色素に変換し、反応液の吸光度(A2)を測定し、吸光度(A2)から吸光度(A1)を差し引くことにより、SMを測定することもできる。この方法において、酸化発色型色原体の代わりに、蛍光物質[例えば、4-ヒドロキシフェニル酢酸、3-(4-ヒドロキシフェニル)プロピオン酸、クマリン等]、発光物質(例えば、ルミノール化合物、ルシゲニン化合物等)を用いることもできる。蛍光物質を用いた場合には、反応液の蛍光強度を、また、発光物質を用いた場合には、発光強度を測定することにより、SMを測定することができる。また、PCから生成した過酸化水素と、SMから生成した過酸化水素とを過酸化水素電極で測定することにより、SMを測定することもできる。これらの方法も本発明の測定方法に含まれる。
 さらに、工程(2)における過酸化水素の消去をカタラーゼを用いて行う場合、工程(3)で生成した過酸化水素は、工程(4)において、当該過酸化水素を、カタラーゼ阻害剤及びペルオキシダーゼ存在下、蛍光物質又は発光物質と反応させ、生成した蛍光又は発光の強度を測定することによって測定することもできる。蛍光物質及び発光物質としては、例えば前述の蛍光物質及び発光物質が挙げられる。
 本発明における検体としては、例えば全血、血漿、血清、髄液、唾液、羊水、尿、汗、膵液等が挙げられるが、血漿及び血清が好ましい。
 本発明におけるSM及びLPCとは反応せず、PCとは反応するホスホリパーゼDとしては、PCとは反応するが、SMにもLPCにも反応しないホスホリパーゼDであれば特に限定はなく、例えば動物、植物又は微生物由来のホスホリパーゼD、遺伝子工学的な手法により製造されるホスホリパーゼD等が挙げられる。微生物由来のホスホリパーゼDとしては、例えばStreptomyces sp.由来のホスホリパーゼD等が挙げられる。また、ホスホリパーゼDとしては市販品を使用することもできる。市販のホスホリパーゼDとしては、例えばホスホリパーゼD(PLDP;旭化成社製)等が挙げられる。また、本発明においては、2種類以上の、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDを組み合わせて用いることもできる。
 本発明におけるリゾホスホリパーゼとしては、LPCに対する加水分解活性を有するものであれば特に限定はなく、例えば動物、植物又は微生物由来のリゾホスホリパーゼ、遺伝子工学的な手法により製造されるリゾホスホリパーゼ等が挙げられる。また、リゾホスホリパーゼとして、市販品を使用することもできる。市販のリゾホスホリパーゼとしては、例えばリゾホスホリパーゼ(LYPL;旭化成社製)等が挙げられる。
 本発明におけるモノグリセロリパーゼとしては、LPCに対する加水分解活性を有するものであれば特に限定はなく、例えば動物、植物又は微生物由来のモノグリセロリパーゼ、遺伝子工学的な手法により製造されるモノグリセロリパーゼ等が挙げられる。また、モノグリセロリパーゼとして、市販品を使用することもできる。市販のモノグリセロリパーゼとしては、例えばモノグリセロリパーゼ(MGLP;旭化成社製)等が挙げられる。
 本発明においては、2種類以上の、リゾホスホリパーゼ又はモノグリセロリパーゼを組み合わせて用いることもできる。
 本反応のSMの測定方法における、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDの反応液中の濃度は、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~200,000 U/Lであり、0.005~100,000 U/Lが好ましい。
 本反応のSMの測定方法におけるリゾホスホリパーゼ若しくはモノグリセロリパーゼの反応液中の濃度は、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~200,000 U/Lであり、0.005~100,000 U/Lが好ましい。
 本発明におけるコリン酸化酵素としては、コリンを酸化して過酸化水素を生成する能力を有する酵素であれば特に制限はなく、例えば動物、植物又は微生物由来のコリンオキシダーゼの他、遺伝子工学的な手法により製造されるコリンオキシダーゼ等も用いることができる。また、コリンオキシダーゼ(CLOD;協和発酵社製)、コリンオキシダーゼ(CHO-301;東洋紡績社製)等の市販品を用いることもできる。本発明においては、2種類以上のコリン酸化酵素を組み合わせて用いることもできる。
 本反応のSMの測定方法におけるコリン酸化酵素の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~200,000 U/Lであり、0.005~20,000 U/Lが好ましい。
 本発明におけるグリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDとしては、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDであれば特に制限はなく、例えば動物、植物又は微生物由来のホスホリパーゼD、ホスホリパーゼD活性を有するリポプロテインリパーゼの他、遺伝子工学的な手法により製造されるホスホリパーゼD等も用いることができる。微生物由来のホスホリパーゼDとしては、例えばStreptomyces chromofuscus由来のホスホリパーゼD等が挙げられる。また、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDとしては市販品を使用することもできる。市販の、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDとしては、ホスホリパーゼD(PLD;旭化成社製)等が挙げられる。また、本発明においては、2種類以上の、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDを組み合わせて用いることもできる。
 本反応のSMの測定方法におけるグリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDの反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~500,000 U/Lであり、0.005~250,000 U/Lが好ましい。
 本発明におけるコリン脱水素酵素としては、酸化型補酵素の存在下にコリンを酸化して還元型補酵素を生成する能力を有する酵素であれば特に制限はなく、例えば動物、植物又は微生物由来のコリンデヒドロゲナーゼの他、遺伝子工学的な手法により製造されるコリン脱水素酵素等も用いることができる。また、本発明においては、2種類以上のコリン脱水素酵素を組み合わせて用いることもできる。
 本反応のSMの測定方法におけるコリン脱水素酵素の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~200,000 U/Lであり、0.005~100,000 U/Lが好ましい。
 コリン脱水素酵素を用いた測定において使用される酸化型補酵素としては、例えばNAD(P)、thio-NAD(P)等が挙げられる。コリン脱水素酵素の反応により生成する還元型補酵素としては、例えばNAD(P)H、thio-NAD(P)H等が挙げられる。
 本発明のSMの測定方法に用いられる酸化型補酵素の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.01~400 mmol/Lであり、0.1~100 mmol/Lが好ましい。
 本発明における還元型補酵素酸化酵素としては、コリン脱水素酵素の反応により生成する還元型補酵素から過酸化水素を生成させる能力を有する酵素であれば特に制限はなく、例えばNAD(P)H酸化酵素等が挙げられる。還元型補酵素酸化酵素としては、市販品を使用することもできる。市販の還元型補酵素酸化酵素としては、NADH oxidase(コスモ・バイオ社製)等が挙げられる。
 本発明のSMの測定方法に用いられる還元型補酵素酸化酵素の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.01~400,000 U/Lであり、0.02~200,000 U/Lが好ましい。
 本発明のSMの測定方法に用いられるカタラーゼとしては、過酸化水素を水と酸素分子に変換し得る酵素であれば特に制限はなく、例えば動物、植物又は微生物由来のカタラーゼの他、遺伝子工学的な手法により製造されるカタラーゼ等も用いることができる。また、カタラーゼとしては、市販品を使用することもできる。市販のカタラーゼとしては、カタラーゼ(CAT;キッコーマン社製)、カタラーゼ(CAT―R;キッコーマン社製)、カタラーゼ ウシ肝臓由来(シグマ・アルドリッチ社製)等が挙げられる。また、本発明においては、2種類以上のカタラーゼを組み合わせて用いることもできる。
 本発明のSMの測定方法に用いられるカタラーゼの反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~1,000,000 U/Lであり、0.01~500,000 U/Lが好ましい。
 本発明において使用される水性媒体としては、本発明のSMの測定方法を可能とする水性媒体であれば特に制限はなく、例えば脱イオン水、蒸留水、緩衝液等が挙げられるが、緩衝液が好ましい。緩衝液に用いる緩衝剤としては、例えばトリス(ヒドロキシメチル)アミノメタン緩衝剤、リン酸緩衝剤、ホウ酸緩衝剤、グッドの緩衝剤等が挙げられる。
 グッドの緩衝剤としては、例えば2-モルホリノエタンスルホン酸(MES)、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-モルホリノ-2-ヒドロキシプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパンスルホン酸(MOPS)、N-〔トリス(ヒドロキシメチル)メチル〕-2-アミノエタンスルホン酸(TES)、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸(HEPES)、3-〔N,N-ビス(2-ヒドロキシエチル)アミノ〕-2-ヒドロキシプロパンスルホン酸(DIPSO)、N-〔トリス(ヒドロキシメチル)メチル〕-2-ヒドロキシ-3-アミノプロパンスルホン酸(TAPSO)、ピペラジン-N,N’-ビス(2-ヒドロキシプロパンスルホン酸)(POPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕-2-ヒドロキシプロパンスルホン酸(HEPPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕プロパンスルホン酸[(H)EPPS]、N-〔トリス(ヒドロキシメチル)メチル〕グリシン(Tricine)、N,N-ビス(2-ヒドロキシエチル)グリシン(Bicine)、N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(TAPS)、N-シクロヘキシル-2-アミノエタンスルホン酸(CHES)、N-シクロヘキシル-3-アミノ-2-ヒドロキシプロパンスルホン酸(CAPSO)、N-シクロヘキシル-3-アミノプロパンスルホン酸(CAPS)等が挙げられる。緩衝液の濃度は測定に適した濃度であれば特に制限はされないが、通常、0.001~2.0 mol/Lであり、0.005~1.0 mol/Lが好ましい。
 本発明において使用されるペルオキシダーゼとしては、本発明のSMの測定方法を可能とするペルオキシダーゼであれば特に制限はなく、例えば西洋わさび由来のペルオキシダーゼ等が挙げられる。
 本発明のSMの測定方法に用いられるペルオキシダーゼの反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.01~500,000 U/Lであり、1~200,000 U/Lが好ましい。
 本発明のSMの測定方法に用いられるロイコ型色原体としては、本発明のSMの測定方法を可能とするロイコ型色原体であれば特に制限はない。ロイコ型色原体は、ペルオキシダーゼの存在下、過酸化水素と反応して、単独で色素を生成する機能を有する。
 ロイコ型色原体としては、例えば10-N-カルボキシメチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(CCAP)、10-N-メチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(MCDP)、N-(カルボキシメチルアミノカルボニル)-4,4’-ビス(ジメチルアミノ)ジフェニルアミン ナトリウム塩(DA-64)、10-N-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン ナトリウム塩(DA-67)、4,4’-ビス(ジメチルアミノ)ジフェニルアミン、ビス〔3-ビス(4-クロロフェニル)メチル-4-ジメチルアミノフェニル〕アミン(BCMA)等が挙げられる。
 本発明のSMの測定方法に用いられるロイコ型色原体の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~5 g/Lであり、0.01~1 g/Lが好ましい。
 本発明のSMの測定方法に用いられる酸化カップリング発色型色原体としては、本発明のSMの測定方法を可能とする酸化カップリング発色型色原体であれば特に制限はない。酸化カップリング発色型色原体は、ペルオキシダーゼの存在下、過酸化水素と反応して色素を生成する機能を有する。この色素を生成する反応においては、一対の酸化カップリング発色型色原体の組み合わせが用いられる。一方、酸化カップリング発色型色原体は、ペルオキシダーゼの存在下、過酸化水素と反応して過酸化水素を無色の物質に変換する機能をも有する。この過酸化水素を無色の物質に変換する反応においては、一対の酸化カップリング発色型色原体の一方のみが用いられる。一対の酸化カップリング発色型色原体の組み合わせとしては、カプラーとアニリン類との組み合わせ、カプラーとフェノール類との組み合わせが挙げられる。
 カプラーとしては、例えば4-アミノアンチピリン(4-AA)、3-メチル-2-ベンゾチアゾリノンヒドラジン等が挙げられる。
 アニリン類としては、N-(3-スルホプロピル)アニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3.5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(DAOS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N,N-ジメチル-3-メチルアニリン、N,N-ジ(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(3-スルホプロピル)アニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメチルアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン、N-エチル-N-(3-メチルフェニル)-N’-サクシニルエチレンジアミン(EMSE)、N-エチル-N-(3-メチルフェニル)-N’-アセチルエチレンジアミン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-4-フルオロ-3,5-ジメトキシアニリン(F-DAOS)等が挙げられる。
 フェノール類としては、フェノール、4-クロロフェノール、3-メチルフェノール、3-ヒドロキシ-2,4,6-トリヨード安息香酸(HTIB)等が挙げられる。
 本発明のSMの測定方法に用いられる酸化カップリング発色型色原体の反応液中の濃度としては、本発明のSMの測定を可能とする濃度であれば特に制限はなく、通常、0.001~5 g/Lであり、0.01~1 g/Lが好ましい。
<SM測定用キット>
 本発明のSM測定用キットは、本発明のSMの測定方法に使用される。本発明のSM測定用キットとしては、例えば2試薬系のキット、3試薬系のキット等が挙げられるが、第1試薬と第2試薬とからなる2試薬系のキットが好ましい。
 本発明のSM測定用キットは、凍結乾燥された状態でも、水性媒体に溶解された状態でもよい。凍結乾燥された状態のキットを用いて検体中のSMを測定する場合には、測定前に水性媒体に溶解して使用される。水性媒体としては、例えば前述の水性媒体等が挙げられる。
 本発明のSM測定用キットにおいては、前述のSM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、還元型補酵素酸化酵素、カタラーゼ、カタラーゼ阻害剤、ロイコ型色原体、酸化カップリング発色型色原体を用いることができる。
 第1試薬と第2試薬とからなる2試薬系のSM測定用キットにおいては、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDは、第1試薬に含まれる。リゾホスホリパーゼ若しくはモノグリセロリパーゼは、第1試薬に含まれる。グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDは第2試薬に含まれる。コリン酸化酵素は、第1試薬に含まれるが、さらに第2試薬に含まれてもよい。コリン脱水素酵素は、第1試薬に含まれるが、さらに第2試薬に含まれてもよい。酸化型補酵素は、第1試薬に含まれるが、さらに第2試薬に含まれてもよい。還元型補酵素酸化酵素は、第1試薬に含まれるが、さらに第2試薬に含まれてもよい。カタラーゼは、第1試薬に含まれる。カタラーゼ阻害剤は、第2試薬に含まれる。ペルオキシダーゼは、第1試薬に含まれるが、さらに第2試薬に含まれてもよい。ロイコ型色原体は、第2試薬に含まれる。過酸化水素の消去を、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方の存在下に行う場合、一対の酸化カップリング発色型色原体の一方は、第1試薬に含まれる。過酸化水素の測定を、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の存在下に行う場合、一対の酸化カップリング発色型色原体の一方は、第1試薬に含まれ、もう一方は、第2試薬に含まれる態様が好ましい。
 本発明のSM測定用キットにおけるSM及びLPCとは反応せず、PCとは反応するホスホリパーゼDの第1試薬中の濃度は、通常、0.002~400,000 U/Lであり、0.01~200,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、SM及びLPCとは反応せず、PCとは反応するホスホリパーゼDの第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~400,000 U/L、好ましくは0.01~200,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるリゾホスホリパーゼ若しくはモノグリセロリパーゼの第1試薬中の濃度は、通常、0.002~400,000 U/Lであり、0.01~200,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、リゾホスホリパーゼ若しくはモノグリセロリパーゼの第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~400,000 U/L、好ましくは0.01~200,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるコリン酸化酵素の第1試薬中の濃度は、通常、0.002~400,000 U/Lであり、0.01~200,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、コリン酸化酵素の第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~400,000 U/L、好ましくは0.01~200,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるグリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDの第2試薬中の濃度は、通常、0.004~800,000 U/Lであり、0.02~400,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼDの第2試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.004~800,000 U/L、好ましくは0.02~400,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるコリン脱水素酵素の第1試薬中の濃度は、通常、0.002~400,000 U/Lであり、0.01~200,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、コリン脱水素酵素の第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~400,000 U/L、好ましくは0.01~200,000 U/Lとなる含量である。
 本発明のSM測定用キットにおける酸化型補酵素の第1試薬中の濃度は、通常、0.02~800 mmol/Lであり、0.2~200 mmol/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、酸化型補酵素の第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.02~800 mmol/L、好ましくは0.2~200 mmol/Lとなる含量である。
 本発明のSM測定用キットにおける還元型補酵素酸化酵素の第1試薬中の濃度は、通常、0.02~800,000 U/Lであり、0.04~400,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、還元型補酵素酸化酵素の第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.02~800,000 U/L、好ましくは0.04~400,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるカタラーゼの第1試薬中の濃度は、通常、0.002~1,500,000 U/Lであり、0.02~750,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、カタラーゼの第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~1,500,000 U/L、好ましくは0.02~750,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるペルオキシダーゼの第1試薬中の濃度は、通常、0.01~500,000 U/Lであり、1~200,000 U/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、ペルオキシダーゼの第1試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.01~500,000 U/Lであり、1~200,000 U/Lとなる含量である。
 本発明のSM測定用キットにおけるロイコ型色原体の第2試薬中の濃度は、通常、0.002~7.5 g/Lであり、0.02~1.5 g/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、ロイコ型色原体の第2試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~7.5 g/L、好ましくは0.02~1.5 g/Lとなる含量である。
 本発明のSM測定用キットにおける酸化カップリング発色型色原体の第1試薬及び第2試薬中の濃度は、通常、0.002~7.5 g/Lであり、0.02~1.5 g/Lが好ましい。凍結乾燥された状態のSM測定用キットにおいては、酸化カップリング発色型色原体の第1試薬及び第2試薬中の含量は、水性媒体で溶解された状態での濃度が、通常、0.002~7.5 g/L、好ましくは0.02~1.5 g/Lとなる含量である。
 本発明のSM測定用キットには、必要に応じて、水性媒体、安定化剤、防腐剤、干渉物質の影響抑制剤、反応促進剤、界面活性剤等が含有されてもよい。水性媒体としては、例えば前述の水性媒体等が挙げられる。安定化剤としては、例えば例えばエチレンジアミン四酢酸(EDTA)、シュークロース、塩化カルシウム、グリシン、グルタミン酸ナトリウム、トリプトファン等が挙げられる。防腐剤としては、例えばアジ化ナトリウム、抗生物質、バイオエース等が挙げられる。干渉物質の影響抑制剤としては、例えばアスコルビン酸の影響抑制のためのアスコルビン酸オキシダーゼ、ビリルビンの影響抑制のためのフェロシアン化物等が挙げられる。反応促進剤としては、例えばコリパーゼ等の酵素、硫酸ナトリウム、塩化ナトリウム等の塩類等が挙げられる。界面活性剤としては、例えば非イオン性界面活性剤、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤等が挙げられる。非イオン性界面活性剤としては、例えばポリオキシエチレン系界面活性剤等が挙げられる。
 以下に、本発明のSM測定用キットの具体的態様を記すが、本発明のSM測定用キットはこれらに限定されない。
・キット1
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、カタラーゼ、ペルオキシダーゼ
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、カタラーゼ阻害剤、ロイコ型色原体
・キット2
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、カタラーゼ、ペルオキシダーゼ
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン酸化酵素、カタラーゼ阻害剤、ロイコ型色原体
・キット3
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、カタラーゼ、ペルオキシダーゼ
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、カタラーゼ阻害剤、ロイコ型色原体
・キット4
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、カタラーゼ、ペルオキシダーゼ
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、カタラーゼ阻害剤、ロイコ型色原体
・キット5
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、一対の酸化カップリング発色型色原体のもう一方
・キット6
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン酸化酵素、一対の酸化カップリング発色型色原体のもう一方
・キット7
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、一対の酸化カップリング発色型色原体のもう一方
・キット8
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、一対の酸化カップリング発色型色原体のもう一方
・キット9
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、ペルオキシダーゼ、一対の酸化カップリング発色型色原体のもう一方
・キット10
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体のもう一方
・キット11
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、ペルオキシダーゼ、一対の酸化カップリング発色型色原体のもう一方
・キット12
第1試薬
 SM及びLPCとは反応せず、PCとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体の一方
第2試薬
 グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、SMとは反応するホスホリパーゼD、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、一対の酸化カップリング発色型色原体のもう一方
 以下、実施例により本発明をより詳細に説明するが、これらは本発明の範囲を何ら限定するものではない。尚、本実施例および参考例においては、下記メーカーの試薬及び酵素を使用した。
 PIPES(同仁化学研究所社製)、EMSE(ダイトーケミックス社製)、塩化カルシウム2水和物(和光純薬工業社製)、4-AA(埼京化成社製)、ペルオキシダーゼ(POD;東洋紡績社製)、カタラーゼ(キッコーマン社製)、CLOD(コリン酸化酵素;協和発酵社製)、アジ化ナトリウム(和光純薬工業社製)、MGLP(モノグリセロールリパーゼ;旭化成社製)、PLDP(旭化成社製)、PLD(旭化成社製)、ホスファチジルコリン(シグマ・アルドリッチ社製)、リゾホスファチジルコリン(シグマ・アルドリッチ社製)、SM(シグマ・アルドリッチ社製)、トリトンX-100(ポリオキシエチレン系界面活性剤:シグマ・アルドリッチ社製)。
 PC、LPC及びSMの各リン脂質について、(1)PLDP、(2)PLD、及び、(3)MGLPの各酵素に対する反応性を、以下の方法により検討した。
<キット>
 第3表に示す、以下の第1試薬及び第2試薬からなるキット(キットA~F)を調製した。
第1試薬
 PIPES(pH7.0)     15 g/L
 EMSE             0.3 g/L
 トリトンX-100        0.05 g/L
 MGLP
第2試薬
 PIPES(pH7.5)     15 g/L
 4-AA             0.5 g/L
 アジ化ナトリウム         0.2 g/L
 POD              20 kU/L
 塩化カルシウム2水和物      0.3 g/L
 CLOD             30 kU/L
 PLDP又はPLD
Figure JPOXMLDOC01-appb-T000003
<検体>
 生理食塩水、SM標準液(SM濃度:100 mg/dL)、PC標準液(PC濃度:100 mg/dL)、LPC標準液(LPC濃度:100 mg/dL)を検体として用いた。
<キットAを用いる測定~標準液に対する吸光度>
 検体として、生理食塩水(リン脂質:0.0 mg/dL)と、SM標準液とを用いて、キットとして、キットAを用いて、日立7170S型自動分析機により、SM標準液に対する「吸光度」を以下の方法により決定した。
 反応セルへ生理食塩水(2.5μL)と第1試薬(240μL)とを添加し、37℃で5分間加温し、その反応液の吸光度(E1生食)を主波長600 nm、副波長700 nmで測定し、次いで、この反応液に第2試薬(80μL)を添加し、さらに37℃で5分間加温した後に、反応液の吸光度(E2生食)を主波長600 nm、副波長700 nmで測定した。E2生食からE1生食を差し引いた値をΔE生食とした。
 検体として、生理食塩水の代わりにSM標準液を用いる以外は上記と同様の反応を行い、E2SMからE1SMを差し引き、ΔESMとした。式(I)に示す様に、ΔESMから上記のΔE生食を差し引いて得られる値をSM標準液に対する「吸光度」(A)とした。
Figure JPOXMLDOC01-appb-M000004
 SM標準液の代わりに、PC標準液、及び、LPC標準液をそれぞれ用いて、同様にして、PC標準液に対する「吸光度」(A)、及び、LPC標準液に対する「吸光度」(A)を決定した。
<キットB~Fを用いる測定~標準液に対する吸光度>
 キットAの代わりに、キットB~Fをそれぞれ用いて、各キットにおける各標準液に対する「吸光度」を決定した。各キットにおける各標準液に対する「吸光度」を図1に示す。
 図1から、以下のことが判明した。先ず、キットAを用いた場合、いずれのリン脂質についても「吸光度」が得られなかったことから、いずれのリン脂質も、コリン酸化酵素とは反応しないことが分かった。キットBを用いた反応から、PLDPは、PCに特異的に反応し、コリンを生成することが分かった。キットCを用いた反応から、PLDは、いずれのリン脂質とも反応し、コリンを生成することが分かった。
 キットDを用いた反応から、いずれのリン脂質についても、MGLPとの反応によりコリンを生成しないことが分かった。
 キットEを用いた場合、PCのみが、コリンを生成することが分かった。キットBを用いた反応との比較から、PCはMGLPとは反応せず、PLDPと反応し、コリンを生成するものと考えられた。また、LPCからは「吸光度」が得られなかったため、LPCとMGLPとの反応により生成するグリセロール-3-ホスホリルコリン及び遊離脂肪酸は、PLDPとは反応せず、コリンを生成しないことが分かった。
 キットFを用いる反応から、PCとSMの場合には、コリンを生成することが分かった。キットCを用いた反応との比較から、PCとSMは、MGLPとは反応せず、PLDと反応し、コリンを生成するものと考えられた。一方、LPCからは「吸光度」が得られなかったため、LPCがMGLPと反応して生成するグリセロール-3-ホスホリルコリン及び遊離脂肪酸は、PLDとは反応せず、コリンを生成しないことが分かった。
 従って、PC、LPC及びSMを含む検体にPLDPを作用させることにより、PCのみがPLDPと反応し、生成したコリンを過酸化水素に変換して消去すると共に、残存するLPCとSMにMGLPを作用させた後にPLDを作用させることにより、LPCのみがMGLPと反応し、生成したグリセロール-3-ホスホリルコリン及び遊離脂肪酸がPLDと反応しないため、検体中のSMのみがPLDと反応してコリンを生成し、当該コリンより生成した過酸化水素を測定することにより、SMのみを測定することができることが判明した。
 以下の第1試薬及び第2試薬からなるSM測定用キットを調製した。
第1試薬
 PIPES(pH6.25)    15 g/L
 EMSE             0.3 g/L
 カタラーゼ            300 kU/L
 PLDP             10 kU/L
 MGLP             10 kU/L
 CLOD             10 kU/L
 トリトンX-100        0.05 g/L
第2試薬
 PIPES(pH7.5)     15 g/L
 4-AA             0.5 g/L
 アジ化ナトリウム         0.2 g/L
 POD              20 kU/L
 PLD              4 kU/L
 CLOD             10 kU/L
 塩化カルシウム2水和物      0.3 g/L
 トリトンX-100        8 g/L
 実施例2の測定用キット、及び、対照キットとして、Sphingomyelin Assay Kit(Cayman Chemical Company社製)を用いて、ヒト血清28検体の各検体中のSM濃度を以下の手順により決定した。
(1)検量線の作成
 標準液として、生理食塩水(SM:0.0 mg/dL)と、SM濃度が35.0 mg/dLであることが判明している標準血清とを用いて、キットとして、実施例2のキットを用いて、日立7170S型自動分析機により、SM濃度と「吸光度」との関係を示す検量線を作成した。
 ここで記す「吸光度」とは、以下の反応で測定された2つの吸光度(E1及びE2)を基に、E2からE1を差し引くことによって得られる値を表す。
 反応セルへ標準液(2.5μL)と第1試薬(240μL)とを添加し、37℃で5分間加温し、その反応液の吸光度(E1)を主波長600 nm、副波長700 nmで測定し、次いで、この反応液に第2試薬(80μL)を添加し、さらに37℃で5分間加温した後に、反応液の吸光度(E2)を主波長600 nm、副波長700 nmで測定した。
(2)ヒト血清検体における「吸光度」の測定
 (1)の検量線作成において、標準液の代わりにヒト血清検体(28検体)を用いる以外は、(1)の「吸光度」算出方法と同様の操作を行い、当該検体の各検体における「吸光度」を測定した。
(3)ヒト血清検体中のSM濃度の決定
 (2)で測定した「吸光度」と、(1)で作成した検量線とから、各検体中のSM濃度を測定した。
(4)対照キットによるSM濃度の決定
 対照キットの使用説明書に従い、対照キットを用いて、同じヒト血清28検体中のSM濃度を決定した。
 対照キットを用いた測定により決定された各検体中のSM濃度(x)と、実施例2のキットを用いた測定により決定された各検体中のSM濃度(y)とから、対照キットを用いた測定と実施例2のキットとを用いた測定との間の相関を検討したところ、図2に示す相関図が得られた。この相関図が示す様に、xとyとの間には、式(II)に示す関係が成り立ち、相関係数(r)は0.8445となり、両測定間に良好な相関関係があることが判明した。
Figure JPOXMLDOC01-appb-M000005
 SM標準液(SM濃度:100 mg/dL)を用いて10段階の希釈系列を調製し、各希釈検体について実施例3と同様の方法により、吸光度を測定した。その結果を図3に示す。
 図3から明らかな様に、実施例2のキットを用いる測定により、SM濃度と吸光度との間に非常に良好な直線性が得られることが分かった。
 実施例2のキットを用いて、SMに対する特異性を検討した。検体として、生理食塩水、SM標準液(SM濃度:100 mg/dL)、PC標準液(PC濃度:100 mg/dL)、LPC標準液(LPC濃度:100 mg/dL)を用いて、実施例3の方法により、各検体に対する「吸光度」を測定した。
 一方、実施例2のキットの代わりに、リン脂質測定用キットである「デタミナーL PL」(協和メデックス社製)を用いて、実施例3と同様の方法により、各検体に対する「吸光度」を測定した。測定結果を第4表に示す。
Figure JPOXMLDOC01-appb-T000006
 第4表より明らかな様に、「デタミナーL PL」を用いた測定においては、SM、PC、LPCの全てのリン脂質が反応したが、実施例2のキットを用いた測定においては、SMのみが反応した。従って、実施例2のキットは、SMを特異的に測定するキットであることが確認された。
 本発明により、動脈硬化等の診断に有効な血液中のSMの測定方法、及び、測定用キットが提供される。
 

Claims (17)

  1.  検体を、スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、コリン酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のスフィンゴミエリンの測定方法。
  2.  検体を、スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を消去し、次いで、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素と反応させ、生成する過酸化水素を測定することを特徴とする、検体中のスフィンゴミエリンの測定方法。
  3.  検体と、スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、及び、コリン酸化酵素との反応をカタラーゼの存在下に行い、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、コリン酸化酵素の反応をカタラーゼ阻害剤の存在下に行う、請求項1記載の方法。
  4.  検体と、スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素との反応をカタラーゼの存在下に行い、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、酸化型補酵素、コリン脱水素酵素、及び、還元型補酵素酸化酵素の反応をカタラーゼ阻害剤の存在下に行う、請求項2記載の方法。
  5.  カタラーゼ阻害剤が、アジ化物である請求項3又は4記載の方法。
  6.  過酸化水素の消去をペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方の存在下に行い、過酸化水素の測定をペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の存在下に行う、請求項1又は2記載の方法。
  7.  過酸化水素の測定をペルオキシダーゼ、及び、ロイコ型色原体の存在下に行う、請求項1~5のいずれかに記載の方法。
  8.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼDが、Streptomyces sp.由来のホスホリパーゼDである、請求項1~7のいずれかに記載の方法。
  9.  グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼDが、Streptomyces chromofuscus由来のホスホリパーゼDである、請求項1~8のいずれかに記載の方法。
  10.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、及び、カタラーゼを含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、カタラーゼ阻害剤を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
  11.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン酸化酵素、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方を含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、酸化カップリング発色型色原体のもう一方を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
  12.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、及び、カタラーゼを含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、カタラーゼ阻害剤を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
  13.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼD、リゾホスホリパーゼ若しくはモノグリセロリパーゼ、コリン脱水素酵素、酸化型補酵素、還元型補酵素酸化酵素、ペルオキシダーゼ、及び、一対の酸化カップリング発色型色原体の一方を含む第1試薬と、グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼD、及び、酸化カップリング発色型色原体のもう一方を含む第2試薬とを含むことを特徴とする、検体中のスフィンゴミエリン測定用キット。
  14.  カタラーゼ阻害剤が、アジ化物である請求項10又は12記載のキット。
  15.  ペルオキシダーゼとロイコ型色原体が、それぞれ、第1試薬及び第2試薬の別々の試薬に含まれる、請求項10、12又は14記載のキット。
  16.  スフィンゴミエリン及びリゾホスファチジルコリンとは反応せず、ホスファチジルコリンとは反応するホスホリパーゼDが、Streptomyces sp.由来のホスホリパーゼDである、請求項10~15のいずれかに記載のキット。
  17.  グリセロール-3-ホスホリルコリン及び遊離脂肪酸とは反応せず、スフィンゴミエリンとは反応するホスホリパーゼDが、Streptomyces chromofuscus由来のホスホリパーゼDである、請求項10~16のいずれかに記載のキット。
     
PCT/JP2012/068807 2011-07-29 2012-07-25 スフィンゴミエリンの測定方法及び測定用キット WO2013018609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280037421.0A CN103717748A (zh) 2011-07-29 2012-07-25 鞘磷脂的测定方法和测定用试剂盒
JP2013526840A JP6071883B2 (ja) 2011-07-29 2012-07-25 スフィンゴミエリンの測定方法及び測定用キット
US14/232,427 US9051600B2 (en) 2011-07-29 2012-07-25 Sphingomyelin measurement method using sequential phospholipase D reactions
CA2842893A CA2842893C (en) 2011-07-29 2012-07-25 Sphingomyelin measurement method and measurement kit
EP12820448.4A EP2740801B1 (en) 2011-07-29 2012-07-25 Sphingomyelin measurement method and measurement kit
KR1020147000846A KR101943673B1 (ko) 2011-07-29 2012-07-25 스핑고미엘린의 측정 방법 및 측정용 키트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166458 2011-07-29
JP2011-166458 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018609A1 true WO2013018609A1 (ja) 2013-02-07

Family

ID=47629135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068807 WO2013018609A1 (ja) 2011-07-29 2012-07-25 スフィンゴミエリンの測定方法及び測定用キット

Country Status (8)

Country Link
US (1) US9051600B2 (ja)
EP (1) EP2740801B1 (ja)
JP (1) JP6071883B2 (ja)
KR (1) KR101943673B1 (ja)
CN (1) CN103717748A (ja)
CA (1) CA2842893C (ja)
TW (1) TW201323613A (ja)
WO (1) WO2013018609A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404683A (zh) * 2015-07-27 2017-02-15 山东博科生物产业有限公司 一种稳定、抗干扰性强的磷脂检测试剂及其检测方法
CN109827915A (zh) * 2019-03-12 2019-05-31 闫宏涛 一种测定磷含量的双组分检测剂
CN111982841B (zh) * 2020-07-06 2023-03-21 武汉生之源生物科技股份有限公司 一种游离脂肪酸检测试剂盒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197793A (ja) * 1992-12-28 1994-07-19 Nippon Kayaku Co Ltd 微量成分の定量法
JPH06197794A (ja) * 1992-12-28 1994-07-19 Nippon Kayaku Co Ltd 酵素固定化用担体および固定化酵素
JPH0923897A (ja) * 1995-07-13 1997-01-28 Nippon Kayaku Co Ltd D−ソルビトールの測定方法およびそのリアクター
WO2001080903A1 (en) * 2000-04-19 2001-11-01 The Trustees Of Columbia University In The City Of New York Detection and treatment of atherosclerosis based on plasma sphingomyelin concentration
WO2009048143A1 (ja) * 2007-10-10 2009-04-16 Denka Seiken Co., Ltd. small,dense LDLコレステロールの定量方法およびキット
JP2009519713A (ja) 2005-12-15 2009-05-21 ザ リサーチ ファウンデーション オブ ステート ユニバーシティ オブ ニューヨーク 血漿中及び組織中のスフィンゴエミリン及びホスファチジルコリンの酵素的測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141792A (en) * 1976-08-19 1979-02-27 Hiroaki Hayashi Composition and method for the quantitative determination of phospholipids
JP2009023897A (ja) * 2006-12-27 2009-02-05 Nippon Shokubai Co Ltd ヘテロポリオキソメタレート化合物およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197793A (ja) * 1992-12-28 1994-07-19 Nippon Kayaku Co Ltd 微量成分の定量法
JPH06197794A (ja) * 1992-12-28 1994-07-19 Nippon Kayaku Co Ltd 酵素固定化用担体および固定化酵素
JPH0923897A (ja) * 1995-07-13 1997-01-28 Nippon Kayaku Co Ltd D−ソルビトールの測定方法およびそのリアクター
WO2001080903A1 (en) * 2000-04-19 2001-11-01 The Trustees Of Columbia University In The City Of New York Detection and treatment of atherosclerosis based on plasma sphingomyelin concentration
JP2009519713A (ja) 2005-12-15 2009-05-21 ザ リサーチ ファウンデーション オブ ステート ユニバーシティ オブ ニューヨーク 血漿中及び組織中のスフィンゴエミリン及びホスファチジルコリンの酵素的測定方法
WO2009048143A1 (ja) * 2007-10-10 2009-04-16 Denka Seiken Co., Ltd. small,dense LDLコレステロールの定量方法およびキット

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AM. J. EPIDEMIOL., vol. 163, 2006, pages 903 - 912
ARTERIOSCLER THROMB VASC BIOL., vol. 20, 2000, pages 2614 - 2618
BIOL. PHARM. BULL., vol. 27, 2004, pages 1725 - 1729
CIRCULATION, vol. 110, no. 22, 2004, pages 3465 - 3471
DAIRY SCI., vol. 88, 2005, pages 482 - 488
IMAMURA, S. ET AL.: "Purification of Streptomyces chromofuscus Phospholipase D by Hydrophobic Affinity Chromatography on Palmitoyl Cellulose.", J. BIOCHEM., vol. 85, 1979, pages 79 - 95, XP003032519 *
KYOWA MEDEX CO., LTD.: "Rin Shishitsu Kit Jido Bunseki Sochi-yo Determiner L PL", CATALOG TENPU BUNSHO, April 2008 (2008-04-01), XP055147594 *
NUTRITION & METABOLISM, vol. 3, 2006, pages 5
See also references of EP2740801A4

Also Published As

Publication number Publication date
KR20140041724A (ko) 2014-04-04
JPWO2013018609A1 (ja) 2015-03-05
EP2740801A4 (en) 2015-05-06
CA2842893C (en) 2019-03-05
KR101943673B1 (ko) 2019-01-29
EP2740801B1 (en) 2017-03-08
TW201323613A (zh) 2013-06-16
EP2740801A1 (en) 2014-06-11
CN103717748A (zh) 2014-04-09
US9051600B2 (en) 2015-06-09
JP6071883B2 (ja) 2017-02-01
US20140162300A1 (en) 2014-06-12
CA2842893A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP6203708B2 (ja) 検体中の測定対象成分の測定方法
KR102524702B1 (ko) 저밀도 리포단백 중의 콜레스테롤의 측정 방법, 측정용 시약 및 측정용 키트
JP6004942B2 (ja) 測定対象成分の測定方法
JP5864858B2 (ja) 低密度リポ蛋白中のコレステロールの測定方法、測定用試薬及び測定用キット
JP6071883B2 (ja) スフィンゴミエリンの測定方法及び測定用キット
JP5969978B2 (ja) Hdl亜分画中のコレステロールの測定方法、測定用試薬及び測定用キット
WO2014034823A1 (ja) 高密度リポ蛋白中のコレステロールの測定方法
JP2007014201A (ja) レムナント様リポタンパク質中のコレステロールの測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526840

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147000846

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232427

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2842893

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012820448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012820448

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE