WO2013015205A1 - 電池駆動機器及び電池パック - Google Patents

電池駆動機器及び電池パック Download PDF

Info

Publication number
WO2013015205A1
WO2013015205A1 PCT/JP2012/068419 JP2012068419W WO2013015205A1 WO 2013015205 A1 WO2013015205 A1 WO 2013015205A1 JP 2012068419 W JP2012068419 W JP 2012068419W WO 2013015205 A1 WO2013015205 A1 WO 2013015205A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
battery pack
pack
adapter
Prior art date
Application number
PCT/JP2012/068419
Other languages
English (en)
French (fr)
Inventor
洋由 山本
玉井 幹隆
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013015205A1 publication Critical patent/WO2013015205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery capable of charging a built-in battery by electromagnetically coupling a power receiving coil of a battery pack mounted on a charging base and a power transmitting coil of the charging base to carry power by magnetic induction from the power transmitting coil to the power receiving coil.
  • the present invention relates to a pack and a battery driving device including the battery pack.
  • Battery-driven devices represented by mobile devices such as mobile phones and portable music players are often driven by rechargeable batteries so that they are convenient to carry.
  • a battery-driven device stores a battery in a unit cell state or a battery pack state.
  • the battery-driven device is charged by wire by connecting a contact to a charger in a state in which the battery is accommodated.
  • a charging stand that charges the battery by transporting power to the receiving coil from the power transmission coil built in the charging stand using the action of electromagnetic induction without connecting the contacts in this way has been developed. (See Patent Document 1).
  • the charging stand described in Patent Document 1 has a built-in power transmission coil that is excited by an AC power supply, and a power receiving coil that is electromagnetically coupled to the power transmitting coil is provided in the battery pack, and the battery is powered by the power induced in the power receiving coil. Charge the battery pack.
  • the battery pack has a built-in charging circuit that rectifies the alternating current induced in the power receiving coil and supplies the battery to the battery for charging. According to this structure, a battery pack can be mounted on a charging stand, and a battery can be charged in a non-contact state without connecting contacts.
  • a plurality of methods have been proposed. For example, a method in which the power transmission coil is moved in the XY direction inside the charging base, a plurality of power transmission coils are laid flat on the charging base, In order to match the power receiving coil side with the power transmission coil, on the contrary, the method of selecting the power transmission coil close to the power receiving coil in the method or the method of adjusting the position of such power transmission coil according to the placement position of the power receiving coil, For example, a method has been developed in which a positioning magnet is provided on a charging stand, and positioning is performed by attracting with a metal plate on the battery drive device side. Among these, in the positioning method using magnetic force, a positioning magnet is disposed on the charging stand side, and a magnetic body is disposed on the battery drive device side.
  • FIG. 14A As a method of charging a battery pack that can be contactlessly charged by a user, as shown in FIG. 14A, the battery driving device 100 with the battery pack mounted thereon is placed on a contactless charging stand 110.
  • FIG. 14 (b) there are two methods, that is, a method of charging without contact and a method of connecting the battery-powered device 100 to the AC / DC adapter 143 and charging with a wire.
  • FIG. 14C When such a battery pack is used, as shown in FIG. 14C, when the user erroneously places the battery drive device 100 on the AC / DC adapter 143 and places it on the contactless charging stand 110. Will compete between contactless charging from the charging stand 110 and wired charging from the AC / DC adapter 143.
  • a main object of the present invention is to provide a battery driving device and a battery pack capable of safely charging the battery pack even when both compete in a battery pack capable of contactless charging and wired charging. .
  • the battery-driven device is driven by the power supplied from the battery pack 90 in a state where the battery pack 90 and the battery pack 90 are connected.
  • the battery pack 90 can be contactlessly charged by being mounted on the charging stand 110 and electromagnetically coupled to a power transmission coil 113 built in the charging stand 110 to receive power.
  • the battery pack 90 includes a rechargeable secondary battery cell 2, a power reception coil 1 electromagnetically coupled to a power transmission coil 113 built in a charging stand 110, and the power reception coil 1.
  • a contactless charging circuit 95 capable of converting the received power to charge the secondary battery cell 2
  • a pack control unit 91 for controlling the contactless charging circuit 95, and the pack control unit 91
  • a pack-side connection terminal for connecting to the drive device main body 101, and the drive device main body 101 is connected to the AC / DC adapter 143, and power is supplied from the AC / DC adapter 143.
  • an adapter charging circuit 153 for outputting power for charging the battery pack 90
  • an adapter determination circuit 159 for detecting that the AC / DC adapter 143 is connected to the adapter charging circuit 153
  • a device control unit 150 that is connected to the adapter determination circuit 159 and acquires the presence / absence of connection of the AC / DC adapter 143, and is electrically connected to the device control unit 150 and is connected to the battery pack 90
  • a device-side connection terminal wherein the device control unit 150 is configured such that the pack-side connection terminal of the battery pack 90 is connected to the device-side connection terminal.
  • AC / DC adapter charging is prioritized and non-contact charging is stopped, thereby avoiding duplicate charging and protecting the device, and stable.
  • Charging can be completed in a short time by giving priority to a charging method that can be expected to supply a specific electrode.
  • the device-side connection terminal includes a device-side state communication terminal 106 ′ for communicating with the battery pack 90
  • the device control unit 150 includes the battery pack.
  • 90 is provided with a non-contact charging prohibition output terminal 165 for instructing permission or prohibition of non-contact charging
  • the adapter determination circuit 159 detects that the AC / DC adapter 143 is connected.
  • the device control unit 150 can switch the voltage of the device-side state communication terminal 106 ′ with the output of the contactless charging prohibition output terminal 165.
  • the non-contact charge prohibition output terminal 165 is connected to a pull-down switch 168 that switches the voltage of the device-side state communication terminal 106 ′, and the AC / DC adapter 143 is connected.
  • the device control unit 150 In response to the detection of the adapter determination circuit 159, the device control unit 150 outputs a HIGH signal from the non-contact charge inhibition output terminal 165, turns on the pull-down switch 168, and The voltage of the side state communication terminal 106 ′ can be switched to LOW.
  • the battery-powered device can include a pull-up unit 81 that is activated when the pack control unit 91 detects contactless charging.
  • the battery-powered device includes a state communication terminal 106 that can be connected to the device-side state communication terminal 106 ′ so that the pack-side connection terminal communicates with the drive device main body 101. Can do.
  • the battery pack 90 further includes a device connection determination unit for determining whether the battery pack 90 is a single unit or is connected to the drive device main body 101. Can be provided.
  • the battery-powered device can be performed by comparing the voltage when the device connection determination unit turns on the pull-up unit 81 of the pack control unit 91 with a predetermined voltage.
  • the pull-up unit can be used not only for determination of contactless charging but also for determination of the presence / absence of connection of the drive device main body, and there is an advantage that the configuration can be simplified by sharing the members.
  • the battery pack 90 further includes a charge switch 98 connected to the contactless charging circuit 95, and the pack control unit 91 is connected to the state communication terminal 106.
  • the device controller 150 detects that the battery pack 90 is fully charged, it outputs a HIGH signal from the non-contact charge prohibition output terminal 165 and turns on the pull-down switch 168. Then, by switching the voltage of the device side state communication terminal 106 ′ to LOW, the state input terminal 84 becomes LOW via the state communication terminal 106 connected to the device side state communication terminal 106 ′.
  • the pack control unit 91 is configured to prohibit the contactless charging of the battery pack 90. Sends a stop signal to 0, it can be configured to OFF the charging switch 98.
  • the battery pack according to the ninth aspect is connected to the drive device main body 101 and supplies electric power for driving the drive device main body 101, while being placed on the charging stand 110, the charge stand 110 A battery pack that can be contactlessly charged by receiving electric power from a power transmission coil 113 built in the battery, and is capable of electromagnetically coupling with the rechargeable secondary battery cell 2 and the power transmission coil 113 built in the charging stand 110.
  • a pack-side connection terminal connected to the pack control unit 91 and electrically connected to a device-side connection terminal of the drive device main body 101; and a temperature for detecting the temperature of the secondary battery cell 2.
  • a detection unit 94, and the connection terminal is a pair of power supply terminals for charging and discharging the secondary battery cell 2, a temperature terminal 103 connected to the temperature detection unit 94, and the drive device main body.
  • a state communication terminal 106 for communicating with 101, the pack-side connection terminal is connected via the device-side connection terminal, and is charged from the charging stand 110, and the drive device body 101
  • the pack control unit 91 instructs to stop the contactless charging by the contactless charging circuit 95, and It is possible to instruct the drive device main body 101 to prioritize the power supply from the AC / DC adapter 143.
  • the non-contact charging and adapter charging compete, the non-contact charging is stopped and adapter charging is given priority, thereby avoiding redundant charging and protecting the equipment, and stable electrode supply is expected. Charging can be completed in a short time by giving priority to the charging method that can be performed.
  • the battery pack 90 detects that the contactless charging circuit 95 is charging contactlessly, and the drive device main body 101 side is connected via the pack side connection terminal. Can be sent to.
  • charging by the AC / DC adapter can be prioritized over charging of the contactless charging circuit based on the detection result of the contactless charging determination means, while avoiding competition between different charging methods. Stable charging is achieved.
  • the battery pack according to the eleventh aspect can include a pull-up unit 81 that is activated when the pack control unit 91 detects contactless charging.
  • the battery pack according to the twelfth aspect can further include a device connection determination unit for determining whether the battery pack 90 is a single unit or is connected to the drive device main body 101.
  • the battery pack according to the thirteenth aspect can be performed by comparing the voltage when the device connection determination unit turns on the pull-up unit 81 of the pack control unit 91 with a voltage of a predetermined voltage. Accordingly, the pull-up unit can be used not only for determination of contactless charging but also for determination of the presence / absence of connection of battery-powered equipment, and there is an advantage that the configuration can be simplified by sharing the members.
  • a switch 93 is provided, and when the device connection determination unit determines that the battery pack 90 is a single unit, the path switch 93 is turned on to perform contactless charging.
  • FIG. 2 is a vertical sectional view showing a state in which a battery drive device is placed on the charging stand shown in FIG. 1.
  • FIG. 3 is a vertical cross-sectional view showing a state where a single battery pack is placed on the charging stand shown in FIG. 2.
  • It is a block diagram which shows the electric circuit of the charging stand and battery drive apparatus of FIG.
  • It is a block diagram which shows the electric circuit of the charging stand of FIG. 3, and a battery pack.
  • FIG. 14A is a perspective view showing a state in which a battery-powered device with a battery pack is placed on a non-contact charging stand and charged without contact
  • FIG. 14C is a perspective view showing a state where the battery drive device is connected to the AC / DC adapter and placed on a non-contact charging stand while being connected to the DC adapter. is there.
  • the embodiment shown below exemplifies a battery driving device and a battery pack for embodying the technical idea of the present invention
  • the present invention specifies the battery driving device and the battery pack as follows. do not do.
  • the member shown by the claim is not what specifies the member of embodiment.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is a perspective view showing a state in which a battery driving device 100 that houses a battery pack 90 is set on a contactless charging base 110
  • FIG. 2 is a vertical sectional view of FIG. 1
  • FIG. 4 is a vertical sectional view showing a state in which a single unit 90 is set on the charging stand 110 for charging
  • FIG. 4 shows a secondary battery of the battery pack 90 built in the battery driving device 100 with the battery driving device 100 mounted on the charging stand 110.
  • 5 is a block diagram of an electric circuit for charging the cell 2
  • FIG. 1 is a perspective view showing a state in which a battery driving device 100 that houses a battery pack 90 is set on a contactless charging base 110
  • FIG. 2 is a vertical sectional view of FIG. 1
  • FIG. 4 is a vertical sectional view showing a state in which a single unit 90 is set on the charging stand 110 for charging
  • FIG. 4 shows a secondary battery of the battery pack 90 built in the battery driving device 100 with the battery driving device 100 mounted on
  • FIG. 5 is a block diagram of an electric circuit for charging the secondary battery cell 2 by placing the battery pack 90 alone on the power receiving table 110
  • FIG. 5 The block diagram of the electric circuit for supplying the direct-current power supply from the DC connection terminal 117A of the battery drive apparatus 100 and charging the secondary battery cell 2 by wire is shown, respectively.
  • the battery pack 90 is connected to the battery drive device 100 and supplies electric power for driving the battery drive device 100, while being placed on the charging stand 110 to the charging stand 110.
  • Contactless charging is enabled by receiving power from the built-in power transmission coil 113.
  • the battery driving device 100 in which the battery pack 90 is set is placed on the right charging stand 110, thereby charging the battery pack 90 shown in the center in the drawing.
  • the battery pack 90 can also be charged by connecting the AC / DC adapter 143 to the battery drive device 100. That is, the AC / DC adapter 143 is connected to the battery driving device 100 shown on the left side in FIG. As described above, the battery pack 90 supports both contactless charging from the charging stand 110 (right side in FIG. 4) and adapter charging from the battery driving device 100 (left side in FIG. 5). Further, the battery pack 90 can be charged even when the battery pack 90 is not connected to the battery driving device 100 as shown in FIG. 3 in addition to the contactless charging in the state of being connected to the battery driving device 100. (Charging stand 110)
  • the charging stand 110 shown in FIGS. 1 to 3 includes a power transmission coil 113 that is electromagnetically coupled to the power receiving coil 1 of the battery pack 90, and a high frequency power supply control circuit 114 that supplies high frequency power to the power transmission coil 113.
  • the driving power of the charging stand 110 is obtained by converting the power received from an external commercial power source or the like, or charging the secondary battery 112 for charging base built in the charging stand 110 with a commercial power source or the like.
  • external power is supplied by a DC connection plug 141 of a charging stand AC / DC converter (not shown) or a USB cable 142.
  • the charging stand 110 is provided with a DC input terminal 117 in the exterior case 111 for receiving power from the outside.
  • a DC connection terminal 117A for connecting the DC connection plug 141 and a USB terminal 117B for connecting the USB cable 142 are provided as the DC input terminal 117.
  • the DC power from the DC input terminal 117 is charged into the charging stand secondary battery 112 and directly supplied to the high frequency power supply control circuit 114.
  • the charged secondary battery 112 for charging stand can supply DC power to the high frequency power supply control circuit 114 or the like when no power is supplied from the external power source to the DC input terminal 117.
  • the charging stand 110 can be carried, and even if there is no power supply to the DC input terminal 117, the high frequency power supply control circuit 114 generates high frequency power by supplying the DC power of the secondary battery 112 for charging stand. be able to.
  • the battery drive device 100 is driven by connecting the battery pack 90 and receiving power supply from the battery pack 90.
  • the battery pack 90 is housed in the battery drive device 100.
  • the battery pack does not necessarily have to be stored inside the drive device main body 101, and may be mounted as it is exposed from the drive device main body.
  • the battery pack is detachable from a part of the drive device body.
  • the battery pack is not removable, but can be embedded in the battery-driven device book so that it cannot be replaced.
  • the battery-powered device 100 also has a DC connection terminal 117A as an input terminal from the device AC / DC adapter 143 connected to an AC power source. Thereby, the battery pack 90 connected to the battery drive device 100 can supply DC power from the DC connection terminal 117A, and can stably charge the secondary battery cell 2 in the battery pack 90. . (Charging display function)
  • the battery-powered device 100 shown in FIG. 1 has a non-contact charging display unit 157 as a charging display function for displaying that the secondary battery cell 2 is being charged by non-contact charging, as will be described later. Further, the charging display function can be provided not only on the battery drive device 100 but also on the charging stand 110 side.
  • the charging stand 110 in FIG. 1 includes a display unit that displays that the secondary battery cell 2 is being charged.
  • the display unit indicating that the secondary battery cell 2 is being charged on the charging stand 110 is a charging display LED 119, and can indicate that charging is being performed by a lighting pattern.
  • the voltage detected by the charging current detection resistor 156 in the battery drive device 100 is obtained by the remaining capacity calculator 155 (FG-IC). They can be integrated and displayed separately (not shown in FIG. 1). Alternatively, the remaining charge display function and the remaining capacity display function can be shared, and the remaining capacity of the secondary battery cell 2 can be displayed by the blinking method of the charge display LED 119.
  • the charging display LED 119 is connected to the DC power control circuit 121 as shown in FIG.
  • the charging display LED 119 is controlled in the energized state by the DC power control circuit 121, and the charging state of the secondary battery cell 2 is expressed as a lighting state.
  • the exterior case 111 has the LED display hole 120 opened at a position facing the charge display LED 119, and the charge display LED 119 is exposed to the outside through the LED display hole 120.
  • the DC power control circuit 121 controls the blinking state of the charging display LED 119 according to the remaining capacity of the secondary battery cell 2 detected by the high-frequency power supply control circuit 114, and the secondary is determined by the blinking pattern of the charging display LED 119. The remaining capacity of the battery cell 2 is displayed. (Battery pack 90)
  • the battery pack 90 shown in FIG. 4 includes a rechargeable secondary battery cell 2, a power receiving coil 1 that can be electromagnetically coupled to a power transmission coil 113 built in the charging stand 110, and a secondary battery cell on the drive device main body 101 side.
  • a temperature detection unit 94 for detecting the temperature 2 a path switching switch 93 connected to the minus terminal 104, which is one of the power supply terminals, and a pack control unit 91 for controlling ON / OFF of the path switching switch 93.
  • a pack-side connection terminal for electrical connection with the battery-powered device 100.
  • the pack-side connection terminal includes a pair of power supply terminals 102 and 104 for charging / discharging the secondary battery cell 2, a temperature terminal 103 connected to the temperature detection unit 94, a state communication terminal 106, and an FG terminal 105. (Details will be described later).
  • the battery pack 90 is charged while attached to the battery drive device 100 as shown in the circuit diagram of FIG. 4, and is not attached to the battery drive device 100 as shown in the sectional view of FIG. It can also be placed on the charging stand 110 and charged.
  • the power receiving coil 1 of the battery pack 90 is electromagnetically coupled to the transmitting coil 113 of the charging stand 110, and an induced electromotive force can be generated by the received magnetic flux.
  • the power receiving coil 1 preferably has a square shape in addition to a circular outer shape.
  • the inductance can be increased by increasing the winding length of the power receiving coil 1.
  • the rectangular coil can regulate the rotation direction of the coil as compared with the circular coil, positioning can be facilitated.
  • the principle of charging the secondary battery cell 2 with the power received by the battery pack 90 from the contactless charging stand 110 will be described with reference to FIG.
  • the induced electromotive force generated in the power receiving coil 1 electromagnetically coupled to the power transmitting coil 113 of the charging stand 110 is converted into a DC power source by the non-contact charging circuit 95 as shown in FIG. 4, and the secondary battery cell 2 is charged.
  • the secondary battery cell 2 has a monitoring circuit that measures monitoring parameters such as charging voltage, current, and battery temperature. This monitoring circuit adds a modulation signal to the power receiving coil 1 when any monitoring parameter exceeds a preset threshold value for the secondary battery cell 2, and transmits the modulation signal to the power transmission coil 113 side.
  • Output adjustment can be performed by the power supply control circuit 114.
  • the output of the high frequency power supply control circuit 114 of the charging stand 110 can be stopped in response to a signal from the battery pack 90 side. Thereby, the safety
  • the secondary battery cell 2 incorporated in the battery pack 90 is a rectangular parallelepiped that is thinner than the width, and can form a metal case by forming an outer can integrally formed on each surface.
  • the metal case can be made of aluminum or the like, can be protected from exogenous impacts, and can have an excellent effect of heat dissipation.
  • the secondary battery cell 2 in this embodiment uses a lithium ion secondary battery or a lithium polymer battery with a large volume energy density, so that the whole is light, thin, and small, and is used for portable drive devices with good convenience. There are features that can be done.
  • the present invention is not limited to this, and the secondary battery cell can be any rechargeable secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. (Contactless charging)
  • FIGS. 4 and 5 show a state in which the left battery drive device 100 is placed on the right charging stand 110 and the battery pack 90 stored therein is charged.
  • the charging stand 110 for contactlessly charging the battery pack 90 energizes high-frequency power from the high-frequency power supply control circuit 114 to the power transmission coil 113 to generate magnetic flux, and generates induced electromotive force in the power receiving coil 1 in the battery pack 90.
  • the high frequency power supply control circuit 114 in the charging stand 110 is supplied with DC power from a DC input terminal 117 having a DC connection terminal 117A and a USB terminal 117B from the AC / DC converter for charging stand. it can.
  • This DC power can be supplied to the high frequency power supply control circuit 114 along with charging of the charging stand secondary battery 112 of the charging stand 110, converted to high frequency power, and supplied to the power transmission coil 113. .
  • the charging base secondary battery 112 built in the charging base 110 is charged in advance, so that the charging base secondary battery 112 supplies the high frequency power source.
  • DC power can also be supplied to the control circuit 114.
  • the transmission coil 113 that performs contactless power transmission can be electromagnetically coupled with the power receiving coil 1 on the power receiving device side by the magnetic flux, and can supply the induced electromotive force to the power receiving coil 1.
  • the power supply to the high frequency power supply control circuit 114 is controlled by the DC power control circuit 121, and the switching of the DC input terminal 117 and the charging base secondary battery 112 is switched on / off of the switches SW1, SW2, SW3 and SW4. Do it.
  • the DC power control circuit 121 recognizes that DC power has been input from the DC input terminal 117, and the switch SW1 or SW2 and SW3 are turned on and energized.
  • the DC power supplied here is detected by the internal charging circuit 118 as to whether or not the secondary battery 112 for charging stand is fully charged. If charging is possible, charging is started, and power is not supplied when fully charged. Like that. Thereby, the charging stand 110 can be carried and power can be supplied to the high-frequency power control circuit 114 by the charging stand secondary battery 112 even in a place where AC power or USB power cannot be supplied to the battery pack 90. It is possible to perform contactless charging.
  • the high frequency power supply control circuit 114 determines whether or not the power receiving coil 1 that is electromagnetically coupled to the power transmitting coil 113 is within a recognizable range, and supplies power if within the power receiving range, and supplies power if outside the power receiving range. To stop. Thereby, the charging stand 110 can obtain an energy saving effect by transmitting power only when necessary without supplying wasteful power transmission energy.
  • the DC power control circuit 121 detects the remaining capacity of the secondary battery cell 2, charging voltage information, full charging information by detecting the high frequency voltage change, current, phase change and / or modulation frequency of the high frequency power supply control circuit 114.
  • a charge display LED 119 that receives an abnormal output stop signal or the like and can display the remaining capacity in a blinking pattern is connected.
  • the charging stand 110 can stop supply of high frequency electric power based on full charge information, and can acquire an energy-saving effect as operation
  • the battery driving device 100 includes a battery pack 90 and a driving device main body 101 that receives power supply from the battery pack 90. Therefore, the battery pack 90 has a plus terminal 102 and a minus terminal 104 constituting a pair of power supply terminals 102 and 104 as pack side connection terminals, and further includes a temperature terminal 103, a status communication terminal 106, and an FG terminal 105. It has a terminal. Thereby, when the driving device main body 101 is connected by these four terminals, the battery pack 90 has control information of the battery driving device 100 of the driving device main body 101, battery information of the secondary battery cell 2 of the battery pack 90, and the like. Can communicate with each other. (Non-contact charging circuit 95)
  • the high frequency power of the induced electromotive force generated in the receiving coil 1 in the battery pack 90 due to the magnetic flux from the power transmission coil 113 is converted into direct current power via the contactless charging circuit 95, via the path changeover switch 93,
  • the secondary battery cell 2 can be charged.
  • As the contactless charging circuit 95 a synchronous rectifier circuit or the like can be used.
  • the synchronous rectification circuit first rectifies high-frequency power with a rectification circuit, and uses only a DC component as DC power with a smoothing capacitor to charge the secondary battery cell 2 (not shown). (Charge switch 98)
  • the battery pack 90 of this embodiment has a charging switch 98 and a path changeover switch 93.
  • the charging switch 98 controls the power output of the contactless charging circuit 95, and controls whether or not to supply charging power to the secondary battery cell 2 and the amount of charging current.
  • the charging switch 98 is open when mounted on the charging stand 110, and is closed when the pack control unit 91 is activated by supplying non-contact charging power. (Route switch 93)
  • the path changeover switch 93 is in an open state in an initial state where the pack control unit 91 is not activated. Further, the path switch 93 controls open / close depending on whether or not the battery drive device 100 is connected. As shown in FIG. 4, the path changeover switch 93 is connected to the path changeover terminal 82 of the pack control unit 91 via the path changeover control line SWL.
  • Both the charging switch 98 and the path changeover switch 93 are controlled to be opened / closed by the pack controller 91.
  • the charge switch 98 and the path changeover switch 93 can be reduced in size by using semiconductor elements such as FETs and transistors capable of current passage control.
  • the conversion loss of the received power can be reduced by selecting an FET semiconductor element that has low power loss when passing current. (Charging path)
  • the pack control unit 91 switches the charging path based on the determination result of whether the battery pack 90 is a single unit or is connected to the battery drive device 100 by the device connection determination unit described later. That is, by switching between HIGH / LOW of the path switching terminal 82, the path switching switch 93 is switched ON / OFF via the path switching control line SWL. Specifically, if the battery pack 90 is connected to the battery-driven device 100 and the AC / DC adapter is not connected, that is, a state in which contactless charging is performed, the path switching control line SWL is intermediate. It becomes a voltage state (details will be described later). As a result, the path switching switch 93 is turned OFF and opened by the pack control unit 91.
  • the charging path of the secondary battery cell 2 is changed from the contactless charging circuit 95 to the charging switch 98, the secondary switch.
  • the battery cell 2 is passed through the protection circuit 92, the negative terminal 104, and the device-side negative terminal 104 ′ to energize the charging current detection resistor 156 on the battery-driven device 100 side. Further, it returns to the contactless charging circuit 95 on the battery pack 90 side via the device side FG terminal 105 ′ and the FG terminal 105.
  • the remaining current amount of the secondary battery cell 2 can be calculated by integrating the charging current flowing through the charging current detection resistor 156 by the remaining capacity calculation unit 155.
  • the secondary battery cell on the battery-driven device 100 side is intentionally extended partially to the battery-driven device 100 side, which should be completed in the battery pack 90.
  • the remaining capacity of 2 can be grasped, and it can be notified to the user by displaying that the battery is being charged or that the battery is fully charged.
  • the path switching control line SWL is in a low voltage state (details will be described later). Thereby, the pack control unit 91 detects a low voltage, and transmits a stop signal to the charging stand 110 and turns off the charging switch 98 so as to prohibit contactless charging of the battery pack 90. At this time, the path switch 93 is turned off and remains open.
  • the path switching control line SWL is in a high voltage state (details will be described later).
  • the path changeover switch 93 is turned on by the pack control unit 91 to be in the closed state.
  • the pack control unit 91 similarly sets the path switching terminal 82 to LOW and turns off the path switching switch 93 (details will be described later). For this reason, the charging path of the secondary battery cell 2 is the same as in the case of contactless charging except that the power supply destination is the AC / DC adapter 143 or the adapter charging circuit 153 as shown in FIG. (Device connection determination unit)
  • the pack control unit 91 When the battery connection 90 is determined by the device connection determination unit that is configured to change the voltage of the state communication line STL to low voltage, intermediate voltage, and high voltage, the pack control unit 91 The path switching terminal 82 is set to HIGH, and the path switching switch 93 is switched to ON via the path switching control line SWL (details will be described later). As a result, since the minus terminal 104 and the FG terminal 105 are short-circuited, the charging path of the secondary battery cell 2 is not cut off, and returns to the contactless charging circuit 95 from the protection circuit 92 via the path switch 93. As a result, a charging path is established, and contactless charging of the battery pack 90 alone is also possible. Further, since the lower side of the temperature detection unit 94 is grounded, temperature measurement can be performed.
  • the pack control unit 91 that controls the power output of the contactless charging circuit 95 instructs the charging switch 98 to be closed at the start of charging. For example, when the temperature detected by a thermistor (not shown) that is a cell temperature detection unit built in the temperature detection unit pack control unit 91 is within a predetermined range, When there is no DC power supply from the AC / DC adapter 143 to the battery pack 90 from 100 (details will be described later), the charging switch 98 is closed and charging is started. This information is transferred to the pack controller 91 to control the charge switch 98. Thereby, the secondary battery cell 2 can be protected from the temperature rise etc. accompanying charge to the battery pack 90. (Pack control unit 91)
  • the pack control unit 91 is connected to the temperature terminal 103.
  • the pack control unit 91 When the pack control unit 91 starts the contactless charging with the charging stand 110, the pack control unit 91 switches the path switch 93 to OFF, thereby enabling communication with the battery-powered device 100 via the temperature terminal 103.
  • the temperature terminal 103 can be used as a communication terminal for communicating with the battery-powered device 100 during non-contact charging, and the temperature terminal 103 and the communication terminal can be used as the same terminal. It is possible to suppress the rise and to avoid a space restriction due to an increase in the number of parts.
  • the pack control unit 91 shown in FIG. 4 includes a pull-up terminal 83, a state input terminal 84, a path switching terminal 82, and a contactless charging abnormality terminal 85 as inputs and outputs for exchanging signals with the outside.
  • the pull-up terminal 83 is grounded via the first voltage dividing resistor 86 and the second voltage dividing resistor 87.
  • the state input terminal 84 is connected to a connection node between the first voltage dividing resistor 86 and the second voltage dividing resistor 87.
  • the state input terminal 84 is also connected to the resistor R1 of the drive device main body 101.
  • the pack control unit 91 is activated by obtaining charging power for contactless charging from the charging stand 110 in a state where the charging switch 98 is OFF, and then operates the switch 98. (Pull-up terminal 83)
  • the pull-up terminal 83 is an output terminal connected to a transistor included in the pack control unit 91.
  • the pull-up terminal 83 detects whether or not the battery pack 90 is placed on the charging stand 110 and notifies the battery-driven device 100 side via the state communication terminal 106. Specifically, when the battery pack 90 is placed on the charging stand 110, the pull-up unit 81 is turned on so that the pack control unit 91 operates with the supplied power. (Status input terminal 84)
  • the state input terminal 84 is an input terminal connected to the state communication terminal 106 and has a structure for changing to a low voltage, an intermediate voltage, and a high voltage.
  • the state input terminal 84 functions as a device connection determination unit for determining whether the battery pack 90 is a single unit or is connected to the drive device main body 101.
  • the voltage of the state communication line STL connected to the device-side state communication terminal 106 ′ is input to the pack control unit 91.
  • the path switching terminal 82 is connected to the path switching switch 93 and switches the path switching switch 93 on and off in order to charge the battery pack alone.
  • the path changeover switch 93 is switched to charge the battery cell.
  • the route changeover switch 93 is turned OFF, and the charge route passes through the remaining capacity calculation unit 155 on the battery drive device 100 side. Can be switched. Even when an overdischarged battery pack is attached to the battery-powered device 100, the remaining capacity cannot be accurately calculated by normal current integration. And the battery pack alone is charged. (Non-contact charge abnormal terminal 85)
  • the contactless charging abnormality terminal 85 is a terminal for outputting an abnormality signal when, for example, an abnormality such as an overcharge pressure or an overcurrent is detected during charging.
  • the contactless charging abnormality terminal 85 is connected to an abnormality switch connected between the temperature terminal 103 and the minus terminal 104 in parallel with the temperature detection unit 94.
  • the abnormal switch is a bipolar transistor, and its base terminal is connected to the contactless charging abnormal terminal 85.
  • the contactless charging abnormality terminal 85 is energized to turn on the abnormality switch, and the temperature terminal 103 is set to LOW.
  • the device control unit 150 on the battery-driven device 100 side can determine that a contactless charging abnormality has occurred when the temperature terminal 103 is at the LOW level. (Device connection determination unit)
  • the device connection determination unit determines whether the battery pack is connected, that is, whether the battery pack is a single unit or is connected to the battery-driven device 100.
  • the device connection determination unit is realized by the state input terminal 84 of the pack control unit 91. As described above, the state input terminal 84 is connected to the first voltage dividing resistor 86 and the second voltage dividing resistor 87 and the connection node, and is also connected to the resistor R1 in the drive device main body 101. The first voltage dividing resistor 86 is connected to the pull-up terminal 83.
  • the device connection determination unit makes a determination based on the voltage value of the state input terminal 84 with the pull-up unit 81 of the pack control unit 91 turned on, that is, with the pull-up terminal 83 turned on. . Therefore, the resistance values of the resistor R1, the first voltage dividing resistor 86, and the second voltage dividing resistor 87 are set according to the battery voltage of the secondary battery cell 2. For example, the resistance value of the second voltage dividing resistor 87 is a large resistance value of several tens to several hundred times that of the resistor R 1 and the first voltage dividing resistor 86.
  • the voltage value of the state input terminal 84 is roughly the voltage dividing ratio of the resistor R1 and the first voltage dividing resistor 86 because the second voltage dividing resistor 87 is large, and a predetermined ratio of the cell voltage (for example, When the intermediate voltage is 1/2 or less, it is determined that the battery-powered device 100 is attached. Further, when the battery pack is a single unit, the voltage dividing ratio of the first voltage dividing resistor 86 and the second voltage dividing resistor 87 is obtained. Since the second voltage dividing resistor 87 is large, the voltage is close to the secondary battery cell voltage. When the voltage is higher than the predetermined ratio, that is, when the voltage is high, the battery pack is determined as a single unit.
  • This device connection determination is performed at the start of contactless charging.
  • the charging current is detected by the non-contact current detection resistor 99 and charged by the charging stand 110 at a constant current and a constant voltage that regulate the maximum current and the maximum voltage.
  • the pack control unit 91 detects and turns off the charging switch 98 to prohibit contactless charging of the battery pack 90. Then, a stop signal is transmitted to the charging stand 110.
  • the path switching switch 93 is operated as described above to switch the charging path.
  • the pack control unit 91 can switch the charging current value for contactless charging to an appropriate value. For example, when the battery pack is a single battery, it is determined that the heat dissipation is better than when the battery drive device is mounted, and the charging current is adjusted higher than when the battery drive device is mounted.
  • the state communication switch 160 is turned on, the adjacent FET 169 is turned on, and the level shift unit 151 is passed through.
  • the non-contact charge display unit 157 is lit. (Adapter charging)
  • FIG. 6 shows a state in which an AC / DC adapter 143 is connected to the battery driving device 100 on the left side and the battery pack 90 accommodated therein is charged.
  • the battery pack 90 of FIG. 6 connects the DC connection plug 141 of the AC / DC adapter 143 connected to the commercial power supply to the DC connection terminal 117A of the drive device main body 101, and supplies DC power to the drive device main body 101. Yes.
  • the drive device main body 101 to which the direct current power is supplied receives the direct current power to the DC connection terminal 117A by the adapter charging circuit 153. (Adapter determination unit 159)
  • the adapter determination unit 159 is connected to the AC / DC adapter 143, measures the voltage from the higher voltage side (not shown) than the diode of the supply line, and determines that it is connected if it is greater than a predetermined voltage. To do.
  • the adapter determination unit 159 includes an adapter determination output terminal 161. (Adapter determination output terminal 161)
  • the adapter determination output terminal 161 is an output terminal and is connected to the adapter determination input terminal 162 of the device control unit 150.
  • the adapter determination circuit 159 outputs a HIGH signal when the AC / DC adapter 143 is connected to the battery-powered device 100, and outputs a LOW signal when it is not connected.
  • the device control unit 150 instructs the battery pack 90 side to permit / prohibit contactless charging.
  • the adapter connection determination signal is a HIGH signal
  • the AC / DC adapter 143 is connected, and as a result of giving priority to adapter charging, non-contact charging is prohibited or already-executed non-contact charging is stopped.
  • the state communication line STL is set to LOW (low voltage) using the pull-down switch 168 (details will be described later).
  • the pack control unit 91 on the battery pack 90 side prohibits the contactless charging of the secondary battery cell 2 when the state input terminal 84 receives that the state communication line STL is LOW.
  • the device control unit 150 is a non-contact connected to the remaining capacity input terminal 163 and the interrupt input terminal 164 connected to the remaining capacity calculation unit 155, and to the pull-down resistor 167 and the pull-down switch 168.
  • a charge prohibition output terminal 165 is provided.
  • the contactless charge prohibition output terminal 165 is an output terminal and is connected to the pull-down resistor 167 and the pull-down switch 168.
  • the pull-down switch 168 is an FET in the example of FIG.
  • the non-contact charge prohibition output terminal 165 performs non-contact charge based on the input result from the remaining capacity input terminal 163 when the drive device main body 101 is connected to the battery pack 90 and contactless charging is performed from the charging stand 110. A non-contact charge prohibition signal for prohibiting is output.
  • the contactless charge prohibition output terminal 165 outputs a HIGH signal, and the pull-down switch 168 is turned ON.
  • This signal is output from the device-side FG terminal 105 ′ and output from the device-side state communication terminal 106 ′, and the resistance of R1 is in the ground state, so that the state input terminal 84 becomes a low voltage.
  • the pack control unit 91 detects and turns off the charging switch 98 and transmits a stop signal to the charging stand 110 so as to prohibit contactless charging of the battery pack 90.
  • a LOW signal is output, and contactless charging is not prohibited, but is allowed. Since the state input terminal 84 becomes a low voltage, the state communication switch 160 is turned OFF, and the non-contact charge display unit 157 is turned off.
  • the output signal from the adapter determination circuit 159 can also be directly input to the gate of the pull-down switch 168. This function is useful in the case of malfunction of the device control unit 150 including a microcomputer.
  • the pack control unit 91 When the pack control unit 91 detects the connection of the AC / DC adapter 143, the pack control unit 91 switches the charging method from contactless charging to adapter charging. As described above, when the adapter connection is detected, the pack control unit 91 opens the charging switch 98 and stops the contactless charging.
  • the path changeover switch 93 is closed, and the secondary battery cell temperature is transmitted to the battery-driven device 100 side via the temperature terminal 103.
  • the temperature terminal 103 can be used as the temperature terminal 103 for sending the secondary battery cell temperature when charging the AC / DC adapter.
  • the pack control unit 91 turns on the pull-down switch 168 by connecting the AC / DC adapter 143 as described above, and the status input terminal 84 becomes a low voltage, and this is detected by the pack control unit 91, and the charging switch 98 is turned off and a stop signal is transmitted to the charging stand 110 so as to prohibit contactless charging of the battery pack 90.
  • a signal for turning off the contactless charging is sent from the battery pack 90 to the charging stand 110 side, and the sending of power is stopped.
  • charging by the AC / DC adapter 143 is started.
  • FIG. 4 shows a case where contactless charging is performed with the battery pack 90 connected to the drive device main body 101 (battery drive device 100), and FIG. 5 shows a case where contactless charging is performed on the battery pack 90 alone.
  • FIG. 6 shows a case where the battery pack 90 is charged by an adapter while being connected to the drive device main body 101 (battery drive device 100).
  • FIG. 7 shows the battery pack 90 when the battery pack 90 is connected to the drive device main body 101 (battery drive device 100). In the state where it is mounted on the charging stand 110 in a state of being connected to (), the case where adapter charging has priority over contactless charging is shown.
  • the pack control unit 91 when non-contact charging power is supplied from the charging stand 110, the pack control unit 91 is activated, and the voltage of the state input terminal 84 of the state communication line STL is set to the first partial voltage as described above.
  • the intermediate voltage is detected by the divided voltage of the resistor 86 and the resistor R1, and the battery pack 90 is connected to the drive device main body 101 (battery drive device 100) by the intermediate voltage of the state input terminal 84 of the pack control unit 91 as a device connection determination unit. It is determined that contactless charging is performed in a connected state. Thereafter, the path switch 93 is opened, the charging switch 98 is closed, and charging is started.
  • the charging current is detected by the charging current detection resistor 99, and the pack controller 91 performs feedback by superimposing a signal on the transmission power to the charging stand 110, and the constant current that regulates the maximum current and the maximum voltage,
  • the device control unit 150 determines that the battery is fully charged, and the non-contact charge prohibition output terminal 165 outputs a HIGH signal.
  • the pull-down switch 168 is turned ON, and the state input terminal 84 becomes a low voltage, and this is detected by the pack control unit 91, and a stop signal is transmitted to the charging stand 110 so as to prohibit contactless charging of the battery pack 90.
  • the charging switch 98 is turned off.
  • the pack control unit 91 when contactless charging power is supplied from the charging stand 110, the pack control unit 91 is activated, and the voltage of the state input terminal 84 of the state communication line STL is the first partial voltage as described above. A high voltage is detected by the divided voltage of the resistor 86 and the second voltage dividing resistor 87, and the battery pack 90 is contactlessly charged by the high voltage of the state input terminal 84 of the pack control unit 91 as a device connection determination unit. It is determined that Thereafter, the path switch 93 is closed, the charging switch 98 is closed, and charging is started.
  • the charging current is detected by the non-contact current detection resistor 99, and the secondary battery cell 2 is charged by the charging stand 110 at a constant current and a constant voltage that regulate the maximum current and the maximum voltage, and when the voltage is equal to or higher than a predetermined voltage.
  • the pack control unit 91 determines that the battery pack 90 is fully charged, transmits a stop signal to the charging stand 110 and turns off the charging switch 98 so as to prohibit contactless charging of the battery pack 90. .
  • the adapter determination circuit 159 detects, the device control unit 150 outputs a HIGH signal to the non-contact charge prohibition output terminal 165, turns on the pull-down switch 168, Since the state communication switch 160 is turned off, the contactless charging display unit 157 is turned off.
  • the pack control unit 91 is not activated, so that the path switching terminal 82 is in the LOW state. Therefore, the path changeover switch 93 is opened, the charging current is detected by the charging current detection resistor 156, and the secondary battery cell 2 is controlled by the adapter charging circuit 153 at a constant current and a constant voltage that regulate the maximum current and the maximum voltage. Is charged. Further, when the voltage is equal to or higher than the predetermined voltage and the predetermined current value or lower is detected, the device control unit 150 determines that the battery is fully charged, and the adapter charging circuit 153 stops the charging.
  • charging proceeds as follows when adapter charging is performed.
  • the pack control unit 91 is activated, and the voltage of the state input terminal 84 of the state communication line STL is the same as that of the first voltage dividing resistor 86 as described above.
  • the intermediate voltage is detected by the divided voltage of the resistor R1, and the battery pack 90 is connected to the drive device main body 101 (battery drive device 100) by the intermediate voltage of the state input terminal 84 of the pack control unit 91 as a device connection determination unit. It is determined that contactless charging is performed in the state.
  • the path switch 93 is opened, the charging switch 98 is closed, and charging is started.
  • the adapter determination circuit 159 detects that the device control unit 150 outputs a HIGH signal to the non-contact charge prohibition output terminal 165 and turns on the pull-down switch 168.
  • the state communication switch 160 is turned OFF, the non-contact charge display unit 157 is turned off, and the voltage of the state input terminal 84 of the state communication line STL is low, so that the pack control unit 91 is low voltage.
  • the pack control unit 91 transmits a stop signal to the charging stand 110 and turns off the charging switch 98 so as to prohibit contactless charging of the battery pack 90.
  • the adapter charging is prioritized, the path switch 93 is opened, the charging current is detected by the charging current detection resistor 156, and the adapter charging circuit 153 sets the constant current and the constant voltage to regulate the maximum current and the maximum voltage.
  • the device control unit 150 determines that the battery is fully charged, and the adapter charging circuit 153 stops the charging.
  • the battery driving device 100 with the battery pack 90 attached is placed on the charging stand 110 with the AC / DC adapter 143 being connected.
  • the AC / DC adapter 143 it is necessary to stop any charging. Therefore, appropriate control is performed so that contactless charging is stopped and adapter charging is executed.
  • control is performed so that contactless charging is stopped and only AC / DC adapter 143 charging is performed.
  • the pack control unit 91 is once activated, but a stop signal is transmitted to the charging stand 110 so as to prohibit contactless charging of the battery pack 90 because the state communication line STL is at a low voltage.
  • the adapter charging is prioritized as described above with reference to FIG. (3)
  • the adapter charging is prioritized as described above with reference to FIG. (3)
  • step S1 charging by contactless charging is performed in step S1.
  • charging by the AC / DC adapter 143 is stopped.
  • the battery-powered device 100 detects the connection of the AC / DC adapter 143.
  • the device control unit 150 detects the connection of the AC / DC adapter 143 and communicates with the pack control unit 91 so as to transmit a charge stop signal.
  • step S3 the battery pack 90 stops charging by contactless charging.
  • step S4 charging by the AC / DC adapter 143 is started. (Temperature detector 94)
  • the temperature detection unit 94 is illustrated apart from the secondary battery cell 2 for convenience of explanation in FIG. 4 and the like, it is actually arranged in the vicinity of the secondary battery cell 2.
  • the temperature of the secondary battery cell 2 can be detected by contacting the surface of the secondary battery cell 2.
  • a PTC thermistor, an NTC thermistor, or the like can be suitably used for such a temperature detection unit 94.
  • a protection circuit 92 can be provided for protecting the secondary battery cell 2 from overcharge voltage, overcurrent, and overdischarge voltage.
  • the protection circuit 92 is connected in series with the secondary battery cell 2, and when a charging current exceeding a predetermined threshold flows, the current is cut off to protect the secondary battery cell 2. Further, not only the overcharge current but also a voltage abnormality or temperature abnormality of the secondary battery cell 2 or overdischarge can be detected and opened to interrupt the current. (Details of battery-powered device 100)
  • the battery-driven device 100 shown in these drawings is connected to an AC / DC adapter 143, receives power from the AC / DC adapter 143, and outputs an adapter charging circuit 153 for outputting power for charging the battery pack 90.
  • a device control unit 150 that controls the operation of the adapter determination circuit 159, a device side connection terminal that is electrically connected to the device control unit 150 and is connected to the pack side connection terminal of the battery pack 90, and an adapter charging circuit 153.
  • the battery-driven device 100 includes a device-side connection terminal for connecting to the connection terminal of the battery pack 90.
  • the device-side connection terminals include a device-side temperature terminal 103 ′, a pair of device-side power supply terminals, a device-side plus terminal 102 ′, a device-side minus terminal 104 ′, a device-side state communication terminal 106 ′, and a device-side FG terminal. 105 '. (Device-side status communication terminal 106 ′)
  • a state communication switch 160 is connected to the device-side state communication terminal 106 ′.
  • the device-side status notification terminal can also be used to activate the device control unit 150 that is powered down. (Level shift unit 151)
  • the level shifter 151 is used to shift the level of this signal because the HIGH level potential of each signal is different during non-contact charging.
  • a level shift regulator can be preferably used.
  • the level shift unit 151 can also be used to activate the device control unit 150 that has been powered down. (Non-contact charge display unit 157)
  • the non-contact charge display unit 157 is turned on during the period in which the non-contact charge is performed, and notifies the user that the non-contact charge is being performed. Even when the device control unit 150 is powered down, the device control unit 150 can be used to display a charge for the user. (Remaining capacity input terminal 163)
  • the remaining capacity input terminal 163 is an input terminal and is connected to the remaining capacity calculation unit 155.
  • the remaining amount calculation circuit calculates the remaining capacity of the battery cell based on the accumulated charge / discharge current value, and further detects full charge. Such a remaining capacity signal is input from the remaining capacity input terminal 163 to perform necessary processing.
  • interrupt input terminal 164 of the device control unit 150 and the remaining capacity calculation unit 155 are connected by an interrupt signal line 166.
  • an interrupt pulse is output from the remaining capacity calculation unit 155 to the device control unit 150 to notify the device control unit 150 of a change in state. For example, when the battery pack is charged alone and does not match the remaining capacity calculated by the remaining capacity calculation unit 155, or when a new battery pack is installed, an interrupt pulse is output so far. Is discarded and a new remaining capacity is set. The new remaining capacity is calculated from the voltage of the battery cell. (Communication between battery-powered device 100 and battery pack 90)
  • the battery-powered device 100 and the battery pack 90 communicate via the status communication line STL.
  • a HIGH / LOW level signal is exchanged using a state communication line STL connected to the non-contact charge inhibition output terminal 165 of the device control unit 150.
  • a method is mentioned. These assign HIGH or LOW to permission of contactless charging and prohibition of contactless charging, respectively.
  • a special case of contactless charging permission can be added as a state.
  • a state in which contactless charging is permitted when the battery pack is a single unit that is not connected to the battery-driven device 100 can be added.
  • a state of permitting contactless charging when the battery pack is overdischarged may be added.
  • a three-state buffer or the like that can output a tri-state signal representing the three states of HIGH / LOW / HIGH impedance (HI-Z) can be used.
  • the battery pack is connected from the device control unit 150 on the battery-driven device side to the non-contact charge inhibition output terminal 165 of the device control unit 150 using the tristate signal that can output three states of HIGH / LOW / HIGH impedance.
  • a charge permission / prohibition is sent to 90.
  • the device control unit 150 obtains the flag of the remaining capacity calculation unit 155 to determine whether the battery pack 90 is being contactlessly charged or has been fully charged.
  • the communication method between the battery-driven device 100 and the battery pack 90 is not limited to the method shown in FIG. 9 described above, and various communication methods can be used as appropriate.
  • the circuit example shown in FIG. 10 uses UART communication. In this method, a one-wire UART is used as a communication terminal, and charging permission / prohibition or notification of a fully charged state is acquired. (Remaining capacity calculation unit 155)
  • the battery-powered device 100 accumulates the current flowing through the charging path to the secondary battery cell 2 in a state where it is connected to the battery pack 90, so that the remaining capacity of the secondary battery cell 2 can be calculated.
  • a capacity calculation unit 155 is provided.
  • the remaining capacity calculation unit 155 can be realized by the remaining capacity calculation unit 155 in the battery-powered device 100.
  • the battery-driven device 100 can calculate the remaining battery capacity of the secondary battery cell 2 by causing the charging current to flow through the charging current detection resistor 156 and calculating the integration of the current in the remaining capacity calculator 155.
  • the calculated remaining battery capacity of the secondary battery cell 2 is transmitted to the device control unit 150 and displayed on a separately provided display (not shown) so that the charging status can be confirmed.
  • the remaining capacity calculation unit can detect a wired and non-contact charging current inside the battery pack, calculate the remaining capacity, and control the charging current.
  • the adapter charging circuit 153 operates to supply DC power to the secondary battery cell 2 of the battery pack 90 via the system power supply unit 154 and the plus terminal 102 so that constant voltage / constant current charging can be performed. (flag)
  • the remaining capacity calculation unit 155 calculates the charge / discharge current by detecting the voltage across the resistor, and calculates the remaining capacity (SOC) of the battery pack 90 by integrating the current. Further, the remaining capacity calculation unit 155 outputs the calculation result to the device control unit 150. Here, the remaining capacity calculation unit 155 sets a flag based on the calculation result, and the device control unit 150 reads the bit of this flag at a constant period, thereby grasping the state of charge of the battery pack 90. Examples of the flag include CHG (Charge) indicating that contactless charging is being performed, and FC (Full Charge) indicating full charge due to contactless charging. (Contactless charging with the battery pack 90 attached to the battery-powered device 100)
  • a remaining capacity calculation unit 155 calculates the remaining capacity of the battery cell while integrating the charging current with the charging current detection resistor 156. At this time, the flag is set to CHG indicating that contactless charging is being performed.
  • the remaining capacity calculation unit 155 When the remaining capacity calculation unit 155 detects that the battery pack 90 is fully charged, it sets FC as a flag. In response to this, the device control unit 150 outputs a HIGH signal to the non-contact charge prohibition output terminal 165, turns on the pull-down switch 168, and the state input terminal 84 becomes a low voltage as described above.
  • the unit 91 detects and transmits a stop signal to the charging stand 110 and turns off the charging switch 98 so as to prohibit contactless charging of the battery pack 90.
  • the device control unit 150 reads the flag bit of the remaining capacity calculation unit 155 periodically (for example, every 10 s) to determine full charge during contactless charging, and receives this result to receive a battery. The end of contactless charging can be instructed to the pack 90 side.
  • the full charge detection when the maximum current, the constant current with the maximum voltage regulated, or the constant voltage charge is equal to or higher than a predetermined voltage and a predetermined current value or less is detected, it is determined that the battery is fully charged.
  • FIG. 11 shows a state where the battery pack 90 is attached to the battery drive device 100 and the battery drive device 100 is charged by connecting the AC / DC adapter 143 to the battery drive device 100.
  • the adapter charging circuit 159 detects that the AC / DC adapter 143 is connected. In response to this detection result, the device control unit 150 stops contactless charging.
  • the adapter charging circuit 159 outputs HIGH to the device control unit 150 when the AC / DC adapter is connected, and LOW when the AC / DC adapter is not connected. Accordingly, the device control unit 150 sets the state communication line STL to LOW when the AC / DC adapter is connected, and stops the contactless charging.
  • the status input terminal 84 of the pack controller 91 becomes HI-Z
  • the path switching terminal 82 also becomes HI-Z. (When AC / DC adapter is connected and contactless charging is simultaneous)
  • the AC / DC adapter 143 is connected to the battery drive device 100 with the battery pack 90 attached to the battery drive device 100, and the battery pack 90 is placed on the contactless charging stand 110. Is shown in FIG. In this case, AC / DC adapter charging is prioritized and control is performed to stop contactless charging. Specifically, in response to the signal from the adapter determination circuit as described above, the device control unit 150 sets the state communication line STL to LOW and stops the contactless charging. In response to this, the status input terminal 84 of the pack controller 91 becomes HI-Z, and the path switching terminal 82 also becomes HI-Z.
  • the state input terminal 84 is temporarily set to HIGH in order to check whether or not the battery pack 90 is connected to the battery drive device 100.
  • the state input terminal 84 is set to HI-Z.
  • the battery pack 90 can be charged by placing it alone on the charging stand 110 without connecting it to the battery-driven device 100. This is shown in FIG. As shown in this figure, since the battery-powered device 100 does not exist, communication between the device control unit 150 and the pack control unit 91 via the state communication line STL is not performed. The pack controller 91 recognizes itself as a single battery pack by setting the state input terminal 84 to HIGH and thereby turning on D. Then, the path switching terminal 82 is turned on to perform contactless charging. (Battery pack low power consumption mode)
  • the pack control unit 91 needs to continue to be activated in order to receive the contactless charge permission signal from the device control unit 150.
  • This battery pack is in a low power consumption mode, and current consumption (standby power) is required to activate the pack controller 91.
  • the battery pack can be provided with a function of increasing current consumption in order to cope with recharge of contactless charging.
  • the transition to the standby mode can be stopped. For example, if the voltage of the battery cell is less than 3.9 V even after the end of contactless charging, it is determined that the battery cell has reached the end of its life and the pack control unit 91 is shut off. On the other hand, when the cell voltage is 3.9 V or more, the pack control unit 91 is activated by shifting to the low power consumption mode.
  • the battery-driven device and the battery pack according to the present invention can be suitably used as a battery pack used for a mobile phone, a portable music player, and a drive device body such as a PDA.
  • remaining capacity calculation unit 156 ... charging current detection resistor 157 ... contactless charge display unit 159 ... adapter determination circuit 160 ... status communication switch 161 ... adapter determination output terminal 162 ... adapter determination input terminal 163 ... remaining capacity input terminal 164 ... interrupt input terminal 165 ... contactless charge prohibition output terminal 166 ... interrupt signal line 167 ... pull-down resistor 168 ... pull-down switch 169 ... FET SW1, SW2, SW3, SW4 ... switch; SWL ... path switching control line STL ... state communication line R1 ... resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】無接点充電と有線充電が可能な電池パックにおいて、両者が競合した場合にも安全に電池パックを充電できるようにする。 【解決手段】駆動機器本体101は、AC/DCアダプタ143と接続されて、該AC/DCアダプタ143から電力を受けて、電池パック90を充電する電力を出力するためのアダプタ充電回路153と、アダプタ判定回路159の動作を制御する機器制御部150と、機器制御部150と電気的に接続されており、電池パック90に接続するための機器側接続端子と、を備え、アダプタ判定回路159は、電池パック90のパック側接続端子が機器側接続端子を介して接続されており、かつ充電台110から充電されており、なおかつAC/DCアダプタ143とも接続されている場合に、電池パック90に対して、無接点充電回路95による無接点充電を停止するよう指示すると共に、アダプタ判定回路159による充電を優先するように構成される。

Description

電池駆動機器及び電池パック
 本発明は、充電台に載せられた電池パックの受電コイルと、充電台の送電コイルとを電磁結合し、送電コイルから受電コイルに磁気誘導作用で電力搬送して、内蔵電池を充電可能な電池パックと、この電池パックを含む電池駆動機器に関する。
 携帯電話や携帯音楽プレーヤ等のモバイル機器に代表される電池駆動機器は、携帯に便利なように、充電できる電池により駆動されるものが多い。このような電池駆動機器は、電池を素電池の状態で、あるいは電池パックの状態で収納している。電池駆動機器は、電池を収納する状態で充電器に接点を接続して有線で充電される。一方で、このように接点を接続することなく、電磁誘導の作用を利用して充電台に内蔵された送電コイルから、受電コイルに対して電力を搬送して、電池を充電する充電台が開発されている(特許文献1参照)。
 特許文献1に記載の充電台は、交流電源で励磁される送電コイルを内蔵しており、この送電コイルに電磁結合される受電コイルを電池パックに設けて、受電コイルに誘導される電力で電池パックの電池を充電する。電池パックは、受電コイルに誘導される交流を整流し、これを電池に供給して充電する充電回路を内蔵している。この構造によると、充電台の上に電池パックを載せて、接点を接続することなく無接点な状態で電池を充電できる。
 このような無接点充電においては、充電台の送電コイルと、充電台に載置された電池駆動機器の受電コイルとを近接させること、言い換えるとこれらのコイル間の位置決めが重要となる。このような位置決めを実現するために、複数の方式が提案されており、例えば送電コイルを充電台の内部でXY方向に移動させる方式、送電コイルを充電台に平面状に複数敷き詰めておき、この内で受電コイルと接近した送電コイルを選択させる方式、あるいはこのような送電コイルの位置を受電コイルの載置位置に合わせて調整する方式とは逆に、受電コイル側を送電コイルに合わせるため、例えば充電台に位置決め用の磁石を設けて、電池駆動機器側の金属板と吸引させることで位置決めを行う方式などが開発されている。この内、磁力を利用した位置決め方式においては、充電台側に位置決め磁石を配置し、一方電池駆動機器側に磁性体を配置する。
 一方で、このような無接点式の電池パックにおいても、ユーザの利便性の観点から従来の有線式の充電を可能としていることが多い。すなわち、ユーザが無接点充電可能な電池パックを充電する方法としては、図14(a)に示すように、電池パックを装着した電池駆動機器100を、無接点の充電台110に載置して無接点で充電する方法と、図14(b)に示すように、電池駆動機器100をAC/DCアダプタ143に接続して有線で充電する方法の2通りが存在することとなる。このような電池パックを用いる場合に、図14(c)に示すように、ユーザが誤ってAC/DCアダプタ143に電池駆動機器100を繋いだまま、無接点の充電台110に載置した場合は、充電台110からの無接点充電とAC/DCアダプタ143からの有線充電とが競合することとなる。
特開2008-141940号公報 特開2008-178194号公報
 本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、無接点充電と有線充電が可能な電池パックにおいて、両者が競合した場合にも安全に電池パックを充電できるようにした電池駆動機器及び電池パックを提供することにある。
課題を解決するための手段及び発明の効果
 上記の目的を達成するため、本発明の第1の側面に係る電池駆動機器は、電池パック90と、前記電池パック90を接続した状態で、前記電池パック90から供給される電力で駆動される駆動機器本体101と、を備え、充電台110に載置されて、該充電台110に内蔵される送電コイル113と電磁結合して電力を受けることで、前記電池パック90の無接点充電を可能とした電池駆動機器であって、前記電池パック90は、充電可能な二次電池セル2と、充電台110に内蔵される送電コイル113と電磁結合可能な受電コイル1と、前記受電コイル1で受電した電力を変換して、前記二次電池セル2を充電可能な無接点充電回路95と、前記無接点充電回路95を制御するためのパック制御部91と、前記パック制御部91と電気的に接続されており、前記駆動機器本体101に接続するためのパック側接続端子と、を備え、前記駆動機器本体101は、AC/DCアダプタ143と接続されて、該AC/DCアダプタ143から電力を受けて、前記電池パック90を充電する電力を出力するためのアダプタ充電回路153と、前記アダプタ充電回路153にAC/DCアダプタ143が接続されたことを検出するためのアダプタ判定回路159と、前記アダプタ判定回路159と接続され、AC/DCアダプタ143の接続の有無を取得する機器制御部150と、前記機器制御部150と電気的に接続されており、前記電池パック90に接続するための機器側接続端子と、を備え、前記機器制御部150は、前記電池パック90の前記パック側接続端子が前記機器側接続端子を介して接続されており、かつ充電台110から充電されており、なおかつAC/DCアダプタ143とも接続されている場合に、前記電池パック90に対して、無接点充電回路95による無接点充電を停止するよう指示すると共に、前記アダプタ充電回路153による充電を優先するように構成できる。これにより、無接点充電とAC/DCアダプタ充電が競合した場合に、AC/DCアダプタ充電を優先して無接点充電を中止することで、重複する充電を回避して機器を保護すると共に、安定的な電極供給が期待できる充電方式を優先することで短時間に充電を終えることができる。
 また第2の側面に係る電池駆動機器は、前記機器側接続端子が、前記電池パック90と通信を行うための機器側状態通信端子106’を含んでおり、前記機器制御部150は、電池パック90に対して無接点充電の許可又は禁止を指示するための無接点充電禁止出力端子165を備えており、AC/DCアダプタ143が接続されたことを前記アダプタ判定回路159が検出したことを受けて、前記機器制御部150が、前記無接点充電禁止出力端子165の出力でもって、前記機器側状態通信端子106’の電圧を切り替えることができる。
 さらに第3の側面に係る電池駆動機器は、前記無接点充電禁止出力端子165は、前記機器側状態通信端子106’の電圧を切り替えるプルダウンスイッチ168と接続されており、AC/DCアダプタ143が接続されたことを前記アダプタ判定回路159が検出したことを受けて、前記機器制御部150が、前記無接点充電禁止出力端子165からHIGH信号を出力して、前記プルダウンスイッチ168をONにし、前記機器側状態通信端子106’の電圧をLOWに切り替えることができる。
 さらにまた第4の側面に係る電池駆動機器は、前記パック制御部91が、無接点充電を検出したときに活性化するプルアップ部81を備えることができる。
 さらにまた第5の側面に係る電池駆動機器は、前記パック側接続端子が、前記駆動機器本体101と通信を行うため、前記機器側状態通信端子106’と接続可能な状態通信端子106を含むことができる。
 さらにまた第6の側面に係る電池駆動機器は、前記電池パック90はさらに、該電池パック90が単体か、又は駆動機器本体101に接続されている状態かを判定するための機器接続判定部を備えることができる。
 さらにまた第7の側面に係る電池駆動機器は、前記機器接続判定部が、前記パック制御部91のプルアップ部81をONしたときの電圧を、所定の電圧と比較することにより行うことができる。これにより、プルアップ部を無接点充電の判定のみならず、駆動機器本体の接続有無の判定にも利用でき、部材を共通化して構成を簡素化できる利点が得られる。
 さらにまた第8の側面に係る電池駆動機器は、前記電池パック90はさらに、前記無接点充電回路95を接続された充電スイッチ98を備え、前記パック制御部91は、前記状態通信端子106と接続された状態入力端子84を備えており、前記機器制御部150が電池パック90の満充電を検出したとき、前記無接点充電禁止出力端子165からHIGH信号を出力して、前記プルダウンスイッチ168をONにし、前記機器側状態通信端子106’の電圧をLOWに切り替えることで、前記機器側状態通信端子106’と接続される前記状態通信端子106を介して前記状態入力端子84がLOWとなったことを、前記パック制御部91が検出すると、前記パック制御部91は、電池パック90の無接点充電を禁止するよう、充電台110に対して停止信号を送信すると共に、前記充電スイッチ98をOFFするよう構成できる。
 さらにまた第9の側面に係る電池パックは、駆動機器本体101に接続されて、該駆動機器本体101を駆動するための電力を供給する一方、充電台110に載置されて、該充電台110に内蔵される送電コイル113から電力を受けて無接点充電が可能な電池パックであって、充電可能な二次電池セル2と、充電台110に内蔵される送電コイル113と電磁結合可能な受電コイル1と、前記受電コイル1で受電した電力を変換して、前記二次電池セル2を充電可能な無接点充電回路95と、前記無接点充電回路95を制御するためのパック制御部91と、前記パック制御部91と接続されており、前記駆動機器本体101の機器側接続端子と電気的に接続するためのパック側接続端子と、前記二次電池セル2の温度を検出するための温度検出部94と、を備え、前記接続端子が、前記二次電池セル2の充放電を行うための、一対の電源端子と、前記温度検出部94を接続した温度端子103と、前記駆動機器本体101と通信を行うための状態通信端子106と、を備え、前記パック側接続端子が前記機器側接続端子を介して接続されており、かつ充電台110から充電されており、なおかつ駆動機器本体101が、前記二次電池セル2を充電するためのAC/DCアダプタ143とも接続されている場合に、前記パック制御部91が、無接点充電回路95による無接点充電を停止するよう指示すると共に、駆動機器本体101に対して、該AC/DCアダプタ143からの電力供給を優先するよう指示できる。これにより、無接点充電とアダプタ充電が競合した場合に、無接点充電を中止してアダプタ充電を優先することで、重複する充電を回避して機器を保護すると共に、安定的な電極供給が期待できる充電方式を優先することで短時間に充電を終えることができる。
 さらにまた第10の側面に係る電池パックは、前記電池パック90が、前記無接点充電回路95が無接点充電していることを検出し、前記パック側接続端子を介して、駆動機器本体101側に送出できる。これにより、電池駆動機器側では、無接点充電判別手段の検出結果に基づいてAC/DCアダプタによる充電を無接点充電回路の充電よりも優先させることができ、異なる充電方式の競合を回避しつつ安定的な充電が図られる。
 さらにまた第11の側面に係る電池パックは、前記パック制御部91が、無接点充電を検出したときに活性化するプルアップ部81を備えることができる。
 さらにまた第12の側面に係る電池パックは、さらに該電池パック90が単体か、又は駆動機器本体101に接続されている状態かを判定するための機器接続判定部を備えることができる。
 さらにまた第13の側面に係る電池パックは、前記機器接続判定部が、前記パック制御部91のプルアップ部81をONしたときの電圧を、所定の電圧の電圧と比較することにより行える。これにより、プルアップ部を無接点充電の判定のみならず、電池駆動機器の接続有無の判定にも利用でき、部材を共通化して構成を簡素化できる利点が得られる。
 さらにまた第14の側面に係る電池パックは、さらに前記二次電池セル2を充電する充電経路を、電池パック90が単体の場合と駆動機器本体101と接続されている場合とで切り替えるための経路切替スイッチ93を備えており、前記機器接続判定部が、電池パック90が単体であると判定した場合に、前記経路切替スイッチ93をONとして無接点充電を行うよう構成できる。
電池パックを内蔵する電池駆動機器を無接点の充電台にセットする状態を示す斜視図である。 図1に示す充電台に電池駆動機器を載置した状態を示す垂直断面図である。 図2に示す充電台に電池パック単体を載置した状態を示す垂直断面図である。 図1の充電台及び電池駆動機器の電気回路を示すブロック図である。 図3の充電台と電池パックの電気回路を示すブロック図である。 図1の電池駆動機器にAC/DCアダプタを接続した電気回路のブロック図である。 AC/DCアダプタに接続された電池駆動機器を充電台に載置した状態を示す回路図である。 無接点充電とアダプタ充電が競合した際の充電方式を選定手順を示すフローチャートである。 電池パックと電池駆動機器との状態通信に三状態信号を用いた例を示すブロック図である。 電池パックと電池駆動機器との状態通信にUART通信を用いた例を示すブロック図である。 電池パックを電池駆動機器に装着した状態でAC/DCアダプタを接続して充電する様子を示すブロック図である。 電池パックを電池駆動機器に装着した状態で、電池駆動機器にAC/DCアダプタを接続し、さらに電池パックを無接点の充電台に載置した状態を示すブロック図である。 電池パックを電池駆動機器に接続せず、単体で充電台に載置した状態を示すブロック図である。 図14(a)は、電池パックを装着した電池駆動機器を、無接点の充電台に載置して無接点で充電する状態を示す斜視図、図14(b)は電池駆動機器をAC/DCアダプタに接続して有線で充電する状態を示す斜視図、図14(c)は電池駆動機器をAC/DCアダプタに繋いだまま、無接点の充電台に載置した状態を示す斜視図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電池駆動機器及び電池パックを例示するものであって、本発明は電池駆動機器及び電池パックを以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
 以下、本発明の実施の形態に係る電池パックの例として、携帯電話の電池パックに適用した例を、図1から図6に基づいて説明する。これらの図において、図1は電池パック90を収納する電池駆動機器100を無接点式の充電台110にセットする状態を示す斜視図、図2は図1の垂直断面図、図3は電池パック90単体を充電台110にセットして充電する状態を示す垂直断面図、図4は充電台110に電池駆動機器100を載置し、電池駆動機器100に内蔵された電池パック90の二次電池セル2を充電する電気回路のブロック図、図5は受電台110に電池パック90単体を載置し、二次電池セル2を充電する電気回路のブロック図、図6は電池駆動機器100に装着された電池パック90を、電池駆動機器100のDC接続端子117Aから直流電源を供給して、二次電池セル2を有線で充電するための電気回路のブロック図を、それぞれ示している。これらの図に示すように、電池パック90は、電池駆動機器100に接続されて、この電池駆動機器100を駆動する電力を供給する一方で、充電台110に載置されて、充電台110に内蔵される送電コイル113から電力を受けて無接点充電を可能としている。図4においては、右側の充電台110に、電池パック90をセットした電池駆動機器100を載置することで、図において中央に示す電池パック90を充電する。またこの電池パック90は、AC/DCアダプタ143を電池駆動機器100に接続することでも充電できる。すなわち、図6において左側に図示する電池駆動機器100にAC/DCアダプタ143を接続し、ここから得られる電力によって中央の電池パック90を充電できる。このように電池パック90は、充電台110(図4において右側)からの無接点充電と、電池駆動機器100(図5において左側)からのアダプタ充電の両方に対応している。さらに電池パック90は、電池駆動機器100に接続された状態での無接点充電に加えて、図3に示すように電池パック90を電池駆動機器100と接続しない単体のままでも充電可能としている。
(充電台110)
 図1から図3に示す充電台110は、電池パック90の受電コイル1に電磁結合される送電コイル113と、この送電コイル113に高周波電力を供給する高周波電源制御回路114を備えている。この充電台110の駆動電力は、外部の商用電源等から受ける電力を変換して、または充電台110に内蔵する充電台用二次電池112を、商用電源等で充電して得られる。図1の例では、外部からの電力は、充電台用AC/DC変換器(図示せず)のDC接続プラグ141や、USBケーブル142によって供給される。このため充電台110は、外部からの電力を受けるための直流入力端子117を外装ケース111に設けている。ここでは直流入力端子117として、DC接続プラグ141を接続するDC接続端子117Aと、USBケーブル142を接続するUSB端子117Bを備えている。この直流入力端子117からの直流電力は、充電台用二次電池112に充電され、また直接高周波電源制御回路114へ供給される。充電された充電台用二次電池112は、外部の電源から直流入力端子117への電力供給がない場合に、高周波電源制御回路114等に直流電力を供給することができる。これにより、充電台110を携行可能とし、直流入力端子117への電力供給が無くても、充電台用二次電池112の直流電力を供給することで高周波電源制御回路114により高周波電力を発生させることができる。
(電池駆動機器100)
 一方、電池駆動機器100は、電池パック90を接続して、この電池パック90から電力供給を受けて駆動される。電池パック90は、電池駆動機器100内に収納される。図1の例では電池駆動機器100を携帯電話とする例を示しており、電池駆動機器100本体の裏蓋を外して、ケース内部に電池パック90を収納している。ただし、電池パックは必ずしも駆動機器本体101の内部に収納する必要は無く、駆動機器本体から剥き出しのまま装着する形態としてもよい。例えば電池駆動機器を電動工具やビデオカメラとする場合は、電池パックを駆動機器本体の一部に着脱式としている。また逆に、電池パックを着脱式とせず、電池駆動機器本内の内部に埋め込み式として交換不可能な形態とすることもできる。
 また電池駆動機器100には、交流電源に接続された機器用AC/DCアダプタ143からの入力端子として、DC接続端子117Aを有している。これにより、電池駆動機器100に接続されている電池パック90は、DC接続端子117Aより直流電源を供給することができ、電池パック90内の二次電池セル2を安定して充電することができる。
(充電中表示機能)
 図1に示される電池駆動機器100には、後述するように、二次電池セル2の無接点充電による充電中を表示する充電中表示機能として、無接点充電表示部157を有している。また充電中表示機能は、電池駆動機器100のみならず、充電台110側にも設けることができる。図1の充電台110は、二次電池セル2の充電中を表示する表示部を備える。この充電台110での二次電池セル2の充電中を示す表示部は、充電表示LED119であり、点灯パターンにより、充電中であることを示すことができる。
 一方、二次電池セル2の電池残容量については、図4の回路図に示すように電池駆動機器100内の充電電流検出抵抗156により検出した電圧を残容量演算部155(FG-IC)により積算して、別途表示させることもできる(図1には図示せず)。あるいは、充電中表示機能と残容量表示機能とをを共通化して、充電表示LED119の点滅方法により、二次電池セル2の残容量を表示することもできる。充電表示LED119は、図4に示すように直流電力制御回路121に接続している。充電表示LED119は、直流電力制御回路121で通電状態が制御されて、二次電池セル2の充電状況を点灯状態で表現される。図1及び図2に示す充電表示LED119は、外装ケース111に内蔵される回路基板に固定されて、定位置に配置している。外装ケース111は、充電表示LED119と対向する位置にLED表出孔120を開口しており、このLED表出孔120から充電表示LED119を外部に表出させている。直流電力制御回路121は、高周波電源制御回路114で検出される二次電池セル2の残容量に応じて、充電表示LED119の点滅状態を制御しており、充電表示LED119の点滅のパターンで二次電池セル2の残容量を表示している。
(電池パック90)
 図4に示す電池パック90は、充電可能な二次電池セル2と、充電台110に内蔵される送電コイル113と電磁結合可能な受電コイル1と、駆動機器本体101側にて二次電池セル2の温度を検出するための温度検出部94と、電源端子の一であるマイナス端子104に接続された経路切替スイッチ93と、経路切替スイッチ93のON/OFFを制御するためのパック制御部91と、電池駆動機器100と電気的に接続するためのパック側接続端子とを備える。パック側接続端子は、二次電池セル2の充放電を行うための、一対の電源端子102、104と、温度検出部94を接続した温度端子103と、状態通信端子106、FG端子105を含む(詳細は後述)。
 この電池パック90は、図4の回路図に示すように電池駆動機器100に装着した状態で充電する他、図3の断面図に示すように、電池駆動機器100に装着せず、単体のまま充電台110に載置して充電することもできる。いずれの場合も、電池パック90の受電コイル1が、充電台110の送信コイル113と電磁結合し、受けた磁束により誘導起電力を発生させることができる。
 また受電コイル1は、外形を円形状とする他、角型状とすることも好ましい。これにより、受電コイル1の巻き線長を長くできる分、インダクタンスを増加できる。また、角型状のコイルは円形状のコイルに比べてコイルの回転方向を規制できるため、位置決めを容易にできる。
 ここで、電池パック90が無接点式の充電台110から受領した電力でもって、二次電池セル2を充電する原理を、図4に基づいて説明する。充電台110の送電コイル113と電磁結合される受電コイル1で発生される誘導起電力は、図4に示すように無接点充電回路95により直流電源に変換され、二次電池セル2が充電される。この実施例では、図示しないが、二次電池セル2は、充電電圧、電流および電池温度等の監視パラメータを計測する監視回路を有している。この監視回路は、いずれかの監視パラメータが二次電池セル2に対して予め設定された閾値を超えた場合には、受電コイル1に変調信号を付加し、送電コイル113側へ伝達し、高周波電源制御回路114にて出力調整を行うことができる。たとえば、電池パック90の二次電池セル2が満充電に達した場合には、電池パック90側からの信号を受けて、充電台110の高周波電源制御回路114の出力を停止することができる。これにより、電池パック90の安全性を保つことができ、さらに充電台110の出力を停止することにより無駄な電力消費を抑制できる。
(二次電池セル2)
 この電池パック90に内蔵される二次電池セル2は、幅よりも薄い角型の直方体で、各面を一体成型した外装缶を形成し、金属ケースとすることができる。たとえば、金属ケースは、アルミニウム等とすることができ、外因性の衝撃から保護することができ、さらに放熱性にも優れた効果を得ることができる。
 この実施例での二次電池セル2は、体積エネルギー密度の大きいリチウムイオン二次電池又はリチウムポリマー電池を使用することで、全体を軽く、薄く、小さくして利便性を良く携帯駆動機器に利用できる特徴がある。ただこれに限るものではなく、二次電池セルは、ニッケル水素電池やニッケルカドミウム電池等の充電できる全ての二次電池とすることもできる。
(無接点充電)
 ここで、電池駆動機器100を充電台110に載置して、充電を行う様子を、図4、図5に基づいて説明する。この図においては、右側の充電台110に、左側の電池駆動機器100を載置して、内部に収納した電池パック90を充電する様子を示している。この電池パック90を無接点充電する充電台110は、高周波電源制御回路114からの高周波電力を送電コイル113へ通電し、磁束を発生させ、電池パック90内の受電コイル1に誘導起電力を発生させる。ここで、充電台110内の高周波電源制御回路114は、充電台用AC/DC変換器からのDC接続端子117AとUSB端子117Bとを有する直流入力端子117から、直流電力の供給を受けることができる。この直流電力は、充電台110の充電台用二次電池112への充電と共に、高周波電源制御回路114へ直流電力を供給し、直流電力を高周波電力に変換し送電コイル113へ供給することができる。また、直流入力端子117への直流電力が供給されない場合は、予め充電台110に内蔵された充電台用二次電池112を充電しておくことにより、この充電台用二次電池112から高周波電源制御回路114へ直流電力を供給することもできる。これにより、無接点電力送信を行う送信コイル113は、受電機器側にある受電コイル1と磁束により電磁結合ができ、受電コイル1に誘導起電力を供給することができる。
 さらに、高周波電源制御回路114への電力供給は、直流電力制御回路121により制御され、直流入力端子117および充電台用二次電池112の切り替えをスイッチSW1、SW2、SW3及びSW4のON/OFFにて行う。ここで充電台用二次電池112への充電は、直流入力端子117から直流電力が入力されたことを、直流電力制御回路121にて認識し、スイッチSW1またはSW2及びSW3がONになり通電される。ここで通電された直流電力は、内部充電回路118にて、充電台用二次電池112が満充電か否かを検出し、充電可能であれば充電を開始し、満充電時は電力供給しないようにする。これにより、充電台110は、持ち運びが可能で、交流電源やUSB電源の供給不能な場所でも、充電台用二次電池112により高周波電源制御回路114への電力供給が可能でき、電池パック90への無接点充電を実行することができる。
 高周波電源制御回路114は、送電コイル113と電磁結合される受電コイル1が認識できる範囲にあるか否かを判断し、受電範囲内であれば電力を供給し、受電範囲外であれば電力供給を停止する。これにより、充電台110は、無駄な送電エネルギーを供給することなく、必要時のみ送電することで省エネ効果を得ることができる。
 さらに、直流電力制御回路121には、高周波電源制御回路114の高周波の電圧変化、電流、位相変化及び/又は変調周波数の検出により、二次電池セル2の残容量、充電電圧情報、満充電情報、異常出力停止信号等を受信し、残容量を点滅のパターンで表示できる充電表示LED119を接続している。これにより、充電台110は、満充電情報に基づき、高周波電力の供給を停止することができ、必要時のみの動作として、省エネ効果を得ることができる。
(電池パック90の詳細)
 次に、電池パック90の詳細について、図4~図6に基づいて説明する。図4に示す例では、電池駆動機器100は、電池パック90と、この電池パック90から電力供給を受ける駆動機器本体101とで構成される。そのため電池パック90は、パック側接続端子として、一対の電源端子102、104を構成するプラス端子102とマイナス端子104を有し、更に温度端子103と、状態通信端子106、FG端子105の計5端子を有している。これにより、電池パック90は、これらの4端子により駆動機器本体101が接続されている場合、駆動機器本体101の電池駆動機器100の制御情報や電池パック90の二次電池セル2の電池情報等を相互通信することができる。
(無接点充電回路95)
 送電コイル113からの磁束により、電池パック90内の受信コイル1で発生した誘導起電力の高周波電力は、無接点充電回路95を経由し、直流電力に変換され、経路切替スイッチ93を経由し、二次電池セル2を充電することができる。無接点充電回路95は、同期整流回路等が利用できる。同期整流回路は、高周波電力をまず整流回路にて整流し、平滑コンデンサにより直流成分のみを直流電力として二次電池セル2への充電電力としている(図示せず)。
(充電スイッチ98)
 この実施例の電池パック90は、充電スイッチ98及び経路切替スイッチ93を有している。充電スイッチ98は、無接点充電回路95の電力出力を制御し、二次電池セル2への充電電力を供給の有無や充電電流量を制御する。また充電スイッチ98は、充電台110に搭載されたときはオープンで、無接点充電電力の供給によってパック制御部91が起動されると、クローズする。
(経路切替スイッチ93)
 また経路切替スイッチ93は、パック制御部91が起動していない初期状態でオープン状態となる。さらに、経路切替スイッチ93は、電池駆動機器100との接続の有無によりオープン/クローズを制御している。経路切替スイッチ93は、図4に示すように、経路切替制御ラインSWLを介してパック制御部91の経路切替端子82と接続されている。
 この充電スイッチ98及び経路切替スイッチ93は、共にパック制御部91によりオープン/クローズを制御される。これら充電スイッチ98及び経路切替スイッチ93は、電流通過制御可能なFET、トランジスタ等の半導体素子とすることで、回路の小型化を図ることができる。好ましくは、電流通過時に電力損失が少ないFETの半導体素子を選択することで、受電された電力の変換損失を減少させることができる。
(充電経路)
 パック制御部91は、後述する機器接続判定部によって、電池パック90が単体か、電池駆動機器100に接続された状態かの判定結果に基づいて、充電経路を切り替える。すなわち、経路切替端子82のHIGH/LOWを切り替えることで、経路切替制御ラインSWLを介して経路切替スイッチ93のON/OFFを切り替える。具体的には、電池パック90が電池駆動機器100に接続されており、かつAC/DCアダプタが接続されていない状態、すなわち無接点充電される状態であれば、経路切替制御ラインSWLが、中間電圧状態となる(詳細は後述)。これにより、パック制御部91によって、経路切替スイッチ93がOFFされてオープンとなるため、二次電池セル2の充電経路は、無接点充電の場合、無接点充電回路95から充電スイッチ98、二次電池セル2を経て、保護回路92、マイナス端子104、機器側マイナス端子104’を通って、電池駆動機器100側の充電電流検出抵抗156を通電する。さらに機器側FG端子105’、FG端子105を経て電池パック90側の無接点充電回路95に戻る。これにより、充電電流検出抵抗156を流れる充電電流を残容量演算部155で積算して、二次電池セル2の残量量を算出できる。この結果、本来的に無接点充電の場合は電池パック90内で完結するはずの充電経路を、敢えて部分的に電池駆動機器100側に延伸させることで、電池駆動機器100側で二次電池セル2の残容量を把握し、充電中であることや満充電状態に達したことを表示してユーザに告知することが可能となる。
 また、電池パック90が電池駆動機器100に接続されている状態でAC/DCアダプタが接続される状態であれば、経路切替制御ラインSWLが低電圧状態となる(詳細は後述)。これにより、パック制御部91が低電圧を検出して、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信すると共に、充電スイッチ98をOFFする。このとき、経路切替スイッチ93はOFFされてオープン状態のままである。
 また、電池パック90が単体で無接点充電される場合であれば、経路切替制御ラインSWLが、高電圧状態となる(詳細は後述)。これにより、パック制御部91によって経路切替スイッチ93がONされてクローズ状態となる。
 なお、AC/DCアダプタ接続時においても、同様にパック制御部91は経路切替端子82をLOWとして、経路切替スイッチ93をOFFする(詳細は後述)。このため二次電池セル2の充電経路は、図6等に示すように給電先がAC/DCアダプタ143又はアダプタ充電回路153となることを除いて、無接点充電の場合と同様となる。
(機器接続判定部)
 一方で、状態通信ラインSTLの電圧を、低電圧、中間電圧、高電圧と変化させる構造である機器接続判定部によって、電池パック90が単体であると判定された場合は、パック制御部91は経路切替端子82をHIGHとし、経路切替制御ラインSWLを介して経路切替スイッチ93をONに切り替える(詳細は後述)。この結果、マイナス端子104とFG端子105がショートされるので、二次電池セル2の充電経路が寸断されることなく、保護回路92から経路切替スイッチ93を経て、無接点充電回路95に戻る。これにより、充電経路が確立されて、電池パック90単体の無接点充電も可能となる。また、温度検出部94の下側が接地されることより、温度測定が可能となる。
 図4における電池パック90は、無接点充電回路95の電力出力を制御するパック制御部91により、充電開始時に充電スイッチ98をクローズするよう指示する。この指示の基となる情報としては、例えば温度検出部パック制御部91に内蔵されるセル温度検出部であるサーミスタ(図示せず)で検出される温度が所定範囲内であるとき、電池駆動機器100から電池パック90へのAC/DCアダプタ143の直流電力供給のないとき(詳細は後述)等に、充電スイッチ98をクローズして、充電を開始する。この情報をパック制御部91へ転送し、充電スイッチ98を制御している。これにより、電池パック90への充電に伴う温度上昇等より二次電池セル2を保護することができる。
(パック制御部91)
 パック制御部91は、温度端子103と接続されている。パック制御部91が、充電台110と無接点充電を開始する際に経路切替スイッチ93をOFFに切り替えることで、温度端子103を介して電池駆動機器100と通信可能とする。これにより、温度端子103を、無接点充電時には電池駆動機器100との通信を行う通信端子として利用でき、温度端子103と通信端子とを同一の端子で兼用することが可能となり、電池パックのコスト上昇を抑制し、また部品点数の増加によるスペース的な制約を回避することができる。
 さらに図4に示すパック制御部91は、外部との信号をやりとりするための入出力として、プルアップ端子83と、状態入力端子84と、経路切替端子82と、無接点充電異常端子85とを備える。またプルアップ端子83は、第一分圧抵抗86と第二分圧抵抗87を介して接地されている。また状態入力端子84は、第一分圧抵抗86と第二分圧抵抗87との接続ノードに接続されている。また状態入力端子84は、駆動機器本体101の抵抗R1にも接続されている。ここで、パック制御部91は、充電スイッチ98をOFFとした状態で、充電台110より、無接点充電の充電電力を得て起動し、その後スイッチ98を動作させる。
(プルアップ端子83)
 プルアップ端子83は、パック制御部91に含まれるトランジスタと接続された出力端子である。プルアップ端子83は、電池パック90が充電台110に載置されたかどうかを検出して、状態通信端子106を介して電池駆動機器100側に通知する。具体的には、充電台110に電池パック90が載置された際に、供給される電力でもってパック制御部91が動作するよう、プルアップ部81がONとなる。
(状態入力端子84)
 状態入力端子84は、状態通信端子106と接続される入力端子であり、低電圧、中間電圧、高電圧と変化させる構造である。この状態入力端子84は、電池パック90が単体か、又は駆動機器本体101に接続されている状態かを判定するための機器接続判定部として機能する。ここでは、機器側状態通信端子106’と接続された状態通信ラインSTLの電圧を、パック制御部91に入力する。また、この状態入力端子84の電圧レベルを用いて、電池パック90が電池駆動機器100に接続されているか、AC/DCアダプタ143で充電されているか、電池パック単体かの機器接続状態の判定を行う。すなわち、機器接続判定部としても機能する(詳細は後述)。
(経路切替端子82)
 経路切替端子82は、経路切替スイッチ93と接続されており、電池パック単体での充電を行うために経路切替スイッチ93のON/OFFを切り替える。すなわち、電池パック単体接続時に、無接点充電を行う際にはONに、経路切替スイッチ93を切り替えて電池セルを充電する。また電池パック90が電池駆動機器100と接続されたときに無接点充電を行う際には、経路切替スイッチ93をOFFとして、電池駆動機器100側の残容量演算部155を通るように充電経路が切り替えられる。また、過放電状態の電池パックが電池駆動機器100に装着された場合にも、通常の電流積算では正確な残容量の演算ができないため、経路切替スイッチ93をONすることで電池駆動機器100への経路を切り離して、電池パック単体での充電を行う。
(無接点充電異常端子85)
 さらに、無接点充電異常端子85は、充電等において例えば過充電圧、過電流等何らかの異常が検出された場合に、異常信号を出力するための端子である。図5の回路例では、無接点充電異常端子85は、温度検出部94と平行に、温度端子103とマイナス端子104の間に接続された異常スイッチと接続されている。ここでは異常スイッチはバイポーラトランジスタであり、そのベース端子が無接点充電異常端子85と接続されている。この回路例において、無接点充電の異常が検出された場合に、無接点充電異常端子85を通電して異常スイッチをONとし、温度端子103をLOWとする。これを受けて電池駆動機器100側の機器制御部150は、温度端子103がLOWレベルとなった場合に、無接点充電の異常が発生したと判断することができる。
(機器接続判定部)
 電池パック90が、電池駆動機器100と接続されているか、又は電池パック90単体のいずれであるかは、機器接続判定部によって判定される。機器接続判定部は、電池パックの接続状態、すなわち電池パックが単体か、又は電池駆動機器100に接続されている状態かを判定する。図6等の例では、機器接続判定部は、パック制御部91の状態入力端子84により実現されている。上述の通り状態入力端子84は、第一分圧抵抗86と第二分圧抵抗87と、接続ノードに接続され、駆動機器本体101における抵抗R1にも接続されている。また第一分圧抵抗86はプルアップ端子83と接続されている。この例では、機器接続判定部は、パック制御部91のプルアップ部81をONにした状態で、すなわちプルアップ端子83をONとした状態で、状態入力端子84の電圧値に基づいて判定する。このため抵抗R1、第一分圧抵抗86と第二分圧抵抗87の抵抗値は、二次電池セル2の電池電圧に応じて設定される。例えば、第二分圧抵抗87の抵抗値は、抵抗R1、第一分圧抵抗86に対して、数十倍から数百倍程度の大きな抵抗値とする。電池駆動機器100の装着時、状態入力端子84の電圧値が、概略、第二分圧抵抗87が大きいことより抵抗R1、第一分圧抵抗86の分圧比となり、セル電圧の所定比率(例えば1/2)以下の中間電圧であるとき、電池駆動機器100に装着されていると判定する。また電池パック単体であるときは、第一分圧抵抗86と第二分圧抵抗87の分圧比となり、第二分圧抵抗87が大きいことより、二次電池セル電圧に近くなるので、上述の所定比率よりも高い、すなわち高電圧のときは、電池パック単体であると判定する。この機器接続判定は、無接点充電の開始時に行う。電池パック単体で充電される場合、充電電流は、無接点電流検出抵抗99にて検出され、充電台110により、最大電流、最大電圧を規制した定電流、定電圧にて充電され、パック制御部91が所定電圧以上のとき、所定電流値以下が検出すると、満充電と判定し、パック制御部91が検出して、電池パック90の無接点充電を禁止するよう、充電スイッチ98をOFFすると共に、充電台110に停止信号を送信する。
 このようなパック制御部91での、機器接続判定の結果に基づいて、上述のように、経路切替スイッチ93を動作させ、充電経路を切り替える。その他、機器接続判定の結果に基づいて、パック制御部91は、無接点充電の充電電流値を、適切な値に切り替えることができる。例えば電池パックが単体の場合は、放熱性が電池駆動機器装着時よりも優れていると判断して、充電電流を電池駆動機器装着時よりも高く調整する。
 一方で、状態通信ラインSTLは、中間電圧の電池パック90が電池駆動機器100に装着されている状態においては、状態通信スイッチ160がONとなり、隣接するFET169がONとなり、レベルシフト部151を経て、無接点充電表示部157が点灯する。
(アダプタ充電)
 さらに、電池駆動機器100にAC/DCアダプタ143を接続して充電を行う様子を、図6に基づいて説明する。この図においては、左側の電池駆動機器100にAC/DCアダプタ143を接続して、内部に収納した電池パック90を充電する様子を示している。図6の電池パック90は、駆動機器本体101のDC接続端子117Aへ、商用電源と接続されたAC/DCアダプタ143のDC接続プラグ141を接続し、直流電力を駆動機器本体101へ供給している。この直流電力が供給された駆動機器本体101は、DC接続端子117Aへの直流電力を、アダプタ充電回路153で受ける。
(アダプタ判定部159)
 アダプタ判定部159は、AC/DCアダプタ143と接続されて、供給ラインのダイオードより高電圧側(図示せず)から電圧を測定して、所定電圧よりも大きいならば、接続されていると判定する。またアダプタ判定部159は、アダプタ判定出力端子161を備えている。
(アダプタ判定出力端子161)
 アダプタ判定出力端子161は出力端子であり、機器制御部150のアダプタ判定入力端子162に接続されている。アダプタ判定回路159は、AC/DCアダプタ143が電池駆動機器100に接続されているときはHIGH信号を、未接続のときはLOW信号を、それぞれ出力する。このアダプタ判定出力端子161から出力されるアダプタ判定信号に基づいて、機器制御部150は、電池パック90側に対して無接点充電の許可/禁止を指示する。この例では、アダプタ接続判定信号がHIGH信号のとき、AC/DCアダプタ143が接続されており、アダプタ充電を優先する結果、無接点充電を禁止し、又は既に実行中の無接点充電を中止するために、プルダウンスイッチ168を利用して、状態通信ラインSTLをLOW(低電圧)とする(詳細は後述)。これを受けて電池パック90側のパック制御部91は、状態通信ラインSTLがLOWとなったことを状態入力端子84で受信すると、二次電池セル2の無接点充電を禁止する。
 また機器制御部150は、アダプタ判定入力端子162に加え、残容量演算部155に接続される残容量入力端子163及び割込入力端子164と、プルダウン抵抗167及びプルダウンスイッチ168と接続される無接点充電禁止出力端子165とを備える。
 無接点充電禁止出力端子165は、出力端子であり、プルダウン抵抗167及びプルダウンスイッチ168と接続される。プルダウンスイッチ168は、図4の例ではFETである。無接点充電禁止出力端子165は、駆動機器本体101が電池パック90に接続され、充電台110より無接点充電される場合においては、残容量入力端子163からの入力結果に基づいて無接点充電を禁止するための無接点充電禁止信号を出力する。
 一方で、AC/DCアダプタ143の接続を検出すると、無接点充電禁止出力端子165はHIGH信号を出力し、プルダウンスイッチ168をONにする。この信号は機器側FG端子105’から出力され、また機器側状態通信端子106’から出力されて、R1の抵抗分が、接地状態となることより、状態入力端子84が低電圧となり、これを、パック制御部91が検出して、電池パック90の無接点充電を禁止するよう、充電スイッチ98をOFFすると共に、充電台110に停止信号を送信する。一方で、満充電が検出されていない状態ではLOW信号を出力し、無接点充電を禁止せず、許可状態とする。状態入力端子84が低電圧となることより、状態通信スイッチ160がOFFとなり、無接点充電表示部157は、消灯することになる。
 なお、図7に示すように、アダプタ判定回路159からの出力信号を、直接、プルダウンスイッチ168のゲートに直接入力することもできる。この機能は、マイコンを備える機器制御部150の動作不良の際等に有用となる。
 パック制御部91は、AC/DCアダプタ143の接続を検出すると、充電方式を無接点充電からアダプタ充電に切り替える。上述の通り、アダプタ接続を検出すると、パック制御部91は、充電スイッチ98をオープンにし、無接点充電を中止する。
 さらに、アダプタ充電を行うために、経路切替スイッチ93をクローズして、温度端子103を介して二次電池セル温度を電池駆動機器100側に伝達する。これにより、温度端子103を、AC/DCアダプタ充電時には二次電池セル温度を送出する温度端子103として使用することが可能となる。
 一方パック制御部91は、AC/DCアダプタ143による充電と、無接点充電とが競合した場合に、上述のように、AC/DCアダプタ143接続により、プルダウンスイッチ168をONになり、状態入力端子84が低電圧となり、これを、パック制御部91が検出して、電池パック90の無接点充電を禁止するよう、充電スイッチ98をOFFすると共に、充電台110に停止信号を送信する。このようにまず無接点充電をOFFとするための信号を電池パック90から充電台110側に送出し、電力の送出を停止する。次に、AC/DCアダプタ143による充電を開始する。これにより、アダプタ充電と無接点充電が同時に行われようとした場合には、無接点充電を中止してアダプタ充電を優先させることで、充電電流、電力が大きなアダプタ充電により充電時間を短縮できると共に、より安定した充電を図ることができる。アダプタ充電により、満充電が検出されると、アダプタ充電回路153にて、充電を停止する。
 ここで図4は、電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態で無接点充電をする場合を示し、図5は、電池パック90単体を無接点充電する場合を示し、図6は、電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態でアダプタ充電する場合を示し、図7は、電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態で、充電台110に搭載された場合、無接点充電より、アダプタ充電が優先する場合を示している。
 図4においては、充電台110より無接点充電電力が供給されると、パック制御部91が起動して、状態通信ラインSTLの状態入力端子84の電圧は、上述のように、第一分圧抵抗86と抵抗R1の分圧により、中間電圧と検出され、機器接続判定部として、パック制御部91の状態入力端子84の中間電圧により電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態で無接点充電をする場合と判定する。その後、経路切替スイッチ93がオープンとなり、充電スイッチ98がクローズされ、充電が開始される。そして、充電電流が充電電流検出抵抗99にて検出され、パック制御部91により、充電台110に対し送電電力に信号を重畳することでフィードバックを行い、最大電流、最大電圧を規制した定電流、定電圧にて二次電池セル2が充電され、所定電圧以上のとき、所定電流値以下が検出すると、機器制御部150が満充電と判定し、無接点充電禁止出力端子165はHIGH信号を出力し、プルダウンスイッチ168をONにし、状態入力端子84が低電圧となり、これを、パック制御部91が検出して、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信すると共に、充電スイッチ98をOFFする。
 図5においては、充電台110より無接点充電電力が供給されると、パック制御部91が起動して、状態通信ラインSTLの状態入力端子84の電圧は、上述のように、第一分圧抵抗86と第二分圧抵抗87との分圧により、高電圧と検出され、機器接続判定部として、パック制御部91の状態入力端子84の高電圧により電池パック90を単体で無接点充電をする場合と判定する。その後、経路切替スイッチ93がクローズとなり、充電スイッチ98がクローズされ、充電が開始される。そして、充電電流が無接点電流検出抵抗99にて検出され、充電台110により、最大電流、最大電圧を規制した定電流、定電圧にて二次電池セル2が充電され、所定電圧以上のとき、所定電流値以下が検出すると、パック制御部91が、満充電と判定し、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信すると共に、充電スイッチ98をOFFする。
 図6においては、AC/DCアダプタ143が接続されると、アダプタ判定回路159が検出し、機器制御部150が無接点充電禁止出力端子165はHIGH信号を出力し、プルダウンスイッチ168をONにし、状態通信スイッチ160がOFFとなることより、無接点充電表示部157は消灯することになる。ここで、無接点充電がされていないことより、パック制御部91が起動していないので、経路切替端子82がLOW状態である。このため、経路切替スイッチ93がオープンとなり、充電電流が充電電流検出抵抗156にて検出され、アダプタ充電回路153により、最大電流、最大電圧を規制した定電流、定電圧にて二次電池セル2が充電される。また、所定電圧以上のとき、所定電流値以下が検出すると、機器制御部150が満充電と判定し、アダプタ充電回路153にて、充電を停止する。
 図7においては、電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態で無接点充電をしているとき、アダプタ充電を行うと以下のように、充電が進む。まず、充電台110より無接点充電電力が供給されると、パック制御部91が起動して、状態通信ラインSTLの状態入力端子84の電圧は、上述のように、第一分圧抵抗86と抵抗R1の分圧により、中間電圧と検出され、機器接続判定部として、パック制御部91の状態入力端子84の中間電圧により電池パック90を駆動機器本体101(電池駆動機器100)に接続された状態で無接点充電をする場合と判定する。その後、経路切替スイッチ93がオープンとなり、充電スイッチ98がクローズされ、充電が開始される。このような充電中に、AC/DCアダプタ143が接続されると、アダプタ判定回路159が検出し、機器制御部150が無接点充電禁止出力端子165はHIGH信号を出力し、プルダウンスイッチ168をONにし、状態通信スイッチ160がOFFとなることより、無接点充電表示部157は消灯し、状態通信ラインSTLの状態入力端子84の電圧は、低電圧となることより、パック制御部91が低電圧を検出して、パック制御部91が、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信すると共に、充電スイッチ98をOFFする。よって、アダプタ充電が優先されて、経路切替スイッチ93がオープンとなり、充電電流が充電電流検出抵抗156にて検出され、アダプタ充電回路153により、最大電流、最大電圧を規制した定電流、定電圧にて二次電池セル2が充電され、所定電圧以上のとき、所定電流値以下が検出すると、機器制御部150が満充電と判定し、アダプタ充電回路153にて、充電を停止する。
(アダプタ充電と無接点充電の競合)
 また、図7に示すように、AC/DCアダプタ143による充電中に、電池パック90を装着した電池駆動機器100を、AC/DCアダプタ143を接続したままの状態で充電台110に置かれることも考えられる。この場合には、いずれかの充電を中止する必要がある。そこで、無接点充電を停止すると共に、アダプタ充電を実行するように、適切な制御を行う。このような複数の充電が競合する場合の考えられる組み合わせとしては、以下の3通りが考えられる。いずれの場合においても、無接点充電を中止して、AC/DCアダプタ143充電のみを行うように制御する。
(1)AC/DCアダプタ143で充電中に充電台110に置かれた場合、
 この場合は、一旦、パック制御部91が起動するが、状態通信ラインSTLが低電圧であることより、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信する。
(2)無接点充電中にAC/DCアダプタ143を接続した場合、
 この場合は、上述の図7の説明のとおり、アダプタ充電が優先される。
(3)無接点充電とAC/DCアダプタ143充電とを同時に行う場合、
 この場合は、上記の(1)(2)のいずれかの状態になり、アダプタ充電が優先される。
 このような充電方式の選定手順を、図8のフローチャートに基づいて説明する。ここでは、無接点充電が既に実行されている状態から、アダプタ充電に移行する場合を説明する。まずステップS1で無接点充電による充電が行われているものとする。ここでは、AC/DCアダプタ143による充電は停止されている。この状態でステップS3において、AC/DCアダプタ143の接続を電池駆動機器100が検出する。ここでは、機器制御部150がAC/DCアダプタ143の接続を検出して、パック制御部91に対して、充電停止信号を送信するよう通信を行う。これを受けて、ステップS3で、電池パック90は無接点充電による充電を停止する。そしてステップS4で、AC/DCアダプタ143による充電を開始する。
(温度検出部94)
 温度検出部94は、図4などでは説明の都合上二次電池セル2と離れて図示されているが、実際には二次電池セル2の近傍に配置されている。例えば二次電池セル2の表面に接触させて、二次電池セル2の温度を検出できるようにする。このような温度検出部94には、PTCサーミスタやNTCサーミスタなどが好適に利用できる。
 さらに二次電池セル2を過充電電圧、過電流、過放電電圧から保護するための保護回路92を設けることもできる。図4の例では、保護回路92を二次電池セル2と直列に接続しており、所定の閾値以上の充電電流が流れた場合に、電流を遮断して二次電池セル2を保護する。また、過充電電流に限らず、二次電池セル2の電圧異常や温度異常、あるいは過放電の際にも、これを検出してオープンし、電流を遮断することもできる。
(電池駆動機器100の詳細)
 次に電池駆動機器100の詳細を、図4~図6に基づいて説明する。これらの図に示す電池駆動機器100は、AC/DCアダプタ143と接続されて、このAC/DCアダプタ143から電力を受けて、電池パック90を充電する電力を出力するためのアダプタ充電回路153と、アダプタ判定回路159の動作を制御する機器制御部150と、機器制御部150と電気的に接続され、電池パック90のパック側接続端子と接続するための機器側接続端子と、アダプタ充電回路153と、システム電源部154と、残容量演算部155と、レベルシフト部151と、無接点充電表示部157とを備える。
(機器側接続端子)
 また電池駆動機器100は、電池パック90の接続端子と接続するための機器側接続端子を備えている。機器側接続端子は、機器側温度端子103’と、一対の機器側電源端子である機器側プラス端子102’、機器側マイナス端子104’と、機器側状態通信端子106’と、機器側FG端子105’を含む。
(機器側状態通信端子106’)
 機器側状態通信端子106’には、状態通信スイッチ160が接続されている。また機器側状態通知端子は、パワーダウンしている機器制御部150を起動させるために利用することもできる。
(レベルシフト部151)
 レベルシフト部151は、無接点充電中に各信号のHIGHレベルの電位が異なっているため、この信号をレベルシフトさせるために用いられる。レベルシフト部151には、レベルシフト用レギュレータが好適に利用できる。またレベルシフト部151も、パワーダウンした機器制御部150を起動させるために利用することもできる。
(無接点充電表示部157)
 無接点充電表示部157は、無接点充電が行われている期間中に点灯されて、無接点充電の実行中であることをユーザに告知する。なお機器制御部150がパワーダウンしている場合でも、ユーザに対して充電表示を行うために使用することもできる。
(残容量入力端子163)
 残容量入力端子163は、入力端子であり、残容量演算部155に接続される。残量量演算回路は、積算された充放電電流値に基づいて、電池セルの残容量を演算し、さらに満充電を検出する。このような残容量信号を、残容量入力端子163から入力して、必要な処理を行う。
 さらに機器制御部150の割込入力端子164と残容量演算部155とは、割り込み信号線166で接続されている。充電と放電が切り替えられた場合や、残容量が更新された場合に、残容量演算部155から機器制御部150に割り込みパルスが出力されて、状態の変化を機器制御部150に伝える。例えば、電池パック単体で充電されたため、残容量演算部155で演算された残容量と一致しない場合や、新たな電池パックが装着された場合等に、割り込みパルスが出力されて、これまで残容量を破棄し、新たな残容量を設定する。新たな残容量は、電池セルの電圧等から算出される。
(電池駆動機器100と電池パック90との通信)
 上述の通り、電池駆動機器100と電池パック90とは、状態通信ラインSTLを介して通信を行う。これらの間の通信方式としては、図7や図9に示すように、機器制御部150の無接点充電禁止出力端子165に接続される状態通信ラインSTLを用いてHIGH/LOWレベル信号をやりとりする方法が挙げられる。これらは、無接点充電許可、無接点充電禁止に対して、それぞれHIGH又はLOWを割り当てる。
 さらに、上記の2状態に加えて、特別な場合の無接点充電許可を状態として加えることもできる。例えば、電池パックが電池駆動機器100と接続されていない単体である場合に無接点充電を許可する状態を付加できる。あるいは、上記に代えて、又はこれに加えて電池パックが過放電されている場合の無接点充電を許可する状態を付加しても良い。このような三状態を出力可能とするためには、HIGH/LOW/HIGHインピーダンス(HI-Z)の三状態を表現するトライステート信号を出力可能なスリーステートバッファ等を利用できる。
 このように、機器制御部150の無接点充電禁止出力端子165に、HIGH/LOW/HIGHインピーダンスの三状態を出力可能なトライステート信号を用いて、電池駆動機器側の機器制御部150から電池パック90に対し、充電許可/禁止を送出する。また、電池パック90が無接点充電中であるか、又は満充電となったかの判定には、機器制御部150が残容量演算部155のフラグを取得して行う。
 なお、電池駆動機器100と電池パック90との通信方式は、上述した図9に示す方法に限られず、各種の通信方式が適宜利用できる。例えば、図10に示す回路例では、UART通信を用いている。この方法では、通信端子に1線式UARTを用いて、充電許可/禁止、あるいは満充電状態の通知を取得する。
(残容量演算部155)
 さらに、電池駆動機器100は、電池パック90と接続された状態で、二次電池セル2への充電経路を流れる電流を積算することで、二次電池セル2の残容量を演算可能とする残容量演算部155を備えている。例えば図4の回路例によれば、残容量演算部155は、電池駆動機器100内の残容量演算部155で実現できる。これにより、電池駆動機器100は、充電電流検出抵抗156に充電電流が流れ、その電流の積算を残容量演算部155にて演算し、二次電池セル2の電池残容量を算出することができる。この算出された二次電池セル2の電池残容量は、機器制御部150へ伝達され、別途設けられる表示器(図示せず)に表示され、充電状況を確認することができる。なお、この構成は一例であって、残容量演算部は、有線及び無接点による充電電流を電池パック内部で検出し、残容量を演算し充電電流の制御を行うこともできる。
 さらにまた、アダプタ充電回路153は、システム電源部154およびプラス端子102を経由し電池パック90の二次電池セル2へ定電圧・定電流充電ができるように直流電力が供給するように動作する。
(フラグ)
 上述の通り残容量演算部155は、抵抗の両端電圧を検出することで充放電電流を演算し、これを積算することで電池パック90の残容量(SOC)を演算する。また残容量演算部155は、演算結果を機器制御部150に出力する。ここでは、残容量演算部155は演算結果に基づいてフラグを設定し、機器制御部150がこのフラグのビットを一定の周期で読み取ることで、電池パック90の充電状態を把握する。フラグの例としては、無接点充電中であることを示すCHG(Charge)、無接点充電によって満充電となったことを示すFC(Full Charge)が挙げられる。
(電池パック90を電池駆動機器100に装着した状態での無接点充電)
 電池パック90を電池駆動機器100に装着した状態で無接点充電を行う様子を、図4のブロック図に示す。この図において、残容量演算部155は、充電電流検出抵抗156で充電電流を積算しながら、電池セルの残容量を演算する。このとき、フラグは無接点充電中であることを示すCHGに設定される。
 そして残容量演算部155が、電池パック90が満充電となったことを検出すると、フラグとしてFCを設定する。これを受けて機器制御部150は、上述のように、無接点充電禁止出力端子165はHIGH信号を出力し、プルダウンスイッチ168をONにし、状態入力端子84が低電圧となり、これを、パック制御部91が検出して、電池パック90の無接点充電を禁止するよう、充電台110に停止信号を送信すると共に、充電スイッチ98をOFFする。このようにして、機器制御部150は、残容量演算部155のフラグのビットを定期的に(例えば10s毎)読み取ることで、無接点充電中に満充電を判定し、この結果を受けて電池パック90側に無接点充電の終了を指示できる。 ここで、満充電検出には、最大電流、最大電圧を規制した定電流、定電圧充電にて、所定電圧以上のとき、所定電流値以下が検出されると、満充電と判定する。
 一方、電池パック90を電池駆動機器100に装着した状態で、電池駆動機器100にAC/DCアダプタ143を接続して充電する様子を、図11に示す。この図に示すように、AC/DCアダプタ接続時は、アダプタ充電回路159が、AC/DCアダプタ143が接続されたことを検出する。この検出結果を受けて、機器制御部150は、無接点充電を中止する。この例では、アダプタ充電回路159から機器制御部150に対し、AC/DCアダプタ接続時にはHIGH、未接続時にはLOWを、それぞれ出力する。これに従い、機器制御部150は、AC/DCアダプタ接続時に状態通信ラインSTLをLOWとし、無接点充電を中止させる。これを受けてパック制御部91の状態入力端子84は、HI-Zとなり、また経路切替端子82でもHI-Zとなる。
(AC/DCアダプタ接続時と無接点充電が同時の場合)
 さらに一方で、電池パック90を電池駆動機器100に装着した状態で、電池駆動機器100にAC/DCアダプタ143を接続しており、さらに電池パック90を無接点の充電台110に載置した状態を、図12に示す。この場合は、AC/DCアダプタ充電を優先し、無接点充電を停止するように制御する。具体的には、上述の通りアダプタ判定回路からの信号を受けて、機器制御部150は状態通信ラインSTLをLOWとし、無接点充電を中止させる。これを受けてパック制御部91の状態入力端子84は、HI-Zとなり、また経路切替端子82でもHI-Zとなる。ただし、充電台110に電池パック90を載置した直後は、電池パック90が電池駆動機器100に接続されているかどうかを確認するために、一時的に状態入力端子84をHIGHに出力設定する。そして、電池駆動機器100に接続されていることが確認されると、状態入力端子84をHI-Zとする。これによって、AC/DCアダプタ充電と無接点充電が競合したときでも、無接点充電を中止し、AC/DCアダプタ充電のみを行うことで、電池パック90の安定的な充電が図られる。
(電池パック単体での充電)
 また、電池パック90を電池駆動機器100に接続せず、単体で充電台110に載置することでも、充電が可能である。この様子を、図13に示す。この図に示すように、電池駆動機器100が存在しないため、状態通信ラインSTLを介した機器制御部150とパック制御部91との通信も行われない。このパック制御部91は、状態入力端子84をHIGHとし、これによってDをONすることで、電池パック単体であることをパック制御部91が自ら認識する。そして経路切替端子82をONとして、無接点充電を行う。
(電池パックの低消費電力モード)
 さらに、無接点充電の終了後に、電池駆動機器100が充電台110に載置された状態で放置されると、電池駆動機器100の電力消費や電池パックの自己放電によって、電池セルの残容量が低下し、再度充電を行う必要が生じることがある。この場合、パック制御部91は、機器制御部150からの無接点充電許可信号を受信可能とするために、起動を続ける必要がある。この電池パックは低消費電力モードとなって、パック制御部91を起動させるため消費電流(待機電力)が必要となる。このように、電池パックは、無接点充電の再充電に対応するため、消費電流を増加する機能を備えることができる。
 なお、この場合でも、電池セルが寿命等によって残容量が少ない場合は、このような待機モードへの移行を中止することもできる。例えば、無接点充電の終了後でも、電池セルの電圧が3.9V未満の場合は、電池セルの寿命と判断して、パック制御部91を遮断する。一方、セル電圧が3.9V以上の場合は、低消費電力モードに移行させてパック制御部91を起動させる。
 本発明に係る電池駆動機器及び電池パックは、携帯電話、携帯型音楽プレーヤ用およびPDA等の駆動機器本体に使用する電池パックとして、好適に利用できる。
1…受電コイル
2…二次電池セル
81…プルアップ部
82…経路切替端子
83…プルアップ端子
84…状態入力端子
85…無接点充電異常端子
86…第一分圧抵抗
87…第二分圧抵抗
90…電池パック
91…パック制御部
92…保護回路
93…経路切替スイッチ
94…温度検出部
95…無接点充電回路
98…充電スイッチ
99…無接点電流検出抵抗
100…電池駆動機器
101…駆動機器本体
102…プラス端子;102’…機器側プラス端子
103…温度端子;103’…機器側温度端子
104…マイナス端子;104’…機器側マイナス端子
105…FG端子;105’…機器側FG端子
106…状態通信端子;106’…機器側状態通信端子
110…充電台
111…外装ケース
112…充電台用二次電池
113…送電コイル
114…高周波電源制御回路
117…直流入力端子;117A…DC接続端子;117B…USB端子
118…内部充電回路
119…充電表示LED
120…LED表出孔
121…直流電力制御回路
141…DC接続プラグ
142…USBケーブル
143…AC/DCアダプタ
150…機器制御部
151…レベルシフト部
152…DC入力コネクタ
153…アダプタ充電回路
154…システム電源部
155…残容量演算部
156…充電電流検出抵抗
157…無接点充電表示部
159…アダプタ判定回路
160…状態通信スイッチ
161…アダプタ判定出力端子
162…アダプタ判定入力端子
163…残容量入力端子
164…割込入力端子
165…無接点充電禁止出力端子
166…割り込み信号線
167…プルダウン抵抗
168…プルダウンスイッチ
169…FET
SW1、SW2、SW3、SW4…スイッチ;SWL…経路切替制御ライン
STL…状態通信ライン
R1…抵抗

Claims (14)

  1.  電池パック(90)と、
     前記電池パック(90)を接続した状態で、前記電池パック(90)から供給される電力で駆動される駆動機器本体(101)と、
    を備え、
     充電台(110)に載置されて、該充電台(110)に内蔵される送電コイル(113)と電磁結合して電力を受けることで、前記電池パック(90)の無接点充電を可能とした電池駆動機器であって、
     前記電池パック(90)は、
      充電可能な二次電池セル(2)と、
      充電台(110)に内蔵される送電コイル(113)と電磁結合可能な受電コイル(1)と、
      前記受電コイル(1)で受電した電力を変換して、前記二次電池セル(2)を充電可能な無接点充電回路(95)と、
      前記無接点充電回路(95)を制御するためのパック制御部(91)と、
      前記パック制御部(91)と電気的に接続されており、前記駆動機器本体(101)に接続するためのパック側接続端子と、
    を備え、
     前記駆動機器本体(101)は、
      AC/DCアダプタ(143)と接続されて、該AC/DCアダプタ(143)から電力を受けて、前記電池パック(90)を充電する電力を出力するためのアダプタ充電回路(153)と、
      前記アダプタ充電回路(153)にAC/DCアダプタ(143)が接続されたことを検出するためのアダプタ判定回路(159)と、
      前記アダプタ判定回路(159)と接続され、AC/DCアダプタ(143)の接続の有無を取得する機器制御部(150)と、
      前記機器制御部(150)と電気的に接続されており、前記電池パック(90)に接続するための機器側接続端子と、
    を備え、
     前記機器制御部(150)は、
      前記電池パック(90)の前記パック側接続端子が前記機器側接続端子を介して接続されており、かつ充電台(110)から充電されており、
      なおかつAC/DCアダプタ(143)とも接続されている場合に、
      前記電池パック(90)に対して、無接点充電回路(95)による無接点充電を停止するよう指示すると共に、
      前記アダプタ充電回路(153)による充電を優先するように構成してなることを特徴とする電池駆動機器。
  2.  請求項1に記載の電池駆動機器であって、
     前記機器側接続端子が、前記電池パック(90)と通信を行うための機器側状態通信端子(106')を含んでおり、
     前記機器制御部(150)は、電池パック(90)に対して無接点充電の許可又は禁止を指示するための無接点充電禁止出力端子(165)を備えており、
     AC/DCアダプタ(143)が接続されたことを前記アダプタ判定回路(159)が検出したことを受けて、前記機器制御部(150)が、前記無接点充電禁止出力端子(165)の出力でもって、前記機器側状態通信端子(106')の電圧を切り替えてなることを特徴とする電池駆動機器。
  3.  請求項2に記載の電池駆動機器であって、
     前記無接点充電禁止出力端子(165)は、前記機器側状態通信端子(106')の電圧を切り替えるプルダウンスイッチ(168)と接続されており、
     AC/DCアダプタ(143)が接続されたことを前記アダプタ判定回路(159)が検出したことを受けて、前記機器制御部(150)が、前記無接点充電禁止出力端子(165)からHIGH信号を出力して、前記プルダウンスイッチ(168)をONにし、前記機器側状態通信端子(106')の電圧をLOWに切り替えてなることを特徴とする電池駆動機器。
  4.  請求項3に記載の電池駆動機器であって、
     前記パック制御部(91)が、無接点充電を検出したときに活性化するプルアップ部(81)を備えることを特徴とする電池駆動機器。
  5.  請求項4に記載の電池駆動機器であって、
     前記パック側接続端子が、前記駆動機器本体(101)と通信を行うため、前記機器側状態通信端子(106')と接続可能な状態通信端子(106)を含むことを特徴とする電池駆動機器。
  6.  請求項5に記載の電池駆動機器であって、
     前記電池パック(90)はさらに、該電池パック(90)が単体か、又は駆動機器本体(101)に接続されている状態かを判定するための機器接続判定部を備えることを特徴とする電池駆動機器。
  7.  請求項6に記載の電池駆動機器であって、
     前記機器接続判定部が、前記パック制御部(91)のプルアップ部(81)をONしたときの電圧を、所定の電圧と比較することにより行われてなることを特徴とする電池駆動機器。
  8.  請求項7に記載の電池駆動機器であって、
     前記電池パック(90)はさらに、前記無接点充電回路(95)を接続された充電スイッチ(98)を備え、
     前記パック制御部(91)は、前記状態通信端子(106)と接続された状態入力端子(84)を備えており、
     前記機器制御部(150)が電池パック(90)の満充電を検出したとき、前記無接点充電禁止出力端子(165)からHIGH信号を出力して、前記プルダウンスイッチ(168)をONにし、前記機器側状態通信端子(106')の電圧をLOWに切り替えることで、前記機器側状態通信端子(106')と接続される前記状態通信端子(106)を介して前記状態入力端子(84)がLOWとなったことを、前記パック制御部(91)が検出すると、
     前記パック制御部(91)は、電池パック(90)の無接点充電を禁止するよう、充電台(110)に対して停止信号を送信すると共に、前記充電スイッチ(98)をOFFするよう構成してなることを特徴とする電池駆動機器。
  9.  駆動機器本体(101)に接続されて、該駆動機器本体(101)を駆動するための電力を供給する一方、
     充電台(110)に載置されて、該充電台(110)に内蔵される送電コイル(113)から電力を受けて無接点充電が可能な電池パックであって、
     充電可能な二次電池セル(2)と、
     充電台(110)に内蔵される送電コイル(113)と電磁結合可能な受電コイル(1)と、
     前記受電コイル(1)で受電した電力を変換して、前記二次電池セル(2)を充電可能な無接点充電回路(95)と、
     前記無接点充電回路(95)を制御するためのパック制御部(91)と、
     前記パック制御部(91)と接続されており、前記駆動機器本体(101)の機器側接続端子と電気的に接続するためのパック側接続端子と、
     前記二次電池セル(2)の温度を検出するための温度検出部(94)と、
    を備え、
     前記接続端子が、
      前記二次電池セル(2)の充放電を行うための、一対の電源端子と、
      前記温度検出部(94)を接続した温度端子(103)と、
      前記駆動機器本体(101)と通信を行うための状態通信端子(106)と、
    を備え、
     前記パック側接続端子が前記機器側接続端子を介して接続されており、かつ充電台(110)から充電されており、なおかつ駆動機器本体(101)が、前記二次電池セル(2)を充電するためのAC/DCアダプタ(143)とも接続されている場合に、前記パック制御部(91)が、無接点充電回路(95)による無接点充電を停止するよう指示すると共に、駆動機器本体(101)に対して、該AC/DCアダプタ(143)からの電力供給を優先するよう指示してなることを特徴とする電池パック。
  10.  請求項9に記載の電池パックであって、
     前記電池パック(90)が、前記無接点充電回路(95)が無接点充電していることを検出し、前記パック側接続端子を介して、駆動機器本体(101)側に送出してなることを特徴とする電池パック。
  11.  請求項9又は10に記載の電池パックであって、
     前記パック制御部(91)が、無接点充電を検出したときに活性化するプルアップ部(81)を備えることを特徴とする電池パック。
  12.  請求項11に記載の電池パックであって、さらに、
     該電池パック(90)が単体か、又は駆動機器本体(101)に接続されている状態かを判定するための機器接続判定部を備えることを特徴とする電池パック。
  13.  請求項12に記載の電池パックであって、
     前記機器接続判定部が、前記パック制御部(91)のプルアップ部(81)をONしたときの電圧を、所定の電圧の電圧と比較することにより行われてなることを特徴とする電池パック。
  14.  請求項12又は13に記載の電池パックであって、さらに、
     前記二次電池セル(2)を充電する充電経路を、電池パック(90)が単体の場合と駆動機器本体(101)と接続されている場合とで切り替えるための経路切替スイッチ(93)を備えており、
     前記機器接続判定部が、電池パック(90)が単体であると判定した場合に、前記経路切替スイッチ(93)をONとして無接点充電を行うよう構成してなることを特徴とする電池パック。
PCT/JP2012/068419 2011-07-28 2012-07-20 電池駆動機器及び電池パック WO2013015205A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166095 2011-07-28
JP2011-166095 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015205A1 true WO2013015205A1 (ja) 2013-01-31

Family

ID=47601052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068419 WO2013015205A1 (ja) 2011-07-28 2012-07-20 電池駆動機器及び電池パック

Country Status (2)

Country Link
JP (1) JPWO2013015205A1 (ja)
WO (1) WO2013015205A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192834A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 電池パック及び携帯電子機器
CN104247210A (zh) * 2013-03-06 2014-12-24 株式会社韩信企电 自动位置可调无线充电器和利用该充电器的充电方法
JP2018511290A (ja) * 2015-04-10 2018-04-19 インテル コーポレイション 存在及びロングビーコン延長パルスの管理
CN108063288A (zh) * 2017-12-06 2018-05-22 佛山华平勇创能源科技有限公司 电池管理电路
CN111886852A (zh) * 2019-02-15 2020-11-03 松下知识产权经营株式会社 摄像装置
WO2023276711A1 (ja) * 2021-07-02 2023-01-05 キヤノン株式会社 電子機器、電子機器の制御方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174300A (ja) * 1996-12-06 1998-06-26 Hewlett Packard Co <Hp> バッテリ充電システム
JP2007336710A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 電池パック、電子機器及び非接触充電システム
JP2009301941A (ja) * 2008-06-16 2009-12-24 Nec Tokin Corp 二次電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174300A (ja) * 1996-12-06 1998-06-26 Hewlett Packard Co <Hp> バッテリ充電システム
JP2007336710A (ja) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd 電池パック、電子機器及び非接触充電システム
JP2009301941A (ja) * 2008-06-16 2009-12-24 Nec Tokin Corp 二次電池パック

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247210A (zh) * 2013-03-06 2014-12-24 株式会社韩信企电 自动位置可调无线充电器和利用该充电器的充电方法
JP2015517293A (ja) * 2013-03-06 2015-06-18 ハンシンキジョン カンパニー, リミテッドHanshinkijeonco., Ltd. 自動位置調整無線充電器及びそれを用いた充電方法
WO2014192834A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 電池パック及び携帯電子機器
JPWO2014192834A1 (ja) * 2013-05-28 2017-02-23 京セラ株式会社 電池パック及び携帯電子機器
US9929586B2 (en) 2013-05-28 2018-03-27 Kyocera Corporation Battery pack and portable electronic apparatus
JP2018511290A (ja) * 2015-04-10 2018-04-19 インテル コーポレイション 存在及びロングビーコン延長パルスの管理
JP2021036760A (ja) * 2015-04-10 2021-03-04 インテル コーポレイション 存在及びロングビーコン延長パルスの管理
JP7286602B2 (ja) 2015-04-10 2023-06-05 インテル コーポレイション 存在及びロングビーコン延長パルスの管理
CN108063288A (zh) * 2017-12-06 2018-05-22 佛山华平勇创能源科技有限公司 电池管理电路
CN108063288B (zh) * 2017-12-06 2023-12-15 河南玺铭电力科技有限公司 电池管理电路
CN111886852A (zh) * 2019-02-15 2020-11-03 松下知识产权经营株式会社 摄像装置
WO2023276711A1 (ja) * 2021-07-02 2023-01-05 キヤノン株式会社 電子機器、電子機器の制御方法およびプログラム

Also Published As

Publication number Publication date
JPWO2013015205A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
US20130026983A1 (en) Battery pack
JP5781392B2 (ja) 電池パック及び電池駆動機器並びに電池パックの無接点充電方法
WO2013015206A1 (ja) 電池駆動機器及び電池パック
JP5964303B2 (ja) 電池パック及び電池パックの充電方法
US8629651B2 (en) Portable wireless charging device
KR100836634B1 (ko) 무선 데이타 통신과 전력 전송이 가능한 무접점 충전장치,충전용 배터리팩 및 무접점 충전장치를 이용한 휴대용단말기
US20110012556A1 (en) Wireless Chargeable Game Device
WO2013015205A1 (ja) 電池駆動機器及び電池パック
EP2066001B1 (en) Contactless multi-charger system and controlling method thereof
JP6196861B2 (ja) モバイルバッテリ
JP5773224B2 (ja) 誘導充電式電源パック
KR100806562B1 (ko) 무접점 충전 시스템
KR100859445B1 (ko) 무접점 충전용 배터리팩 및 무접점 배터리팩이 내재된휴대용 단말기
JP2013051797A (ja) 出力コネクタを備えるバッテリパック及びバッテリパックと電池駆動機器並びにバッテリパックを用いた充電方法
EP2929612B1 (en) Charging device
US10862315B2 (en) Device and method for supplying energy to a plurality of energy storage components and/or for providing energy stored within the energy storage components
JP5892370B2 (ja) 充電器及び電力供給システム
JP2013031303A (ja) 電池パックの無接点充電方法及び電池パック
JP2011015538A (ja) 電池パック、該電池パックを電源として備えたコードレス電動工具、および該電池パックを充電する充電装置
TWM488793U (zh) 具有無線充電功能的電池充電器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817604

Country of ref document: EP

Kind code of ref document: A1