WO2013017605A1 - Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform - Google Patents

Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform Download PDF

Info

Publication number
WO2013017605A1
WO2013017605A1 PCT/EP2012/064979 EP2012064979W WO2013017605A1 WO 2013017605 A1 WO2013017605 A1 WO 2013017605A1 EP 2012064979 W EP2012064979 W EP 2012064979W WO 2013017605 A1 WO2013017605 A1 WO 2013017605A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
graphene
quantum dots
platform
Prior art date
Application number
PCT/EP2012/064979
Other languages
French (fr)
Inventor
Gerasimos Konstantatos
Frank KOPPENS
Original Assignee
Fundació Institut De Ciències Fotòniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Institut De Ciències Fotòniques filed Critical Fundació Institut De Ciències Fotòniques
Priority to EP12750717.6A priority Critical patent/EP2739563B1/en
Priority to KR1020147002854A priority patent/KR101919005B1/en
Priority to ES12750717T priority patent/ES2909338T3/en
Priority to JP2014523308A priority patent/JP6021913B2/en
Priority to CN201280044149.9A priority patent/CN104024146B/en
Publication of WO2013017605A1 publication Critical patent/WO2013017605A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to optoelectronic platforms.
  • a platform where photoconductive gain is improved is improved.
  • Photodiodes (InGaAs for short-wavelength infrared and Si for visible and near infra-red applications) demonstrate high sensitivity. However they are limited by read-out noise and their quantum efficiency is limited to unity (i.e. 1 carrier per absorbed photon).
  • APDs (avalanche photodiodes) have been developed to provide gain via carrier multiplication effects. The gain in these devices is on the order of 100 to 1000 carriers per absorbed photon.
  • the technological challenges in integrating these structures to common image sensors and low-cost detectors is the high operating bias required (on the order of 100's of V) and additional layers required to suppress leakage currents and prolong the device lifetime from degradation due to the high applied bias.
  • these devices are not monolithically integrable to CMOS electronics due to the different growth process required for APDs.
  • the present invention overcomes the problems of the prior art by providing an optoelectronic platform comprising a carbon-based conduction layer and a layer of colloidal quantum dots for absorbing light on top of it.
  • the platform has advantageously a substrate and an oxide interlayer between the substrate and the carbon-based layer.
  • the carbon-based layer is preferably made of graphene, reduced graphene oxide or carbon nanotubes.
  • the substrate can be one of Boron Nitride or GaAs and the oxide interlayer one or a mixture of Si02 LiF, Alumina and Hafnium oxide.
  • the quantum dots can be one or more of the following materials: CdSe, CdS, PbSe, ZnO, ZnS, CZTS, Cu2S, Bi2S3, Ag2S, HgTe, CdHgTe, InAs, InSb.
  • the carbon-based layer can be shaped in the form of either a rectangle, nanoconstriction, hall-bar or ribbon.
  • the invention comprises also a transistor with source and drain electrodes and such a platform, and comprises optionally a top electrode in contact with the quantum dots layer.
  • Figure 1 shows a first embodiment of the invention.
  • Figure 2 shows how holes from the quantum dot layer are transferred to the carbon- based layer and thus form a depletion layer.
  • Figure 3 is a scheme of the working principle of the invention.
  • Figure 4 is a graph of the photoconductive gain at the graphene channel.
  • Figure 5 shows the spectral response of the device of the invention.
  • the invention is an hybrid optoelectronic platform compatible with CMOS integration, which consists of a carbon based layer (for example graphene) sensitized with colloidal quantum dots (CQDs).
  • the carbon based layer is used as the carrier transport channel, and CQDs are employed as the absorbing material.
  • a graphene layer (2) is deposited on a silicon substrate (4) with a Si02 interlayer (3) to form the gate of the phototransistor, and two electrodes are connected to the graphene in the lateral dimension (Vs, Vd) to form the metal contacts of the device analogously to a source and drain electrodes in a FET transistor.
  • CQDs 1
  • PbS 650 - 2000 nm
  • HgTe 1500 nm - 4000 nm
  • the device In view of graphene's high mobility, the device requires very low applied electric fields in the source-drain from some ⁇ to a few volts, and the gain can be adjusted linearly with applied voltage. This phenomenon (also called “photogating effect") is equivalent to having a top gate on the graphene layer where the incident light is used to generate carriers in the QD layer which functions as an optically controlled gate.
  • the proposed device can be operated as a 2-terminal device, with the gate open, or as a phototransistor by controlling the potential of the gate and therefore the conductivity of the graphene channel.
  • the dark current there from can be minimized by applying a potential to the gate to switch-off the dark conductivity of the graphene layer (in the case where the graphene has bandgap).
  • An additional gate can be placed on top of the CQD layer to control the electric field in the CQD layer. This gate can be employed to fully deplete a thick layer of QCD film that is employed to fully absorb the incident light.
  • a high reverse bias signal pulse of the gate Vg2 can switch the direction of the electric field and drive the photogenerated holes trapped in the QD layer into graphene or the photogenerated electrons from the graphene into the QD layer to induce recombination.
  • the spectral response of the device is shown in Fig. 5.
  • the spectral sensitivity of the graphene is determined by the photon absorption in QD overlayer and can be tuned by appropriate selection of the sensitizing material.
  • the device can be fabricated by spincasting or spraycasting a layer of QDs from solution.
  • the quantum dots undergo a ligand exchange process to remove the oleic acid from the surface and replace with a bidentate ligand that crosslinks the quantum dots and renders them a conductive solid.
  • ligands can be: ethanedithiol, ethylenediamine, hydrazine, ethanethiol, propanethiol, formic acid, oxalic acid, acetic acid, or inorganic moities such as SnS4, PbBr2, Pbl2, PbCI2.
  • a bidentate ligand molecule is also employed to electronically couple the QDs to the graphene layer.
  • bidentate ligands include: ethanedithiol, ethylene diamine, benzenedithiol, hydrazine.
  • the total thickness of the QD layer can be tuned from a few nm to several hundreds of nm in order to fully absorb the incident light.
  • the carbon-based layer can be a layer of carbon nanotubes (CNT) or patterned graphene or reduced graphene oxide.
  • CNTs can be grown by cvd and transferred to the substrate.
  • Single or multi-layer graphene is grown by cvd, solution-processing and then transferred to the substrate, or graphene is exfoliated and then transferred to the substrate.
  • Patterning of the carbon-based conductor can be done a wide variety of techniques, such as chemical or plasma-etching, or by thermally activated nanoparticles, ion-beam, scanning-probe lithography or layer-by- layer removal.
  • An alternative method to make graphene nano-ribbons is to zip open nanotubes.
  • the QDs can be (and not limited to): CdSe, CdS, PbSe, ZnO, ZnS, CZTS, Cu2S, Bi2S3, Ag2S, HgTe, CdHgTe, InAs, InSb, etc.
  • the QD semiconductor material can be of p-type, n-type or intrinsic.
  • the photosensitive semiconductor material can be a conjugated polymer or a dye, deposited by spincoating, spraycasting, dropcasting or evaporated onto grapheme.
  • the carbon-based conductor is patterned in any specific geometry such as rectangle, nanoconstriction, hall-bar or ribbon (a strip only a few nm wide).
  • the carbon-based layer When the carbon-based layer consists of graphene then it can be made of a single layer or multiple layers of graphene.
  • the graphene layer(s) can be modified so as to open a bandgap in the carbon-based layer. This allows to reduce the dark current of the device and electrically switch off the transistor channel. Further modifications to reduce the dark current of the device and allow for single photon detection include the formation of nanoconstrictions of the carbon-based channel that can provide for coulomb blockade phenomena that can reduce the dark current and enable for single photon detection.
  • the substrate layer can be of Si, Boron Nitride, GaAs etc. and the dielectric interlayer can be any oxide, like Si02, LiF, Alumina, Hafnium oxide etc.
  • the invention can find applications in imaging sensors for digital cameras, remote sensing, night vision and single photon detection etc, in optical communications for low power level transmission and detection and in optical instrumentation for ultra low power detection, among others.

Abstract

The invention comprises an optoelectronic platform with a carbon-based conduction layer (2) and a layer of colloidal quantum dots (1) on top as light absorbing material. The carbon-based conduction layer can be made of graphene, reduced graphene oxide, or carbon nanotubes. Photoconductive gain on the order of 106 is possible, while maintaining the operating voltage low. The platform can be used as a transistor.

Description

OPTOELECTRONIC PLATFORM WITH CARBON BASED CONDUCTOR AND QUANTUM DOTS, AND TRANSISTOR COMPRISING SUCH A PLATFORM
DESCRIPTION
FIELD OF THE INVENTION
The present invention relates to optoelectronic platforms. In particular, to a platform where photoconductive gain is improved.
STATE OF THE ART
Photodiodes (InGaAs for short-wavelength infrared and Si for visible and near infra-red applications) demonstrate high sensitivity. However they are limited by read-out noise and their quantum efficiency is limited to unity (i.e. 1 carrier per absorbed photon). In view of the absence of photoconductive gain in photodiodes, APDs (avalanche photodiodes) have been developed to provide gain via carrier multiplication effects. The gain in these devices is on the order of 100 to 1000 carriers per absorbed photon. The technological challenges in integrating these structures to common image sensors and low-cost detectors is the high operating bias required (on the order of 100's of V) and additional layers required to suppress leakage currents and prolong the device lifetime from degradation due to the high applied bias. Moreover, these devices are not monolithically integrable to CMOS electronics due to the different growth process required for APDs.
SUMMARY OF THE INVENTION
The present invention overcomes the problems of the prior art by providing an optoelectronic platform comprising a carbon-based conduction layer and a layer of colloidal quantum dots for absorbing light on top of it. The platform has advantageously a substrate and an oxide interlayer between the substrate and the carbon-based layer. The carbon-based layer is preferably made of graphene, reduced graphene oxide or carbon nanotubes. The substrate can be one of Boron Nitride or GaAs and the oxide interlayer one or a mixture of Si02 LiF, Alumina and Hafnium oxide. The quantum dots can be one or more of the following materials: CdSe, CdS, PbSe, ZnO, ZnS, CZTS, Cu2S, Bi2S3, Ag2S, HgTe, CdHgTe, InAs, InSb. The carbon-based layer can be shaped in the form of either a rectangle, nanoconstriction, hall-bar or ribbon. The invention comprises also a transistor with source and drain electrodes and such a platform, and comprises optionally a top electrode in contact with the quantum dots layer.
BRIEF DESCRIPTION OF THE DRAWINGS To complete the description and in order to provide for a better understanding of the invention, a set of drawings is provided. Said drawings illustrate a preferred embodiment of the invention, which should not be interpreted as restricting the scope of the invention, but just as an example of how the invention can be embodied. The drawings comprise the following figures:
Figure 1 : shows a first embodiment of the invention.
Figure 2: shows how holes from the quantum dot layer are transferred to the carbon- based layer and thus form a depletion layer.
Figure 3: is a scheme of the working principle of the invention.
Figure 4: is a graph of the photoconductive gain at the graphene channel.
Figure 5: shows the spectral response of the device of the invention.
DESCRIPTION OF THE INVENTION The invention is an hybrid optoelectronic platform compatible with CMOS integration, which consists of a carbon based layer (for example graphene) sensitized with colloidal quantum dots (CQDs). The carbon based layer is used as the carrier transport channel, and CQDs are employed as the absorbing material. As shown in Fig. 1 , when applied to a phototransistor, a graphene layer (2) is deposited on a silicon substrate (4) with a Si02 interlayer (3) to form the gate of the phototransistor, and two electrodes are connected to the graphene in the lateral dimension (Vs, Vd) to form the metal contacts of the device analogously to a source and drain electrodes in a FET transistor. Graphene is then overcotated with a layer of CQDs (1 ) whose bandgap can be tuned according to the size and material of the QDs (CdSe: 400 - 650 nm, PbS: 650 - 2000 nm, HgTe: 1500 nm - 4000 nm).
For the description of the underlying mechanism we focus in the case of PbS QDs, but this can be generally applied to other QD materials. At the interface of the QD layer with the graphene there is a built-in field formed due to the doping of the PbS QDs. Holes from the PbS QDs are transferred to the graphene and form a depletion layer in the PbS film and a built-in film as shown in Fig. 2. Incident photons create electron hole pairs in the quantum dots. Due to the band alignment of the QDs to the graphene layer, a single type of carrier (electrons) is then transferred to the graphene layer and transported through graphene to the metal contacts assisted by an applied electric field from the source to the drain. The holes remain trapped in the PbS layer prolonging their carrier lifetime. When the photegenerated electrons in the graphene layer reach the drain contact, another electron is reinjected by the source to provide for charge preservation (Fig. 3). Therefore, for a single absorbed photon an electric carrier is recirculated in the device before it recombines. The heterojunction formed at the graphene-QD layer inhibits recombination and therefore the number of carriers is given by the ratio of the carrier lifetime over the transit time of electrons in the graphene channel. Due to the extremely high carrier mobility offered by the graphene channel a photoconductive gain on the order of 106 has been observed in the invention (Fig. 4). In view of graphene's high mobility, the device requires very low applied electric fields in the source-drain from some μν to a few volts, and the gain can be adjusted linearly with applied voltage. This phenomenon (also called "photogating effect") is equivalent to having a top gate on the graphene layer where the incident light is used to generate carriers in the QD layer which functions as an optically controlled gate.
The proposed device can be operated as a 2-terminal device, with the gate open, or as a phototransistor by controlling the potential of the gate and therefore the conductivity of the graphene channel. The dark current there from can be minimized by applying a potential to the gate to switch-off the dark conductivity of the graphene layer (in the case where the graphene has bandgap). An additional gate can be placed on top of the CQD layer to control the electric field in the CQD layer. This gate can be employed to fully deplete a thick layer of QCD film that is employed to fully absorb the incident light. The use of the additional gate can be extended to reset the device and control the temporal response: A high reverse bias signal pulse of the gate Vg2 can switch the direction of the electric field and drive the photogenerated holes trapped in the QD layer into graphene or the photogenerated electrons from the graphene into the QD layer to induce recombination.
The spectral response of the device is shown in Fig. 5. The spectral sensitivity of the graphene is determined by the photon absorption in QD overlayer and can be tuned by appropriate selection of the sensitizing material.
The device can be fabricated by spincasting or spraycasting a layer of QDs from solution. The quantum dots undergo a ligand exchange process to remove the oleic acid from the surface and replace with a bidentate ligand that crosslinks the quantum dots and renders them a conductive solid. Such ligands can be: ethanedithiol, ethylenediamine, hydrazine, ethanethiol, propanethiol, formic acid, oxalic acid, acetic acid, or inorganic moities such as SnS4, PbBr2, Pbl2, PbCI2. A bidentate ligand molecule is also employed to electronically couple the QDs to the graphene layer. Such bidentate ligands include: ethanedithiol, ethylene diamine, benzenedithiol, hydrazine. The total thickness of the QD layer can be tuned from a few nm to several hundreds of nm in order to fully absorb the incident light.
The carbon-based layer can be a layer of carbon nanotubes (CNT) or patterned graphene or reduced graphene oxide. CNTs can be grown by cvd and transferred to the substrate. Single or multi-layer graphene is grown by cvd, solution-processing and then transferred to the substrate, or graphene is exfoliated and then transferred to the substrate. Patterning of the carbon-based conductor can be done a wide variety of techniques, such as chemical or plasma-etching, or by thermally activated nanoparticles, ion-beam, scanning-probe lithography or layer-by- layer removal. An alternative method to make graphene nano-ribbons is to zip open nanotubes.
The QDs can be (and not limited to): CdSe, CdS, PbSe, ZnO, ZnS, CZTS, Cu2S, Bi2S3, Ag2S, HgTe, CdHgTe, InAs, InSb, etc. The QD semiconductor material can be of p-type, n-type or intrinsic. The photosensitive semiconductor material can be a conjugated polymer or a dye, deposited by spincoating, spraycasting, dropcasting or evaporated onto grapheme. The carbon-based conductor is patterned in any specific geometry such as rectangle, nanoconstriction, hall-bar or ribbon (a strip only a few nm wide). When the carbon-based layer consists of graphene then it can be made of a single layer or multiple layers of graphene. The graphene layer(s) can be modified so as to open a bandgap in the carbon-based layer. This allows to reduce the dark current of the device and electrically switch off the transistor channel. Further modifications to reduce the dark current of the device and allow for single photon detection include the formation of nanoconstrictions of the carbon-based channel that can provide for coulomb blockade phenomena that can reduce the dark current and enable for single photon detection.
The substrate layer can be of Si, Boron Nitride, GaAs etc. and the dielectric interlayer can be any oxide, like Si02, LiF, Alumina, Hafnium oxide etc.
The invention can find applications in imaging sensors for digital cameras, remote sensing, night vision and single photon detection etc, in optical communications for low power level transmission and detection and in optical instrumentation for ultra low power detection, among others.
In this text, the term "comprises" and its derivations (such as "comprising", etc.) should not be understood in an excluding sense, that is, these terms should not be interpreted as excluding the possibility that what is described and defined may include further elements.
On the other hand, the invention is obviously not limited to the specific embodiment(s) described herein, but also encompasses any variations that may be considered by any person skilled in the art (for example, as regards the choice of materials, dimensions, components, configuration, etc.), within the general scope of the invention as defined in the claims.

Claims

1 . - An optoelectronic platform comprising a carbon-based conduction layer (2)and a layer of colloidal quantum dots for absorbing light (1 ) on top of the carbon-based layer (2), characterized in that the carbon-based layer is made of graphene, reduced graphene oxide or carbon nanotubes.
2. - An optoelectronic platform according to claim 1 further comprising a substrate (4) and a dielectric interlayer (3) between the substrate and the carbon-based layer.
3. - An optoelectronic platform according to any of claims 1 -2 wherein the substrate is one of Si, Boron Nitride or GaAs and the dielectric interlayer is one or a mixture of Si02 LiF, Alumina and Hafnium oxide.
4. - An optoelectronic platform according to any of the preceding claims wherein the quantum dots are of one or more of the following materials: CdSe, CdS, PbSe, ZnO, ZnS, CZTS, Cu2S, Bi2S3, Ag2S, HgTe, CdHgTe, InAs, InSb.
5. - An optoelectronic platform according to any of the preceding claims wherein the carbon-based layer is shaped in the form of a rectangle, nanoconstriction, hall-bar or ribbon.
6. - An optoelectronic platform according to any of the preceding claims wherein the absorbing layer further comprises a conjugated polymer or a dye.
7. - A transistor comprising source and drain electrodes (Vs, Vd) and a platform according to any of the preceding claims.
8. - A transistor according to claim 7 further comprising a top electrode in contact with the quantum dots layer.
PCT/EP2012/064979 2011-08-02 2012-07-31 Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform WO2013017605A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12750717.6A EP2739563B1 (en) 2011-08-02 2012-07-31 Phototransistor comprising a graphene layer and quantum dots
KR1020147002854A KR101919005B1 (en) 2011-08-02 2012-07-31 Phototransistor with carbon based conductor and quantum dots
ES12750717T ES2909338T3 (en) 2011-08-02 2012-07-31 Phototransistor with carbon-based conductor and quantum dots
JP2014523308A JP6021913B2 (en) 2011-08-02 2012-07-31 Phototransistor with carbon-based conductor and quantum dots
CN201280044149.9A CN104024146B (en) 2011-08-02 2012-07-31 Phototransistor with carbon based conductor and quantum dots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131345 2011-08-02
ES201131345A ES2369953B1 (en) 2011-08-02 2011-08-02 OPTO-ELECTRONIC PLATFORM WITH CARBON BASED DRIVER AND QUANTIC POINTS AND PHOTOTRANSISTOR THAT INCLUDES A PLATFORM OF THIS TYPE

Publications (1)

Publication Number Publication Date
WO2013017605A1 true WO2013017605A1 (en) 2013-02-07

Family

ID=44996385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064979 WO2013017605A1 (en) 2011-08-02 2012-07-31 Optoelectronic platform with carbon based conductor and quantum dots, and transistor comprising such a platform

Country Status (7)

Country Link
US (1) US9233845B2 (en)
EP (1) EP2739563B1 (en)
JP (1) JP6021913B2 (en)
KR (1) KR101919005B1 (en)
CN (1) CN104024146B (en)
ES (2) ES2369953B1 (en)
WO (1) WO2013017605A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681837A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103681939A (en) * 2013-11-19 2014-03-26 浙江大学 Boron nitride-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103681938A (en) * 2013-11-19 2014-03-26 浙江大学 Boron nitride-zinc oxide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103681940A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-zinc oxide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103682102A (en) * 2013-11-19 2014-03-26 浙江大学 Graphene field effect opto-transistor and manufacturing method thereof
EP2975652A1 (en) 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
EP3104414A1 (en) 2015-06-10 2016-12-14 Fundació Institut de Ciències Fotòniques Image sensor, optoelectronic system comprising said image sensor, and method for manufacturing said image sensor
EP3128742A1 (en) 2015-08-03 2017-02-08 Fundació Institut de Ciències Fotòniques Image sensor with non-local readout circuit and optoelectronic device comprising said image sensor
US10311316B2 (en) 2014-11-21 2019-06-04 Nokia Technologies Oy Apparatus, method and computer program for identifying biometric features
WO2019180317A1 (en) * 2018-03-22 2019-09-26 Emberion Oy Photosensitive device comprising a two-dimensional material with electric shutter
US10437329B2 (en) 2015-08-03 2019-10-08 Fundació Institut De Ciències Fotòniques Gaze tracking apparatus
EP3798805A1 (en) * 2019-09-27 2021-03-31 INTEL Corporation Touchscreen with biosensor
US11777050B2 (en) 2018-12-14 2023-10-03 Panasonic Intellectual Property Management Co., Ltd. Optical sensor

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174413B2 (en) 2012-06-14 2015-11-03 International Business Machines Corporation Graphene based structures and methods for shielding electromagnetic radiation
US9413075B2 (en) * 2012-06-14 2016-08-09 Globalfoundries Inc. Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies
US8927964B2 (en) * 2012-11-20 2015-01-06 Nokia Corporation Photodetection
US9136300B2 (en) 2013-01-11 2015-09-15 Digimarc Corporation Next generation imaging methods and systems
KR101327501B1 (en) * 2013-01-22 2013-11-08 성균관대학교산학협력단 Optical fiber containing graphene oxide and reduced graphene oxide, and method for manufacturing gas sensor containing the same
US9680038B2 (en) * 2013-03-13 2017-06-13 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
US9130085B2 (en) * 2013-04-05 2015-09-08 Nokia Technologies Oy Transparent photodetector for mobile devices
JP6195266B2 (en) * 2013-05-01 2017-09-13 富士通株式会社 Manufacturing method of electronic device
TWI493739B (en) 2013-06-05 2015-07-21 Univ Nat Taiwan Hot-carrier photo-electric conversion apparatus and method thereof
KR102214833B1 (en) 2014-06-17 2021-02-10 삼성전자주식회사 Electronic devices including graphene and quantum dot
KR101558801B1 (en) * 2014-08-21 2015-10-12 경희대학교 산학협력단 Photo diode using hybrid structure of graphene-silicon quantum dots and method of manufacturing the same
EP2998737B1 (en) * 2014-09-18 2021-04-21 Nokia Technologies Oy An apparatus and method for controllably populating a channel with charge carriers using quantum dots attached to the channel and Resonance Energy Transfer.
CN105633193A (en) * 2014-10-31 2016-06-01 中国科学院物理研究所 Adjustable-response-wavelength ultraviolet detector
GB201501342D0 (en) * 2015-01-27 2015-03-11 Univ Lancaster Improvements relating to the authentication of physical entities
CN104752547A (en) * 2015-03-10 2015-07-01 天津大学 PbSe (Plumbum Selenium) quantum dot and graphene bulk hetero-junction photosensitive field-effect transistor and method
EP3109907B1 (en) * 2015-06-24 2023-08-23 Nokia Technologies Oy Device for emitting and detecting photons and method of producing the same
EP3136445B1 (en) * 2015-08-25 2021-03-17 Emberion Oy A method for forming apparatus comprising two dimensional material
CN105244415A (en) * 2015-10-19 2016-01-13 南京工程学院 Preparation process of quantum-dot hybrid reduced graphene oxide nanometer film photosensitive sensor
EP3163325B1 (en) * 2015-10-28 2020-02-12 Nokia Technologies Oy An apparatus and associated methods for computed tomography
JP6641904B2 (en) * 2015-11-09 2020-02-05 株式会社豊田中央研究所 Optical sensor
CN105679857B (en) * 2016-01-20 2017-03-22 浙江大学 Silicon quantum dot/graphene/silicon heterostructure-based photoelectric sensor
US11302834B2 (en) 2016-02-24 2022-04-12 Mitsubishi Electric Corporation Electromagnetic wave detector
EP3214656B1 (en) * 2016-03-04 2019-01-09 Nokia Technologies Oy A quantum dot photodetector apparatus and associated methods
EP3226309B1 (en) * 2016-04-01 2021-12-01 Nokia Technologies Oy Apparatus for photodetection and manufacturing method thereof
CN105932105A (en) * 2016-05-26 2016-09-07 合肥工业大学 Construction method of intelligent thin film photodetector capable of identifying detection wavelength
EP3252831B1 (en) * 2016-06-02 2021-01-13 Emberion Oy A quantum dot photodetector apparatus and associated methods
EP3261131B1 (en) 2016-06-21 2022-06-22 Nokia Technologies Oy An apparatus for sensing electromagnetic radiation
WO2018035688A1 (en) 2016-08-22 2018-03-01 深圳丹邦科技股份有限公司 Multi-layered graphene quantum carbon-based semiconductor material manufactured using pi membrane and manufacturing method thereof
CN106601857B (en) * 2016-11-22 2018-05-29 浙江大学 Photoconductive detector and preparation method based on boron-doping silicon quantum dot/graphene/silicon dioxide
CN106784122B (en) * 2016-12-01 2018-06-22 浙江大学 Photodetector and preparation method based on graphene/boron-doping silicon quantum dot/silicon
KR20180063552A (en) * 2016-12-02 2018-06-12 서울대학교산학협력단 Phototransistor, method for forming the phototransistor, and image sensor comprising the phototransistor
SE1750011A1 (en) * 2017-01-10 2018-05-02 Chalmers Ventures Ab A Graphene Optoelectronic Sensor
WO2018140932A1 (en) * 2017-01-30 2018-08-02 Ohio University Electrochemical uv sensor using carbon quantum dots
CN107104168A (en) * 2017-04-20 2017-08-29 上海幂方电子科技有限公司 UV sensor and preparation method thereof
EP3429190A1 (en) * 2017-07-11 2019-01-16 Fundació Institut de Ciències Fotòniques An optoelectronic apparatus, a method for suppressing noise for an optoelectronic apparatus, and uses thereof
KR101940422B1 (en) * 2017-10-02 2019-01-21 재단법인대구경북과학기술원 Microwave photodetection device and method of manufacturing of microwave photodetection device
KR101984398B1 (en) * 2017-10-13 2019-05-30 건국대학교 산학협력단 Phothdetector based on barristor and image sencor including the same
EP3701570B1 (en) * 2017-10-26 2022-11-23 Emberion Oy Photosensitive field-effect transistor
GB2568110B (en) 2017-11-07 2019-12-04 Emberion Oy Photosensitive field-effect transistor
EP3724928B1 (en) 2017-12-12 2023-03-15 Emberion Oy Photosensitive field-effect transistor
US11329239B2 (en) 2018-10-09 2022-05-10 Hong Kong Baptist University Multi-mode photodetectors and methods of fabricating the same
GB201816609D0 (en) 2018-10-11 2018-11-28 Emberion Oy Multispectral photodetector array
CN109473506A (en) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 High sensitive mid-infrared light electric explorer and preparation method thereof
CN109473507A (en) * 2018-10-24 2019-03-15 中国科学院上海微系统与信息技术研究所 Device and preparation method thereof with graphene
GB2579396A (en) 2018-11-30 2020-06-24 Emberion Oy P-I-N photodetector
US11217760B2 (en) * 2019-07-01 2022-01-04 University Of Central Florida Research Foundation, Inc. In-situ growth of quantum dots and nano-crystals from one, two, or three dimensional material
CN110864805B (en) * 2019-10-24 2021-11-23 北京大学 Ultra-wideband spectrum detection device and method
CN113013282B (en) * 2019-12-20 2023-03-21 中国电子科技集团公司第四十八研究所 High-response PbSe/C60 heterojunction photosensitive thin film infrared detection chip, preparation method thereof and infrared detector
KR20210100408A (en) 2020-02-06 2021-08-17 삼성전자주식회사 Opto-electronic device having junction field-effect transistor structure and image sensor including the opto-electronic device
JP7173074B2 (en) * 2020-03-17 2022-11-16 株式会社豊田中央研究所 photodetector
KR20210148742A (en) * 2020-06-01 2021-12-08 삼성전자주식회사 Opto-electronic device and image sensor including the opto-electronic device
CN111916531B (en) * 2020-08-19 2022-03-15 电子科技大学 Preparation method of composite material for photoelectric detection
CN112362633B (en) * 2020-12-15 2022-04-29 中南民族大学 Method for rapidly detecting mercury ions or thiophanate-methyl
WO2023193280A1 (en) * 2022-04-08 2023-10-12 Huawei Technologies Co.,Ltd. Image sensor and electronic device including same
CN116314424A (en) * 2022-12-21 2023-06-23 深圳大学 Multiband ultraviolet photoelectric detector and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045867A1 (en) * 2002-10-30 2005-03-03 Ozkan Cengiz S. Nanoscale heterojunctions and methods of making and using thereof
WO2005076368A1 (en) * 2004-01-06 2005-08-18 Philips Intellectual Property & Standards Gmbh Transistor with quantum dots in its tunnelling layer
JP4072625B2 (en) * 2004-03-26 2008-04-09 国立大学法人広島大学 Quantum dot field effect transistor, memory element and optical sensor using the same, and integrated circuit thereof
JP2005332991A (en) * 2004-05-20 2005-12-02 Univ Nagoya Carbon nanotube light emitting element
JP4517144B2 (en) * 2004-07-14 2010-08-04 国立大学法人広島大学 Manufacturing method of MOS field effect transistor type quantum dot light emitting device
JP4982729B2 (en) * 2005-01-27 2012-07-25 国立大学法人北海道大学 Ultra-sensitive image detection device, manufacturing method thereof, and detection method
JP4345712B2 (en) * 2005-05-30 2009-10-14 トヨタ自動車株式会社 Solar cell
KR101074779B1 (en) * 2005-12-29 2011-10-19 삼성에스디아이 주식회사 Semiconductor electrode using carbon nanotube, preparaton method thereof and solar cell comprising the same
ATE521095T1 (en) * 2006-05-01 2011-09-15 Univ Wake Forest PHOTOVOLTAIC FIBER COMPONENTS AND THEIR USE
US7923801B2 (en) * 2007-04-18 2011-04-12 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US20100044676A1 (en) * 2008-04-18 2010-02-25 Invisage Technologies, Inc. Photodetectors and Photovoltaics Based on Semiconductor Nanocrystals
US20090266418A1 (en) * 2008-02-18 2009-10-29 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
US8203195B2 (en) * 2008-04-18 2012-06-19 Invisage Technologies, Inc. Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
JP5631877B2 (en) * 2008-07-21 2014-11-26 インヴィサージ テクノロジーズ インコーポレイテッドInvisage Technologies,Inc. Materials, fabrication equipment, and methods for stable high sensitivity photodetectors and image sensors fabricated thereby
JP5453045B2 (en) * 2008-11-26 2014-03-26 株式会社日立製作所 Substrate on which graphene layer is grown and electronic / optical integrated circuit device using the same
ES2723523T3 (en) * 2009-09-29 2019-08-28 Res Triangle Inst Optoelectronic devices with the quantum-fullerene point junction
US20120228157A1 (en) * 2009-11-11 2012-09-13 Nanoselect, Inc. Protection and surface modification of carbon nanostructures
US9112085B2 (en) * 2009-11-30 2015-08-18 The Royal Institution For The Advancement Of Learning/Mcgill University High efficiency broadband semiconductor nanowire devices
US20140042390A1 (en) * 2011-02-16 2014-02-13 The Regents Of University Of California Interpenetrating networks of carbon nanostructures and nano-scale electroactive materials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GERASIMOS KONSTANTATOS ET AL: "Nanostructured materials for photon detection", NATURE NANOTECHNOLOGY, vol. 5, no. 6, 1 June 2010 (2010-06-01), pages 391 - 400, XP055039984, ISSN: 1748-3387, DOI: 10.1038/nnano.2010.78 *
JEONG SEUNG ET AL: "Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 92, no. 24, 16 June 2008 (2008-06-16), pages 243103 - 243103, XP012107594, ISSN: 0003-6951, DOI: 10.1063/1.2944813 *
KANG Y ET AL: "Enhanced optical sensing by carbon nanotube functionalized with CdS particles", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 125, no. 2, 10 January 2006 (2006-01-10), pages 114 - 117, XP027935365, ISSN: 0924-4247, [retrieved on 20060110] *
VIRENDRA SINGH ET AL: "Graphene based materials: Past, present and future", PROGRESS IN MATERIALS SCIENCE, PERGAMON PRESS, GB, vol. 56, no. 8, 30 March 2011 (2011-03-30), pages 1178 - 1271, XP028375493, ISSN: 0079-6425, [retrieved on 20110403], DOI: 10.1016/J.PMATSCI.2011.03.003 *
YANG H Y ET AL: "Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer", ORGANIC ELECTRONICS, ELSEVIER, AMSTERDAM, NL, vol. 11, no. 7, 1 July 2010 (2010-07-01), pages 1313 - 1317, XP027074928, ISSN: 1566-1199, [retrieved on 20100603], DOI: 10.1016/J.ORGEL.2010.04.009 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681939A (en) * 2013-11-19 2014-03-26 浙江大学 Boron nitride-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103681938A (en) * 2013-11-19 2014-03-26 浙江大学 Boron nitride-zinc oxide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103681940A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-zinc oxide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN103682102A (en) * 2013-11-19 2014-03-26 浙江大学 Graphene field effect opto-transistor and manufacturing method thereof
CN103681837A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
EP2975652A1 (en) 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
US11527662B2 (en) 2014-07-15 2022-12-13 Fundació Institut De Ciències Fotôniques Optoelectronic apparatus with a photoconductive gain
US10311316B2 (en) 2014-11-21 2019-06-04 Nokia Technologies Oy Apparatus, method and computer program for identifying biometric features
EP3104414A1 (en) 2015-06-10 2016-12-14 Fundació Institut de Ciències Fotòniques Image sensor, optoelectronic system comprising said image sensor, and method for manufacturing said image sensor
US10070083B2 (en) 2015-06-10 2018-09-04 Fundació Institut De Ciències Fotòniques Image sensor, optoelectronic system comprising said image sensor, and method for manufacturing said image sensor
US9955100B2 (en) 2015-08-03 2018-04-24 Fundació Institut De Ciències Fotòniques Image sensor with non-local readout circuit and optoelectronic device comprising said image sensor
US10437329B2 (en) 2015-08-03 2019-10-08 Fundació Institut De Ciències Fotòniques Gaze tracking apparatus
EP3128742A1 (en) 2015-08-03 2017-02-08 Fundació Institut de Ciències Fotòniques Image sensor with non-local readout circuit and optoelectronic device comprising said image sensor
WO2019180317A1 (en) * 2018-03-22 2019-09-26 Emberion Oy Photosensitive device comprising a two-dimensional material with electric shutter
US11069826B2 (en) 2018-03-22 2021-07-20 Emberion Oy Photosensitive device with electric shutter
US11777050B2 (en) 2018-12-14 2023-10-03 Panasonic Intellectual Property Management Co., Ltd. Optical sensor
EP3798805A1 (en) * 2019-09-27 2021-03-31 INTEL Corporation Touchscreen with biosensor
US11307720B2 (en) 2019-09-27 2022-04-19 Intel Corporation Touchscreen with biosensor

Also Published As

Publication number Publication date
CN104024146B (en) 2017-02-15
ES2369953A1 (en) 2011-12-09
CN104024146A (en) 2014-09-03
ES2909338T3 (en) 2022-05-06
US20130032782A1 (en) 2013-02-07
ES2369953B1 (en) 2012-10-09
JP2014522117A (en) 2014-08-28
EP2739563A1 (en) 2014-06-11
JP6021913B2 (en) 2016-11-09
EP2739563B1 (en) 2022-01-05
KR101919005B1 (en) 2019-02-08
KR20140046006A (en) 2014-04-17
US9233845B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
EP2739563B1 (en) Phototransistor comprising a graphene layer and quantum dots
US11527662B2 (en) Optoelectronic apparatus with a photoconductive gain
Liu et al. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors
US10847669B1 (en) Photodetection element including photoelectric conversion structure and avalanche structure
Hwang et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain
US20160172527A1 (en) Photodetector with Interdigitated Nanoelectrode Grating Antenna
KR102051513B1 (en) Inverter including depletion load having photosensitive channel layer and enhancement driver having light shielding layer and photo detector using the same
US11682741B2 (en) Electromagnetic wave detector
CN112823420B (en) Imaging device based on colloid quantum dots
US11862743B2 (en) Opto-electronic device and image sensor including the same
WO2021256018A1 (en) Electromagnetic wave detector and electromagnetic wave detector assembly
JP7374222B2 (en) Electromagnetic wave detector and electromagnetic wave detector assembly
US20230231063A1 (en) Optoelectronic apparatus and fabrication method of the same
Imenabadi et al. Importance of separating contacts from the photosensitive layer in heterojunction phototransistors
US11777050B2 (en) Optical sensor
JP7422963B1 (en) electromagnetic wave detector
Jang et al. Recent Research Progresses in 2D Nanomaterial-based Photodetectors
JP2022173791A (en) Electromagnetic wave detector and electromagnetic wave detector assembly
Tzeng et al. Photoresponses in Poly-Si Phototransistors Incorporating Germanium Quantum Dots in the Gate Dielectrics
Huang et al. Floating-Gate Transistor Photodetector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750717

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014523308

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147002854

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE