WO2013015279A1 - 補償装置、信号発生器及び無線通信装置 - Google Patents

補償装置、信号発生器及び無線通信装置 Download PDF

Info

Publication number
WO2013015279A1
WO2013015279A1 PCT/JP2012/068706 JP2012068706W WO2013015279A1 WO 2013015279 A1 WO2013015279 A1 WO 2013015279A1 JP 2012068706 W JP2012068706 W JP 2012068706W WO 2013015279 A1 WO2013015279 A1 WO 2013015279A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
reference signal
output
phase comparator
Prior art date
Application number
PCT/JP2012/068706
Other languages
English (en)
French (fr)
Inventor
政彦 大西
勇男 桂
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/131,238 priority Critical patent/US9197263B2/en
Priority to JP2013525725A priority patent/JP5846204B2/ja
Priority to EP12817875.3A priority patent/EP2738945B1/en
Publication of WO2013015279A1 publication Critical patent/WO2013015279A1/ja
Priority to US14/689,398 priority patent/US9281989B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/104Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional signal from outside the loop for setting or controlling a parameter in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock

Definitions

  • the present invention relates to a compensation device, a signal generator, and a wireless communication device.
  • Quadrature demodulation When a quadrature modulation signal is received, quadrature demodulation for the received signal is required. Quadrature demodulation is performed using a carrier frequency signal. Such orthogonal demodulation is described in Patent Document 1.
  • the received signal may be distorted by the orthogonal demodulator.
  • causes of distortion include a shift in orthogonality in the quadrature demodulator and I / Q gain imbalance (I / Q imbalance in the analog quadrature demodulator). Distortion caused by the orthogonality shift and IQ gain imbalance (I / Q imbalance) is called an image component.
  • a compensation parameter for removing the image component is obtained, and the compensation parameter is applied to the quadrature demodulated signal.
  • the compensation parameter is applied to the quadrature demodulated signal.
  • the signal before being input to the quadrature demodulator is a signal received through the propagation path, and it is difficult to grasp its characteristics.
  • an object is to facilitate the removal of image components generated by the quadrature demodulated signal.
  • a compensation device removes an image component generated by an orthogonal demodulator from an orthogonal demodulated signal output from an orthogonal demodulator that performs orthogonal demodulation using a carrier frequency signal.
  • Compensating apparatus for performing compensation processing wherein a signal generator that generates a reference signal having a predetermined bandwidth within a reception band and supplies the reference signal to an input side of the quadrature demodulator, and the quadrature demodulator
  • An arithmetic unit for calculating a compensation parameter for removing the image component based on a signal obtained by orthogonally demodulating the reference signal by the image signal, and an image component for removing the image component from the orthogonal demodulated signal using the compensation parameter
  • a removal unit wherein the reference signal is a signal having a band biased to either the high frequency side or the low frequency side with respect to the carrier frequency,
  • the arithmetic unit generates, as a reference signal replica, a signal in a band in which the image component is not super
  • the arithmetic unit outputs a signal in a band in which an image component is not superimposed because a band of the reference signal is biased with respect to the carrier frequency among signals obtained by orthogonal demodulation of the reference signal, Compensation parameters are calculated based on the reference signal replica that is generated as a reference signal replica and that has a reference signal replica, an arithmetic signal having an image component generated by the reference signal replica, and the reference signal replica. That is, since the reference signal is biased with respect to the carrier frequency, a portion where an image component is not superimposed on at least a portion of the original reference signal portion is secured. By using the portion where the image component is not superimposed as the reference signal replica, it is possible to estimate the image component, and it is possible to calculate a compensation parameter for removing the image component.
  • the reference signal exists only in either the high frequency side or the low frequency side of the carrier frequency, and the arithmetic unit outputs the reference signal output from the quadrature demodulator.
  • a signal in a band corresponding to the entire reference signal is generated as a reference signal replica, and the calculation signal is preferably a signal obtained by orthogonal demodulation of the reference signal. Since the image component appears symmetrically with respect to the carrier frequency, if the reference signal exists only in either the high frequency side or the low frequency side of the carrier frequency, the image component is the same as the reference signal. Appears in different parts. Therefore, the image component and the reference signal can be easily separated.
  • the arithmetic unit removes a signal in a band on the side where the reference signal does not exist from a signal obtained by orthogonally demodulating the reference signal, using the frequency corresponding to the carrier frequency as a reference, so that the reference signal replica Is preferably produced. Since the image component exists in the band where the reference signal does not exist, with the frequency corresponding to the carrier frequency as a reference, the reference signal replica without the image component is easily generated by removing the signal in the band. be able to.
  • the reference signal is biased to either the high frequency side or the low frequency side of the carrier frequency in a state of straddling the carrier frequency, and the arithmetic unit is output from the quadrature demodulator
  • a signal obtained by removing a portion where the image component is superimposed from a signal in a band corresponding to the reference signal in a signal obtained by orthogonal demodulation of the reference signal is generated as a reference signal replica, and the calculation signal is the reference signal
  • the signal is preferably a signal obtained by removing the superimposed portion of the image component from a signal obtained by orthogonal demodulation of the signal.
  • the reference signal is straddling the carrier frequency, if it is biased to either the high frequency side or the low frequency side of the carrier frequency, at least a part of the original reference signal portion is imaged. A portion where no component is superimposed is secured. By using the portion where the image component is not superimposed as the reference signal replica, the image component can be estimated.
  • the signal generator is a phase locked loop type signal generator in which the oscillation frequency of the voltage controlled oscillator is determined by the control voltage based on the output signal of the phase comparator, and generates an external signal that varies with time.
  • an external signal generator is provided, and the control voltage is obtained by superimposing the external signal on the output signal of the phase comparator.
  • a time-varying external signal By superimposing a time-varying external signal on the output signal of the phase comparator, a signal whose frequency changes with time can be generated.
  • a signal whose frequency changes with time can be regarded as a signal having a frequency bandwidth if time is ignored. That is, according to the signal generator, a signal having a bandwidth can be easily generated.
  • a signal having a bandwidth can be generated due to time variation of the frequency
  • a signal having a constant frequency can be generated.
  • a wireless communication device from another viewpoint is a wireless communication device including the compensation device according to (1).
  • a radio communication apparatus from still another viewpoint is a radio communication apparatus including the compensation device according to (5), in which an output signal of the phase comparator is included in the external signal.
  • a first mode in which a control voltage on which a signal is superimposed is applied to the voltage controlled oscillator; a second mode in which a control voltage in which the external signal is not superimposed on the output signal of the phase comparator is applied to the voltage controlled oscillator; , And a measuring unit that measures the gain of the receiver by supplying a single frequency signal output from the signal generator in the second mode to the receiver.
  • an object of the present invention from another viewpoint is to be able to generate a signal having a predetermined bandwidth without performing complicated digital control.
  • the signal generator according to one aspect of the present invention from another viewpoint is a phase locked loop type signal generator in which the oscillation frequency of the voltage controlled oscillator is determined by the control voltage based on the output signal of the phase comparator.
  • a signal generator comprising an external signal generator for generating a time-varying external signal, wherein the control signal is obtained by superimposing the external signal on the output signal of the phase comparator. It is a vessel.
  • a normal phase-locked loop signal generator generates a signal of a single frequency, but according to the present invention, an external signal that varies in time from the external signal generator is superimposed on the output signal of the phase comparator. Therefore, a signal whose frequency changes with time is output from the voltage controlled oscillator.
  • a signal whose frequency changes with time can be regarded as generating a signal having a predetermined bandwidth if time is ignored.
  • the frequency of the external signal is preferably smaller than the phase comparison frequency in the phase comparator. In this case, it is easy to appropriately control the frequency that varies depending on the external signal.
  • an adjustment unit that adjusts a ratio between the phase comparison frequency in the phase comparator and the frequency of the external signal. By adjusting the ratio between the phase comparison frequency and the frequency of the external signal, the bandwidth of the signal generated by the signal generator can be adjusted.
  • the external signal is preferably a sine wave.
  • the signal generator can be selectively used for the first mode and the second mode.
  • a wireless communication device from another viewpoint is a wireless communication device using a signal generated by the signal generator according to any one of (9) to (17). is there.
  • the present invention may be realized as a semiconductor integrated circuit (LSI) provided with a part or all of the functions of the compensation device, the signal generator, and the wireless communication device.
  • LSI semiconductor integrated circuit
  • wireless communication apparatus (receiver). It is a circuit diagram of a signal generator. It is an external signal generator and its peripheral circuit diagram. (A) shows a control signal to the VCO, and (b) is a diagram showing an oscillation frequency of the VCO. (A) shows a control signal to the VCO, and (b) is a diagram showing an oscillation frequency of the VCO. It is a block diagram of a control part. It is a flowchart of a QDC calculation process. It is a figure which shows a reference signal. It is a figure which shows I signal which has DC offset. It is a figure which shows Q signal which has DC offset.
  • (A) is a figure which shows a quadrature demodulated signal
  • (b) is the reference signal replica produced
  • (A) is a diagram showing a quadrature demodulated signal
  • (b) is a diagram showing a signal extracted from a portion where only an image component exists
  • (c) a signal from which a portion where only a reference signal exists is extracted.
  • (D) is a figure which shows the synthetic
  • FIG. 1 shows a configuration of a receiver in a wireless communication apparatus having a transmission / reception function.
  • the wireless communication device is used as a wireless base station device or a wireless terminal device.
  • the configuration of FIG. 1 is not limited to the receiver, and is used to monitor the transmission signal transmitted from the transmitter of its own wireless communication device (such as monitoring for DPD (distortion compensation) of the transmission amplifier). It can also be used as a monitor device that receives a transmission signal transmitted by the.
  • DPD disortion compensation
  • the receiver 1 shown in FIG. 1 has a function of orthogonally demodulating a received signal.
  • the receiver 1 also has a function as a compensation device that compensates for quadrature demodulation distortion that occurs during quadrature demodulation.
  • the receiver 1 includes an amplifier (low noise amplifier) 2 that amplifies a received signal received by an antenna (not shown), a variable attenuator 3 that adjusts the gain of the received signal, and a frequency converter (down converter) 4 that performs frequency conversion of the received signal.
  • a quadrature demodulator 5 that performs quadrature demodulation of the received signal
  • ADCs 6a and 6b that convert the analog I / Q signal output from the quadrature demodulator 5 into a digital signal
  • a quadrature demodulation compensation unit 7 that compensates the quadrature demodulated signal
  • a gain compensator 8 for compensating the gain of the quadrature demodulated signal is provided.
  • the quadrature demodulator 5 includes analog elements such as an oscillator 5a, a ⁇ / 2 phase shifter 5b, and multipliers 5c and 5d that generate a signal having a reception carrier frequency (a signal having a frequency matching the reception carrier frequency).
  • An analog quadrature demodulator (AQD) that performs quadrature demodulation processing by analog signal processing. Due to variations in the analog elements constituting the quadrature demodulator 5, the quadrature demodulated signal (I / Q signal) obtained by quadrature demodulation of the received signal is subjected to distortion.
  • the quadrature demodulation compensation unit 7 has a quadrature demodulator correction function and compensates for distortion generated in the quadrature demodulated signal (I / Q signal) by the quadrature demodulator 5.
  • the orthogonal demodulation compensation unit 7 includes a local leak removal unit 7a and an image component removal unit 7b.
  • a local leak removal unit (QDC_LLR; Quadrature Demodulator Correction_Local Leakage Rejection) 7a removes local leak from the orthogonal demodulation distortion. Local leakage occurs due to carrier frequency leakage and / or DC offset.
  • An image component removal unit (QDC_IR; Quadrature Demodulator Correction_Image Rejection) 7b removes image components from the orthogonal demodulation distortion. Image components are caused by orthogonality shifts and / or gain imbalances. The local leak can be observed regardless of the presence or absence of a signal. The distortion of image components varies depending on the signal.
  • the local leak removing unit 7a and the image component removing unit 7b use compensation parameters (compensation coefficients) R 11 , R 21 , R 22 , dcOffsetRe, dcOffsetIm for compensating for orthogonal demodulation distortion (local leak or image component), Perform distortion compensation.
  • the compensation parameter is calculated by the control unit 9.
  • Compensation processing performed by the orthogonal demodulation compensator 7 shown in FIG. 1 can be expressed by the following equation using the compensation parameter.
  • dcOffsetRe and dcOffsetIm are first compensation parameters for removing local leaks.
  • R 11 , R 21 , and R 22 are second compensation parameters for removing image components.
  • the control unit 9 uses a special signal (reference signal) having a predetermined bandwidth instead of a normal reception signal received by the antenna. Use.
  • a signal generator 10 generates a reference signal used to determine the compensation parameter.
  • the quadrature demodulation compensator 7 that removes the image component of the quadrature demodulation distortion using the compensation parameters R 11 , R 21 , and R 22 performs a compensation process that removes the image component generated by the quadrature demodulator 5.
  • Compensation device is configured.
  • the quadrature demodulation compensation unit 7 includes a local leak removal unit 7a and an image component removal unit 7b. In order for the compensation device to remove the image component generated by the quadrature demodulator 5, at least, What is necessary is just to provide the image component removal part 7b.
  • FIG. 2 shows a circuit configuration of the signal generator 10.
  • the signal generator is obtained by adding an external signal generator (external signal generation unit) 21 to a phase lock loop (PLL) type oscillation circuit.
  • PLL phase lock loop
  • phase comparator 22 includes a phase comparator 22, a charge pump circuit 23, a low-pass filter (loop filter) 24, a voltage controlled oscillator (VCO) 25, and frequency dividers 26 and 27. Yes.
  • the phase comparator 22 divides the output signal of the frequency divider 27 that performs R frequency division with respect to the reference frequency f ref and the frequency divider that performs N frequency division on the output signal (frequency f out ) of the voltage controlled oscillator 25. 26 output signals are compared, and a voltage corresponding to the phase difference between the two is output.
  • the output voltage of the phase comparator 22 becomes a control signal (control voltage) to the voltage controlled oscillator 25 by passing through the charge pump circuit 23 and the low pass filter 24.
  • the output signal of the voltage controlled oscillator 25 is fed back to the phase comparator 22 via the frequency divider 26 to form a phase locked loop.
  • a signal with a constant frequency is output from the voltage controlled oscillator 25 by the phase locked loop.
  • the signal generator 10 shown in FIG. 2 is provided with an external signal generator 21.
  • the external signal generator 21 includes an oscillator (variable frequency oscillator) 29 that generates a signal that varies with time, such as a sine wave.
  • a signal (external signal) V ext generated by the oscillator 29 is superimposed on a control signal of the voltage controlled oscillator 25. That is, the control signal in which the external signal V ext is superimposed on the original control signal (original control voltage) V ctrl ′ generated by passing the output voltage of the phase comparator 22 through the charge pump circuit 23 and the low-pass filter 24.
  • Control voltage V ctrl is generated.
  • the output signal of the oscillator 29 is given to the input line 28 of the voltage controlled oscillator 25 through the non-inverting amplifier 30, the switching unit (switch) 30b, and the capacitor 30c.
  • the non-inverting amplifier 30 has a function of adjusting the amplitude of the external signal generated by the oscillator 29. Note that when the amplitude adjustment of the external signal V ext is not necessary, the non-inverting amplifier 30 may be configured as a voltage follower circuit.
  • the switching unit 30b has a function of turning ON / OFF the superimposition of the external signal V ext on the control signal.
  • the first mode in which the control voltage V ext obtained by superimposing the external signal V ext on the output voltage of the phase comparator 22 is applied to the voltage controlled oscillator 25 can be set.
  • the switching unit 30b it is possible to enter the second mode in which the control voltage V ext ′ in which the external signal V ext is not superimposed on the output voltage of the phase comparator 22 is given to the voltage controlled oscillator 25.
  • ON / OFF switching in the switching unit 30b is performed by a control signal (Chirp / CW signal) from the control unit 9.
  • the capacitor 30c is the role of the AC coupling has the function of the original control signal V ctrl 'swing the external signal V ext as a bias voltage.
  • the output frequency (oscillation frequency) f out monotonously increases with respect to the control signal (control voltage) V ctrl . That is, the voltage controlled oscillator (VCO) 25 outputs a signal having an output frequency (oscillation frequency) f out corresponding to the magnitude of the control signal V ctrl .
  • a variable attenuator 40 is provided on the output side of the VCO 25, and the output of the VCO 25 is used for the purpose of preventing the signal input from the signal generator 10 from being saturated when the gain of the receiver is increased. Can be adjusted.
  • the variable attenuator 40 can be adjusted from the control unit 9.
  • the external signal (sine wave) V ext generated by the external signal generator 21 is added to the control signal (control voltage) V ctrl ′ according to the output voltage of the phase comparator 22.
  • the superimposed control signal (control voltage) V ctrl is supplied to the voltage controlled oscillator 25, as shown in FIG. 5B, the frequency f out of the output signal output from the voltage controlled oscillator 25 is According to the temporal change of the amplitude value of the external signal V ext , it changes with time centering on the frequency f 0 .
  • the output frequency of the voltage controlled oscillator 25 becomes the frequency f 0 locked by the control signal (control voltage) V ctrl ′, but the time of the external signal V ext
  • the amplitude value of the external signal V ext becomes larger than zero due to the fluctuation
  • the output frequency of the voltage controlled oscillator 25 becomes larger than f 0 .
  • the time variation of the external signal V ext the amplitude value of the external signal V ext is less than zero, the output frequency of the voltage controlled oscillator 25 is smaller than f 0.
  • the fluctuation of the output frequency (oscillation frequency) of the voltage controlled oscillator 25 according to the time fluctuation of the external signal V ext is f 0 ⁇ (f w / 2) to f 0 + (f w / 2) with f 0 as the center. ). That is, the frequency range in which the output frequency of the voltage controlled oscillator 25 changes temporally is f w.
  • Signal generator 10 by having an external signal generator 21, as in the chirp signal (chirp Signal), to generate a signal whose frequency varies temporally in a predetermined frequency range f w it can.
  • a signal whose frequency varies temporally within a predetermined frequency range f w, ignoring the time, frequency bandwidth can be regarded as the signal is f w.
  • the signal generator 10 can be regarded as a device for generating a signal (reference signal) having a predetermined bandwidth f w.
  • the signal generator 10 shown in FIG. 2 can easily generate a chirp signal simply by adding the external signal generator 21 to a general PLL circuit.
  • the value of the bandwidth (frequency range) f w of the signal generated by the signal generator 10 is mainly determined by the amplitude of the external signal V ext.
  • the non-inverting amplifier 30 can be used as a first adjustment unit that adjusts the value of the band (frequency range) f w by adjusting the amplitude of the external signal V ext .
  • the amplification factor of the non-inverting amplifier 30 can be changed, and as a result, the amplitude of the external signal V ext can be adjusted.
  • a signal Ctrl A for changing the amplification factor of the non-inverting amplifier 30 is given from the control unit 9.
  • the value of the bandwidth (frequency range) f w of the signal generated by the signal generator 10 is also affected by other factors other than the amplitude of the external signal V ext. Another factor is, for example, the ratio between the phase comparison frequency f ref in the phase comparator 22 and the frequency of the external signal V ext . If the phase comparison frequency f ref in the phase comparator 22 is high, the phase comparison in the phase comparator 22 is frequently performed, and the degree that the frequency changed by the external signal V ext tends to return to f 0 increases. Thus, as the phase comparison frequency f ref of the phase comparator is high, it is possible to reduce the bandwidth (frequency range) f w of the signal generated by the signal generator 10.
  • the variable frequency oscillator 29 can be used as a second adjustment unit that adjusts the ratio between the phase comparison frequency f ref and the frequency of the external signal V ext in the phase comparator 22. By adjusting the frequency of the external signal ext , the ratio between the phase comparison frequency f ref and the frequency of the external signal V ext is adjusted, and as a result, the amplitude of the external signal V ext can be adjusted.
  • the signal Ctrl B for changing the oscillation frequency of the variable frequency oscillator 29 is given from the control unit 9.
  • the frequency of the external signal V ext be small. This is because if the frequency of the external signal V ext is too large, the frequency that varies with the external signal V ext cannot be controlled appropriately. From this point of view, the frequency of the external signal V ext is preferably smaller than the phase comparison frequency f ref in the phase comparator 22, for example, and is 1/10 or less of the phase comparison frequency f ref in the phase comparator 22. Is more preferable.
  • a resistor that affects the magnitude of the charge pump current in the charge pump circuit 23 may be variable. This variable resistor serves as a third adjustment unit that adjusts the charge pump current.
  • a signal Ctrl C for changing the charge pump current is supplied from the control unit 9.
  • an element that affects the time constant in the LPF 24 may be set as a variable element.
  • This variable element is a fourth adjustment unit that adjusts the time constant of the LPF 24.
  • the signal generated from the signal generator 10 configured as described above is supplied to the amplifier 2 via the switch unit 11 and is orthogonally demodulated by the orthogonal demodulator 5.
  • the switch unit 11 can switch whether the signal supplied to the amplifier 2 (orthogonal demodulator 5) is a reception signal received by an antenna (not shown) or a signal generated by the signal generator 10. .
  • a switching control signal to the switch unit 11 is given from the control unit 9.
  • the QDC calculation unit (orthogonal demodulation compensation calculation unit) 31 for calculating a compensation parameter used for quadrature demodulation compensation, the variable attenuator 3 and / or the gain compensation unit 8 performs gain compensation.
  • An RxALC calculation unit (gain compensation calculation unit) 34 for calculating a compensation value to be referred to at the time is provided.
  • the QDC calculation unit 31 acquires the quadrature demodulated signal (I / Q signal) output from the quadrature demodulator 5 (from the output side of the gain compensation unit 8).
  • the QDC calculation unit 31 calculates a compensation parameter for compensating for the orthogonal demodulation distortion based on the acquired orthogonal demodulation signal.
  • the compensation parameter obtained by the calculation is applied to the orthogonal demodulation compensation unit 7.
  • the quadrature demodulation compensation unit 7 removes the quadrature demodulation distortion of the quadrature demodulated signal (I / Q signal) using the compensation parameter.
  • the QDC calculation unit 31 includes a QDC_LLR calculation unit (local leak calculation unit) 32 that calculates first compensation parameters dcOffsetRe and dcOffsetIm for removing local leaks, and second compensation parameters R 11 and R for removing image components. 21, QDC_IR arithmetic unit as an arithmetic unit for calculating the R 22 and (image component calculating unit) 33, and a.
  • the first compensation parameters dcOffsetRe and dcOffsetIm obtained by the QDC_LLR calculation unit 32 are applied to the local leak removal unit 7a.
  • the second compensation parameters R 11 , R 21 , and R 22 obtained by the QDC_IR calculating unit 33 are applied to the image component removing unit 7b.
  • control unit 9 includes at least the QDC_IR calculation unit 33 for calculating the second compensation parameters R 11 , R 21 , and R 22 for removing the image component, the image component generated by the quadrature demodulator 5 is provided. It is possible to realize a function as a calculation unit of a compensation device that performs a compensation process for removing.
  • FIG. 7 shows a processing flowchart for calculating (updating) the compensation parameter.
  • the control unit 9 gives the chirp signal generated by the signal generator 10 to the input side of the quadrature demodulator 5 (step S1). If the receiver 1 is provided with a plurality of systems (circuits in FIG. 1) for processing received signals, the system for calculating the compensation parameter is selected prior to step S1.
  • step S ⁇ b> 1 the control unit 9 outputs to the switch unit 11 a switching control signal for switching the switch unit 11 so that the signal generated by the signal generator 10 is supplied to the amplifier 2 (orthogonal demodulator 5).
  • the signal generator 10 is a single frequency signal; so instead (CW Constan Wave), a first mode for outputting the chirp (Chirp) signals having a predetermined bandwidth f w, mode A switching control signal (Chirp / CW signal) is output to the external signal generator 21 of the signal generator 10.
  • a mode switching control signal for causing the signal generator 10 to generate a chirp signal
  • the control voltage Vctrl on which the external signal Vext is superimposed.
  • the voltage controlled oscillator 25 outputs a signal (reference signal) having a predetermined bandwidth as shown in FIG.
  • the band of the chirp signal can be determined as appropriate according to the system band during operation. For example, several patterns of external signal V ext amplitudes may be set in advance according to the system band, and which external signal V ext amplitude should be selected according to the selected system band.
  • the chirp signal bandwidth determined by the amplitude of the external signal V ext, adjustment of the ratio of the frequency of the phase comparison frequency f ref and the external signal V ext, adjustment of the charge pump current be fine-tuned by adjusting the time constant of the LPF24 (Adjustable by adjusting at least one of the adjustments).
  • the reference signal has a predetermined band ((f 0 ⁇ (f w / 2)) ⁇ (f 0 + (f W / 2))) within the reception band (f r ⁇ min ⁇ f r ⁇ max ). Generated as a signal.
  • the reference signal has a band that is biased toward the high frequency side with respect to the reception carrier frequency fc that is the center frequency of the reception band. In FIG. 8, the band of the reference signal exists only on the high frequency side with respect to the carrier frequency fc, and does not exist on the lower frequency side than the carrier frequency fc. Further, the band of the reference signal is located away from the carrier frequency fc.
  • the carrier frequency fc (the center frequency of the received signal) may be changed, but even if the carrier frequency fc is changed, the center frequency f 0 of the chirp signal is maintained so that the relationship shown in FIG. 8 can be maintained. And / or the band f w may be adjusted.
  • the quadrature demodulated signal (I / Q signal) having the quadrature demodulation distortion is sampled by the QDC calculation unit 31 (step S2).
  • the QDC_LLR calculator 32 calculates the local leak amount based on the sampled quadrature demodulated signal (step S3). Since the reference signal has no DC component due to AC coupling (not shown), if there is no local leak, the center of the IQ constellation should be the origin of the IQ plane. However, if the influence of local leak is included in each I / Q signal, the zero point of the constellation of the orthogonal demodulated signal is shifted from the origin of the IQ plane.
  • the local leak is obtained by taking the time average of each I / Q signal.
  • DC components I DC and Q DC corresponding to are obtained.
  • the obtained DC components I DC and Q DC are used for updating the first compensation parameters dcOffsetRe and dcOffsetIm for canceling the local leak (step S5).
  • the QDC_IR computing unit 33 calculates an image component based on the sampled quadrature demodulated signal (step S4).
  • an I signal in which no image component is generated by the quadrature demodulator 5 is Refsig_re [n]
  • a Q signal in which no image component is generated by the quadrature demodulator 5 is Refsig_Im [n]
  • Refsig_re [n] If the I signal on which the image component by the quadrature demodulator 5 is superimposed is Rxsig_re [n], and the Q signal on which the image component by the quadrature demodulator 5 is superimposed on Refsig_Im [n] is Rxsig_Im [n]
  • the image components produced by the vessel can be expressed as follows:
  • R tmp11 , R tmp21 , R tmp22 correspond to image components.
  • * [n] is a digital complex baseband IQ representation signal sampled at time n ⁇ T when the sampling interval is T (seconds).
  • * (T) indicates an analog signal at time t.
  • the QDC_IR calculation unit 33 calculates the above R tmp11 , R tmp21 , and R tmp22 as image components.
  • the QDC_IR calculation unit 33 calculates R tmp21 , R tmp21 , R tmp22 in the above formula, In view of the above relationship, estimation is performed using an arbitrary numerical calculation method such as a least square method.
  • the QDC_IR calculating unit 33 that performs digital processing uses the quadrature demodulator in addition to the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5.
  • the digital I / Q signals Refsig_re [n] and Refsig_Im [n] in which no image component due to 5 is generated are necessary.
  • the QDC_IR calculation unit 33 that performs digital processing to obtain the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5.
  • the receiver 1 according to the present embodiment can generate replicas of Refsig_re [n] and Refsig_Im [n] from the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5, calculation of image components is possible. Is easy.
  • the reference signal (FIG. 8) output from the signal generator 10 is input to the quadrature demodulator 5 when calculating the compensation parameter.
  • the reference signal portion and the image component portion appear in different portions. This is because the band of the reference signal exists only on one side (high frequency side) with respect to the carrier frequency fc, and the image component appears symmetrically with respect to the carrier frequency fc. That is, the image component appears in a band symmetrical in the frequency direction with respect to the band of the reference signal when the carrier frequency fc is used as a reference.
  • the frequency corresponding to the carrier frequency fc is zero.
  • the QDC_IR calculation unit 33 exists on the other side (low frequency side) with the carrier frequency fc as a reference.
  • the component can be considered an image component, not a reference signal.
  • an analog reference signal output from the signal generator 10 is used as an orthogonal demodulator 5 without orthogonal demodulation distortion. Is subjected to quadrature demodulation and converted to a digital signal by the ADCs 6a and 6b.
  • the signal in FIG. 11B has no image component. Therefore, the signal of FIG. 11B is a replica (reference signal replica) of the ideal digital reference signal Refsig [n].
  • the QDC calculation unit 31 calculates (updates) the first compensation parameters dcOffsetRe and dcOffsetIm for canceling the DC components I DC and Q DC calculated in Step S3 (Step S5). Further, the QDC calculation unit 31 calculates (updates) the second compensation parameters R 11 , R 21 , R 22 for canceling the image components R tmp21 , R tmp21 , R tmp22 estimated in step S4 (step S5). . The QDC calculation unit 31 gives the obtained first and second compensation parameters to the orthogonal demodulation compensation unit 7.
  • the reference signal exists only in the high frequency band with reference to the carrier frequency fc.
  • the reference signal may exist only in the low frequency band with reference to the carrier frequency fc.
  • the reference signal only needs to have a band biased to either the high frequency side or the low frequency side with respect to the carrier frequency fc. That is, the reference signal may be biased to either the high frequency side or the low frequency side of the carrier frequency fc in a state of straddling the carrier frequency fc.
  • the image component is superimposed on at least a part of the original reference signal portion as shown in FIG. The part that has not been secured.
  • the image component can be estimated.
  • the band of the reference signal is from ⁇ f 1 to f 2 (f 1 ⁇ f 2 ).
  • the image component appears in the range of ⁇ f 2 to f 1 and overlaps with the reference signal.
  • the QDC_IR calculation unit 33 since there is a magnitude level difference between the reference signal and the image component, the QDC_IR calculation unit 33 includes only the image component in a portion having a level difference of a threshold value (for example, 20 dB) or more with respect to the reference signal. It can be detected as a part to be. As a result, as shown in FIG. 12B, only the image components in the range of ⁇ f 2 to f 1 can be extracted.
  • the QDC_IR computing unit 33 extracts a signal in the range of f 1 to f 2 from the signal in FIG. 12A, thereby making a reference on which no image component is superimposed as shown in FIG. A signal (part of) is obtained.
  • the signal shown in FIG. 12C (corresponding to a part of the reference signal) may be used as the reference signal replica Replica_Refsig [n].
  • the image component calculation signals Rxsig_re [n] and Rxsig_Im [n] are generated by the reference signal replica of FIG. 12C and the signal of FIG. 12B (reference signal replica of FIG. 12C). 12 (d) obtained by combining the image components).
  • the reference signal replica used for the calculation of the image component may be a portion corresponding to the entire reference signal.
  • the image component is superimposed on the reference signal, the image component is superimposed.
  • the part which removed the part may be sufficient.
  • the quadrature demodulated signal may be used as it is as the arithmetic signal, or when the reference signal and the image component are superimposed in the quadrature demodulated signal, the superimposed part is removed. Also good.
  • the control unit 9 can also perform calculation for gain compensation using the signal (CW) output from the signal generator 10.
  • the RxALC calculation unit 34 that calculates the compensation value for gain compensation includes a power calculation unit 35, a detector output calibration unit 36, and a gain calculation unit 37.
  • the RxALC calculation unit (measurement unit) 34 measures the ratio between the power of the signal (CW) output from the signal generator 10 and the power of the orthogonally demodulated received signals R I ′′ and R Q ′′. By monitoring, a compensation value is calculated for gain compensation in the variable attenuator 3 and / or the gain compensator 8.
  • the output of the detector 12 that detects the signal (SW) output from the signal generator 10 is given to the RxALC calculation unit 34 via the ADC 12a. Further, the Rx ALC calculation unit 34 is provided with the orthogonally demodulated signals R I ′′ and R Q ′′. Further, the output of the temperature sensor 13 is given to the RxALC calculation unit 34 via the ADC 14.
  • the power calculator 35 of the RxALC calculator 34 calculates the received power of the signals R I ′′ and R Q ′′ that have been orthogonally demodulated.
  • the detector output calibration unit 36 calibrates the output of the detector 12 (power of the signal (CW)) with the temperature (output of the temperature sensor 13), and calculates the calibrated received power.
  • the detector output calibration unit 36 has a temperature calibration table, and calculates the calibrated received power by referring to the table.
  • the gain calculation unit 37 obtains a ratio between the received power based on the detector output and the received power of the quadrature demodulated signals R I ′′ and R Q ′′.
  • the output of the gain calculator 37 is given to the calculator 38.
  • the calculator 38 obtains a deviation ⁇ Gain between the output of the gain calculator 37 and the gain reference value.
  • FIG. 13 shows a process flowchart for calculating gains ⁇ Gain 1 and ⁇ Gain 2 that are compensation values for gain compensation in the variable attenuator 3 and / or the gain compensator 8.
  • the control unit 9 gives a signal (CW; unmodulated continuous wave) generated from the signal generator 10 to the input of the receiver 1 instead of a normal reception signal (step S11). If the receiver 1 is provided with a plurality of systems (circuits in FIG. 1) for processing received signals, the selection of a system to be subjected to calculation for gain compensation is performed prior to step S11. Is called.
  • step S11 the control unit 9 outputs a switching control signal for switching the switch unit 11 to the switch unit 11 so that the signal generated by the signal generator 10 is given to the amplifier 2 (orthogonal demodulator 5). To do.
  • the control unit 9 sends a mode switching control signal (Chirp / CW signal) to the signal generator 10 so that the signal generator 10 is in the second mode in which a single frequency signal (CW; Constant Wave) is output. Output to the external signal generator 21.
  • CW Continuous Wave
  • the RxALC calculator 34 samples the digital quadrature demodulated signals R I ′′ and R Q ′′ obtained by quadrature demodulating the single frequency signal (CW) generated by the signal generator 10 and converting it into a digital signal. (Step S12).
  • the RxALC operation unit 34 converts the power value (detector output) obtained by detecting the single frequency signal (CW) generated by the signal generator 10 with the detector 12 into a digital signal with the ADC 14. Is acquired (step S12).
  • the control unit 9 stops the generation of the signal (CW) from the signal generator 10 (step S13).
  • the switch 28a provided on the output side of the VCO 25 may be switched to the end 28b side.
  • the detector output calibration unit 36 calibrates the detector output (electric power) with reference to the temperature calibration table (step S14).
  • the power calculator 35 calculates a time average value of the power of a single frequency signal (CW) from the digital quadrature demodulated signals R I ′′ and R Q ′′ obtained by sampling, and calculates the gain of the calculation result.
  • Part 37 is given.
  • the gain calculation unit 37 calculates and outputs the ratio between the power output from the power calculation unit 35 and the power output from the detector output calibration unit 36 (step S15).
  • the calculator 38 calculates using the power ratio output from the gain calculator 37 and the gain reference value.
  • the calculator 38 obtains a deviation ⁇ Gain of the power ratio output from the gain calculator 37 with respect to the gain reference value.
  • the gain reference value is a target value for adjusting the power ratio output from the gain calculator 37, and is a theoretical power ratio between the detector output and the power of the digital quadrature demodulated signal.
  • the control unit 9 adjusts the gain of the variable attenuator 3 and / or the gain compensation unit 8 so that the deviation ⁇ Gain is eliminated. Is supplied to the variable attenuator 3 and / or the gain compensator 8.
  • the variable attenuator 3 and / or the gain compensator 8 operates so as to adjust the gain based on the signal from the controller 9 and eliminate the deviation ⁇ Gain.
  • the gain reference value may be determined in advance or may be input from the outside via an input interface.
  • 1 communication device (receiver), 2: amplifier, 3: variable attenuator, 4: frequency converter, 5: quadrature demodulator, 5a: oscillator, 5b: phase shifter, 5c, 5d: multiplier, 6a, 6b : ADC, 7: Quadrature demodulation compensation unit, 7a: Local leak removal unit, 7b: Image component removal unit, 8: Gain compensation unit, 9: Control unit, 10: Signal generator, 11: Switch unit, 12: Detector , 13: temperature sensor, 21: external signal generator, 22: phase comparator, 23: charge pump circuit, 24: low-pass filter, 25: voltage controlled oscillator, 26: frequency divider, 28: input line, 30: non Inverting amplifier, 30a: variable resistor, 30b: switch, 30c: capacitor, 31: quadrature demodulation compensation calculation unit, 32: local leak calculation unit, 33: image component calculation unit, 34: gain compensation calculation unit (measurement unit), 3 : Power calculation unit, 35: reception power calculation unit, 36: detector output correction unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 搬送周波数fcの信号を用いて直交復調を行う直交復調器5から出力された直交復調信号に対して、前記直交復調器5によって生じたイメージ成分を除去する補償処理を行う補償装置であって、受信帯域内において所定の帯域幅を持つ基準信号を発生させて、当該基準信号を前記直交復調器5の入力側に与える信号発生器10を備えている。前記基準信号は、前記搬送周波数に対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有する信号である。

Description

補償装置、信号発生器及び無線通信装置
 本発明は、補償装置、信号発生器及び無線通信装置に関するものである。
 直交変調信号を受信すると、その受信信号に対する直交復調が必要となる。直交復調は、搬送周波数の信号を用いて行われる。このような直交復調は、特許文献1に記載されている。
特開2010-130630号公報
 直交復調を、特許文献1に示すようにアナログ信号処理で行う場合、受信信号が直交復調器によって歪を受けることがある。
 歪の要因としては、直交復調器における直交度のずれ、及び、I/Qゲイン不平衡(アナログ直交復調器内のI/Q不平衡)などがある。直交度のずれ及びIQゲイン不平衡(I/Q不平衡)によって生じる歪は、イメージ成分とよばれる。
 このイメージ成分を除去して直交復調信号を補償するには、イメージ成分を除去するための補償パラメータを求め、その補償パラメータを直交復調信号に適用すればよい。
 しかし、直交復調器によって発生したイメージ成分を除去するには、直交復調器に入力される前の信号の特性が分かっている必要がある。しかし、直交復調器に入力される前の信号は、伝搬路を通って受信された信号であり、その特性を把握することは困難である。
 そこで、直交復調信号によって発生したイメージ成分の除去を容易に行えるようにすることを目的とする。
(1)本発明の一態様に係る補償装置は、搬送周波数の信号を用いて直交復調を行う直交復調器から出力された直交復調信号に対して、前記直交復調器によって生じたイメージ成分を除去する補償処理を行う補償装置であって、受信帯域内において所定の帯域幅を持つ基準信号を発生させて、当該基準信号を前記直交復調器の入力側に与える信号発生器と、前記直交復調器によって前記基準信号を直交復調した信号に基づいて、前記イメージ成分を除去するための補償パラメータを演算する演算部と、前記補償パラメータを用いて、前記直交復調信号から前記イメージ成分を除去するイメージ成分除去部と、を備え、前記基準信号は、前記搬送周波数に対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有する信号であり前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記イメージ成分が重畳されていない帯域の信号を、基準信号レプリカとして生成するとともに、前記基準信号レプリカ及び前記基準信号レプリカによって生じたイメージ成分を有する演算用信号と、前記基準信号レプリカと、に基づいて、前記補償パラメータを演算することを特徴とする補償装置である。
 上記構成の補償装置によれば、演算部は、基準信号を直交復調した信号のうち、基準信号の帯域が搬送周波数に対して偏っていることによってイメージ成分が重畳されていない帯域の信号を、基準信号レプリカとして生成するとともに、基準信号レプリカ及び基準信号レプリカによって生じたイメージ成分を有する演算用信号と、基準信号レプリカと、に基づいて、補償パラメータを演算する。
 つまり、基準信号が、搬送周波数に対して偏っていることで、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能であり、ひいてはイメージ成分を除去するための補償パラメータを演算することが可能となる。
(2)前記基準信号は、前記搬送周波数の高周波数側又は低周波数側のいずれか一方の帯域だけに存在しており、前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記基準信号全体に対応する帯域の信号を基準信号レプリカとして生成し、前記演算用信号は、前記基準信号を直交復調した信号であるのが好ましい。
 イメージ成分は、搬送周波数を基準として対称的に現れるため、基準信号は、搬送周波数の高周波数側又は低周波数側のいずれか一方の帯域だけに存在していると、イメージ成分は、基準信号とは異なる部分に現れる。したがって、イメージ成分と基準信号との分離が容易となる。
(3)前記演算部は、前記搬送周波数に対応する周波数を基準として、前記基準信号が存在しない側の帯域の信号を、前記基準信号を直交復調した信号から除去することで、前記基準信号レプリカを生成するのが好ましい。搬送周波数に対応する周波数を基準として、基準信号が存在しない側の帯域には、イメージ成分が存在するため、その帯域の信号を除去することで、イメージ成分のない基準信号レプリカを容易に生成することができる。
(4)前記基準信号は、前記搬送周波数を跨った状態で、前記搬送周波数の高周波数側又は低周波数側のいずれか一方に偏っており、前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号において前記基準信号に対応する帯域の信号から、前記イメージ成分が重畳されている部分を除去した信号を基準信号レプリカとして生成し、前記演算用信号は、前記基準信号を直交復調した信号から、前記イメージ成分の重畳部分が除去された信号であるのが好ましい。基準信号が搬送周波数を跨っている場合であっても、搬送周波数の高周波数側又は低周波数側のいずれか一方に偏っていれば、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能である。
(5)前記信号発生器は、位相比較器の出力信号に基づく制御電圧によって電圧制御発振器の発振周波数が決定される位相ロックループ方式の信号発生器であるとともに、時間変動する外部信号を発生する外部信号発生部を備え、前記制御電圧は、前記位相比較器の出力信号に前記外部信号が重畳されたものであるのが好ましい。位相比較器の出力信号に、時間変動する外部信号を重畳させることで、周波数が時間的に変化する信号を生成することができる。そして、周波数が時間的に変化する信号は、時間を無視すれば、周波数帯域幅を有する信号であるとみなすことができる。つまり、上記の信号発生器によれば、帯域幅を有する信号を容易に生成できる。
(6)前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部を更に備えているのが好ましい。この場合、第1モードでは、周波数の時間変動によって帯域幅を有する信号を生成でき、第2モードでは、一定の周波数の信号を生成できる。
(7)他の観点からみた本発明の一態様に係る無線通信装置は、前記(1)記載の前記補償装置を備えた無線通信装置である。
(8)さらに他の観点からみた本発明の一態様に係る無線通信装置は、前記(5)記載の前記補償装置を備えた無線通信装置であって、前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部と、前記第2モードの前記信号発生器から出力された単一周波数の信号を、前記受信機に与えて前記受信機の利得を測定する測定部と、を更に備えている無線通信装置である。
 上述したように、直交復調器に入力される前の信号の特性を把握することは困難であるため、所定の帯域幅を持つ基準信号を発生させて、当該基準信号を直交復調器に入力することが考えられる。
 しかし、正確な基準信号を生成するには、基準信号をデジタルで厳密に管理する必要があり、しかも、デジタル/アナログ変換及び変調器が必要となり、装置のコスト高及び大型化を招くおそれがあった。
 そこで、他の観点からみた本発明は、デジタルでの複雑な制御を行うことなく、所定の帯域幅を有する信号を生成できるようにすることを目的とする。
(9)すなわち、他の観点からみた本発明の一態様に係る信号発生器は、位相比較器の出力信号に基づく制御電圧によって電圧制御発振器の発振周波数が決定される位相ロックループ方式の信号発生器であって、時間変動する外部信号を発生する外部信号発生部を備え、前記制御信号は、前記位相比較器の出力信号に前記外部信号が重畳されたものであることを特徴とする信号発生器である。
 通常の位相ロックループ方式の信号発生器は、単一の周波数の信号を発生するが、上記本発明によれば、外部信号発生部から時間変動する外部信号が位相比較器の出力信号に重畳されるため、電圧制御発振器からは、時間的に周波数が変化する信号が出力される。周波数が時間的に変化する信号は、時間を無視すれば、所定の帯域幅を有する信号を生成しているものとみなすことができる。
(10)前記外部信号の周波数は、前記位相比較器における位相比較周波数よりも小さいのが好ましい。この場合、外部信号によって変動する周波数を適切に制御するのが容易となる。
(11)前記外部信号の振幅を調整する調整部を更に備えているのが好ましい。外部信号の振幅を調整することで、信号発生器が発生する信号の帯域幅を調整することができる。
(12)前記位相比較器における位相比較周波数と前記外部信号の周波数との比を調整する調整部を更に備えているのが好ましい。位相比較周波数と外部信号の周波数との比を調整することで、信号発生器が発生する信号の帯域幅を調整することができる。
(13)前記位相比較器と前記電圧制御発振器との間に設けられたチャージポンプ回路と、前記チャージポンプ回路を流れるチャージポンプ電流を調整する調整部と、を更に備えているのが好ましい。チャージポンプ電流を調整することで、信号発生器が発生する信号の帯域幅を調整することができる。
(14)前記位相比較と前記電圧制御発振器との間に設けられたローパスフィルタと、前記ローパスフィルタの時定数を調整する調整部と、を更に備えているのが好ましい。ローパスフィルタの時定数を調整することで、信号発生器が発生する信号の帯域幅を調整することができる。
(15)時間的に変化する前記電圧制御発振器の発振周波数の周波数範囲を調整する調整部を更に備え、前記調整部は、前記位相比較器の出力信号に前記外部信号が重畳されることで、前記周波数範囲を調整するのが好ましい。この場合、信号発生器が発生する信号の周波数範囲(帯域幅)を調整することが可能となる。
(16)前記外部信号は、正弦波であるのが好ましい。
(17)前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部を更に備えているのが好ましい。この場合、信号発生器を第1モードと第2モードとに使い分けることができる。
(18)他の観点からみた本発明の一態様に係る無線通信装置は、前記(9)~(17)のいずれか1項に記載の前記信号発生器によって発生した信号を用いる無線通信装置である。
 なお、本発明は、上記補償装置、信号発生器、及び無線通信装置の機能の一部又は全てを備えた半導体集積回路(LSI)として実現してもよい。
無線通信装置(受信機)の構成図である。 信号発生器の回路図である。 外部信号発生器及びその周辺の回路図である。 (a)はVCOへの制御信号を示し、(b)はVCOの発振周波数を示す図である。 (a)はVCOへの制御信号を示し、(b)はVCOの発振周波数を示す図である。 制御部の構成図である。 QDC演算処理のフローチャートである。 基準信号を示す図である。 DCオフセットを有するI信号を示す図である。 DCオフセットを有するQ信号を示す図である。 (a)は直交復調信号を示す図であり、(b)は直交復調信号から生成した基準信号レプリカである。 (a)は直交復調信号を示す図であり、(b)はイメージ成分だけが存在する部分が抽出された信号を示す図であり、(c)基準信号だけが存在する部分が抽出された信号を示す図であり、(d)は(b)と(c)のとの合成信号を示す図である。 RxALC演算処理のフローチャートである。
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。
[1.通信装置の構成]
 図1は、送受信機能を有する無線通信装置における受信機の構成を示している。なお、無線通信装置は、無線基地局装置又は無線端末装置として用いられる。また、図1の構成は、受信機に限らず、自身の無線通信装置の送信機から送信された送信信号を監視(送信アンプのDPD(歪補償)のための監視など)するために、自身が送信した送信信号を受信するモニタ装置としても使用できる。
 図1に示す受信機1は、受信信号を直交復調する機能を有している。また、受信機1は、直交復調の際に生じる直交復調歪を補償する補償装置としての機能をも有している。
 この受信機1は、図示しないアンテナで受信した受信信号を増幅する増幅器(ローノイズアンプ)2、受信信号の利得調整を行う可変アッテネータ3、受信信号の周波数変換を行う周波数変換器(ダウンコンバータ)4、受信信号の直交復調を行う直交復調器5、直交復調器5から出力されたアナログI/Q信号をデジタル信号に変換するADC6a,6b、直交復調信号の補償を行う直交復調補償部7、及び、直交復調信号の利得を補償する利得補償部8を備えている。
 直交復調器5は、受信搬送周波数の信号(受信搬送周波数に一致する周波数の信号)を生成する発振器5a、π/2移相器5b、乗算器5c,5dなどのアナログ素子を備えており、アナログ信号処理によって直交復調処理を行うアナログ直交復調器(AQD;Analog Quadrature Demodulator)である。直交復調器5を構成するアナログ素子のばらつきにより、受信信号を直交復調した直交復調信号(I/Q信号)は、歪を受ける。
 歪の要因としては、
 1)発振器5aから注入される搬送周波数の漏れ(feed throgh)
 2)π/2移相器5bの製造ばらつきに起因する直交度のずれ
 3)直交復調器5からADC6a,6bまでの間の2つのパスで生じるゲイン不平衡
 4)DCオフセット
などが挙げられる。
 直交復調補償部7は、直交復調器補正(Quadrature Demodulator Correction)機能を有し、直交復調器5によって直交復調信号(I/Q信号)に生じた歪の補償を行う。直交復調補償部7は、ローカルリーク除去部7aと、イメージ成分除去部7bとを有している。
 ローカルリーク除去部(QDC_LLR;Quadrature DemodulatorCorrection_Local Leakage Rejection)7aは、直交復調歪のうち、ローカルリークを除去する。ローカルリークは、搬送周波数の漏れ及び/又はDCオフセットを原因として発生する。
 イメージ成分除去部(QDC_IR;Quadrature DemodulatorCorrection_Image Rejection)7bは、直交復調歪のうち、イメージ成分を除去する。イメージ成分は、直交度のずれ及び/又はゲイン不平衡を原因として発生する。
 なお、ローカルリークは、信号の有無にかかわらず観測できる。イメージ成分は信号によって歪の生じ方が変化する。
 ローカルリーク除去部7a及びイメージ成分除去部7bは、直交復調歪(ローカルリーク又はイメージ成分)を補償するための補償パラメータ(補償係数)R11,R21,R22,dcOffsetRe,dcOffsetImを用いて、歪補償を行う。補償パラメータは、制御部9にて演算される。
 図1に示す直交復調補償部7の行う補償処理は、上記補償パラメータを用いて次の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 dcOffsetRe,dcOffsetImは、ローカルリークを除去するための第1補償パラメータである。R11,R21,R22は、イメージ成分を除去するための第2補償パラメータである。
 制御部9は、補償パラメータR11,R21,R22,dcOffsetRe,dcOffsetImを求める際には、アンテナによって受信した通常の受信信号ではなく、所定の帯域幅を持つ特別な信号(基準信号)を用いる。補償パラメータを求めるために用いる基準信号は、信号発生器10が発生する。
 つまり、前記基準信号を発生させる信号発生器10と、前記基準信号を直交復調した直交復調信号に基づいてイメージ成分を除去するための補償パラメータR11,R21,R22を演算する制御部9と、補償パラメータR11,R21,R22を用いて直交復調歪のうちのイメージ成分を除去する直交復調補償部7とは、直交復調器5によって生じたイメージ成分を除去する補償処理を行う補償装置を構成している。なお、直交復調補償部7は、ローカルリーク除去部7aと、イメージ成分除去部7bとを備えているが、前記補償装置が直交復調器5によって生じたイメージ成分を除去するためには、少なくとも、イメージ成分除去部7bを備えていればよい。
[2.信号発生器]
 図2は、信号発生器10の回路構成を示している。信号発生器は、位相ロックループ(PLL;Phase Lock Loop)方式の発振回路に、外部信号発生器(外部信号発生部)21を付加したものである。
 図2に示すPLL方式の発振回路は、位相比較器22、チャージポンプ(Charge Pump)回路23、ローパスフィルタ(ループフィルタ)24、電圧制御発振器(VCO)25、分周器26,27を備えている。
 位相比較器22は、基準周波数frefに対してR分周を行う分周器27の出力信号と、電圧制御発振器25の出力信号(周波数fout)に対してN分周を行う分周器26の出力信号と、を比較し、両者の位相差に応じた電圧を出力する。位相比較器22の出力電圧は、チャージポンプ回路23及びローパスフィルタ24を通過することで、電圧制御発振器25への制御信号(制御電圧)となる。
 電圧制御発振器25の出力信号は、分周器26を介して、位相比較器22にフィードバックされ、位相ロックループが形成される。一般的な位相ロックループ方式の発振回路では、位相ロックループによって、電圧制御発振器25から、一定の周波数の信号が出力される。
 これに対し、図2に示す信号発生器10は、外部信号発生器21が設けられている。図3に示すように、外部信号発生器21は、正弦波のように時間変動する信号を生成する発振器(可変周波数発振器)29を備えている。発振器29によって発生した信号(外部信号)Vextは、電圧制御発振器25の制御信号に重畳される。
 すなわち、位相比較器22の出力電圧が、チャージポンプ回路23及びローパスフィルタ24を通過することで生成された原制御信号(原制御電圧)Vctrl’に、外部信号Vextが重畳された制御信号(制御電圧)Vctrlが生成される。
 図3の信号発生器10では、発振器29の出力信号は、非反転増幅器30、切替部(スイッチ)30b、コンデンサ30cを介して、電圧制御発振器25の入力ライン28上に与えられる。
 非反転増幅器30は、発振器29によって発生した外部信号の振幅を調整する機能を有している。なお、外部信号Vextの振幅調整が必要ない場合には、非反転増幅器30を、ボルテージフォロア回路として構成してもよい。
 切替部30bは、外部信号Vextの制御信号への重畳のON/OFFを行う機能を有している。切替部30bをONにすることで、位相比較器22の出力電圧に外部信号Vextが重畳された制御電圧Vextが電圧制御発振器25に与えられる第1モードにすることができる。また、切替部30bをOFFにすることで、位相比較器22の出力電圧に外部信号Vextが重畳されていない制御電圧Vext’が電圧制御発振器25に与えられる第2モードにすることができる。
 切替部30bにおけるON/OFF切替は、制御部9からの制御信号(Chirp/CW信号)によって行われる。
 なお、コンデンサ30cは、ACカップリングの役割をし、原制御信号Vctrl’をバイアス電圧として外部信号Vextをスイングさせる機能を有している。
 電圧制御発振器(VCO)25の入出力特性は、制御信号(制御電圧)Vctrlに対して、出力周波数(発振周波数)foutが単調増加する。つまり、電圧制御発振器(VCO)25からは、制御信号Vctrlの大きさに応じた出力周波数(発振周波数)foutの信号が出力される。
 なお、VCO25の出力側には可変アッテネータ40が設けられており、受信機の利得を上げる際に、信号発生器10から入力される信号が飽和しないようにするため等の目的でVCO25の出力を調整することができる。可変アッテネータ40は、制御部9から調整できる。
 図4(a)に示すように、外部信号Vextが重畳されず、位相比較器22の出力電圧に応じた制御信号(制御電圧)Vctrl’だけが電圧制御発振器25に与えられる場合には、信号発生器10は、通常の位相ロックループ回路として機能し、図4(b)に示すように、単一の周波数f0の信号(無変調連続波)が、電圧制御発振器25から出力される。
 一方、図5(a)に示すように、位相比較器22の出力電圧に応じた制御信号(制御電圧)Vctrl’に、外部信号発生器21によって発生した外部信号(正弦波)Vextが重畳された制御信号(制御電圧)Vctrlが、電圧制御発振器25に与えられる場合には、図5(b)に示すように、電圧制御発振器25から出力される出力信号の周波数foutは、外部信号Vextの振幅値の時間的変化に応じて、周波数f0を中心として時間的に変化する。
 つまり、外部信号Vextの振幅値がゼロであれば、電圧制御発振器25の出力周波数は、制御信号(制御電圧)Vctrl’によってロックされる周波数f0となるが、外部信号Vextの時間変動によって、外部信号Vextの振幅値がゼロよりも大きくなると、電圧制御発振器25の出力周波数は、f0よりも大きくなる。逆に、外部信号Vextの時間変動によって、外部信号Vextの振幅値がゼロよりも小さくなると、電圧制御発振器25の出力周波数は、f0よりも小さくなる。
 外部信号Vextの時間変動に応じた、電圧制御発振器25の出力周波数(発振周波数)の変動は、f0を中心として、f0-(fw/2)からf0+(fw/2)の間で生じる。つまり、電圧制御発振器25の出力周波数が時間的に変化する周波数範囲はfwである。
 信号発生器10は、外部信号発生器21を有していることで、チャープ信号(chirp signal)のように、所定の周波数範囲fw内で周波数が時間的に変化する信号を生成することができる。
 チャープ信号のように、所定の周波数範囲fw内で周波数が時間的に変化する信号は、時間を無視すれば、周波数帯域幅がfwである信号とみなすことができる。したがって、信号発生器10は、所定の帯域幅fwの信号(基準信号)を発生する装置であるとみなすことができる。
 従来、チャープ信号を生成するには、デジタルで生成した信号をアナログ変換し、さらに変調する必要があり、装置のコスト高及び大型化を招くおそれがあった。
 しかし、図2に示す信号発生器10では、一般的なPLL回路に外部信号発生器21を追加するだけで、容易にチャープ信号を生成することができる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fwの値は、主に、外部信号Vextの振幅によって決定される。外部信号Vextの振幅を調整することで帯域(周波数範囲)fwの値を調整する第1調整部として、非反転増幅器30を利用できる。非反転増幅器の可変抵抗30aの値を調整することで、非反転増幅器30の増幅率を変更でき、その結果、外部信号Vextの振幅を調整することができる。なお、非反転増幅器30の増幅率を変更する信号CtrlAは、制御部9から与えられる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fwの値は、外部信号Vextの振幅以外の他の要因によっても影響を受ける。他の要因としては、例えば、位相比較器22における位相比較周波数frefと、外部信号Vextの周波数との比が挙げられる。位相比較器22における位相比較周波数frefが高ければ、位相比較器22における位相比較が頻繁に行われ、外部信号Vextによって変動した周波数がf0に戻ろうとする度合いが高くなる。したがって、位相比較器における位相比較周波数frefが高くなるほど、信号発生器10によって発生する信号の帯域(周波数範囲)fwを小さくできる。
 位相比較器22における位相比較周波数frefと、外部信号Vextの周波数との比を調整する第2調整部として、可変周波数発振器29を利用できる。外部信号extの周波数を調整することで、位相比較周波数frefと外部信号Vextの周波数との比が調整され、その結果、外部信号Vextの振幅を調整することができる。なお、可変周波数発振器29の発振周波数を変更する信号CtrlBは、制御部9から与えられる。
 ここで、図2の回路が、位相ロックループとして機能するには、外部信号Vextの周波数が小さいほうがよい。外部信号Vextの周波数が大きすぎると、外部信号Vextによって変動する周波数を適切に制御できなくなるからである。かかる観点からは、外部信号Vextの周波数は、例えば、位相比較器22における位相比較周波数frefよりも小さいのが好ましく、位相比較器22における位相比較周波数frefの1/10以下であるのが更に好ましい。
 信号発生器10によって発生する信号の帯域(周波数範囲)fwの値に影響を与える他の要因としては、チャージポンプ回路23のチャージポンプ電流が挙げられる。チャージポンプ電流が大きくなると、位相比較器22の出力電圧の変化に対する制御電圧Vctrl’の応答性が高くなる。このため、外部信号Vextによって変動した周波数がf0に戻ろうとする反応速度が速くなる。したがって、チャージポンプ電流を大きくするほど、信号発生器10によって発生する信号の帯域(周波数範囲)fwを小さくできる。
 チャージポンプ電流を調整するには、チャージポンプ回路23においてチャージポンプ電流の大きさを左右する抵抗を可変抵抗しておけばよい。この可変抵抗が、チャージポンプ電流を調整する第3の調整部となる。なお、チャージポンプ電流を変更する信号CtrlCは、制御部9から与えられる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fwの値に影響を与える他の要因としては、LPF24の時定数が挙げられる。チャージポンプ電流が一定であっても、LPF24自体の応答性が高くなれば、LPF24の出力電圧(制御電圧Vctrl’)の応答性が高くなる。このため、外部信号Vextによって変動した周波数がf0に戻ろうとする反応速度が速くなる。したがって、LPF24の応答性が高くなるように時定数を小さくするほど、信号発生器10によって発生する信号の帯域(周波数範囲)fwを小さくできる。
 LPF24の時定数を調整するには、LPF24において時定数を左右する素子を可変素子としておけばよい。この可変素子が、LPF24の時定数を調整する第4の調整部となる。
 上記のように構成された信号発生器10から発生した信号は、スイッチ部11を介して、増幅器2に与えられ、直交復調器5によって直交復調される。スイッチ部11は、増幅器2(直交復調器5)に与えられる信号を、図示しないアンテナにて受信した受信信号とするか、信号発生器10にて発生した信号とするか、を切り替えることができる。スイッチ部11への切替制御信号は、制御部9から与えられる。
[3.制御部の処理]
 図6に示すように、制御部9は、直交復調補償に用いる補償パラメータを演算するQDC演算部(直交復調補償演算部)31と、可変アッテネータ3及び/又は利得補償部8が利得補償を行う際に参照する補償値を演算するRxALC演算部(利得補償演算部)34を備えている。
[3.1 直交復調補償]
 QDC演算部31は、直交復調器5から出力された直交復調信号(I/Q信号)を、(利得補償部8の出力側から)取得する。QDC演算部31は、取得した直交復調信号に基づいて、直交復調歪を補償するための補償パラメータを演算する。演算により求めた補償パラメータは、直交復調補償部7に適用される。直交復調補償部7は、補償パラメータを用いて、前記直交復調信号(I/Q信号)の直交復調歪を除去する。
 QDC演算部31は、ローカルリークを除去するための第1補償パラメータdcOffsetRe,dcOffsetImを演算するQDC_LLR演算部(ローカルリーク演算部)32と、イメージ成分を除去するための第2補償パラメータR11,R21,R22を演算する演算部としてのQDC_IR演算部(イメージ成分演算部)33と、を備えている。
 QDC_LLR演算部32で求めた第1補償パラメータdcOffsetRe,dcOffsetImは、ローカルリーク除去部7aに適用される。QDC_IR演算部33で求めた第2補償パラメータR11,R21,R22は、イメージ成分除去部7bに適用される。
 なお、制御部9は、少なくとも、イメージ成分を除去するための第2補償パラメータR11,R21,R22を演算するQDC_IR演算部33を備えていれば、直交復調器5によって生じたイメージ成分を除去する補償処理を行う補償装置の演算部としての機能を実現することができる。
 図7は、補償パラメータを演算(更新)するための処理フローチャートを示している。まず、制御部9は、信号発生器10が発生したチャープ信号を、直交復調器5の入力側に与える(ステップS1)。
 なお、受信機1に受信信号の処理を行う系(図1の回路)が複数設けられている場合には、補償パラメータを演算する対象となる系の選択が、ステップS1に先立って行われる。
 ステップS1では、制御部9は、信号発生器10にて発生した信号が増幅器2(直交復調器5)側に与えられるようにスイッチ部11を切り替える切替制御信号を、スイッチ部11に対して出力する。また、制御部9は、信号発生器10が単一周波数の信号(CW;Constan Wave)ではなく、所定の帯域fwを有するチャープ(Chirp)信号を出力する第1モードとなるように、モード切替制御信号(Chirp/CW信号)を信号発生器10の外部信号発生器21に対して出力する。
 信号発生器10にチャープ信号を発生させるためのモード切替制御信号(Chirp/CW信号)が、外部信号発生器21の切替部30bに与えられると、外部信号Vextが重畳された制御電圧Vctrlが、電圧制御発振器25に与えられる。すると、電圧制御発振器25は、図8に示すように、所定の帯域幅を持つ信号(基準信号)を出力する。
 なお、チャープ信号の帯域は、運用の際のシステム帯域に応じて、適宜、決定できる。例えば、システム帯域に合わせて数パターンの外部信号Vext振幅を予め設定しておき、選択されたシステム帯域に応じて、どの外部信号Vextの振幅にするかを選択すればよい。また、外部信号Vextの振幅によって定まるチャープ信号帯域を、位相比較周波数frefと外部信号Vextの周波数との比の調整、チャージポンプ電流の調整、LPF24の時定数の調整によって微調整することができる(前記各調整の内、少なくとも1つを調整することによって調整することができる)。
 基準信号は、受信帯域(fr-min-fr-max)内において、所定の帯域((f0-(fw/2))-(f0+(fW/2)))を持つ信号として生成される。
 基準信号は、受信帯域の中心周波数である受信搬送周波数fcに対して、高周波数側に偏った帯域を有している。図8では、基準信号の帯域は、搬送周波数fcに対して、高周波数側だけに存在しており、搬送周波数fcよりも低周波数側には存在しない。また、基準信号の帯域は、搬送周波数fcに対して離れて位置している。
 なお、搬送周波数fc(受信信号の中心周波数)は、変更される場合があるが、搬送周波数fcが変更されても、図8のような関係を維持できるように、チャープ信号の中心周波数f0及び/又は帯域fwを調整してもよい。
 図8に示す基準信号は、直交復調器5を通過することで、直交復調歪が付加される。直交復調歪を有する直交復調信号(I/Q信号)は、QDC演算部31にてサンプリングされる(ステップS2)。
 QDC_LLR演算部32は、サンプリングした直交復調信号に基づいてローカルリーク量を計算する(ステップS3)。基準信号は、図示しないACカップリングによって直流成分を有しないものとなっているため、ローカルリークがなければ、IQコンスタレーションの中心は、IQ平面の原点になるはずである。しかし、I/Q信号それぞれにローカルリークによる影響が含まれていると、直交復調信号のコンスタレーションのゼロ点は、IQ平面の原点からずれる。
 つまり、図9及び図10に示すように、ローカルリークによって、I/Q信号それぞれにDC成分IDC,QDCが含まれている場合、I/Q信号それぞれの時間平均をとると、ローカルリークに対応したDC成分IDC,QDCが得られる。得られたDC成分IDC,QDCは、ローカルリークを打ち消すための第1補償パラメータdcOffsetRe,dcOffsetImの更新(ステップS5)に用いられる。
 QDC_IR演算部33は、サンプリングした直交復調信号に基づいてイメージ成分を計算する(ステップS4)。
 ここで、直交復調器5によるイメージ成分が生じていないI信号をRefsig_re[n]とし、直交復調器5によるイメージ成分が生じていないQ信号をRefsig_Im[n]とし、Refsig_re[n]に対して直交復調器5によるイメージ成分が重畳されたI信号をRxsig_re[n]とし、Refsig_Im[n]に対して直交復調器5によるイメージ成分が重畳されたQ信号をRxsig_Im[n]とすると、直交復調器によって生じるイメージ成分は、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 上記式において、Rtmp11,Rtmp21,Rtmp22が、イメージ成分に対応する。
 なお、*[n]は、サンプリング間隔T(秒)としたときに、時刻n×Tにサンプリングしたデジタル複素ベースバンドIQ表現の信号である。また、*(t)は、時刻tにおけるアナログ信号を示す。
 QDC_IR演算部33は、イメージ成分として、上記のRtmp11,Rtmp21,Rtmp22を算出する。
 QDC_IR演算部33は、上記式中のRtmp21,Rtmp21,Rtmp22を、
Figure JPOXMLDOC01-appb-M000003
という関係となることを踏まえて、最小2乗法など任意の数値計算手法を用いて推定する。
 ここで、デジタルで処理を行うQDC_IR演算部33が、上記式を用いて、イメージ成分を算出するには、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]のほか、直交復調器5によるイメージ成分が生じていないデジタルI/Q信号Refsig_re[n],Refsig_Im[n]が必要である。
 図1の回路構成から明らかなように、デジタルで処理を行うQDC_IR演算部33にとって、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]の取得は容易である。一方、直交復調器5によるイメージ成分が生じていないデジタルI/Q信号Refsig_re[n],Refsig_Im[n]の取得は容易ではない。
 しかし、本実施形態に係る受信機1では、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]から、Refsig_re[n],Refsig_Im[n]のレプリカを生成できるため、イメージ成分の算出が容易となっている。
 なお、ここでは、直交復調器5の出力として、直交復調補償部7(及び利得補償部8)の出力を考える。つまり、以下の通りである。
 RI’’:Rxsig_re[n]
 RQ’’:Rxsig_Im[n]
 さて、本実施形態に係る受信機1では、補償パラメータを演算する際には、信号発生器10から出力された基準信号(図8)が直交復調器5へ入力される。
 この基準信号が、直交復調器5を通過することで得られる直交復調信号Rxsig[n](=Rxsig_re[n]+i×Rxsig_Im[n])は、図11(a)に示すように、元々の基準信号の部分と、イメージ成分の部分とが、異なる部分に現れる。これは、基準信号の帯域が、搬送周波数fcを基準として片側(高周波数側)だけに存在しており、イメージ成分は、搬送周波数fcを基準として対称的に現れるからである。つまり、イメージ成分は、搬送周波数fcを基準としたときに、基準信号の帯域に対して周波数方向に対称な帯域に現れる。
 なお、図11では、デジタルで処理を行う直交復調補償部7において扱う信号を表しているため、搬送周波数fcに相当する周波数が0となっている。
 基準信号の帯域が、搬送周波数fcを基準として片側(高周波数側)だけに存在しているため、QDC_IR演算部33としては、搬送周波数fcを基準とした他方側(低周波数側)に存在する成分は、基準信号ではなく、イメージ成分であるとみなすことができる。
 そこで、QDC_IR演算部33は、図11(a)に示すような直交復調信号Rxsig[n](=Rxsig_re[n]+i×Rxsig_Im[n])を取得すると、その直交復調信号から、搬送周波数fcよりも低周波数側(ここでは、周波数=0よりも低周波数側)の信号を除去する。図11(b)に示すように、除去後の直交復調信号は、イメージ成分がなく、基準信号だけが残っている。
 本実施形態では、元々の基準信号の部分と、イメージ成分との部分とが、異なる周波数に現れるため、両者を容易に分離可能である。
 ここで、理想的なデジタル基準信号Refsig[n]=Refsig_re[n]+i×Refsig_Im[n]としては、信号発生器10が出力されたアナログの基準信号を、直交復調歪のない直交復調器5によって直交復調し、さらにADC6a,6bにてデジタル信号に変換したものとなる。そして、図11(b)の信号には、イメージ成分がない。
 したがって、図11(b)の信号は、理想的なデジタル基準信号Refsig[n]のレプリカ(基準信号レプリカ)となっている。
 QDC_IR演算部33は、図11(a)に示す信号(演算用信号)と、図11(b)に示す基準信号レプリカと、を用いて、イメージ成分Rtmp11,Rtmp21,Rtmp22を算出する。
 すなわち、QDC_IR演算部33は、取得した直交復調信号RI’’,RQ’’を、そのまま、イメージ成分の演算用信号Rxsig_re[n],Rxsig_Im[n]として用いるとともに、基準信号Refsig[n]のレプリカ(Replica_Refsig[n])を、基準信号Refsig[n](=Refsig_Re[n]+i×Refsig_Im[n])として用いて、Rtmp21,Rtmp21,Rtmp22を算出する。
 なお、基準信号Refsig[n]のレプリカReplica_Refsig[n]=Replica_Refsig_Re[n]+i×Replica_Refsig_Im[n]である。
 また、Refsig[n]=α×Replica_Refsig[n]である(αは、0でない正の実数値である)。
 続いて、QDC演算部31は、ステップS3で演算されたDC成分IDC,QDCを打ち消すための第1補償パラメータdcOffsetRe,dcOffsetImを演算(更新する(ステップS5)。
 また、QDC演算部31は、ステップS4で推定されたイメージ成分Rtmp21,Rtmp21,Rtmp22を打ち消すための第2補償パラメータR11,R21,R22を演算(更新)する(ステップS5)。QDC演算部31は、求めた第1及び第2補償パラメータを、直交復調補償部7に与える。
 本実施形態では、図8に示すように、基準信号は、搬送周波数fcを基準として高周波数側の帯域だけに存在していた。しかし、基準信号は、搬送周波数fcを基準として低周波数側の帯域だけに存在していてもよい。
 また、基準信号は、搬送周波数fcに対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有するものであればよい。つまり、基準信号は、搬送周波数fcを跨った状態で、搬送周波数fcの高周波数側又は低周波数側のいずれか一方に偏っていてもよい。
 基準信号が、高周波数側又は低周波数側のいずれか一方に偏っていれば、図12(a)に示すように、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能である。
 例えば、図12(a)に示すように基準信号の帯域が、-f1からf2であるとものとする(f1<f2)。この場合、イメージ成分は、-f2からf1の範囲に現れ、基準信号と重なっている。
 ここで、基準信号とイメージ成分とは大きさレベル差があるため、QDC_IR演算部33は、基準信号に対して、閾値(例えば、20dB)以上のレベル差を有する部分を、イメージ成分だけが存在する部分であるとして検出することができる。これにより、図12(b)に示すように、-f2からf1の範囲にあるイメージ成分だけが抽出できる。
 そして、-f2からf1の範囲にあるイメージ成分は、搬送周波数fc(図12では、周波数=0)を中心として対称的な位置であるf1からf2の基準信号によって生じたものである。そして、f1からf2の範囲では、基準信号に対するイメージ成分の重なりも無い。
 そこで、QDC_IR演算部33は、図12(a)の信号から、f1からf2の範囲の信号を抽出することで、図12(c)に示すように、イメージ成分が重畳されていない基準信号(の一部)が得られる。図12(c)に示す信号(基準信号の一部に相当)を、基準信号レプリカReplica_Refsig[n]として用いても良い。
 また、イメージ成分の演算用信号Rxsig_re[n],Rxsig_Im[n]としては、図12(c)の基準信号レプリカと、図12(b)の信号(図12(c)の基準信号レプリカによって生じたイメージ成分)と、を合成した図12(d)の信号を用いればよい。
 このように、イメージ成分の演算に用いる基準信号レプリカとしては、基準信号全体に対応する部分であってもよいし、基準信号にイメージ成分が重畳されている場合には、イメージ成分が重畳されている部分を除去したものであってもよい。
 また、演算用信号としても、直交復調信号をそのまま使用してもよいし、直交復調信号中に基準信号とイメージ成分との重畳部分がある場合には、当該重畳部分を除去したものであってもよい。
[3.2 利得補償]
 制御部9は、信号発生器10から出力された信号(CW)を用いて、利得補償のための演算を行うこともできる。
 図6に示すように、利得補償のため補償値を演算するRxALC演算部34は、電力計算部35、検波器出力校正部36、ゲイン計算部37と、を備えている。
 RxALC演算部(測定部)34は、信号発生器10から出力された信号(CW)の電力と、直交復調された受信信号RI’’、RQ’’の電力と、の比を測定及び監視することで、可変アッテネータ3及び/又は利得補償部8での利得補償のため補償値を演算する。
 図1にも示すように、RxALC演算部34には、信号発生器10から出力された信号(SW)を検波する検波器12の出力が、ADC12aを介して、与えられる。また、RxALC演算部34には、直交復調された信号RI’’、RQ’’が与えられる。
 さらに、RxALC演算部34には、温度センサ13の出力が、ADC14を介して、与えられる。
 RxALC演算部34の電力計算部35は、直交復調された信号RI’’、RQ’’の受信電力を計算する。
 検波器出力校正部36は、検波器12の出力(信号(CW)の電力)を、温度(温度センサ13の出力)で校正し、校正された受信電力を演算する。検波器出力校正部36は、温度校正用テーブルを有しており、当該テーブルを参照することにより、校正された受信電力を演算する。
 ゲイン計算部37は、検波器出力に基づく受信電力と、直交復調された信号RI’’、RQ’’の受信電力と、の比を求める。ゲイン計算部37の出力は、演算器38に与えられる。演算器38は、ゲイン計算部37の出力と、ゲイン基準値と、の偏差ΔGainを求める。
 図13は、可変アッテネータ3及び/又は利得補償部8での利得補償のため補償値となるゲインΔGain1,ΔGain2を演算するための処理フローチャートを示している。まず、制御部9は、信号発生器10から発生した信号(CW;無変調連続波)を、通常の受信信号の代わりに、受信機1の入力に与える(ステップS11)。
 なお、受信機1に受信信号の処理を行う系(図1の回路)が複数設けられている場合には、利得補償のための演算の対象となる系の選択が、ステップS11に先立って行われる。
 ステップS11では、制御部9は、信号発生器10にて発生した信号が増幅器2(直交復調器5)側に与えられるようにスイッチ部11を切り替える切替制御信号を、スイッチ部11に対して出力する。また、制御部9は、信号発生器10が単一周波数の信号(CW;Constan Wave)を出力する第2モードとなるように、モード切替制御信号(Chirp/CW信号)を信号発生器10の外部信号発生器21に対して出力する。
 CW信号を発生させる切替制御信号(Chirp/CW信号)が、外部信号発生器21の切替部30bに与えられると、外部信号Vextが重畳されていない制御電圧Vctrl’が、電圧制御発振器25に与えられる。すると、電圧制御発振器25は、単一周波数の信号(CW)を出力する。
 RxALC演算部34は、信号発生器10が発生した単一周波数の信号(CW)が、直交復調され、デジタル信号に変換されたデジタル直交復調信号RI’’、RQ’’のサンプリングを行う(ステップS12)。また、RxALC演算部34は、信号発生器10が発生した単一周波数の信号(CW)を検波器12にて検波した電力値(検波器出力)を、ADC14にてデジタル信号に変換したものを、取得する(ステップS12)。
 ステップS12の信号の取得が終了すると、制御部9は、信号発生器10からの信号(CW)の発生を停止させる(ステップS13)。信号発生器10からの信号(CW)の発生を停止させるには、VCO25の出力側に設けられたスイッチ28aを終端28b側に切り替えればよい。
 検波器出力校正部36は、温度校正用テーブルを参照して、検波器出力(電力)の校正を行う(ステップS14)。
 電力計算部35は、サンプリングして得たデジタル直交復調信号RI’’、RQ’’から、単一周波数の信号(CW)の電力の時間平均値を演算し、その演算結果をゲイン計算部37に与える。
 ゲイン計算部37では、電力計算部35から出力された電力と、検波器出力校正部36から出力された電力との比を計算して出力する(ステップS15)。
 演算器38では、ゲイン計算部37から出力された電力比と、ゲイン基準値と、を用いて演算する。演算器38では、ゲイン基準値に対する、ゲイン計算部37から出力された電力比の偏差ΔGainを求める。ゲイン基準値は、ゲイン計算部37から出力された電力比を調整する上でのターゲットとなる値であり、検波器出力とデジタル直交復調信号の電力との、理論的な電力比である。
 ゲイン計算部37から出力された電力比が、ゲイン基準値を超えている場合、制御部9は、前記偏差ΔGainが無くなるように、可変アッテネータ3及び/又は利得補償部8の利得を調整する信号を、可変アッテネータ3及び/又は利得補償部8に与える。
 可変アッテネータ3及び/又は利得補償部8は、制御部9からの信号に基づいて、利得を調整し、前記偏差ΔGainが無くなるように動作する。
 なお、ゲイン基準値は、例えば、事前に定めておいてもよいし、入力インターフェースを介して外部から入力してもよい。
[4.付記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 また、今回開示された実施の形態の内、ある実施形態として開示された構成要素の少なくとも1部を、他の実施形態として開示された構成要素の少なくとも1部と組み合わせてもよい。
 1:通信装置(受信機)、2:増幅器、3:可変アッテネータ、4:周波数変換器、5:直交復調器、5a:発振器、5b:移相器、5c,5d:乗算器、6a,6b:ADC、7:直交復調補償部、7a:ローカルリーク除去部、7b:イメージ成分除去部、8:利得補償部、9:制御部、10:信号発生器、11:スイッチ部、12:検波器、13:温度センサ、21:外部信号発生器、22:位相比較器、23:チャージポンプ回路、24:ローパスフィルタ、25:電圧制御発振器、26:分周器、28:入力ライン、30:非反転増幅器、30a:可変抵抗、30b:スイッチ、30c:コンデンサ、31:直交復調補償演算部、32:ローカルリーク演算部、33:イメージ成分演算部、34:利得補償演算部(測定部)、35:電力計算部、35:受信電力計算部、36:検波器出力校正部、37:ゲイン計算部、38:演算器

Claims (18)

  1.  搬送周波数の信号を用いて直交復調を行う直交復調器から出力された直交復調信号に対して、前記直交復調器によって生じたイメージ成分を除去する補償処理を行う補償装置であって、
     受信帯域内において所定の帯域幅を持つ基準信号を発生させて、当該基準信号を前記直交復調器の入力側に与える信号発生器と、
     前記直交復調器によって前記基準信号を直交復調した信号に基づいて、前記イメージ成分を除去するための補償パラメータを演算する演算部と、
     前記補償パラメータを用いて、前記直交復調信号から前記イメージ成分を除去するイメージ成分除去部と、
     を備え、
     前記基準信号は、前記搬送周波数に対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有する信号であり
     前記演算部は、
      前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記イメージ成分が重畳されていない帯域の信号を、基準信号レプリカとして生成するとともに、
      前記基準信号レプリカ及び前記基準信号レプリカによって生じたイメージ成分を有する演算用信号と、前記基準信号レプリカと、に基づいて、前記補償パラメータを演算する
     ことを特徴とする補償装置。
  2.  前記基準信号は、前記搬送周波数の高周波数側又は低周波数側のいずれか一方の帯域だけに存在しており、
     前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記基準信号全体に対応する帯域の信号を基準信号レプリカとして生成し、
     前記演算用信号は、前記基準信号を直交復調した信号である
     請求項1記載の補償装置。
  3.  前記演算部は、前記搬送周波数に対応する周波数を基準として、前記基準信号が存在しない側の帯域の信号を、前記基準信号を直交復調した信号から除去することで、前記基準信号レプリカを生成する
     請求項2記載の補償装置。
  4.  前記基準信号は、前記搬送周波数を跨った状態で、前記搬送周波数の高周波数側又は低周波数側のいずれか一方に偏っており、
     前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号において前記基準信号に対応する帯域の信号から、前記イメージ成分が重畳されている部分を除去した信号を基準信号レプリカとして生成し、
     前記演算用信号は、前記基準信号を直交復調した信号から、前記イメージ成分の重畳部分が除去された信号である
     請求項1記載の補償装置。
  5.  前記信号発生器は、位相比較器の出力信号に基づく制御電圧によって電圧制御発振器の発振周波数が決定される位相ロックループ方式の信号発生器であるとともに、時間変動する外部信号を発生する外部信号発生部を備え、
     前記制御電圧は、前記位相比較器の出力信号に前記外部信号が重畳されたものである
     請求項1~4のいずれか1項に記載の補償装置。
  6.  前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部を更に備えている
     請求項5に記載の補償装置。
  7.  請求項1記載の前記補償装置を備えた無線通信装置。
  8.  請求項5記載の前記補償装置を備えた無線通信装置であって、
     前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部と、
     前記第2モードの前記信号発生器から出力された単一周波数の信号を、前記受信機に与えて前記受信機の利得を測定する測定部と、
     を更に備えている無線通信装置。
  9.  位相比較器の出力信号に基づく制御電圧によって電圧制御発振器の発振周波数が決定される位相ロックループ方式の信号発生器であって、
     時間変動する外部信号を発生する外部信号発生部を備え、
     前記制御信号は、前記位相比較器の出力信号に前記外部信号が重畳されたものである
     ことを特徴とする信号発生器。
  10.  前記外部信号の周波数は、前記位相比較器における位相比較周波数よりも小さい
     請求項9記載の信号発生器。
  11.  前記外部信号の振幅を調整する調整部を更に備えている
     請求項9又は10記載の信号発生器。
  12.  前記位相比較器における位相比較周波数と前記外部信号の周波数との比を調整する調整部を更に備えている
     請求項9~11のいずれか1項に記載の信号発生器。
  13.  前記位相比較器と前記電圧制御発振器との間に設けられたチャージポンプ回路と、
     前記チャージポンプ回路を流れるチャージポンプ電流を調整する調整部と、を更に備えている
     請求項9~12のいずれか1項に記載の信号発生器。
  14.  前記位相比較と前記電圧制御発振器との間に設けられたローパスフィルタと、
     前記ローパスフィルタの時定数を調整する調整部と、を更に備えている
     請求項9~13のいずれか1項に記載の信号発生器。
  15.  時間的に変化する前記電圧制御発振器の発振周波数の周波数範囲を調整する調整部を更に備え、
     前記調整部は、前記位相比較器の出力信号に前記外部信号が重畳されることで、前記周波数範囲を調整する
     請求項9又は10記載の信号発生器。
  16.  前記外部信号は、正弦波である
     請求項9~15のいずれか1項に記載の信号発生器。
  17.  前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部を更に備えている
     請求項9~16のいずれか1項に記載の信号発生器。
  18.  請求項9記載の前記信号発生器によって発生した信号を用いる無線通信装置。
PCT/JP2012/068706 2011-07-26 2012-07-24 補償装置、信号発生器及び無線通信装置 WO2013015279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/131,238 US9197263B2 (en) 2011-07-26 2012-07-24 Compensation apparatus, signal generator and wireless communication equipment
JP2013525725A JP5846204B2 (ja) 2011-07-26 2012-07-24 補償装置、信号発生器及び無線通信装置
EP12817875.3A EP2738945B1 (en) 2011-07-26 2012-07-24 Compensation device, signal generator, and wireless communication device
US14/689,398 US9281989B2 (en) 2011-07-26 2015-04-17 Compensation apparatus, signal generator and wireless communication equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-163344 2011-07-26
JP2011-163374 2011-07-26
JP2011163344 2011-07-26
JP2011163374 2011-07-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/131,238 A-371-Of-International US9197263B2 (en) 2011-07-26 2012-07-24 Compensation apparatus, signal generator and wireless communication equipment
US14/689,398 Division US9281989B2 (en) 2011-07-26 2015-04-17 Compensation apparatus, signal generator and wireless communication equipment

Publications (1)

Publication Number Publication Date
WO2013015279A1 true WO2013015279A1 (ja) 2013-01-31

Family

ID=47601123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068706 WO2013015279A1 (ja) 2011-07-26 2012-07-24 補償装置、信号発生器及び無線通信装置

Country Status (4)

Country Link
US (2) US9197263B2 (ja)
EP (1) EP2738945B1 (ja)
JP (1) JP5846204B2 (ja)
WO (1) WO2013015279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504800A (ja) * 2014-12-10 2018-02-15 ソニー株式会社 通信システムにおいて事前情報を送信する方法および装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935631B2 (ja) * 2012-09-25 2016-06-15 住友電気工業株式会社 補償装置及び無線通信装置
TWI558095B (zh) * 2014-05-05 2016-11-11 瑞昱半導體股份有限公司 時脈產生電路與方法
US9461623B2 (en) * 2014-05-15 2016-10-04 Macronix International Co., Ltd. Method and circuit for temperature dependence reduction of a RC clock circuit
US9819524B2 (en) * 2014-11-21 2017-11-14 Silicon Laboratories Inc. Image rejection calibration with a passive network
JP7081735B2 (ja) 2016-01-27 2022-06-07 ライフ ディテクション テクノロジーズ,インコーポレーテッド 物理的接触なしに物理的変化を検出するためのシステム及び方法
US10631752B2 (en) 2016-01-27 2020-04-28 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US9729119B1 (en) * 2016-03-04 2017-08-08 Atmel Corporation Automatic gain control for received signal strength indication
US10009036B2 (en) * 2016-09-09 2018-06-26 Samsung Electronics Co., Ltd System and method of calibrating input signal to successive approximation register (SAR) analog-to-digital converter (ADC) in ADC-assisted time-to-digital converter (TDC)
US9705512B1 (en) * 2016-09-20 2017-07-11 Realtek Semiconductor Corporation Self-calibrating fractional-N phase lock loop and method thereof
US9985812B1 (en) 2016-12-21 2018-05-29 Keysight Technologies, Inc. Systems and methods for IQ demodulation with error correction
US10218363B1 (en) * 2017-07-19 2019-02-26 Verily Life Sciences Llc Background calibration for real-time clock systems
US10110240B1 (en) * 2017-10-17 2018-10-23 Micron Technology, Inc. DLL circuit having variable clock divider
EP3544276A1 (en) * 2018-03-22 2019-09-25 Bird Home Automation GmbH Network-enabled door station extender
US10991411B2 (en) 2018-08-17 2021-04-27 Micron Technology, Inc. Method and apparatuses for performing a voltage adjustment operation on a section of memory cells based on a quantity of access operations
US10431281B1 (en) * 2018-08-17 2019-10-01 Micron Technology, Inc. Access schemes for section-based data protection in a memory device
US10516403B1 (en) * 2019-02-27 2019-12-24 Ciena Corporation High-order phase tracking loop with segmented proportional and integral controls
CN112671681B (zh) * 2020-02-03 2022-03-01 腾讯科技(深圳)有限公司 边带抑制方法、装置、计算机设备和存储介质
JP2022052507A (ja) * 2020-09-23 2022-04-04 キオクシア株式会社 半導体集積回路、電子機器、および周波数検知方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224691A (ja) * 1993-11-01 1994-08-12 Hitachi Ltd 抵抗回路及びそれを用いたフイルタ回路
JPH08307465A (ja) * 1995-04-28 1996-11-22 Mitsubishi Electric Corp 受信装置の補償方法・受信装置及び送受信装置
JPH10163756A (ja) * 1996-11-28 1998-06-19 Fujitsu Ltd 自動周波数制御装置
JP2007104522A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 受信機
JP2010130630A (ja) 2008-12-01 2010-06-10 Sumitomo Electric Ind Ltd 受信機とその受信方法及び処理装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4447792A (en) * 1981-11-09 1984-05-08 General Electric Company Synthesizer circuit
US5304956A (en) 1992-07-17 1994-04-19 Trw Inc. Low noise high speed frequency synthesizer employing a learning sequence
JPH10163759A (ja) 1996-11-29 1998-06-19 Aiwa Co Ltd 電力増幅器
US6009317A (en) * 1997-01-17 1999-12-28 Ericsson Inc. Method and apparatus for compensating for imbalances between quadrature signals
US6127865A (en) 1997-05-23 2000-10-03 Altera Corporation Programmable logic device with logic signal delay compensated clock network
US6044112A (en) * 1997-07-03 2000-03-28 Hitachi America, Ltd. Methods and apparatus for correcting amplitude and phase imbalances in demodulators
KR200176429Y1 (ko) 1997-12-30 2000-04-15 윤종용 입력되는 표시 모드에 대응하여 위상 동기 루프 회로의 입력 전압을 제어하는 디스플레이 장치
US6330290B1 (en) * 1998-09-25 2001-12-11 Lucent Technologies, Inc. Digital I/Q imbalance compensation
DE10114779A1 (de) * 2001-03-26 2002-10-24 Infineon Technologies Ag Sende-und Empfangseinheit
US20030072393A1 (en) * 2001-08-02 2003-04-17 Jian Gu Quadrature transceiver substantially free of adverse circuitry mismatch effects
US7130359B2 (en) * 2002-03-12 2006-10-31 Motorola Inc. Self calibrating receive path correction system in a receiver
US6664831B2 (en) 2002-04-24 2003-12-16 Sun Microsystems, Inc. Circuit for post-silicon control of delay locked loop charge pump current
US7020220B2 (en) * 2002-06-18 2006-03-28 Broadcom Corporation Digital estimation and correction of I/Q mismatch in direct conversion receivers
US7362826B2 (en) 2003-09-29 2008-04-22 Silicon Laboratories, Inc. Receiver including an oscillation circuit for generating an image rejection calibration tone
US7151917B2 (en) * 2003-09-29 2006-12-19 Silicon Laboratories, Inc. Apparatus and method for deriving a digital image correction factor in a receiver
US20060007999A1 (en) 2004-07-08 2006-01-12 Gomez Ramon A Method and system for enhancing image rejection in communications receivers using test tones and a baseband equalizer
US7254379B2 (en) * 2004-07-09 2007-08-07 Silicon Storage Technology, Inc. RF receiver mismatch calibration system and method
US8208530B2 (en) * 2005-03-14 2012-06-26 Broadcom Corporation Apparatus and method for correcting IQ imbalance
US7616071B2 (en) 2005-06-14 2009-11-10 Nec Electronics Corporation PLL circuit and semiconductor device provided with PLL circuit
US7239188B1 (en) 2005-11-01 2007-07-03 Integrated Device Technology, Inc. Locked-loop integrated circuits having speed tracking circuits therein
KR100710088B1 (ko) * 2006-02-23 2007-04-20 지씨티 세미컨덕터 인코포레이티드 Iq 불일치를 보상하는 수신 회로 및 방법
JP4261578B2 (ja) * 2006-12-27 2009-04-30 株式会社東芝 無線通信装置及び受信方法
KR100865538B1 (ko) * 2007-02-08 2008-10-27 지씨티 세미컨덕터 인코포레이티드 Iq 불일치 측정 장치
WO2009026513A2 (en) 2007-08-23 2009-02-26 Rambus Inc. Clock generator circuits with non-volatile memory for storing and/or feedback-controlling phase and frequency
US8521106B2 (en) 2009-06-09 2013-08-27 Broadcom Corporation Method and system for a sub-harmonic transmitter utilizing a leaky wave antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224691A (ja) * 1993-11-01 1994-08-12 Hitachi Ltd 抵抗回路及びそれを用いたフイルタ回路
JPH08307465A (ja) * 1995-04-28 1996-11-22 Mitsubishi Electric Corp 受信装置の補償方法・受信装置及び送受信装置
JPH10163756A (ja) * 1996-11-28 1998-06-19 Fujitsu Ltd 自動周波数制御装置
JP2007104522A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 受信機
JP2010130630A (ja) 2008-12-01 2010-06-10 Sumitomo Electric Ind Ltd 受信機とその受信方法及び処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738945A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504800A (ja) * 2014-12-10 2018-02-15 ソニー株式会社 通信システムにおいて事前情報を送信する方法および装置

Also Published As

Publication number Publication date
EP2738945A4 (en) 2015-05-06
US20140140444A1 (en) 2014-05-22
JPWO2013015279A1 (ja) 2015-02-23
US9281989B2 (en) 2016-03-08
US9197263B2 (en) 2015-11-24
JP5846204B2 (ja) 2016-01-20
US20150222469A1 (en) 2015-08-06
EP2738945B1 (en) 2016-08-31
EP2738945A1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5846204B2 (ja) 補償装置、信号発生器及び無線通信装置
JP6345750B2 (ja) 送受信機における局部発振器の位相同期用の装置および方法
US8750441B2 (en) Signal cancellation to reduce phase noise, period jitter, and other contamination in local oscillator, frequency timing, or other timing generators or signal sources
JP5287521B2 (ja) 通信装置
US7035341B2 (en) Quadrature gain and phase imbalance correction in a receiver
KR100710125B1 (ko) Iq 불일치 및 반송파 누설을 보상하는 송수신 회로 및 그제어 방법
JP5935631B2 (ja) 補償装置及び無線通信装置
TWI416899B (zh) 校正通訊電路中同相/正交訊號間之不匹配的方法與裝置
US8817834B2 (en) Method and system for I/Q mismatch calibration and compensation for wideband communication receivers
JPH1141307A (ja) 無線受信機およびその操作方法
US20200382060A1 (en) Local oscillator leakage detecting and cancellation
WO2011086640A1 (ja) 送信装置、無線通信装置及び送信方法
US8396433B2 (en) Radio communication apparatus and DC offset adjustment method
JP2005304007A (ja) 位相変調装置、ポーラ変調送信装置、無線送信装置及び無線通信装置
JPH1141308A (ja) 無線受信機およびその操作方法
KR101980862B1 (ko) 트랜시버 내 국부 발진기의 위상 동기화를 위한 장치 및 방법
US10924320B2 (en) IQ mismatch correction module
JP2013026853A (ja) 直交信号生成回路、直交信号生成回路の調整方法、及び無線通信装置
US10419136B2 (en) Communication device and orthogonal error measurement method for communication device
CN109921864B (zh) 信号发送装置、检测电路与其信号检测方法
WO2024028679A1 (en) Method, device and apparatus for generating in-phase (i) and quadrature-phase (q) local oscillator signals
JP2004349789A (ja) 周波数変換装置及び周波数変換方法
JP2022099547A (ja) 周波数同期回路
JP2013074391A (ja) 送受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525725

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012817875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012817875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14131238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE