WO2013018222A1 - 照明装置及びその発光制御方法 - Google Patents

照明装置及びその発光制御方法 Download PDF

Info

Publication number
WO2013018222A1
WO2013018222A1 PCT/JP2011/067848 JP2011067848W WO2013018222A1 WO 2013018222 A1 WO2013018222 A1 WO 2013018222A1 JP 2011067848 W JP2011067848 W JP 2011067848W WO 2013018222 A1 WO2013018222 A1 WO 2013018222A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
luminance
light
light emission
region
Prior art date
Application number
PCT/JP2011/067848
Other languages
English (en)
French (fr)
Inventor
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2011549782A priority Critical patent/JP4997346B1/ja
Priority to EP11870387.5A priority patent/EP2733760A4/en
Priority to PCT/JP2011/067848 priority patent/WO2013018222A1/ja
Publication of WO2013018222A1 publication Critical patent/WO2013018222A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a lighting device and a light emission control method that include a light emitting unit having a plurality of light emitting areas and can individually control light emission of the plurality of light emitting areas.
  • an organic EL element In an organic EL lighting device, an organic EL element is often left to emit light for a long period of time for illumination, so that the element itself generates a high temperature due to heat generation.
  • the high temperature state of the organic EL element is continued for a long time, the deterioration of the organic EL element is accelerated and the luminance is lowered, and as a result, the lifetime as the element is shortened.
  • the lighting device is set when switching between the light emitting element in the light emitting portion and the light emitting element in the non-light emitting state.
  • the total light emission luminance of the plurality of light emitting elements in the light emitting unit is maintained at the set luminance at the switching timing, and the light emission luminance of the light emitting elements in the first light emitting region in the light emitting state among the plurality of light emitting elements gradually decreases over time.
  • the light emission luminance of the light emitting element in the second light emitting region in the non-light emitting state among the plurality of light emitting elements is gradually increased over time.
  • the switching between the light emitting element in the light emitting state and the light emitting element in the non-light emitting state is gradually performed over time without changing the total light emitting luminance of the light emitting part. It is possible to switch between the light emitting elements in the light emitting region and the light emitting elements in the non-light emitting region without giving the user of the lighting device a sense of discomfort.
  • each light emitting element is prevented from continuing for a long time at a high temperature, and further, deterioration of some of the light emitting elements in the light emitting portion is significantly advanced as compared with other light emitting elements. Therefore, the life of the light emitting portion having a plurality of light emitting elements can be extended.
  • FIG. 1 shows a configuration of a lighting device according to an embodiment of the present invention.
  • This illuminating device includes a light emitting panel unit 11 (light emitting unit) made of an organic EL element as a light emitting element.
  • the light-emitting panel unit 11 is a surface light-emitting panel, and its square light-emitting surface is divided into four equal parts, and has four regions 11a to 11d as shown in FIG. This area division corresponds to grouping of a plurality of organic EL elements provided in the light emitting panel unit 11.
  • the organic EL element in the region 11a is 17a
  • the organic EL element in the region 11b is 17b
  • the organic EL element in the region 11c is 17c
  • the organic EL element in the region 11d is 17d.
  • a plurality of organic EL elements may be provided.
  • the four regions 11a to 11d have a square shape, but may have other shapes such as a triangle or a circle, and need not be equally divided.
  • the lighting device includes an AC-DC converter 12, a control unit 13, a memory 14, and an operation unit 15.
  • the AC-DC converter 12 converts the AC voltage from the power supply unit 16 into a DC voltage and outputs it.
  • the power supply unit 16 is, for example, a commercial power supply.
  • the output voltage of the AC-DC converter 12 is supplied to the light emitting panel unit 11 and the control unit 13 as a DC power source.
  • the control unit 13 is constituted by a CPU, for example, and controls the light emission of the light emitting panel 11 for each of the areas 11a to 11d.
  • a memory 14 and an operation unit 15 are connected to the control unit 13.
  • the memory 14 stores programs and data necessary for control by the control unit 13.
  • the operation unit 15 sets the luminance of the entire light emitting panel unit 11 in accordance with a user input operation.
  • the operation unit 15 can arbitrarily set the luminance within a predetermined luminance range.
  • the operation unit 15 includes a power on / off switch of the lighting device. When the power on / off switch is turned on, the power voltage of the power unit 16 is supplied to the AC-DC converter 12 to turn on the power. When the / off switch is turned off, the supply of the power supply voltage of the power supply unit 16 to the AC-DC converter 12 is cut off.
  • the luminance set by the operation unit 15 is referred to as set luminance.
  • the control unit 13 starts the control operation because the output voltage of the AC-DC converter 12 is supplied when the power on / off switch of the operation unit 15 is turned on.
  • the set brightness set in the operation unit 15 is read (step S11), and the previously selected area information is read from the memory 14 (step S12).
  • an area next to the area indicated by the read area information in step S12 is selected from the four areas 11a to 11d (step S13).
  • step S14 the control unit 13 performs light emission control on the selected region with the set luminance (step S14).
  • step S14 as the first step, a drive current corresponding to the set luminance read in step S11 is supplied to the organic EL elements belonging to the two selected regions.
  • the drive current is controlled so that light emission with the set luminance is performed only by the organic EL elements in the two selected regions. For example, since the light emission luminance of two regions is obtained by multiplying the area of the two regions by the luminance per unit area, the light emission state should be established once the relationship between the luminance per unit area and the drive current value is determined.
  • the drive current value for the set luminance can be determined for each area of the two regions.
  • the relationship between the luminance when driving the organic EL elements in the two regions and the drive current of each organic EL element is stored in advance in the control unit 13 as data, and the drive current is controlled using the data. Let's say.
  • the control unit 13 After execution of step S14, the control unit 13 starts time measurement of a timer TA (not shown) (step S15).
  • the timer TA is a timer that measures the first predetermined time T1. Although 1st predetermined time T1 is not specifically limited, For example, it is 2 hours. Further, the first predetermined time T1 is a time when it is predicted that the temperature of the organic EL element in the two regions selected in step S13 almost reaches the predetermined switching temperature after the start of light emission in the two regions. good.
  • the control unit 13 determines whether or not the time measured by the timer TA has reached the first predetermined time T1 (step S16).
  • step S19 the control unit 13 starts measuring time of timers TA and TB (not shown) (step S20).
  • the timer TB is a timer that measures the second predetermined time T2.
  • the second predetermined time T2 is a time sufficiently shorter than the first predetermined time, and is, for example, 10 seconds.
  • step S21 the control unit 13 determines whether or not the time measured by the timer TB has reached the second predetermined time T2 (step S21). If it is determined that the measurement time of the timer TB has reached the second predetermined time T2, the control unit 13 executes step S17 again.
  • steps S17 to S21 as shown in FIG. 4
  • the light emission luminance of the region A is decreased by the luminance change amount ⁇ L from the set luminance every second predetermined time T2, and the light emission luminance of the region B is changed from 0 to the luminance change. Increased by the amount ⁇ L.
  • the light emission luminance of the region A is decreased from the set luminance by a luminance change amount ⁇ L at every second predetermined time T2, and the region B
  • the light emission luminance is increased from 0 by a luminance change amount ⁇ L, and finally the light emission luminance in the region A becomes 0 and the light emission luminance in the region B becomes the set luminance.
  • the total light emission luminance of the areas A and B when the luminance is increased or decreased every second predetermined time T2 is always set luminance.
  • the total switching time may be about 5 to 10 minutes.
  • step S23 the control unit 13 writes information indicating the region B as selection region information in the memory 14 (step S24), and then executes step S16 again.
  • the contents written in step S24 are read out by execution of step S12 by the control unit 13 immediately after the power on / off switch is turned on next time. Further, after step S24, the area B up to that point becomes a new light-emitting area A, and the area A becomes a new non-light-emitting area B.
  • the emission luminance of the regions 11b and 11c is gradually increased, and the total luminance of the emission luminances of the regions 11a and 11d and the emission luminances of the regions 11b and 11c is set as the set luminance.
  • the areas 11a and 11d do not emit light, and the set luminance can be obtained only by the emission of the areas 11b and 11c.
  • the region consisting of the regions 11a and 11d is the non-light emitting region B
  • the region consisting of the regions 11b and 11c is the light emitting region A
  • a switching operation in which the light emission luminance gradually increases and decreases is performed. Is called.
  • the regions 11a to 11d of the light emitting panel unit 11 are switched between the light emitting region in the light emitting state and the light emitting region in the non-light emitting state every first predetermined time T1, the temperature of the organic EL element of the light emitting panel unit 11 is increased for a long time. Thus, it is possible to prevent the organic EL element from extending its life. Further, at the time of switching, while gradually decreasing the light emission luminance of the organic EL element in the light emitting region in the light emitting state, the light emission luminance of the organic EL element in the light emitting region in the non-light emitting state is gradually increased.
  • the first predetermined time T1 can be set in consideration of the ambient temperature.
  • the first predetermined time T1 may be set shorter as the ambient temperature is higher.
  • the lifetime deteriorates to about 1/4 when the operating temperature of the light emitting panel is 60 ° C. with respect to the operating environment temperature of 26 ° C. of the lighting device.
  • the glass transition temperature (80 ° C. or higher) of the organic EL material is reached, it is considered that the temperature deteriorates significantly.
  • the luminous efficiency is considered to deteriorate as the operating temperature increases. Therefore, by switching between the light emitting element in the light emitting state and the light emitting element in the non-light emitting state as described above, each light emitting element is prevented from continuing for a long time at a high temperature. Since deterioration of some of the light emitting elements in the light emitting portion does not proceed significantly as compared with other light emitting elements, the life of the light emitting portion having a plurality of light emitting elements can be increased.
  • FIG. 5 shows a configuration of a lighting device according to another embodiment of the present invention.
  • the illuminating device of FIG. 5 includes temperature sensors 18a to 18d that detect the temperatures of the organic EL elements 17a to 17d in the regions 11a to 11d.
  • the outputs of the temperature sensors 18a to 18d are connected to the control unit 13.
  • Other configurations are the same as the configuration of the lighting apparatus shown in FIG. 1 and the same reference numerals are used, and thus the description thereof is omitted here.
  • control unit 13 executes steps S31 to S34 similar to the flowchart of FIG. 3 and steps S11 to S14, and selects a drive current corresponding to the set luminance read from the regions 11a to 11d. Supplying to the organic EL elements belonging to the two regions is performed.
  • the temperature of the temperature sensors (for example, the temperature sensors 18a and 18d if the regions 11a and 11d are selected) corresponding to the two selected regions (light-emitting region A) is detected (step S34).
  • S35 it is determined whether at least one of the temperatures detected by these temperature sensors is equal to or higher than a predetermined switching temperature (step S36). That is, it is determined whether or not the temperature of the organic EL element in each of the two selected regions is equal to or higher than a predetermined switching temperature.
  • the predetermined switching temperature is, for example, a temperature slightly lower than an element temperature (for example, 80 ° C.) at which deterioration of the organic EL element is rapidly advanced, and is determined according to the temperature characteristics of the element.
  • the control unit 13 determines the brightness of the two regions (referred to as region A) that are emitting light among the regions 11a to 11d. LA is subtracted by the luminance change amount ⁇ L, and the luminance LBs of the other two areas that are not emitting light (referred to as region B) are added by the luminance change amount ⁇ L (step S37). And it is discriminate
  • luminance step S38.
  • step S17 If the luminance LB is smaller than the set luminance, the calculation result of step S17 is maintained as it is, and the drive current of the organic EL element in the region A is set so that light emission at the luminance LA is performed only by the organic EL element in the region A.
  • the drive current of the organic EL element in the region B is controlled so that light emission with the luminance LB is performed only by the organic EL element in the region B (step S39).
  • step S40 the control unit 13 starts measuring time of the timer TB (step S40).
  • the timer TB is a timer that measures the second predetermined time T2.
  • step S41 the control unit 13 determines whether or not the time measured by the timer TB has reached the second predetermined time T2 (step S41). If it is determined that the measurement time of the timer TB has reached the second predetermined time T2, the control unit 13 executes step S17 again.
  • steps S37 to S41 the light emission luminance of the region A is decreased by the luminance change amount ⁇ L from the set luminance every second predetermined time T2, and the light emission luminance of the region B is increased from 0 by the luminance change amount ⁇ L.
  • the supply of the drive current to the organic EL element in the region A is stopped so as to become (Step S43).
  • step S43 the control unit 13 writes the area B as a selection area in the memory 14 (step S44), and then executes step S35 again. This is the same as S17 to S24 in the flowchart of FIG. Further, after step S44, the area B up to that point becomes the new light emitting area A, and the area A becomes the new non-light emitting area B.
  • the organic EL in the region where the region including the regions 11 a and 11 d and the region including the regions 11 b and 11 c among the four regions 11 a to 11 d of the light-emitting panel unit 11 emit light.
  • Switching is performed every time the temperature of the element reaches a predetermined switching temperature.
  • the areas 11a and 11d are changed during the switching.
  • the emission luminance of the regions 11b and 11c is gradually increased, and the total luminance of the emission luminances of the regions 11a and 11d and the emission luminances of the regions 11b and 11c is set as the set luminance.
  • the areas 11a and 11d do not emit light, and the set luminance can be obtained only by the emission of the areas 11b and 11c.
  • the region consisting of the regions 11a and 11d is the non-light emitting region B
  • the region consisting of the regions 11b and 11c is the light emitting region A
  • a switching operation in which the light emission luminance gradually increases and decreases is performed. Is called.
  • the temperature of the organic EL element in the light emitting region of the light emitting panel unit 11 reaches a predetermined switching temperature, the light emitting region is switched to the light emitting region in the light emitting state and the light emitting region in the non-light emitting state. It is prevented that the temperature of the organic EL element remains at a high temperature for a long time, whereby the life of the organic EL element can be extended.
  • the luminance of the organic EL element in the light emitting region in the light emitting state is gradually reduced, while the luminance of the organic EL element in the light emitting region in the non-light emitting state is gradually increased, Since the control is performed so as to achieve the set brightness, there is no change such as flickering noticed by the user of the lighting device at the time of switching. Therefore, it is possible to switch between the light emitting region in the light emitting state and the light emitting region in the non-light emitting state without giving the user a sense of incongruity.
  • the light emitting surface of the light emitting panel unit 11 is divided into regions 11a to 11d in advance.
  • the present invention is not limited to this, and a single continuous light emitting surface is controlled by the control unit 13. May be divided into an organic EL element in a light emitting region in a light emitting state and an organic EL element in a light emitting region in a non-light emitting state.
  • the areas 11a to 11d of the light-emitting panel unit 11 are controlled by being divided into two areas A and B corresponding to the first and second light-emitting areas. It is also possible to control by dividing into a plurality of areas other than. For example, when the control is divided into four areas, the areas may be switched in the order of the areas 11a, 11b, 11c, and 11d.
  • the set brightness is determined according to the operation in the operation unit 15, but may be a fixed brightness set in advance.
  • gradually increasing / decreasing the light emission luminance in the present invention means that the luminance change speed is such that the user of the lighting device does not notice. For example, if the lighting device is switched between a checkered light emitting area and a non-light emitting light area, and the user of the lighting device is performing general office work while gazing only at the desk, switching is started. When the switching time until the switching is completed is shorter than 5 minutes, it is easy for the user to notice. When the switching time is 5 minutes or more, the result is that the user hardly notices. In other words, it is desirable to change the luminance change of the lighting device to a switching speed less than the perceptible luminance change speed in correspondence with the switching time.
  • an organic EL element is used as the light emitting element of the light emitting unit.
  • the light distribution curve of the organic EL element is different from that of other light emitting elements such as LEDs (light emitting diodes), and is almost the same as that of the completely diffuse reflection surface. Since the organic EL elements have the same directivity, the use of the light emitting portion of the organic EL elements has the advantage that it is difficult for the user to notice the switching between the light emitting region in the light emitting state and the light emitting region in the non-light emitting state. is there.
  • the organic EL element is a surface light source, the user may be less likely to notice switching than a point light source in which high-luminance portions such as fluorescent lamps and LEDs are concentrated.
  • the organic EL element can be continuously and smoothly changed in luminance from low luminance to high luminance as compared with other light emitting elements, it is suitable as a light emitting element for gradually increasing or decreasing the light emission luminance.
  • the organic EL element has a higher degree of freedom in the shape of the light emitting region than other light emitting elements, the organic EL element has a shape that is difficult for the user to notice when switching between the light emitting region in the light emitting state and the light emitting region in the non-light emitting state. Can do. For example, as shown in FIG.
  • the timing at which the light emission state has passed for a predetermined time T1 and the timing at which the temperature of the organic EL element reaches the predetermined switching temperature are shown.
  • the timing at which no human being exists in the illumination range such as a room provided or the timing at which there are fewer humans than a predetermined number may be used.
  • a human detection sensor that detects the presence of a human in the illumination range of the lighting device is provided, and a light emission region that is in a light emitting state when it is detected that no human is present in the illumination range is detected according to the output of the human detection sensor. Switching to the non-light emitting region can be started.
  • the light-emitting panel unit 11, the AC-DC converter 12, the control unit 13, the memory 14, and the operation unit 15 of the above-described embodiment may be housed in a case (not shown) of the lighting device, or the light-emitting panel unit.
  • Other parts such as the control unit 13 and the operation unit 15 may be separated from 11.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 複数の発光素子を有する発光部と、複数の発光素子を個別に発光制御する制御部と、を含み、制御部は、設定された切替タイミングで複数の発光素子の合計発光輝度を設定輝度に維持しつつ複数の発光素子のうちの発光状態にある第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させ、かつ複数の発光素子のうちの非発光状態にある第2発光領域の発光素子の発光輝度を、時間を掛けて徐々に増加させる照明装置。

Description

照明装置及びその発光制御方法
 本発明は、複数の発光領域を有する発光部を備え、複数の発光領域各々を個別に発光制御することができる照明装置及び発光制御方法に関する。
 発光源として有機EL(Electro Luminescence)素子を用いた照明装置が提案されている。有機EL素子の照明装置(有機EL照明装置)には、面発光で形状に制約がないという特徴があり、そのような特徴はLED(発光ダイオード)照明装置等の他の照明装置では得られないので、今後の実用化に向けた更なる開発が期待されている。
 有機EL照明装置では、有機EL素子を照明のために長時間に亘って発光させたままにしておくことが多くあるので、素子自身の発熱によって高温状態になる。ところが、有機EL素子の高温状態の長く継続すると、有機EL素子の劣化が加速されて輝度低下が生じ、その結果、素子としての寿命が短くなることが知られている。
 一般に、照明装置において、LED等の発光素子の使用寿命を延長するために、複数の発光素子を用意して半数の発光素子と残りの発光素子とを交互に発光させる方法が提案されている(例えば、特許文献1参照)。従って、有機EL照明装置にもこの方法を適用することにより有機EL素子の使用寿命を長くすることが可能である。
特開2008-166065号公報
 しかしながら、有機EL照明装置等の照明装置においては、発光状態の発光素子と非発光状態の発光素子とを切り替えるときに例えば、一瞬だけちらつきが生じるために、その切り替えを照明装置の利用者が気付いて違和感を感じるという問題があった。
 そこで、本発明が解決しようとする課題は、上記の欠点が一例として挙げられ、照明装置の利用者が気付くことなく発光部の発光状態の発光素子と非発光状態の発光素子とを切り替えることができる照明装置及び発光制御方法を提供することが本発明の目的である。
 請求項1に係る発明の照明装置は、複数の発光素子を有する発光部と、前記複数の発光素子を個別に発光制御する制御部と、を含む照明装置であって、前記制御部は、設定された切替タイミングで前記複数の発光素子の合計発光輝度を設定輝度に維持しつつ前記複数の発光素子のうちの発光状態にある第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させ、かつ前記複数の発光素子のうちの非発光状態にある第2発光領域の発光素子の発光輝度を、時間を掛けて徐々に増加させることを特徴としている。
 請求項11に係る発明の発光制御方法は、複数の発光素子を有する発光部を含む照明装置の発光制御方法であって、前記複数の発光素子を個別に発光制御する第1ステップと、設定された切替タイミングで前記複数の発光素子の合計発光輝度を前記設定輝度に維持しつつ前記第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させ、かつ前記複数の発光素子のうちの前記非発光状態にある第2発光領域の発光素子の発光輝度を、時間を掛けて徐々に増加させる第2ステップと、を含むことを特徴としている。
 請求項1に係る発明の照明装置及び請求項11に係る発明の輝度調整方法によれば、発光部の発光状態の発光素子と非発光状態の発光素子との切り替えの際には、設定された切替タイミングで発光部の複数の発光素子の合計発光輝度が設定輝度に維持されつつ複数の発光素子のうちの発光状態にある第1発光領域の発光素子の発光輝度が時間を掛けて徐々に減少され、かつ複数の発光素子のうちの非発光状態にある第2発光領域の発光素子の発光輝度が時間を掛けて徐々に増加される。よって、発光部の発光状態の発光素子と非発光状態の発光素子との切り替えが発光部の合計発光輝度を変化させることなく時間を掛けて徐々に実行されるので、切り替えの際にはのちらつき等の違和感を照明装置の利用者に与えることなく発光領域の発光素子と非発光領域の発光素子との切り替えを実行することができる。また、各発光素子が高温のままで長時間に亘って継続されることが防止され、更に、発光部のうちの一部の発光素子の劣化が他の発光素子に比べて顕著に進むことがないので、複数の発光素子を有する発光部の長寿命化を図ることができる。
本発明の実施例として照明装置の構成を示すブロック図である。 図1の照明装置の発光面の4つの領域を示す平面図である。 図1の照明装置の制御動作を示すフローチャートである。 発光状態の発光領域と非発光状態の発光領域との切り替えタイミングを示す図である。 本発明の他の実施例として照明装置の構成を示すブロック図である。 図5の照明装置の制御動作を示すフローチャートである。 発光状態の発光領域と非発光状態の発光領域とが市松模様を形成する格子状の発光領域を有する発光面を示す図である。 発光状態の発光領域と非発光状態の発光領域とが半径方向に交互に位置する同心円状の発光領域を有する発光面を示す図である。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は本発明の実施例である照明装置の構成を示している。この照明装置は、発光素子として有機EL素子からなる発光パネル部11(発光部)を備えている。発光パネル部11は面発光パネルであり、その正方形の発光面が4等分に分割されており、図2に示すように、4つの領域11a~11dを有している。この領域分けは発光パネル部11に備えられた複数の有機EL素子のグループ分けに対応する。この実施例では分かり易くするために領域11aの有機EL素子を17a、領域11bの有機EL素子を17b、領域11cの有機EL素子を17c、領域11dの有機EL素子を17dとするが、領域毎に複数の有機EL素子が備えられても良い。なお、この実施例では4つの領域11a~11dは正方形の形状であるが、三角形や円形等の他の形状でも良く、また等分される必要もない。
 照明装置は、AC-DCコンバータ12、制御部13、メモリ14及び操作部15を備えている。AC-DCコンバータ12は電源部16からの交流電圧を直流電圧に変換して出力する。電源部16は例えば、商業電源である。AC-DCコンバータ12の出力電圧は直流電源として発光パネル部11及び制御部13に供給される。制御部13は、例えば、CPUで構成され、発光パネル11の発光を領域11a~11d毎に制御する。
 制御部13には発光パネル部11の他に、メモリ14及び操作部15が接続されている。メモリ14には制御部13の制御で必要なプログラムやデータが保存される。操作部15はユーザの入力操作に応じて発光パネル部11全体の輝度を設定する。操作部15では予め定められた輝度範囲で任意に輝度設定が可能である。また、操作部15には本照明装置の電源オン/オフスイッチが備えられ、その電源オン/オフスイッチがオン操作されると電源部16の電源電圧がAC-DCコンバータ12に供給され、電源オン/オフスイッチがオフ操作されると電源部16の電源電圧のAC-DCコンバータ12への供給が遮断される。なお、この実施例では操作部15で設定される輝度を設定輝度と称することにする。
 次に、かかる構成の照明装置の制御動作について図3のフローチャートを用いて説明する。
 制御部13は、操作部15の電源オン/オフスイッチがオンされると、AC-DCコンバータ12の出力電圧が供給されるので、制御動作を開始する。先ず、操作部15において設定されている設定輝度を読み取り(ステップS11)、前回選択した領域情報をメモリ14から読み出す(ステップS12)。そして、4つの領域11a~11dのうちからステップS12の読み出し領域情報が示す領域の次の順番の領域を選択する(ステップS13)。
 発光のために4つの領域11a~11dのうちの2つの領域の有機EL素子が用いられる。領域の選択順番は例えば、領域11a及び11d、そして領域11b及び11cの順番を繰り返す。ステップS12で読み出した領域が11a及び11dであれば、ステップS13では領域11b及び11cが選択される。
 制御部13は、ステップS13で新たな領域を選択すると、その選択した領域を設定輝度で発光制御する(ステップS14)。第1ステップとしてのステップS14では、ステップS11で読み取った設定輝度に応じた駆動電流を選択した2つの領域に属する有機EL素子に供給することが行われる。選択した2つの領域の有機EL素子だけによって設定輝度での発光が行われるように駆動電流が制御される。例えば、2つの領域の発光輝度は2つの領域の面積に単位面積当たりの輝度を乗算して得られるので、単位面積当たりの輝度と駆動電流値との関係が定まれば、発光状態にすべき2つの領域の面積毎に設定輝度に対する駆動電流値を決定することができる。なお、2つの領域の有機EL素子を駆動する場合の輝度と各有機EL素子の駆動電流との関係は制御部13内にデータとして予め保存されており、そのデータを用いて駆動電流が制御されるとする。
 ステップS14の実行後、制御部13は、タイマTA(図示せず)の時間計測を開始させる(ステップS15)。タイマTAは第1所定時間T1を計測するタイマである。第1所定時間T1は特に限定されないが、例えば、2時間である。また、第1所定時間T1は、ステップS13で選択した2つの領域の発光を開始してからその領域の有機EL素子の温度が所定の切替温度にほぼ達することが予測される時間であっても良い。ステップS15の実行後、制御部13はタイマTAによる計測時間が第1所定時間T1に達したか否かを判別する(ステップS16)。
 制御部13は、計測時間が第1所定時間T1に達したと判別したならば、領域11a~11dのうちの発光状態にある2つの領域(第1発光領域に対応する領域Aとする)の輝度LAを輝度変化量ΔLだけ減算させ、非発光状態にある他の2つの領域(第2発光領域に対応する領域Bとする)の輝度LBを輝度変化量ΔLだけ加算させる(ステップS17)。輝度LAの初期値は設定輝度であり、輝度LBの初期値は0である。輝度変化量ΔLは設定輝度に比べて十分に小さい輝度である。ステップS17ではLA=LA-ΔL及びLB=LB+ΔLが算出される。そして、輝度LBが設定輝度以上であるか否かを判別する(ステップS18)。輝度LBが設定輝度より小であるならば、ステップS17の算出結果をそのまま維持し、領域Aの有機EL素子だけによって輝度LAでの発光が行われるように領域Aの有機EL素子の駆動電流を制御し、領域Bの有機EL素子だけによって輝度LBでの発光が行われるように領域Bの有機EL素子の駆動電流を制御する(ステップS19)。
 ステップS19の実行後、制御部13は、タイマTA,TB(図示せず)の時間計測を開始させる(ステップS20)。タイマTBは第2所定時間T2を計測するタイマである。第2所定時間T2は第1所定時間より十分に小なる時間であり、例えば、10秒である。ステップS20の実行後、制御部13はタイマTBによる計測時間が第2所定時間T2に達したか否かを判別する(ステップS21)。制御部13は、タイマTBの計測時間が第2所定時間T2に達したと判別したならば、ステップS17を再度実行する。ステップS17~S21を繰り返すことにより、図4に示すように、第2所定時間T2毎に領域Aの発光輝度は設定輝度から輝度変化量ΔLだけ減少され、領域Bの発光輝度は0から輝度変化量ΔLだけ増加される。
 制御部13は、ステップS18の判別結果により輝度LBが設定輝度以上であるならば、LA=0及びLB=設定輝度と定める(ステップS22)。このように輝度LA,LBを設定すると、領域Bの有機EL素子だけによって輝度LB=設定輝度での発光が行われるように領域Bの有機EL素子の駆動電流を制御し、領域Aが非発光となるように領域Aの有機EL素子への駆動電流の供給を停止する(ステップS23)。
 第2ステップに相当するステップS17~S23を実行することにより、図4に示すように、第2所定時間T2毎に領域Aの発光輝度は設定輝度から輝度変化量ΔLだけ減少され、領域Bの発光輝度は0から輝度変化量ΔLだけ増加され、最終的に領域Aの発光輝度が0、領域Bの発光輝度が設定輝度になる。また、第2所定時間T2毎の輝度増減の際の領域A,Bの合計発光輝度は常に設定輝度となる。全体の切り替えの時間は5~10分程度で良い。
 ステップS23の実行後、制御部13は選択領域情報として領域Bを示す情報をメモリ14に書き込み(ステップS24)、その後、ステップS16を再度実行する。ステップS24の書き込み内容は、電源オン/オフスイッチが次にオフからオンされた直後に制御部13によるステップS12の実行で読み出されることになる。また、ステップS24以後ではそれまでの領域Bが新たな発光状態の領域Aとなり、領域Aが新たな非発光状態の領域Bとなる。
 このように実施例においては、発光パネル部11の4つの領域11a~11dのうちの領域11a,11dからなる領域と、領域11b,11cからなる領域とを第1所定時間T1毎に切り替えて発光させることが行われる。切り替え直前に例えば、領域11a,11dからなる領域が発光中の領域Aであり、領域11b,11cからなる領域が非発光の領域Bであるとすると、その切り替えの際には、領域11a,11dの発光輝度が徐々に減少され、領域11b,11cの発光輝度が徐々に増加され、更に、領域11a,11dの発光輝度と領域11b,11cの発光輝度の合計輝度は設定輝度とされる。最終的には領域11a,11dが非発光となり、領域11b,11cの発光だけで設定輝度が得られる。次の切り替え直前には領域11a,11dからなる領域が非発光の領域Bであり、領域11b,11cからなる領域が発光中の領域Aとなり、同様に徐々に発光輝度が増減する切り替え動作が行われる。
 よって、発光パネル部11の領域11a~11dを第1所定時間T1毎に発光状態の発光領域と非発光状態の発光領域とを切り替えるので、発光パネル部11の有機EL素子の温度が長時間に亘って高温のままであることが防止され、これにより有機EL素子の長寿命化を図ることができる。また、切り替えの際には発光状態の発光領域の有機EL素子の発光輝度を徐々に低下させる一方、非発光状態の発光領域の有機EL素子の発光輝度を徐々に増加させ、かつその発光輝度の合計が設定輝度になるように制御するので、その切り替えの際に照明装置の利用者が気付くようなちらつき等の変化が生じない。よって、違和感を利用者に与えることなく発光状態の発光領域と非発光状態の発光領域との切り替えを実行することができる。
 なお、第1所定時間T1については周囲温度を考慮して設定することができる。例えば、周囲温度が高いほど第1所定時間T1を短く設定しても良い。
 照明装置の動作環境温度26℃に対して発光パネルの動作温度60℃では寿命は1/4程度に悪化することが分かっている。有機EL材料のガラス転移温度(80℃以上)になると、大幅に悪化すると考えられる。また、発光効率も動作温度が高くなるほど同様に悪化すると考えられる。従って、上記のように発光部の発光状態の発光素子と非発光状態の発光素子との切り替えることにより、各発光素子が高温のままで長時間に亘って継続されることが防止され、更に、発光部のうちの一部の発光素子の劣化が他の発光素子に比べて顕著に進むことがないので、複数の発光素子を有する発光部の長寿命化を図ることができる。
 図5は本発明の他の実施例である照明装置の構成を示している。この図5の照明装置は、領域11a~11d各々の有機EL素子17a~17dの温度を検出する温度センサ18a~18dを備えている。温度センサ18a~18d各々の出力は制御部13に接続されている。その他の構成は図1に示した照明装置の構成と同一であり、同一符号を用いているので、それらのここでの説明は省略される。
 次に、かかる図5の構成の照明装置の制御動作について図6のフローチャートを用いて説明する。
 制御部13は、制御動作を開始すると、図3のフローチャートとステップS11~S14と同様のステップS31~S34を実行して読み取った設定輝度に応じた駆動電流を、領域11a~11dのうちから選択した2つの領域に属する有機EL素子に供給することが行われる。
 ステップS34の実行後、選択した2つの領域(発光中の領域A)に対応した温度センサ(例えば、領域11a及び11dが選択されているならば温度センサ18a及び18d)の温度を検出し(ステップS35)、それらの温度センサによって検出された温度の少なくとも一方が所定の切替温度以上であるか否かを判別する(ステップS36)。すなわち、選択した2つの領域各々の有機EL素子の温度が所定の切替温度以上であるか否かが判別される。所定の切替温度は例えば、有機EL素子の劣化が急速に進むとされる素子温度(例えば、80℃)より若干低い温度であり、素子の温度特性に応じて定められる。
 制御部13は、温度センサによって検出された温度の少なくとも一方が所定の切替温度以上であると判別したならば、領域11a~11dのうちの発光中の2つの領域(領域Aとする)の輝度LAを輝度変化量ΔLだけ減算させ、非発光中の他の2つの領域(領域Bとする)の輝度LBを輝度変化量ΔLだけ加算させる(ステップS37)。そして、輝度LBが設定輝度以上であるか否かを判別する(ステップS38)。輝度LBが設定輝度より小であるならば、ステップS17の算出結果をそのまま維持し、領域Aの有機EL素子だけによって輝度LAでの発光が行われるように領域Aの有機EL素子の駆動電流を制御し、領域Bの有機EL素子だけによって輝度LBでの発光が行われるように領域Bの有機EL素子の駆動電流を制御する(ステップS39)。
 ステップS39の実行後、制御部13は、タイマTBの時間計測を開始させる(ステップS40)。タイマTBは第2所定時間T2を計測するタイマである。ステップS40の実行後、制御部13はタイマTBによる計測時間が第2所定時間T2に達したか否かを判別する(ステップS41)。制御部13は、タイマTBの計測時間が第2所定時間T2に達したと判別したならば、ステップS17を再度実行する。ステップS37~S41を繰り返すことにより、第2所定時間T2毎に領域Aの発光輝度は設定輝度から輝度変化量ΔLだけ減少され、領域Bの発光輝度は0から輝度変化量ΔLだけ増加される。
 制御部13は、ステップS41の判別結果により輝度LBが設定輝度以上であるならば、LA=0及びLB=設定輝度と定める(ステップS42)。このように輝度LA,LBを設定すると、領域Bの有機EL素子だけによって輝度LB=設定輝度での発光が行われるように領域Bの有機EL素子の駆動電流を制御し、領域Aが非発光となるように領域Aの有機EL素子への駆動電流の供給を停止する(ステップS43)。
 ステップS43の実行後、制御部13は選択領域として領域Bをメモリ14に書き込み(ステップS44)、その後、ステップS35を再度実行する。図3のフローチャートのS17~S24と同一である。また、ステップS44以後ではそれまでの領域Bが新たな発光状態の領域Aとなり、領域Aが新たな非発光状態の領域Bとなる。
 このように図5の照明装置においては、発光パネル部11の4つの領域11a~11dのうちの領域11a,11dからなる領域と、領域11b,11cからなる領域とを発光中の領域の有機EL素子の温度が所定の切替温度に達する毎に切り替えて発光させることが行われる。切り替え直前に例えば、領域11a,11dからなる領域が発光中の領域Aであり、領域11b,11cからなる領域が非発光の領域Bであるとすると、その切り替えの際には、領域11a,11dの発光輝度が徐々に減少され、領域11b,11cの発光輝度が徐々に増加され、更に、領域11a,11dの発光輝度と領域11b,11cの発光輝度の合計輝度は設定輝度とされる。最終的には領域11a,11dが非発光となり、領域11b,11cの発光だけで設定輝度が得られる。次の切り替え直前には領域11a,11dからなる領域が非発光の領域Bであり、領域11b,11cからなる領域が発光中の領域Aとなり、同様に徐々に発光輝度が増減する切り替え動作が行われる。
 よって、発光パネル部11の発光中の領域の有機EL素子の温度が所定の切替温度に達する毎発光状態の発光領域と非発光状態の発光領域とに切り替えるので、発光パネル部11の有機EL素子の温度が長時間に亘って高温のままであることが防止され、これにより有機EL素子の長寿命化を図ることができる。また、切り替えの際には発光状態の発光領域の有機EL素子の輝度を徐々に低下させる一方、非発光状態の発光領域の有機EL素子の輝度を徐々に増加させ、かつその発光輝度の合計が設定輝度になるように制御するので、その切り替えの際に照明装置の利用者が気付くようなちらつき等の変化が生じない。よって、違和感を利用者に与えることなく発光状態の発光領域と非発光状態の発光領域との切り替えを実行することができる。
 なお、上記した各実施例においては、切り替えの際に領域A,Bの輝度を所定時間T2毎に輝度変化量ΔLの割合で段階的に変化させているが、領域A,Bの輝度を連続的に変化させても良いことは勿論である。
 また、上記した実施例においては、発光パネル部11の発光面が予め領域11a~11dに分割されているが、本発明はこれに限らず、制御部13の制御により単一の連続した発光面を発光状態の発光領域の有機EL素子と非発光状態の発光領域の有機EL素子とに分けても良い。
 更に、上記した実施例においては、発光パネル部11の領域11a~11dを制御上は第1及び第2発光領域に対応した領域A,Bの2領域に分けて制御しているが、2領域以外の複数の領域に分けて制御しても良い。例えば、4つの領域に分けて制御する場合には領域11a,11b,11c,11dの順に切り替えても良い。
 また、上記した実施例においては、設定輝度は操作部15における操作に応じて決定されるが、予め定められた固定輝度であっても良い。
 また、上記した実施例においては、発光部の発光素子として有機EL素子が用いられているが、本発明はこれに限定されず、無機EL素子等の他の発光素子を用いることができる。
 なお、本発明でいう発光輝度を徐々に増減することは照明装置の利用者が気付かない程度の輝度変化速度であることを意味する。例えば、照明装置を市松模様の発光状態の発光領域と非発光状態の発光領域とを切り替え、照明装置の利用者は机上のみを注視した状態で一般事務作業を行っているとすると、切り替えを開始してから切り替えが完了するまでの切り替え時間が5分より短い場合には利用者が気付き易く、5分以上になると、ほとんど気付かないという結果が得られている。すなわち、照明装置の輝度変化を切り替え時間に対応させて知覚可能な輝度変化速度未満の切替速度にすることが望ましい。
 上記した実施例では、発光部の発光素子として有機EL素子が用いられているが、有機EL素子の配光曲線はLED(発光ダイオード)等の他の発光素子と異なり、完全拡散反射面とほぼ同等であるために有機EL素子に指向性はほんどんなく、有機EL素子の発光部を用いることは発光状態の発光領域と非発光状態の発光領域との切り替えを利用者が気付き難いという利点がある。また、有機EL素子は面光源であるため、蛍光灯やLED等の高輝度の部分が集中する点光源よりも利用者が切り替えを気付き難いこともある。更に、有機EL素子は他の発光素子と比べて、低輝度から高輝度まで連続的に滑らかに輝度変化させることができるので、発光輝度を徐々に増減するための発光素子として好適である。また、有機EL素子は他の発光素子と比べて、発光領域の形状の自由度が高いので、発光状態の発光領域と非発光状態の発光領域との切り替えに利用者が気付き難い形状にすることができる。例えば、発光面に図7に示すように格子状に発光領域を形成して発光状態の発光領域と非発光状態の発光領域とが市松模様を形成するように配置しても良いし、また図8に示すように、発光面に同心円で区分された発光領域を形成して発光状態の発光領域と非発光状態の発光領域とが半径方向に交互に位置するように用いも良い。
 図7及び図8に示したように照明装置の複数の発光領域各々が細かい場合には切り替え時間が短くても切り替えが気付かれ難く、一方、複数の発光領域各々が粗い場合には切り替え時間を長くしないと切り替えが気付かれ易い。例えば、複数の発光領域が直線上に配置され、配置順に発光状態にある発光領域の切り替えを行うならば、その切り替えは明らかに気付かれ易い。これに対して、図7及び図8に示したように複数の発光領域(発光素子)が配列されている場合には複数の発光領域の配列に応じて切替速度を変化させることができる。すなわち、切替速度が速くしても(切り替え時間を短くしても)切り替えを気付かれることがない。切り替え時間を短くするメリットはより細かく制御できるので発光温度を低く保つことができる。
 また、上記した実施例においては、切り替え実行の切替タイミングの例として発光状態が所定時間T1経過したタイミングと、有機EL素子の温度が所定の切替温度に達するタイミングとを示したが、照明装置が設けられた部屋等の照明範囲内に人間が存在しないタイミング、又は存在する人間が所定数より少ないタイミングでも良い。例えば、照明装置の照明範囲内における人間の存在を検知する人間感知センサを設けて人間感知センサの出力に応じて照明範囲内に人間が存在しないことが検知されたときに発光状態の発光領域と非発光状態の発光領域との切り替えが開始されるようにすることができる。
 更に、上記した実施例の発光パネル部11、AC-DCコンバータ12、制御部13、メモリ14及び操作部15は照明装置のケース(図示せず)内に収められても良く、或いは発光パネル部11から制御部13、操作部15等の他の部分が分離されても良い。
11 発光パネル部
12 AC-DCコンバータ
13 制御部
14 メモリ
15 操作部
16 電源部
17a~17d 有機EL素子
18a~18d 温度センサ

Claims (11)

  1.  複数の発光素子を有する発光部と、
     前記複数の発光素子を個別に発光制御する制御部と、を含む照明装置であって、
     前記制御部は、設定された切替タイミングで前記複数の発光素子の合計発光輝度を設定輝度に維持しつつ前記複数の発光素子のうちの発光状態にある第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させ、かつ前記複数の発光素子のうちの非発光状態にある第2発光領域の発光素子の発光輝度を、時間を掛けて徐々に増加させることを特徴とする照明装置。
  2.  前記制御部は、前記切替タイミングとして所定の時間間隔のタイミングを設定することを特徴とする請求項1記載の照明装置。
  3.  前記第1発光領域の発光素子の温度を検出する温度検出手段を更に含み、
     前記制御部は、前記温度検出手段によって検出された前記第1発光領域の発光素子の温度が所定の切替温度に達したときを前記切替タイミングとして設定することを特徴とする請求項1記載の照明装置。
  4.  前記照明装置による照明範囲内の人間の存在を検知する人間感知手段を含み、
     前記制御部は、前記人間感知手段によって人間の存在が検知されないとき、又は存在する人間の数が所定数より少ないときを前記切替タイミングとして設定することを特徴とする請求項1記載の照明装置。
  5.  前記制御部は、前記照明装置の利用者が前記発光部の輝度変化を知覚可能な輝度変化速度未満の切替速度で前記第1発光領域及び前記第2発光領域各々の発光素子の発光輝度を変化させることを特徴とする請求項1~4のいずれか1記載の照明装置。
  6.  前記制御部は、前記複数の発光素子の配列に応じて前記切替速度を変化させることを特徴とする請求項5記載の照明装置。
  7.  前記制御部は前記第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させる場合に切替時間の経過後に前記第1発光領域の発光素子を非発光状態に制御し、第2発光領域の発光素子を前記設定輝度での発光状態に制御することを特徴とする請求項1~6のいずれか1記載の照明装置。
  8.  入力操作に応じて輝度を設定する操作部を更に含み、前記設定輝度は前記操作部によって設定された輝度であることを特徴とする請求項1記載の照明装置。
  9.  前記設定輝度は予め定められた一定輝度であることを特徴とする請求項1~8のいずれか1記載の照明装置。
  10.  前記発光素子は有機EL素子からなることを特徴とする請求項1~9のいずれか1記載の照明装置。
  11.  複数の発光素子を有する発光部を含む照明装置の発光制御方法であって、
     前記複数の発光素子を個別に発光制御する第1ステップと、
     設定された切替タイミングで前記複数の発光素子の合計発光輝度を前記設定輝度に維持しつつ前記第1発光領域の発光素子の発光輝度を、時間を掛けて徐々に減少させ、かつ前記複数の発光素子のうちの前記非発光状態にある第2発光領域の発光素子の発光輝度を、時間を掛けて徐々に増加させる第2ステップと、を含むことを特徴とする発光制御方法。
PCT/JP2011/067848 2011-08-04 2011-08-04 照明装置及びその発光制御方法 WO2013018222A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011549782A JP4997346B1 (ja) 2011-08-04 2011-08-04 照明装置及びその発光制御方法
EP11870387.5A EP2733760A4 (en) 2011-08-04 2011-08-04 LIGHTING DEVICE AND LIGHT EMISSION CONTROL METHOD THEREFOR
PCT/JP2011/067848 WO2013018222A1 (ja) 2011-08-04 2011-08-04 照明装置及びその発光制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067848 WO2013018222A1 (ja) 2011-08-04 2011-08-04 照明装置及びその発光制御方法

Publications (1)

Publication Number Publication Date
WO2013018222A1 true WO2013018222A1 (ja) 2013-02-07

Family

ID=46793912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067848 WO2013018222A1 (ja) 2011-08-04 2011-08-04 照明装置及びその発光制御方法

Country Status (3)

Country Link
EP (1) EP2733760A4 (ja)
JP (1) JP4997346B1 (ja)
WO (1) WO2013018222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087367A (zh) * 2019-06-03 2019-08-02 湖南文理学院 基于人群密度信息互联式校园照明节能控制方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064683A (ja) * 1996-08-14 1998-03-06 Matsushita Electric Works Ltd 調光装置
JP2007171480A (ja) * 2005-12-21 2007-07-05 Samsung Electronics Co Ltd 画像表示装置
JP2007234323A (ja) * 2006-02-28 2007-09-13 Toshiba Lighting & Technology Corp 非常用照明装置および非常用照明器具
JP2008166065A (ja) 2006-12-27 2008-07-17 Toshiba Corp 照明装置
JP2011054511A (ja) * 2009-09-04 2011-03-17 Seiko Epson Corp 照明装置及び電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162692A (ja) * 1988-12-14 1990-06-22 Matsushita Electric Works Ltd 調光装置
JPH10125477A (ja) * 1996-10-15 1998-05-15 Matsushita Electric Works Ltd 照明制御装置
CA2336497A1 (en) * 2000-12-20 2002-06-20 Daniel Chevalier Lighting device
JP4081665B2 (ja) * 2002-09-13 2008-04-30 三菱電機株式会社 Led点灯装置及び照明器具
JP4544922B2 (ja) * 2004-06-30 2010-09-15 三菱電機株式会社 照明装置
JP2007005072A (ja) * 2005-06-22 2007-01-11 Toyota Industries Corp 有機エレクトロルミネッセンス素子を利用した発光装置及び表示装置
US8792068B2 (en) * 2009-09-04 2014-07-29 Seiko Epson Corporation Lighting device and electronic device
JP5574829B2 (ja) * 2010-06-02 2014-08-20 三菱電機株式会社 Led点灯装置及び照明器具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064683A (ja) * 1996-08-14 1998-03-06 Matsushita Electric Works Ltd 調光装置
JP2007171480A (ja) * 2005-12-21 2007-07-05 Samsung Electronics Co Ltd 画像表示装置
JP2007234323A (ja) * 2006-02-28 2007-09-13 Toshiba Lighting & Technology Corp 非常用照明装置および非常用照明器具
JP2008166065A (ja) 2006-12-27 2008-07-17 Toshiba Corp 照明装置
JP2011054511A (ja) * 2009-09-04 2011-03-17 Seiko Epson Corp 照明装置及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087367A (zh) * 2019-06-03 2019-08-02 湖南文理学院 基于人群密度信息互联式校园照明节能控制方法与装置

Also Published As

Publication number Publication date
JP4997346B1 (ja) 2012-08-08
EP2733760A1 (en) 2014-05-21
JPWO2013018222A1 (ja) 2015-03-05
EP2733760A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
TWI439177B (zh) 決定用來驅動發光裝置之驅動數值的方法與驅動器
JP4951369B2 (ja) 照明装置及び照明システム
TWI522009B (zh) 燈具單元及控制光源之方法
RU2012104007A (ru) Жидкокристаллическое устройство отображения
JP5721826B2 (ja) 発光モジュールの駆動制御のための回路
JP2008159483A (ja) 照明システム
TW201334618A (zh) 發光二極體照明裝置以及發光二極體照明裝置的調光方法
TW201322826A (zh) 光源調整裝置及其光源系統
KR20150142898A (ko) 교류구동 발광소자의 조명장치
JP5403770B2 (ja) 照明装置及びその発光制御方法
JP2008210855A (ja) Led制御システム
JP5568687B2 (ja) 照明装置及び輝度調整方法
JP5574829B2 (ja) Led点灯装置及び照明器具
JP4997346B1 (ja) 照明装置及びその発光制御方法
JP5016323B2 (ja) Led制御システム
JP5016322B2 (ja) Led制御システム
TW201304605A (zh) 記憶調光方法、記憶型調光燈具及調光驅動電路
JP6296347B2 (ja) 照明装置
KR101295268B1 (ko) 조명 장치
JP2013239339A (ja) 照明装置
JP6965135B2 (ja) Led照明装置
JP2010206085A (ja) 発光装置、照明装置及び該照明装置の駆動方法
JP2013171149A (ja) バックライト光源、バックライト装置、液晶表示装置、およびバックライト光源の点灯制御方法
JP5561767B2 (ja) 照明装置および点灯制御方法
KR20140092069A (ko) 조명장치 및 그 제어방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011549782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011870387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011870387

Country of ref document: EP