WO2013018466A1 - 受信装置、プログラムおよび集積回路 - Google Patents
受信装置、プログラムおよび集積回路 Download PDFInfo
- Publication number
- WO2013018466A1 WO2013018466A1 PCT/JP2012/066242 JP2012066242W WO2013018466A1 WO 2013018466 A1 WO2013018466 A1 WO 2013018466A1 JP 2012066242 W JP2012066242 W JP 2012066242W WO 2013018466 A1 WO2013018466 A1 WO 2013018466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- llr
- replica
- transmission signal
- signal replica
- received signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/0026—Interference mitigation or co-ordination of multi-user interference
- H04J11/0036—Interference mitigation or co-ordination of multi-user interference at the receiver
- H04J11/004—Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/0048—Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
- H03M13/2957—Turbo codes and decoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03426—Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03171—Arrangements involving maximum a posteriori probability [MAP] detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/26524—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
- H04L27/26526—Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- the present invention relates to a technique for improving the reception performance of a receiving apparatus.
- LTE Long Term Evolution
- IMT-A wireless communication systems
- a transmission / reception apparatus includes a plurality of antennas, and a MIMO (Multiple-Input-Multiple-Output) multiplexing method is employed in which transmission signals are spatially multiplexed and transmitted.
- MIMO Multiple-Input-Multiple-Output
- 15A to 15D are diagrams showing the concept of a general MIMO multiplexing method.
- base station apparatus BS1001 spatially multiplexes signals and transmits them to mobile station apparatus MS1001.
- base station apparatus BS1002 spatially multiplexes signals to a plurality of terminal apparatuses MS1002-1 and MS1002-2 using a plurality of transmission antennas. Send.
- the mobile station apparatus MS1003 spatially multiplexes and transmits signals to the base station apparatus BS1003.
- mobile station apparatus MS1004-1 and mobile station apparatus MS1004-2 simultaneously transmit different signals to base station apparatus BS1004, and base station apparatus BS1004 transmits the signals.
- MIMO separation is not necessarily required if the signal to each mobile station apparatus is one stream. However, in the case of two or more streams, the terminal apparatus performs MIMO as in the examples shown in FIGS. 15A, 15C, and 15D. Separation is required.
- This MIMO separation method includes a method based on the minimum mean square error (MMSE) criterion and a method based on maximum likelihood detection (ML). Also, as one of the MIMO separation methods, a MIMO separation method based on the turbo principle has been disclosed (for example, Non-Patent Document 1). This is sometimes called turbo equalization or turbo SIC (Soft Interference Cancellation).
- MMSE minimum mean square error
- ML maximum likelihood detection
- FIG. 16 is a diagram showing a configuration example to which the MIMO separation method using the turbo principle is applied. Here, two receiving antennas and two spatially multiplexed signal streams are described. Also, only basic functions will be described, and it is assumed that the transmission apparatus performs transmission after performing general transmission processing such as modulation and error correction coding.
- Received signals received by the receiving antennas 2001-1 and 2001-2 are converted into baseband signals by the radio units 2002-1 and 2002-2 and input to the cancel unit 2003.
- the cancel unit 2003 cancels the interference component from the reception signal using the reception signal replica output from the replica generation units 2007-1 and 2007-2. However, since no replica is generated in the first processing, nothing is canceled.
- the received signal output from the cancel unit 2003 is subjected to a MIMO separation method such as MMSE in the MIMO separation unit 2004, and an estimated value of the amplitude of each transmission stream is calculated.
- the output estimated values of each stream are converted from modulation symbols into external LLRs (Log Likelihood Ratio) of code bits in demodulation sections 2005-1 and 2005-2.
- the obtained external LLR of the bits is input to decoding sections 2006-1 and 2006-2, and error correction decoding is performed.
- the external LLR obtained by error correction decoding is input to the replica generation units 2007-1 and 2007-2.
- a reception signal replica is generated and input to the cancellation unit 2003 again.
- the above process is repeated an arbitrary number of times, and a decoded bit is obtained by making a hard decision on the a posteriori LLR of the information bits output from the decoding units 2006-1 and 2006-2.
- the information bit represents a bit before error correction coding
- the code bit represents a bit after error correction coding.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a receiver, a program, and an integrated circuit that can improve the detection accuracy of MIMO detection and multiuser detection using the turbo principle.
- the present invention has taken the following measures. That is, the receiving apparatus of the present invention is a receiving apparatus that receives a plurality of spatially multiplexed signals from a transmitting apparatus, performs error correction decoding on the received signal, and performs a post-signature LLR (LogikeLikelihood of code bits).
- LLR LogikeLikelihood of code bits
- an error correction decoding unit that outputs an external LLR of a sign bit, a transmission signal replica generation unit that generates a transmission signal replica based on the a posteriori LLR and the external LLR, and a detection target from the transmission signal replica
- a replica selection unit that selects a combination of transmission signal replicas, a cancellation unit that removes a reception signal replica created based on the combination of the selected transmission signal replicas from the received signal, and the reception signal replica
- a transmission signal replica is generated based on the posterior LLR and the external LLR, a combination of transmission signal replicas is selected from the transmission signal replica according to the detection target, and the transmission signal replica selected from the received signal is selected. Since the received signal replica created based on the combination is removed, the detection accuracy can be improved, and as a result, the reception performance can be improved.
- the replica selection unit sets a transmission signal replica to be detected as a transmission signal replica generated from the external LLR, and sets a transmission signal replica other than the detection target as the thing.
- a transmission signal replica generated from the rear LLR is used.
- the transmission signal replica to be detected is a transmission signal replica generated from the external LLR
- the transmission signal replica other than the detection target is a transmission signal replica generated from the subsequent LLR. It is possible to improve detection accuracy by performing repetitive processing based on the original turbo principle for the signal and using a received signal replica generated from the posterior LLR for inter-stream interference. As a result, reception performance can be improved.
- the receiving device of the present invention is characterized in that a single user MIMO signal is received from the transmitting device.
- This configuration makes it possible to improve reception performance when a single user MIMO signal is received.
- the receiving device of the present invention is characterized in that it receives a multi-user MIMO signal from the transmitting device.
- This configuration makes it possible to improve reception performance when receiving a multi-user MIMO signal.
- the error correction decoding unit demodulates the post-code LLR and the post-code LLR of the code bit based on the LLR obtained by demodulating the received signal.
- the external LLR of the sign bit obtained by subtracting the LLR obtained in this way is output.
- the error correction decoding unit obtains by subtracting the LLR obtained by demodulating the posterior LLR of the code bit and the posterior LLR of the code bit based on the LLR obtained by demodulating the received signal. Since the external LLR of the sign bit is output, the signal to be detected is repeatedly processed based on the original turbo principle, and the received signal replica generated from the posterior LLR is used for interference between streams. By using it, it becomes possible to improve detection accuracy. As a result, reception performance can be improved.
- a receiving apparatus is a receiving apparatus that receives a plurality of signals overlapped by some subcarriers from a transmitting apparatus, an equalization unit that equalizes distortion of a propagation path, and the reception
- An error correction decoding unit that performs error correction decoding on the received signal and outputs an a posteriori LLR (LogliLikelihood) Ratio) of the code bit and an external LLR of the code bit, and a transmission signal based on the a posteriori LLR and the external LLR
- a transmission signal replica generation unit that generates a replica; and a cancellation unit that removes a reception signal replica created based on a combination of the generated transmission signal replicas from the received signal, the transmission signal replica generation unit
- the transmission signal replica to be detected is a transmission signal replica generated from the external LLR, and the transmission signal replicas other than the detection target are forwarded.
- a transmission signal replica generated from the post-article LLR is used.
- a program according to the present invention is a program for a receiving device that receives a plurality of spatially multiplexed signals from a transmitting device, performs error correction decoding on the received signal, A process of outputting an LLR (Log Likelihood Ratio) and an external LLR of a sign bit, a process of generating a transmission signal replica based on the posterior LLR and the external LLR, and a transmission from the transmission signal replica according to a detection target A process of selecting a combination of signal replicas, a process of removing a received signal replica created based on the combination of the selected transmission signal replicas from the received signal, and a signal from which the received signal replica has been removed This allows the computer to execute a series of processes including MIMO (Multiple-Input Multiple-Output) separation.
- MIMO Multiple-Input Multiple-Output
- a transmission signal replica is generated based on the posterior LLR and the external LLR, a combination of transmission signal replicas is selected from the transmission signal replica according to the detection target, and the transmission signal replica selected from the received signal is selected. Since the received signal replica created based on the combination is removed, the detection accuracy can be improved, and as a result, the reception performance can be improved.
- the program of the present invention is a program for a receiving device that receives a plurality of signals overlapped by some subcarriers from a transmitting device, the process for equalizing distortion of a propagation path, and the received Error correction decoding is performed on the signal, and a transmission signal replica is generated based on a process of outputting a post-LLR (Log Likelihood Ratio) of the code bit and an external LLR of the code bit, and the post-LLR and the external LLR Processing, processing for removing the received signal replica created based on the combination of the generated transmission signal replicas from the received signal, and a transmission signal replica generated from the external LLR as a transmission signal replica to be detected And a process of making a transmission signal replica other than the detection target a transmission signal replica generated from the posterior LLR.
- the processing is executed by a computer.
- An integrated circuit is an integrated circuit that is mounted on a receiving device, thereby causing the receiving device to perform a plurality of functions, and receives a plurality of spatially multiplexed signals from the transmitting device.
- MIMO Multiple-Input Multiple-Output
- a transmission signal replica is generated based on the posterior LLR and the external LLR, a combination of transmission signal replicas is selected from the transmission signal replica according to the detection target, and the transmission signal replica selected from the received signal is selected. Since the received signal replica created based on the combination is removed, the detection accuracy can be improved, and as a result, the reception performance can be improved.
- the integrated circuit of the present invention is an integrated circuit that causes the receiving device to perform a plurality of functions by being mounted on the receiving device, and includes a plurality of overlapping sub-carriers from the transmitting device.
- a function of generating a transmission signal replica based on the posterior LLR and the external LLR, and a reception signal replica created based on a combination of the generated transmission signal replica from the received signal is removed.
- the receiving apparatus is caused to exhibit a series of functions including a function of making a transmission signal replica generated from the posterior LLR.
- FIG. 1 is a block diagram illustrating an example of a configuration of a first communication device (mobile station device) 1.
- FIG. 3 is a block diagram showing an example of a second communication device (base station device) 2.
- FIG. It is a block diagram which shows an example of a structure of a decoding part. It is a block diagram which shows the structure of a cancellation part. It is a flowchart which shows the operation example of a replica selection part.
- Block error rate with respect to the average received Es / N 0 a (BLER Block Error Rate) graphs showing the characteristics.
- 4 is a block diagram illustrating an example of a configuration of a second communication device 62.
- FIG. It is a conceptual diagram which shows the example of subcarrier allocation in 3rd Embodiment.
- FIG. 4 is a block diagram illustrating an example of a configuration of a second communication device 62.
- FIG. It is a figure which shows the concept of a general MIMO multiplexing method. It is a figure which shows the concept of a general MIMO multiplexing method. It is a figure which shows the concept of a general MIMO multiplexing method. It is a figure which shows the concept of a general MIMO multiplexing method. It is a figure which shows the concept of a general MIMO multiplexing method. It is a figure which shows the general structural example to which the MIMO separation method using a turbo principle is applied.
- SC-FDMA Single Carrier Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- OFDMA Discrete Fourier Transform Spread Orthogonal Division Frequency Multiple Access
- OFDMA orthogonal frequency division multiple access
- CDMA Multi-Carrier Code Division Multiple Multiple Access
- a spatial multiplexing scheme in which subcarriers with the same frequency are allocated between antennas, or a scheme in which subcarriers with the same frequency are allocated between users may be used, or only a part of allocated subcarriers may have the same frequency.
- a method in which other subcarriers have different frequencies may be used.
- FIG. 1 is a diagram illustrating an example of a wireless communication system applied to SU-MIMO.
- the wireless communication system according to the present embodiment includes a first communication device 1 and a second communication device 2.
- the first communication device 1 includes two transmission antennas
- the second communication device 2 includes two reception antennas.
- communication is performed by spatially multiplexing two different signals (streams) using two transmission / reception antennas.
- FIG. 2 is a conceptual diagram showing an example in which a transmission signal transmitted from each transmission antenna is assigned to a subcarrier in SU-MIMO.
- the example shown in FIG. 2 will be described on the premise of a single carrier.
- Allocation examples A1 and A2 show cases where frequency signals transmitted from the respective transmission antennas are allocated to the same subcarrier.
- Allocation examples A3 and A4 are identical in frequency signals transmitted from the respective transmission antennas only to some subcarriers. This shows a case where the subcarriers are allocated.
- SC-FDMA is used in which signals are continuously arranged on the frequency axis.
- the frequency signal is divided into a plurality of clusters, and each cluster is discontinuous along the frequency axis.
- Clustered DFT-S-OFDMA is used.
- the application range of this embodiment includes all these assignments, and also includes multi-carrier schemes such as OFDM and MC-CDMA.
- FIG. 3 is a block diagram showing an example of the configuration of the first communication device (mobile station device) 1.
- the first communication device 1 includes two codewords (encoded blocks to be transmitted), but the number of codewords included may be one or three or more.
- the example applied to an uplink is demonstrated unless there is particular notice, it is applicable also to a downlink.
- a control signal from the second communication device 2 received by a receiving antenna is down-converted into a baseband signal by the wireless unit 21 and detected as control information by the control information detection unit 22.
- the detected control information includes orthogonal codes for orthogonalizing reference signals between transmission antennas, information on sequences for generating reference signals, and resource allocation information indicating which subcarriers in the system band are used for transmission. , And modulation scheme and coding rate information (MCS: Modulation and Coding Schemes).
- the first communication device 1 performs transmission processing.
- the encoders 11-1 and 11-2 encode information bits
- the modulators 12-1 and 12-2 convert the code bits into QPSK (Quaternary Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, etc. Modulate into modulation symbols.
- the layer mapping unit 13 divides the modulation symbol into each stream (also referred to as a layer). Further, the DFT units 14-1 and 14-2 convert the respective signals into frequency signals. The frequency mapping units 15-1 and 15-2 arrange the converted frequency signals on subcarriers based on the frequency allocation information. IFFT (Inverse Fast Fourier Transform) units 16-1 and 16-2 convert frequency signals arranged in subcarriers into time signals, and reference signal multiplexing units 17-1 and 17-2 receive time signals.
- IFFT Inverse Fast Fourier Transform
- the reference signal multiplexing units 17-1 and 17-2 generate a reference signal based on information on the reference signal and multiplex it with the time signal output from the IFFT units 16-1 and 16-2.
- CP insertion sections 18-1 and 18-2 insert a cyclic prefix (CP: Cyclic Prefix) into the time signal, and radio sections 19-1 and 19-2 upconvert to radio frequencies and transmit from each transmission antenna. To do.
- FIG. 4 is a block diagram showing an example of the second communication device (base station device) 2.
- the radio unit 31-1 and the radio unit 31-2 down-convert the received signals received by the two receiving antennas into baseband signals.
- CP removing sections 32-1 and 32-2 remove CPs from the obtained baseband signals, and reference signal separating sections 33-1 and 33-2 separate reference signals.
- the separated reference signal is input to the propagation path estimation unit 43, and the propagation path estimation unit 43 estimates the propagation path characteristic between each transmission antenna and each reception antenna used for transmission of the separated reference signal. Use.
- the FFT units 34-1 and 34-2 convert the received signal from which the reference signal is separated into a frequency signal.
- the obtained frequency signal is input to the cancel unit 35, and the cancel unit 35 cancels the reception signal output from the reception signal replica generation unit 42 from the obtained frequency signal.
- the MIMO separation unit 36 performs MIMO separation on the reception signal after canceling the reception signal replica. Assuming that the propagation path matrix in the k-th subcarrier estimated by the propagation path estimation unit 43 is H (k), when performing MIMO separation based on the MMSE standard, the weight (weight) to be multiplied with the received signal is expressed.
- W (k) is a weight to multiply the received signal vector of the kth subcarrier
- I is a unit matrix of the number of receiving antennas
- ⁇ 2 is a variance of noise including unknown interference such as inter-cell interference
- x H represents an adjoint matrix obtained by Hermitian transposition of the matrix (vector) x
- ⁇ represents a diagonal matrix in which the residual energy of the signal after cancellation is arranged in a diagonal component. Note that H (k) is expressed by the following equation in the case of 2 ⁇ 2 MIMO.
- Hnm (k) represents a propagation path characteristic represented by a complex number from the mth transmission antenna to the nth reception antenna.
- the frequency demapping units 37-1 and 37-2 extract (demapping) only the assigned subcarriers from the estimated symbols of the respective frequencies separated as described above, and IDFT units 38-1 and 38-2. Converts the extracted subcarriers into time signals, and the demodulation units 39-1 and 39-2 convert the converted time signals into LLRs of code bits.
- the LLR of the obtained code bit is input to the decoding units 40-1 and 40-2.
- Decoding sections 40-1 and 40-2 calculate the a posteriori LLR of the information bits, the a posteriori LLR of the code bits, and the external LLR. Further, the a posteriori LLR of the information bit is decoded by a hard decision, and the a posteriori LLR and the external LLR of the code bit are input to the replica generation units 41-1 and 41-2, respectively.
- the replica generation units 41-1 and 41-2 generate a soft replica having an amplitude proportional to the reliability by using the a posteriori LLR and the external LLR of the sign bit.
- the replica selection unit 50 selects a combination of the generated soft replica and each transmission stream and inputs the combination to the reception signal replica generation unit 42.
- the combination of the posterior LLR, the external LLR, and the first and second transmission antennas is [a replica of the first transmission stream generated from the external LLR, a replica of the second transmission stream generated from the posterior LLR. ] And [a replica of the first transmission stream generated from the posterior LLR, a replica of the second transmission stream generated from the external LLR]. Details of the operation of the replica selection unit 50 will be described later.
- the thus generated soft replicas are respectively input to the reception signal replica generation unit 42.
- the reception signal replica generation unit 42 generates reception signal replicas represented by the following equations (3) and (4) based on the propagation path characteristics estimated from the propagation path estimation unit 43.
- H (k) represents the channel characteristic of the kth subcarrier.
- S ep soft is generated from the replica generated from the external LLR of the code bit transmitted from the first transmission antenna of the first communication apparatus 1 and the posterior LLR of the code bit transmitted from the second transmission antenna. This represents a soft replica vector in which the replicated replicas are arranged.
- S pe soft is derived from the replica generated from the a posteriori LLR of the code bit transmitted from the first transmission antenna of the first communication device 1 and the external LLR of the code bit transmitted from the second transmission antenna. It represents a soft replica vector in which the generated replicas are arranged.
- R ep (k) and R pe (k) are received signal replica vectors generated from the respective soft replicas, and represent combinations of transmission streams output from the replica selection unit 50. Note that the vector size of the equations (3) and (4) is (the number of reception antennas) ⁇ 1. These are input to the cancel unit 35.
- FIG. 5 is a block diagram showing an example of the configuration of the decoding unit 40-1.
- the decoding processing unit 45-1 uses the LLR input to the decoding unit 40-1 to obtain the a posteriori LLR of the information bit and the a posteriori LLR of the code bit by estimating the maximum a posteriori probability (Maximum A Posteriori probability).
- the subtracting unit 46-1 subtracts the pre-LLR of the code bit obtained from the demodulating unit 39-1 from the a posteriori LLR of the code bit output from the decoding processing unit 45-1, thereby obtaining the external LLR of the code bit. obtain.
- FIG. 6 is a block diagram illustrating a configuration of the cancel unit 35.
- the cancellation unit 35 receives the reception signal from each reception antenna and the reception signal replica generated by the reception signal replica generation unit 42. Then, the cancel unit 35 subtracts the received signal replica from the received signal.
- the reception signal replica generated by the reception signal replica generation unit 42 is input to the replica subtraction unit 51-1.
- the received signal replica generated from the external LLR for the signal transmitted from the first transmitting antenna, and the received signal replica generated from the posterior LLR for the signal transmitted from the second transmitting antenna are replica subtracted. Input to the unit 51-1.
- the input to the replica subtracting unit 51-2 is the received signal replica generated from the posterior LLR with respect to the signal transmitted from the first transmitting antenna, and the external LLR with respect to the signal transmitted from the second transmitting antenna.
- the generated reception signal replica is input to the replica subtraction unit 51-2.
- the replica subtracting unit 51-1 performs a cancellation process on the received signal replica input from the received signal, and outputs the received signal as a received signal for detecting the first transmission stream. Even when the number of streams is three or more, a replica of the transmission stream to be detected is a received signal replica generated from the external LLR, and the rest is a received signal replica generated from the subsequent LLR.
- the signal to be detected is repeated based on the original turbo principle, and the received signal replica generated from the posterior LLR is used for inter-stream interference. As a result, detection accuracy can be increased and reception performance is improved.
- FIG. 7 is a flowchart illustrating an operation example of the replica selection unit 50.
- the index m of the antenna to be detected is set to 0 (step S1).
- 1 is added to the numerical value of the index m (step S2).
- a replica generated from the external LLR of the mth antenna (or codeword) is selected (step S4).
- the replica generated from the posterior LLR of the antenna other than the m-th antenna (or codeword) is selected, and the replica selection result when the m-th antenna (or codeword) is set as a detection target (step S5), Return to step S2.
- This series of processing is performed for all the transmission antennas (or codewords) to be detected to select a replica, and when the value of m exceeds the number of transmission antennas in step S3, the selection processing is terminated. .
- the reception performance is improved by generating a reception signal replica using the obtained soft replica and subtracting the reception signal replica from the reception signal.
- Figure 8 is a block error rate with respect to the average received Es / N 0: a (BLER Block Error Rate) graphs showing the characteristics.
- FIG. 8 shows the block error rate characteristics of 16QAM and 64QAM when a turbo code with a coding rate of 8/9 is used. In the example shown in FIG. 8, the 4 ⁇ 4 SU-MIMO characteristic is targeted.
- a curve group 91 represents a BLER characteristic of 16QAM
- a curve 92 is a BLER characteristic by a reception method based on a conventional turbo principle
- a curve 93 is a reception method of the present application
- a curve 94 is a reception method without repetition processing in the case of 16QAM.
- BLER characteristics are represented.
- a curve group 95 represents a BLER characteristic of 64QAM
- a curve 96 represents a BLER characteristic by a reception method based on a conventional turbo principle
- a curve 97 represents a BLER characteristic by a reception method of the present invention.
- a curve 98 represents a reception method without repetition processing in the case of 64QAM. As shown in FIG. 8, it can be seen that the detection accuracy can be improved by the receiving method of the present invention.
- FIG. 9 is a diagram illustrating an example of a wireless communication system applied to MU-MIMO.
- two first communication devices 61-1 and 61-2 (a mobile station device and the first communication devices 61-1 and 61-2 are also collectively referred to as a first communication device 61) transmit simultaneously.
- each of the signals transmitted by the two first communication devices 61-1 and 61-2 is detected by receiving the second communication device 62 (base station device) and performing MIMO separation.
- FIG. 10 is a conceptual diagram showing an example of assigning frequency signals of the first communication apparatuses to subcarriers in MU-MIMO.
- FIG. 10 it is assumed that a plurality of first communication devices 61-1 and 61-2 having one transmission antenna transmit at the same time.
- This embodiment includes the same concept as subcarrier allocation examples B1 to B4.
- FIG. 11 is a block diagram showing an example of the configuration of the first communication device 61 when there is one transmission antenna.
- the first communication device 61 on the transmission side down-converts a control signal received by a reception antenna (not shown) into a baseband signal by the radio unit 79, and all control information necessary for transmission processing by the control information detection unit 80. Is detected.
- the encoding unit 71 performs error correction encoding on the information bits to be transmitted based on the encoding rate specified by the control information. Then, the modulation unit 72 converts information bits into modulation symbols based on the modulation scheme specified by the control information. The DFT unit 73 converts the modulation symbol into a frequency signal.
- the frequency mapping unit 74 assigns the frequency signal to the subcarrier designated by the control information, and the IFFT unit 75 converts the signal assigned to the subcarrier into a time signal.
- the reference signal multiplexing unit 76 multiplexes the reference signal into a time signal, and the CP insertion unit 77 inserts a CP into the multiplexed signal.
- the radio unit 78 up-converts the signal with the CP inserted into a radio frequency and transmits it from the transmission antenna.
- FIG. 12 is a block diagram showing an example of the configuration of the second communication device 62 on the receiving side.
- the configuration of the second communication device 62 is the same as that of the second communication device 2 in the first embodiment.
- the decoding unit 40-1 and the decoding unit 40-2 have a function of detecting signals transmitted from the first communication devices 61 from the frequency demapping units 37-1 and 37-2. Have. By applying such processing, reception performance is improved.
- FIG. 13 is a conceptual diagram illustrating an example of subcarrier allocation in a case where the feature of turbo equalization is utilized.
- An assignment example C1 shows assignment based on SC-FDMA
- an assignment example C2 shows assignment based on Clustered DFT-S-OFDM.
- the transmission process of the first communication device 61 is basically the same as that in the above embodiment, but does not assume the MIMO process, and the number of reception antennas may be one.
- Such a method may be called SORM (Spectrum-Overlapped Resource Management) or frequency overlap multiple access.
- This reception method is basically premised on iterative processing based on the turbo principle, and even if the number of spatial multiplexing exceeds the number of reception antennas, multi-user detection that detects at least all signals of the first communication device 61 is performed. If applicable, reception processing can be performed.
- FIG. 14 is a block diagram showing an example of the configuration of the second communication device 62 on the receiving side.
- two first communication apparatuses 61 allocate the same subcarrier for transmission with some subcarriers, and the second communication apparatus 62 receives with one receiving antenna.
- Radio section 101 down-converts the received signal
- CP removal section 102 removes the CP from the down-converted signal.
- the reference signal separation unit 103 separates the reference signal transmitted from the first communication device 61 from the received signal and inputs the reference signal to the propagation path estimation unit 113.
- the propagation path estimation unit 113 estimates the propagation path characteristics from the reference signals transmitted from all the first communication devices 61 and inputs them to the reception signal replica generation units 112-1 and 112-2 and the equalization unit 106. To do.
- the FFT unit 104 converts the received signal from which the reference signal is separated into a frequency signal.
- the cancel unit 105 cancels the reception signal replica generated by the reception signal replica generation units 112-1 and 112-2 from the reception signal converted into the frequency signal.
- the equalization unit 106 equalizes the distortion caused by the propagation path, and the frequency demapping units 107-1 and 107-2 extract the frequency signal of each first communication device 61.
- IDFT sections 108-1 and 108-2 convert the extracted frequency signals into time signals
- demodulation sections 109-1 and 109-2 calculate LLRs of code bits
- decoding sections 110-1 and 110- 2 performs error correction and outputs an a posteriori LLR of the sign bit, an external LLR, and an a posteriori LLR of the information bit.
- the post-code and external LLR of the code bit are input to replica generation units 111-1 and 111-2, and replica generation units 111-1 and 111-2 use these to generate a transmission signal replica.
- the generated transmission signal replica is input to reception signal replica generation sections 112-1 and 112-2, and reception signal replica generation sections 112-1 and 112-2 generate reception signal replicas.
- the reception signal replica generation unit 112-1 uses the transmission signal of the first first communication device 61 as a detection target, so that the transmission signal replica generated from the external LLR of the first first communication device 61 And the transmission signal replica generated from the posterior LLR of the second first communication device 61 are input.
- the reception signal replica generation unit 112-2 is the opposite. Then, reception signal replica generation sections 112-1 and 112-2 input the reception signal replica again to cancellation section 105, and repeat the subsequent processing.
- the cancel unit 105 cancels the received signal replica generated from the external LLR for the signal to be detected, as in the first embodiment. And the cancellation part 105 uses the received signal replica produced
- the present invention is based on the fact that the post LLR and the external LLR are properly used, and any combination of the methods shown in the first to third embodiments is included in the present invention.
- the program that operates in the mobile station apparatus and the base station apparatus related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
- Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
- a semiconductor medium for example, ROM, nonvolatile memory card, etc.
- an optical recording medium for example, DVD, MO, MD, CD, BD, etc.
- a magnetic recording medium for example, magnetic tape, Any of a flexible disk etc.
- the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
- the storage device of the server computer is also included in the present invention.
- Each functional block of the mobile station device and the base station device may be individually chipped, or a part or all of them may be integrated into a chip.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- an integrated circuit based on the technology can also be used.
- First communication device 2 Second communication device (receiving device) 11-1, 11-2 Encoding unit 12-1, 12-2 Modulating unit 13 Layer mapping unit 14-1, 14-2 DFT unit 15-1, 15-2 Frequency mapping unit 16-1, 16-2 IFFT unit 17-1, 17-2 Reference signal multiplexers 18-1, 18-2 CP insertion units 19-1, 19-2 Radio unit 21 Radio unit 22 Control information detectors 31-1, 31-2 Radio unit 32-1 , 32-2 CP removing units 33-1 and 33-2 Reference signal separating units 34-1 and 34-2 FFT unit 35 Canceling unit 36 MIMO separating units 37-1 and 37-2 Frequency demapping units 38-1 and 38 -2 IDFT units 39-1, 39-2 Demodulating units 40-1, 40-2 Decoding units 41-1, 41-2 Replica generation unit 42 Received signal replica generation unit 43 Propagation path estimation unit 45-1 Decoding processing unit 46 -1 Subtractor 50 Replica Selecting section 51-1, 51-2 replica subtracting unit 61,61-1,61-2 first communication device (transmitting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
ターボ原理を用いたMIMO検出およびマルチユーザ検出の検出精度を向上させる。送信装置から空間多重された複数の信号を受信する受信装置であって、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLRおよび符号ビットの外部LLRを出力する復号部40-1、40-2と、事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成するレプリカ生成部41-1、41-2と、送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択するレプリカ選択部50と、受信した信号から選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するキャンセル部35と、受信信号レプリカが除去された信号に対して、MIMO分離を行なうMIMO分離部36と、を備える。
Description
本発明は、受信装置の受信性能を向上させる技術に関する。
第3.9世代の携帯電話機の無線通信システムであるLTE(Long Term Evolution)システムの標準化が完了し、最近ではLTEシステムをより発展させたLTE-A(LTE-Advanced)が、第4世代の無線通信システム(IMT-Aなどとも称する)の一つとして標準化が行なわれている。
LTEやLTE-Aシステムでは、送受信装置が複数のアンテナを具備し、送信信号を空間多重して送信するMIMO(Multiple-Input Multiple-Output)多重法が採用されている。
MIMO多重法では、同一時刻、同一周波数で異なる信号をそれぞれのアンテナから送信する。図15A~Dは、一般的なMIMO多重法の概念を示す図である。図15Aに示す下りリンク(DL:Downlink)のシングルユーザMIMO(SU-MIMO)の例では、基地局装置BS1001が信号を空間多重して移動局装置MS1001に送信する。図15Bに示す下りリンクのマルチユーザMIMO(MU-MIMO)の例では、基地局装置BS1002は複数の送信アンテナを用いて、信号を空間多重して複数の端末装置MS1002-1、MS1002-2へ送信する。
一方、図15Cに示す上りリンクのSU-MIMOの例では、移動局装置MS1003が基地局装置BS1003に対して信号を空間多重して送信する。図15Dに示す上りリンクのMU-MIMOの例では、移動局装置MS1004-1と移動局装置MS1004-2が基地局装置BS1004に対して同時に異なる信号を送信し、基地局装置BS1004はその信号を受信して、各移動局装置の信号をMIMO多重された信号とみなして検出する。なお、この検出はマルチユーザ検出とも呼ばれる。
これらのうち、図15A、C、Dに示す例では、必ず受信装置側でMIMO分離と呼ばれる空間多重された信号を分離する必要がある。図15Bの例では、各移動局装置への信号が1ストリームであればMIMO分離は必ずしも必要ないが、2ストリーム以上の場合には図15A、C、Dに示す例と同様に端末装置でMIMO分離が必要となる。
このMIMO分離の方法として、最小平均二乗誤差(MMSE:Minimum Mean Square Error)規範に基づくものや、最尤検出(ML:Maximum Likelihood)に基づくものがある。また、MIMO分離の方法の1つとして、ターボ原理に基づくMIMO分離法が開示されている(例えば、非特許文献1)。これはターボ等化やターボSIC(Soft Interference Cancellation)などとも呼ばれることがある。
図16は、ターボ原理を用いたMIMO分離法を適用した構成例を示す図である。ここでは受信アンテナを2本、空間多重された信号のストリーム数を2として説明する。また、基本的な機能のみ説明し、送信装置は変調、誤り訂正符号化など一般的な送信処理を施した上で送信するものとする。
受信アンテナ2001-1、2001-2で受信された受信信号は、無線部2002-1、2002-2によりベースバンド信号に変換され、キャンセル部2003に入力される。キャンセル部2003では、レプリカ生成部2007-1、2007-2から出力された受信信号レプリカを用いて受信信号から干渉成分をキャンセルする。ただし、1回目の処理ではレプリカは生成されないため、何もキャンセルしない。
キャンセル部2003から出力された受信信号は、MIMO分離部2004においてMMSEなどのMIMO分離法を適用され、各送信ストリームの振幅の推定値が計算される。出力された各ストリームの推定値は、復調部2005-1、2005-2において変調シンボルから符号ビットの外部LLR(Log Likelihood Ratio)に変換される。得られたビットの外部LLRは、復号部2006-1、2006-2に入力され、誤り訂正復号が行なわれる。
誤り訂正復号により得られた外部LLRは、レプリカ生成部2007-1、2007-2に入力される。レプリカ生成部2007-1、2007-2では、受信信号レプリカが生成され、再びキャンセル部2003に入力される。以上の処理を任意の回数繰り返し、復号部2006-1、2006-2から出力される情報ビットの事後LLRが硬判定されることで復号ビットが得られる。なお、情報ビットは誤り訂正符号化前のビットを表し、符号ビットは誤り訂正符号化後のビットを表す。また、外部LLRと事後LLRとは、事後LLR=外部LLR+事前LLRの関係を有する。
R1-090232 "Comparing performance, complexity and latency of SC-FDMA SIC and OFDM MLD" NSN, Nokia
上記のように、ターボ原理に基づくMIMO分離法では、繰り返し処理の際に外部LLRをキャンセル部2003へ入力することで外部情報を交換する。その結果、ターボ等化において、可能な限り干渉を除去することで受信性能を高めることができる。しかし、実際には、外部情報の交換の際に、他のストリームあるいは移動局装置からの信号が干渉として残留する。このように、外部LLRによる干渉成分のキャンセルでは残留干渉の除去が十分でない。
本発明は、このような事情に鑑みてなされたものであり、ターボ原理を用いたMIMO検出およびマルチユーザ検出の検出精度を向上させることができる受信装置、プログラムおよび集積回路を提供することを目的とする。
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の受信装置は、送信装置から空間多重された複数の信号を受信する受信装置であって、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する誤り訂正復号部と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する送信信号レプリカ生成部と、前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択するレプリカ選択部と、前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するキャンセル部と、前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なうMIMO分離部と、を備えることを特徴とする。
このように、事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成し、送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択し、受信した信号から選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するので、検出精度を高めることが可能となり、その結果、受信性能を向上させることが可能となる。
(2)また、本発明の受信装置において、前記レプリカ選択部は、検出対象とする送信信号レプリカを前記外部LLRから生成された送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成された送信信号レプリカとすることを特徴とする。
このように、検出対象とする送信信号レプリカを外部LLRから生成された送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを事後LLRから生成された送信信号レプリカとするので、検出対象とする信号に対しては本来のターボ原理に基づく繰り返し処理を行なうと共に、ストリーム間の干渉に対しては事後LLRから生成された受信信号レプリカを用いることで、検出精度を高めることが可能となる。その結果、受信性能を向上させることが可能となる。
(3)また、本発明の受信装置は、前記送信装置から、シングルユーザMIMOの信号を受信することを特徴とする。
この構成により、シングルユーザMIMOの信号を受信した際の受信性能を高めることが可能となる。
(4)また、本発明の受信装置は、前記送信装置から、マルチユーザMIMOの信号を受信することを特徴とする。
この構成により、マルチユーザMIMOの信号を受信した際の受信性能を高めることが可能となる。
(5)また、本発明の受信装置において、前記誤り訂正復号部は、前記受信した信号を復調して得られたLLRに基づいて、符号ビットの事後LLRおよび前記符号ビットの事後LLRから前記復調して得られたLLRを減算することで得られる符号ビットの外部LLRを出力することを特徴とする。
このように、誤り訂正復号部は、受信した信号を復調して得られたLLRに基づいて、符号ビットの事後LLRおよび符号ビットの事後LLRから復調して得られたLLRを減算することで得られる符号ビットの外部LLRを出力するので、検出対象とする信号に対しては本来のターボ原理に基づく繰り返し処理を行なうと共に、ストリーム間の干渉に対しては事後LLRから生成された受信信号レプリカを用いることで、検出精度を高めることが可能となる。その結果、受信性能を向上させることが可能となる。
(6)また、本発明の受信装置は、送信装置から一部のサブキャリアで重複した複数の信号を受信する受信装置であって、伝搬路の歪みを等化する等化部と、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する誤り訂正復号部と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する送信信号レプリカ生成部と、前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するキャンセル部と、を備え、前記送信信号レプリカ生成部は、検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとすることを特徴とする。
このように、事後LLRと外部LLRとを使い分けるので、受信性能を向上させることが可能となる。
(7)また、本発明のプログラムは、送信装置から空間多重された複数の信号を受信する受信装置のプログラムであって、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する処理と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する処理と、前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択する処理と、前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する処理と、前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なう処理と、の一連の処理をコンピュータに実行させることを特徴とする。
このように、事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成し、送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択し、受信した信号から選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するので、検出精度を高めることが可能となり、その結果、受信性能を向上させることが可能となる。
(8)また、本発明のプログラムは、送信装置から一部のサブキャリアで重複した複数の信号を受信する受信装置のプログラムであって、伝搬路の歪みを等化する処理と、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する処理と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する処理と、前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する処理と、検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとする処理と、の一連の処理をコンピュータに実行させることを特徴とする。
このように、事後LLRと外部LLRとを使い分けるので、受信性能を向上させることが可能となる。
(9)また、本発明の集積回路は、受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、送信装置から空間多重された複数の信号を受信する機能と、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する機能と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する機能と、前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択する機能と、前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する機能と、前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なう機能と、の一連の機能を前記受信装置に発揮させることを特徴とする。
このように、事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成し、送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択し、受信した信号から選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するので、検出精度を高めることが可能となり、その結果、受信性能を向上させることが可能となる。
(10)また、本発明の集積回路は、受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、送信装置から一部のサブキャリアで重複した複数の信号を受信する機能と、伝搬路の歪みを等化する機能と、前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する機能と、前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する機能と、前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する機能と、検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとする機能と、の一連の機能を前記受信装置に発揮させることを特徴とする。
このように、事後LLRと外部LLRとを使い分けるので、受信性能を向上させることが可能となる。
本発明によれば、ターボ原理を用いたMIMO検出、マルチユーザ検出の検出精度を向上させることが可能となる。
以下、本発明の実施形態について図面を参照して説明する。なお、以下の実施形態では、SU-MIMOの例として送受信アンテナ数が2本の場合、MU-MIMOの例として、送信アンテナ数が1本、受信アンテナ数が2本の場合を説明するが、本発明の適用はこれらに限定されない。
また、以下の実施形態では、シングルキャリア周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)を用いた例を説明するが、Clustered DFT-S-OFDMA(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiple Access)を用いてもよいし、直交周波数分割多元接続(OFDMA)やマルチキャリアCDMA(Multi-Carrier Code Division Multiple Access)などのマルチキャリア方式を用いてもよい。
また、アンテナ間で同じ周波数のサブキャリアを割り当てられる空間多重の方式、またはユーザ間で同じ周波数のサブキャリアを割り当てられる方式を用いてもよいし、割り当てられるサブキャリアの一部のみを同じ周波数とし、その他のサブキャリアを異なる周波数とする方式を用いてもよい。
[第1の実施形態]
図1は、SU-MIMOへ適用した無線通信システムの一例を示す図である。本実施形態では、SU-MIMOの例を説明する。図1に示す例では、本実施形態の無線通信システムは第1の通信装置1および第2の通信装置2から構成される。第1の通信装置1は、送信アンテナ2本を備え、第2の通信装置2は、受信アンテナ2本を備える。図1の例では、2本のそれぞれの送受信アンテナを用いて2つの異なる信号(ストリーム)を空間多重して通信を行なう。
図1は、SU-MIMOへ適用した無線通信システムの一例を示す図である。本実施形態では、SU-MIMOの例を説明する。図1に示す例では、本実施形態の無線通信システムは第1の通信装置1および第2の通信装置2から構成される。第1の通信装置1は、送信アンテナ2本を備え、第2の通信装置2は、受信アンテナ2本を備える。図1の例では、2本のそれぞれの送受信アンテナを用いて2つの異なる信号(ストリーム)を空間多重して通信を行なう。
図2は、SU-MIMOにおいて各送信アンテナから送信する送信信号をサブキャリアに割り当てる例を示す概念図である。図2に示す例については、シングルキャリアを前提として説明する。割り当て例A1、A2は各送信アンテナから送信する周波数信号を同一のサブキャリアに割り当てた場合を示しており、割り当て例A3、A4は各送信アンテナから送信する周波数信号を一部のサブキャリアのみ同一のサブキャリアに割り当てた場合を示している。
また、割り当て例A1、A3では、周波数軸上で連続に信号を配置するSC-FDMAを用い、割り当て例A2、A4では周波数信号を複数のクラスタに分割し、各クラスタを周波数軸で不連続に配置するClustered DFT-S-OFDMAを用いている。本実施形態の適用範囲には、これらの割当を全て含むものとし、OFDMやMC-CDMAなどのマルチキャリア方式も含む。
図3は、第1の通信装置(移動局装置)1の構成の一例を示すブロック図である。第1の通信装置1は、コードワード(伝送する符号化ブロック)を2つ備えるが、備えるコードワードの数は1つであってもよいし、3以上でもよい。また、特に断りのない限り上りリンクへ適用した例を説明するが、下りリンクにも適用することができる。
まず、図示しない受信アンテナで受信した第2の通信装置2からの制御信号を、無線部21がベースバンド信号にダウンコンバージョンし、制御情報検出部22が各制御情報として検出する。検出された制御情報には、送信アンテナ間で参照信号を直交させるための直交符号や参照信号を生成する系列に関する情報、システム帯域内のどのサブキャリアを使用して送信するかを示すリソース割当情報、ならびに変調方式および符号化率の情報(MCS:Modulation and Coding Schemes)が含まれる。
これらの情報を基に、第1の通信装置1は送信処理を行なう。まず、符号部11-1、11-2は、情報ビットを符号化し、変調部12-1、12-2は符号ビットをQPSK(Quaternary Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)、64QAMなどの変調シンボルに変調する。
レイヤマッピング部13は、変調シンボルを各ストリーム(レイヤとも言われる)に分ける。さらに、DFT部14-1、14-2は、それぞれの信号を周波数信号に変換する。周波数マッピング部15-1、15-2は、変換された周波数信号を周波数割当情報に基づいてサブキャリアに配置する。IFFT(Inverse Fast Fourier Transform)部16-1、16-2は、サブキャリアに配置された周波数信号を時間信号に変換し、参照信号多重部17-1、17-2は、時間信号が入力される。
参照信号多重部17-1、17-2は、参照信号に関する情報を基に、参照信号を生成し、IFFT部16-1、16-2から出力された時間信号と多重する。CP挿入部18-1、18-2は、時間信号にサイクリックプレフィックス(CP:Cyclic Prefix)を挿入し、無線部19-1、19-2が無線周波数にアップコンバージョンし、各送信アンテナから送信する。
図4は、第2の通信装置(基地局装置)2の一例を示すブロック図である。無線部31-1、無線部31-2は、2本の受信アンテナで受信された受信信号を、ベースバンド信号にダウンコンバージョンする。CP除去部32-1、32-2は、得られたベースバンド信号からCPを除去し、参照信号分離部33-1、33-2は、参照信号を分離する。分離された参照信号は、伝搬路推定部43に入力され、伝搬路推定部43は、分離された参照信号を伝送に使用された各送信アンテナと各受信アンテナの間の伝搬路特性の推定に用いる。
一方、FFT部34-1、34-2は、参照信号を分離された受信信号を周波数信号に変換する。得られた周波数信号は、キャンセル部35に入力され、キャンセル部35は、得られた周波数信号から、受信信号レプリカ生成部42から出力された受信信号をキャンセルする。受信信号レプリカをキャンセルした後の受信信号に対して、MIMO分離部36は、MIMO分離を行なう。伝搬路推定部43で推定されたk番目のサブキャリアにおける伝搬路行列をH(k)とすると、MIMO分離をMMSE規範に基づいて行なう場合、受信信号に乗算するウェイト(重み)は次式で表される。
周波数デマッピング部37-1、37-2は、上記のように分離された各周波数の推定シンボルから、割り当てられたサブキャリアのみを抽出(デマッピング)し、IDFT部38-1、38-2は、抽出されたサブキャリアを時間信号に変換し、復調部39-1、39-2は、変換された時間信号を符号ビットのLLRに変換する。
得られた符号ビットのLLRは、復号部40-1、40-2に入力される。復号部40-1、40-2は、情報ビットの事後LLRと、符号ビットの事後LLRおよび外部LLRを算出する。さらに、情報ビットの事後LLRは硬判定により復号され、符号ビットの事後LLRと外部LLRは、レプリカ生成部41-1、41-2にそれぞれ入力される。レプリカ生成部41-1、41-2は、符号ビットの事後LLRと外部LLRを用い、信頼性に比例した振幅を有するソフトレプリカを生成する。
レプリカ選択部50は、生成されたソフトレプリカと各送信ストリームとの組み合わせを選択し、受信信号レプリカ生成部42へ入力する。このとき、事後LLRおよび外部LLRと第1および第2の送信アンテナとの組み合わせは、[外部LLRから生成された第1の送信ストリームのレプリカ、事後LLRから生成された第2の送信ストリームのレプリカ]および、[事後LLRから生成された第1の送信ストリームのレプリカ、外部LLRから生成された第2の送信ストリームのレプリカ]とする。レプリカ選択部50の動作の詳細は後述する。
このようにして、生成されたソフトレプリカは、受信信号レプリカ生成部42にそれぞれ入力される。受信信号レプリカ生成部42は、伝搬路推定部43から推定された伝搬路特性に基づいて、以下の式(3)、(4)に示す受信信号レプリカを生成する。
また、Rep(k)、Rpe(k)は、上記のソフトレプリカのそれぞれから生成された受信信号レプリカベクトルであり、レプリカ選択部50より出力される各送信ストリームの組み合わせを表す。なお、式(3)、(4)のベクトルサイズは(受信アンテナ数)×1である。これらはキャンセル部35へ入力される。
その後、上記のキャンセル部35から受信信号レプリカ生成部42までの処理として、同様の処理を任意の回数繰り返し、最後に、情報ビットの事後LLRを硬判定することで、復号ビットが得られる。
次に、キャンセル部35と復号部40-1または40-2について説明する。本発明の本質的な特徴はキャンセル部35の動作にある。まず、復号部40-1または40-2について説明する。図5は、復号部40-1の構成の一例を示すブロック図である。復号部40-1に入力されたLLRを用いて、復号処理部45-1は、最大事後確率(Maximum A Posteriori probability)推定により情報ビットの事後LLRと符号ビットの事後LLRを得る。さらに、減算部46-1は、復号処理部45-1から出力された符号ビットの事後LLRから、復調部39-1から得られる符号ビットの事前LLRを減算することで符号ビットの外部LLRを得る。
次に、キャンセル部35について説明する。図6は、キャンセル部35の構成を示すブロック図である。キャンセル部35には、各受信アンテナからの受信信号と、受信信号レプリカ生成部42で生成された受信信号レプリカとが入力される。そして、キャンセル部35は、受信信号から受信信号レプリカを減算する。
図6に示すように、受信信号レプリカ生成部42で生成された受信信号レプリカは、レプリカ減算部51-1へ入力される。その入力として、第1の送信アンテナから送信された信号に関しては外部LLRから生成された受信信号レプリカ、第2の送信アンテナから送信された信号に関しては事後LLRから生成された受信信号レプリカがレプリカ減算部51-1に入力される。
レプリカ減算部51-2への入力も同様に、第1の送信アンテナから送信された信号に関しては事後LLRから生成された受信信号レプリカ、第2の送信アンテナから送信された信号に関しては外部LLRから生成された受信信号レプリカがレプリカ減算部51-2に入力される。
次に、レプリカ減算部51-1について説明を行なう。レプリカ減算部51-1は、受信信号から入力された受信信号レプリカのキャンセル処理を行ない、第1の送信ストリームを検出するための受信信号として出力する。なお、ストリーム数が3以上の場合でも、検出対象となる送信ストリームのレプリカを外部LLRから生成された受信信号レプリカとし、残りを事後LLRから生成された受信信号レプリカとする。
このような処理により、検出対象とする信号に関しては本来のターボ原理に基づく繰り返しを行なうとともに、ストリーム間の干渉に関しては事後LLRから生成された受信信号レプリカを用いている。その結果、検出精度を高めることができ、受信性能が向上する。
次に、レプリカ選択部50の動作例を説明する。図7は、レプリカ選択部50の動作例を示すフローチャートである。まず、検出対象とするアンテナのインデックスmを0とする(ステップS1)。そして、インデックスmの数値に1を加算する(ステップS2)。次に、mが送信アンテナ数より大きいかを判断する(ステップS3)。
mが送信アンテナ数(またはコードワード数)以下の場合には、m番目のアンテナ(またはコードワード)の外部LLRから生成されたレプリカを選択する(ステップS4)。m番目のアンテナ(またはコードワード)以外のアンテナの事後LLRから生成されたレプリカを選択し、m番目のアンテナ(またはコードワード)を検出対象とした場合のレプリカの選択結果とし(ステップS5)、ステップS2に戻る。
この一連の処理を全ての検出対象とする送信アンテナ(またはコードワード)に対して行なってレプリカを選択し、mの値がステップS3において送信アンテナ数を越えた場合に、選択の処理を終了する。このようにして、得られたソフトレプリカを用いて受信信号レプリカを生成し、受信信号から受信信号レプリカを減算することで、受信性能を向上させている。
図8は、平均受信Es/N0に対するブロック誤り率(BLER:Block Error Rate)特性を示すグラフである。図8は、符号化率8/9のターボ符号を用いた場合の、16QAMおよび64QAMのブロック誤り率特性を示している。また、図8で示す例では、4×4のSU-MIMOの特性を対象としている。
曲線群91は16QAMのBLER特性を表しており、曲線92は従来のターボ原理に基づく受信方法によるBLER特性、曲線93は本願の受信方法、曲線94は16QAMの場合の繰り返し処理なしの受信方法によるBLER特性を表している。また、曲線群95は64QAMのBLER特性を表わしており、曲線96は従来のターボ原理に基づく受信方法によるBLER特性、曲線97は本発明の受信方法によるBLER特性を表している。曲線98は64QAMの場合の繰り返し処理なしの受信方法を表している。図8に示すように、本発明の受信方法によれば検出精度を向上できることが分かる。
[第2の実施形態]
本実施形態として、本発明をMU-MIMOへ適用した場合を説明する。図9は、MU-MIMOへ適用した無線通信システムの一例を示す図である。図9では、2つの第1の通信装置61-1、61-2(移動局装置、第1の通信装置61-1、61-2を合わせて第1の通信装置61とも表す)が同時に送信し、第2の通信装置62(基地局装置)が受信し、MIMO分離することで2つの第1の通信装置61-1、61-2が送信した信号の各々を検出する。
本実施形態として、本発明をMU-MIMOへ適用した場合を説明する。図9は、MU-MIMOへ適用した無線通信システムの一例を示す図である。図9では、2つの第1の通信装置61-1、61-2(移動局装置、第1の通信装置61-1、61-2を合わせて第1の通信装置61とも表す)が同時に送信し、第2の通信装置62(基地局装置)が受信し、MIMO分離することで2つの第1の通信装置61-1、61-2が送信した信号の各々を検出する。
図10は、MU-MIMOにおいて第1の通信装置各々の周波数信号をサブキャリアに割り当てる例を示す概念図である。図10の例では、送信アンテナ1本を有する複数の第1の通信装置61-1、61-2が同時に送信することを想定している。本実施形態は、サブキャリアの割り当て例B1~B4と同様の概念を含むものとする。
図11は、送信アンテナが1本の場合の第1の通信装置61の構成の一例を示すブロック図である。送信側となる第1の通信装置61は、図示しない受信アンテナで受信した制御信号を無線部79によりベースバンド信号にダウンコンバージョンし、制御情報検出部80により、送信処理に必要な全ての制御情報を検出する。
一方、符号部71は、制御情報より指定された符号化率に基づいて伝送する情報ビットを誤り訂正符号化する。そして、変調部72は、制御情報で指定された変調方式に基づいて情報ビットを変調シンボルに変換する。DFT部73は、変調シンボルを周波数信号に変換する。
周波数マッピング部74は、周波数信号を制御情報により指定されたサブキャリアに割り当て、IFFT部75は、サブキャリアに割り当てられた信号を時間信号に変換する。参照信号多重部76は、参照信号を時間信号に多重し、CP挿入部77は、多重された信号にCPを挿入する。無線部78は、CPが挿入された信号を無線周波数にアップコンバージョンし、送信アンテナから送信する。
図12は、受信側である第2の通信装置62の構成の一例を示すブロック図である。第2の通信装置62の構成は、第1の実施形態における第2の通信装置2と同一である。また、図12に示す例では、復号部40-1、復号部40-2が周波数デマッピング部37-1、37-2から各々の第1の通信装置61から送信した信号を検出する機能を有している。このような処理を適用することで、受信性能が向上する。
[第3の実施形態]
本実施形態として、本発明をターボ等化の特徴を活用したアクセス技術に適用する場合を説明する。図13は、ターボ等化の特徴を活用した場合におけるサブキャリアの割り当て例を示す概念図である。割り当て例C1は、SC-FDMAに基づく割り当て、割り当て例C2はClustered DFT-S-OFDMに基づく割り当てを示している。基本的に第1の通信装置61の送信処理は、上記の実施形態と同じだが、MIMO処理を前提としておらず、受信アンテナ数は1本でもかまわない。このような方法は、SORM(Spectrum-Overlapped Resource Management)や周波数重複多元接続などと称してよい。
本実施形態として、本発明をターボ等化の特徴を活用したアクセス技術に適用する場合を説明する。図13は、ターボ等化の特徴を活用した場合におけるサブキャリアの割り当て例を示す概念図である。割り当て例C1は、SC-FDMAに基づく割り当て、割り当て例C2はClustered DFT-S-OFDMに基づく割り当てを示している。基本的に第1の通信装置61の送信処理は、上記の実施形態と同じだが、MIMO処理を前提としておらず、受信アンテナ数は1本でもかまわない。このような方法は、SORM(Spectrum-Overlapped Resource Management)や周波数重複多元接続などと称してよい。
この受信方法は、基本的にターボ原理に基づく繰り返し処理を前提としており、空間多重数が受信アンテナ数を上回っていても、少なくとも全ての第1の通信装置61の信号を検出するマルチユーザ検出が適用できれば、受信処理を行なうことができる。
図14は、受信側である第2の通信装置62の構成の一例を示すブロック図である。図14に示す例では、2つの第1の通信装置61が一部のサブキャリアで同じサブキャリアを割り当てて送信し、第2の通信装置62では受信アンテナ1本で受信している。無線部101は、受信信号をダウンコンバージョンし、CP除去部102は、ダウンコンバージョンされた信号からCPを除去する。
参照信号分離部103は、第1の通信装置61から送信された参照信号を受信信号から分離し、伝搬路推定部113へ入力する。伝搬路推定部113は、全ての第1の通信装置61から送信された参照信号からそれぞれの伝搬路特性を推定し、受信信号レプリカ生成部112-1、112-2、等化部106に入力する。
一方、FFT部104は、参照信号が分離された受信信号を周波数信号に変換する。キャンセル部105は、受信信号レプリカ生成部112-1、112-2で生成された受信信号レプリカを周波数信号に変換された受信信号からキャンセルする。等化部106は、伝搬路による歪みを等化し、周波数デマッピング部107-1、107-2は、各第1の通信装置61の周波数信号を抽出する。
IDFT部108-1、108-2は、抽出された周波数信号を時間信号に変換し、復調部109-1、109-2は、符号ビットのLLRを計算し、復号部110-1、110-2は、誤り訂正を行ない、符号ビットの事後LLRと外部LLRおよび情報ビットの事後LLRとを出力する。符号ビットの事後および外部LLRは、レプリカ生成部111-1、111-2に入力され、レプリカ生成部111-1、111-2は、これらを用いて送信信号レプリカを生成する。生成された送信信号レプリカは、受信信号レプリカ生成部112-1、112-2に入力され、受信信号レプリカ生成部112-1、112-2は、受信信号レプリカを生成する。
受信信号レプリカ生成部112-1は、1つ目の第1の通信装置61の送信信号を検出対象とするため、1つ目の第1の通信装置61の外部LLRから生成された送信信号レプリカと2つ目の第1の通信装置61の事後LLRから生成された送信信号レプリカとが入力される。受信信号レプリカ生成部112-2は、その逆である。そして、受信信号レプリカ生成部112-1、112-2は、受信信号レプリカを再びキャンセル部105に入力し、以降の処理を繰り返す。
キャンセル部105は、第1の実施形態と同様に、検出対象とする信号について外部LLRから生成された受信信号レプリカをキャンセルする。そして、キャンセル部105は、それ以外の第1の通信装置61の信号(つまりユーザ間干渉となる信号)については、事後LLRから生成された受信信号レプリカを用いる。このような受信処理とすることで、受信性能を向上させることができる。
なお、本発明は事後LLRと外部LLRを使い分けることを本質としており、第1から第3の実施形態で示した方法のいかなる組み合わせも本発明に含まれる。
本発明に関わる移動局装置および基地局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。
移動局装置および基地局装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
以上、この発明の実施形態を、図面を参照して詳述しているが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。また、本発明は、携帯電話装置を移動局装置とする移動体通信システムに用いて好適であるが、これに限定されない。
1 第1の通信装置(送信装置)
2 第2の通信装置(受信装置)
11-1、11-2 符号部
12-1、12-2 変調部
13 レイヤマッピング部
14-1、14-2 DFT部
15-1、15-2 周波数マッピング部
16-1、16-2 IFFT部
17-1、17-2 参照信号多重部
18-1、18-2 CP挿入部
19-1、19-2 無線部
21 無線部
22 制御情報検出部
31-1、31-2 無線部
32-1、32-2 CP除去部
33-1、33-2 参照信号分離部
34-1、34-2 FFT部
35 キャンセル部
36 MIMO分離部
37-1、37-2 周波数デマッピング部
38-1、38-2 IDFT部
39-1、39-2 復調部
40-1、40-2 復号部
41-1、41-2 レプリカ生成部
42 受信信号レプリカ生成部
43 伝搬路推定部
45-1 復号処理部
46-1 減算部
50 レプリカ選択部
51-1、51-2 レプリカ減算部
61、61-1、61-2 第1の通信装置(送信装置)
62 第2の通信装置(受信装置)
71 符号部
72 変調部
73 DFT部
74 周波数マッピング部
75 IFFT部
76 参照信号多重部
77 CP挿入部
78 無線部
79 無線部
80 制御情報検出部
91 16QAMのBLER特性を示す曲線群
92 従来のターボ原理に基づく受信方法によるBLER特性を示す曲線
93 本願の受信方法を示す曲線
94 16QAMの場合の繰り返し処理なしの受信方法によるBLER特性を示す曲線
95 64QAMのBLER特性を示す曲線群
96 従来のターボ原理に基づく受信方法によるBLER特性を示す曲線
97 本発明の受信方法によるBLER特性を示す曲線
98 64QAMの場合の繰り返し処理なしの受信方法を示す曲線
101 無線部
102 CP除去部
103 参照信号分離部
104 FFT部
105 キャンセル部
106 等化部
107-1、107-2 周波数デマッピング部
108-1、108-2 IDFT部
109-1、109-2 復調部
110-1、110-2 復号部
111-1、111-2 レプリカ生成部
112-1、112-2 受信信号レプリカ生成部
113 伝搬路推定部
2 第2の通信装置(受信装置)
11-1、11-2 符号部
12-1、12-2 変調部
13 レイヤマッピング部
14-1、14-2 DFT部
15-1、15-2 周波数マッピング部
16-1、16-2 IFFT部
17-1、17-2 参照信号多重部
18-1、18-2 CP挿入部
19-1、19-2 無線部
21 無線部
22 制御情報検出部
31-1、31-2 無線部
32-1、32-2 CP除去部
33-1、33-2 参照信号分離部
34-1、34-2 FFT部
35 キャンセル部
36 MIMO分離部
37-1、37-2 周波数デマッピング部
38-1、38-2 IDFT部
39-1、39-2 復調部
40-1、40-2 復号部
41-1、41-2 レプリカ生成部
42 受信信号レプリカ生成部
43 伝搬路推定部
45-1 復号処理部
46-1 減算部
50 レプリカ選択部
51-1、51-2 レプリカ減算部
61、61-1、61-2 第1の通信装置(送信装置)
62 第2の通信装置(受信装置)
71 符号部
72 変調部
73 DFT部
74 周波数マッピング部
75 IFFT部
76 参照信号多重部
77 CP挿入部
78 無線部
79 無線部
80 制御情報検出部
91 16QAMのBLER特性を示す曲線群
92 従来のターボ原理に基づく受信方法によるBLER特性を示す曲線
93 本願の受信方法を示す曲線
94 16QAMの場合の繰り返し処理なしの受信方法によるBLER特性を示す曲線
95 64QAMのBLER特性を示す曲線群
96 従来のターボ原理に基づく受信方法によるBLER特性を示す曲線
97 本発明の受信方法によるBLER特性を示す曲線
98 64QAMの場合の繰り返し処理なしの受信方法を示す曲線
101 無線部
102 CP除去部
103 参照信号分離部
104 FFT部
105 キャンセル部
106 等化部
107-1、107-2 周波数デマッピング部
108-1、108-2 IDFT部
109-1、109-2 復調部
110-1、110-2 復号部
111-1、111-2 レプリカ生成部
112-1、112-2 受信信号レプリカ生成部
113 伝搬路推定部
Claims (10)
- 送信装置から空間多重された複数の信号を受信する受信装置であって、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する誤り訂正復号部と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する送信信号レプリカ生成部と、
前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択するレプリカ選択部と、
前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するキャンセル部と、
前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なうMIMO分離部と、を備えることを特徴とする受信装置。 - 前記レプリカ選択部は、検出対象とする送信信号レプリカを前記外部LLRから生成された送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成された送信信号レプリカとすることを特徴とする請求項1記載の受信装置。
- 前記送信装置から、シングルユーザMIMOの信号を受信することを特徴とする請求項1記載の受信装置。
- 前記送信装置から、マルチユーザMIMOの信号を受信することを特徴とする請求項1記載の受信装置。
- 前記誤り訂正復号部は、前記受信した信号を復調して得られたLLRに基づいて、符号ビットの事後LLRおよび前記符号ビットの事後LLRから前記復調して得られたLLRを減算することで得られる符号ビットの外部LLRを出力することを特徴とする請求項1記載の受信装置。
- 送信装置から一部のサブキャリアで重複した複数の信号を受信する受信装置であって、
伝搬路の歪みを等化する等化部と、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する誤り訂正復号部と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する送信信号レプリカ生成部と、
前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去するキャンセル部と、を備え、
前記送信信号レプリカ生成部は、検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとすることを特徴とする受信装置。 - 送信装置から空間多重された複数の信号を受信する受信装置のプログラムであって、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する処理と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する処理と、
前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択する処理と、
前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する処理と、
前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なう処理と、の一連の処理をコンピュータに実行させることを特徴とするプログラム。 - 送信装置から一部のサブキャリアで重複した複数の信号を受信する受信装置のプログラムであって、
伝搬路の歪みを等化する処理と、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する処理と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する処理と、
前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する処理と、
検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとする処理と、の一連の処理をコンピュータに実行させることを特徴とするプログラム。 - 受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、
送信装置から空間多重された複数の信号を受信する機能と、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する機能と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する機能と、
前記送信信号レプリカから検出対象に応じて、送信信号レプリカの組み合わせを選択する機能と、
前記受信した信号から前記選択された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する機能と、
前記受信信号レプリカが除去された信号に対して、MIMO(Multiple-Input Multiple-Output)分離を行なう機能と、の一連の機能を前記受信装置に発揮させることを特徴とする集積回路。 - 受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、
送信装置から一部のサブキャリアで重複した複数の信号を受信する機能と、
伝搬路の歪みを等化する機能と、
前記受信した信号に対して誤り訂正復号を行なって、符号ビットの事後LLR(Log Likelihood Ratio)および符号ビットの外部LLRを出力する機能と、
前記事後LLRおよび外部LLRに基づいて、送信信号レプリカを生成する機能と、
前記受信した信号から前記生成された送信信号レプリカの組み合わせに基づいて作成された受信信号レプリカを除去する機能と、
検出対象とする送信信号レプリカを前記外部LLRから生成した送信信号レプリカとすると共に、検出対象以外の送信信号レプリカを前記事後LLRから生成した送信信号レプリカとする機能と、の一連の機能を前記受信装置に発揮させることを特徴とする集積回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-170306 | 2011-08-03 | ||
JP2011170306A JP5770558B2 (ja) | 2011-08-03 | 2011-08-03 | 受信装置、プログラムおよび集積回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018466A1 true WO2013018466A1 (ja) | 2013-02-07 |
Family
ID=47629000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066242 WO2013018466A1 (ja) | 2011-08-03 | 2012-06-26 | 受信装置、プログラムおよび集積回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5770558B2 (ja) |
WO (1) | WO2013018466A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021141454A (ja) * | 2020-03-05 | 2021-09-16 | 株式会社東芝 | 受信装置、送信装置、受信方法および送信方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6775144B2 (ja) * | 2016-09-30 | 2020-10-28 | パナソニックIpマネジメント株式会社 | 部品実装ライン制御システム |
CN109687917B (zh) * | 2018-12-25 | 2021-04-20 | 京信通信系统(中国)有限公司 | 一种有源阵列天线 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009159413A (ja) * | 2007-12-27 | 2009-07-16 | Nec Corp | 送信装置、送受信装置、送信方法、送受信方法 |
JP4619926B2 (ja) * | 2005-10-28 | 2011-01-26 | Kddi株式会社 | 復号化装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1521414B1 (en) * | 2003-10-03 | 2008-10-29 | Kabushiki Kaisha Toshiba | Method and apparatus for sphere decoding |
WO2006099267A2 (en) * | 2005-03-14 | 2006-09-21 | Telcordia Technologies, Inc. | Iterative mimo receiver using group-wise demapping |
-
2011
- 2011-08-03 JP JP2011170306A patent/JP5770558B2/ja active Active
-
2012
- 2012-06-26 WO PCT/JP2012/066242 patent/WO2013018466A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4619926B2 (ja) * | 2005-10-28 | 2011-01-26 | Kddi株式会社 | 復号化装置 |
JP2009159413A (ja) * | 2007-12-27 | 2009-07-16 | Nec Corp | 送信装置、送受信装置、送信方法、送受信方法 |
Non-Patent Citations (4)
Title |
---|
JUN TAO ET AL.: "Enhanced MIMO LMMSE Turbo Equalization", VEHICULAR TECHNOLOGY CONFERENCE, VTC 2010 FALL, 9 September 2010 (2010-09-09) * |
KAZUNARI YOKOMAKURA ET AL.: "A Study on Uplink Multi-User MIMO using Clustered DFT-S-OFDM", IEICE TECHNICAL REPORT, vol. 109, no. 341, 10 December 2009 (2009-12-10), pages 55 - 60 * |
KAZUNARI YOKOMAKURA ET AL.: "Performance Comparison of OFDM using MLD and Clustered DFT-S-OFDM using Turbo Equalization for Single User MIMO Systems", IEICE TECHNICAL REPORT, vol. 108, no. 445, 25 February 2009 (2009-02-25), pages 225 - 230 * |
YUTA KADOIKE ET AL.: "Study on Performance Improvement of Turbo Equalization Concatenated by SC/MMSE", IEICE TECHNICAL REPORT, vol. 107, no. 147, 12 July 2007 (2007-07-12), pages 7 - 12 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021141454A (ja) * | 2020-03-05 | 2021-09-16 | 株式会社東芝 | 受信装置、送信装置、受信方法および送信方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013038456A (ja) | 2013-02-21 |
JP5770558B2 (ja) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9191080B2 (en) | Reception device, transmission device, reception method, transmission method, program, and radio communication system | |
US9008166B2 (en) | Filter calculating device, transmitting device, receiving device, processor, and filter calculating method | |
JP5221285B2 (ja) | 無線通信装置及び方法 | |
JP4911780B2 (ja) | 無線通信システム、受信装置及び受信方法 | |
WO2012060237A1 (ja) | 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路 | |
JP5908307B2 (ja) | プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路 | |
US20130100914A1 (en) | Communication system, communication apparatus, and communication method | |
JP4903122B2 (ja) | 無線通信システム、受信装置、受信方法 | |
WO2010150313A1 (ja) | 通信装置 | |
US20140369397A1 (en) | Communication device, communication method, communication program, processor, and communication system | |
JP5859913B2 (ja) | 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路 | |
WO2013018555A1 (ja) | 無線受信装置およびプログラム | |
WO2012063739A1 (ja) | 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路 | |
JP5770558B2 (ja) | 受信装置、プログラムおよび集積回路 | |
JP5288622B2 (ja) | 無線通信装置、無線通信システムおよび通信方法 | |
JP2015056690A (ja) | 端末装置および受信装置 | |
JP5704555B2 (ja) | 無線通信システム、及び受信装置 | |
WO2014187356A1 (zh) | 发射信号的多输入多输出mimo检测方法、装置及系统 | |
JP5538988B2 (ja) | 基地局装置、無線通信システム、基地局装置の送信方法、及び送信プログラム | |
JP5753041B2 (ja) | 無線送信装置、無線受信装置、および無線通信システム | |
JP5802942B2 (ja) | 無線通信システム、無線送信装置および無線通信方法 | |
JP2013123196A (ja) | プリコーディング装置、無線送信装置、プリコーディング方法、プログラムおよび集積回路 | |
JP5535759B2 (ja) | 無線通信システム、送信装置、受信装置、通信方法、送信方法及び受信方法 | |
JP2013126144A (ja) | 送信装置、受信装置および通信システム | |
WO2011148771A1 (ja) | 通信システム、送信装置、受信装置、通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819819 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12819819 Country of ref document: EP Kind code of ref document: A1 |