WO2013015142A1 - 臭素酸イオンの測定方法及び測定装置 - Google Patents

臭素酸イオンの測定方法及び測定装置 Download PDF

Info

Publication number
WO2013015142A1
WO2013015142A1 PCT/JP2012/068014 JP2012068014W WO2013015142A1 WO 2013015142 A1 WO2013015142 A1 WO 2013015142A1 JP 2012068014 W JP2012068014 W JP 2012068014W WO 2013015142 A1 WO2013015142 A1 WO 2013015142A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
fluorescence intensity
wavelength
bromate
bromate ion
Prior art date
Application number
PCT/JP2012/068014
Other languages
English (en)
French (fr)
Inventor
菜摘 喜多
絵里 長谷川
良春 田中
淑郎 五十嵐
孝郎 大友
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to CN201280035182.5A priority Critical patent/CN103649730B/zh
Publication of WO2013015142A1 publication Critical patent/WO2013015142A1/ja
Priority to US14/146,073 priority patent/US9023654B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/204998Inorganic carbon compounds

Definitions

  • the present invention relates to a bromate ion measuring method and measuring apparatus for measuring bromate ion concentration in sample water.
  • Brine ions (Br ⁇ ) are contained in river water and other raw water. When water treatment is performed on raw water, bromide ions and ozone react to produce bromate ions (BrO 3 ⁇ ). Is done. Bromate ion is considered to be a carcinogen. For this reason, WHO (World Health Organization) sets the guideline value of bromate ion concentration in drinking water to 10 ⁇ g / L. In Japan, the ministerial ordinance on water quality standards promulgated on May 30, 2003 was revised to set the standard value of bromate ion concentration in tap water as 10 ⁇ g / L.
  • IC-PC method As a method for measuring bromate ion concentration in water, ion chromatograph-post column absorptiometry (IC-PC method) is known.
  • IC-PC method bromate ions in sample water are separated using an anion exchange column, and bromate ions are added by adding sulfuric acid and sodium nitrite / sodium bromide mixed solution to the eluate of bromate ions.
  • This is a method for quantifying bromate ions by converting to tribromide ions and measuring the ultraviolet light absorbance of the tribromide ions.
  • IC-PC method a two-stage reaction is carried out.
  • bromic acid is converted into tribromide ions using a potassium bromide / sulfuric acid solution
  • a low concentration is obtained using a sodium nitrite solution. It is necessary to ensure the linearity of the calibration curve in the region. For this reason, the measurement operation of bromate ion concentration by the IC-PC method is complicated and difficult to apply to process equipment.
  • bromate ion concentration using fluorescence intensity a method for measuring bromate ion concentration using fluorescence intensity.
  • a fluorescent substance that reacts in the presence of bromate ions and hydrochloric acid is added to the sample water, and hydrochloric acid is measured at an excitation wavelength of 300 nm and a fluorescence wavelength of 480 nm. Calculate the difference in fluorescence intensity with no standard sample. Then, the bromate ion concentration is measured from the fluorescence intensity difference calculated using the calibration curve between the fluorescence intensity difference and the bromate ion concentration. According to this method, bromate ions can be measured simply, quickly, and with high accuracy.
  • TFP exhibits a quenching reaction when the excitation wavelength and the measured fluorescence wavelength are 300 nm and 480 nm, respectively.
  • the optimum hydrochloric acid concentration that can ensure the linearity of the calibration curve is as extremely high as 6N.
  • the apparatus since the hydrochloric acid concentration used for the measurement is high, the apparatus is easily corroded and the running cost is high.
  • the bromate ion concentration may not be accurately measured because the slope of the calibration curve changes due to the coexisting nitrate ions. From such a background, it has been expected to provide a technique capable of measuring the bromate ion concentration with high accuracy without being affected by the coexisting substance while reducing the hydrochloric acid concentration necessary for the measurement.
  • the present invention has been made in view of the above problems, and its purpose is to provide a measuring method and measuring apparatus for bromate ion capable of measuring the bromate ion concentration with high accuracy while reducing the hydrochloric acid concentration necessary for measurement. It is to provide.
  • the method for measuring bromate ion includes a first step of adding a fluorescent substance whose fluorescence intensity is changed by coexistence with bromate ion to sample water and adding acidic condition by adding hydrochloric acid, and a fluorescence intensity of the fluorescent substance.
  • a second step of measuring the fluorescence intensity a third step of calculating the difference between the fluorescence intensity of the standard sample water not containing bromate ions and the measured fluorescence intensity as a fluorescence intensity difference, and the previously obtained fluorescence intensity difference and bromate
  • the apparatus for measuring bromate ion is a means for adding a fluorescent substance whose fluorescence intensity changes due to coexistence with bromate ion to sample water and making it acidic by adding hydrochloric acid, and measuring the fluorescence intensity of the fluorescent substance.
  • a bromate ion measuring device comprising a means for calculating a bromate ion concentration from the calculated fluorescence intensity difference when the excitation means and the fluorescence wavelength are 264 nm and 400 nm, respectively, Any of when the excitation wavelength and the fluorescence wavelength are 264 nm and 480 nm, respectively, and when the excitation wavelength and the fluorescence wavelength are 300 nm and 400 nm, respectively.
  • the bromate ion concentration can be measured with high accuracy while reducing the hydrochloric acid concentration necessary for the measurement.
  • FIG. 1A is a diagram showing an excitation fluorescence spectrum of TFP when a TFP solution is added to sample water having a bromate ion concentration of 0 ⁇ g / L and an acidic condition is obtained by adding hydrochloric acid.
  • FIG. 1B is a diagram showing an excitation fluorescence spectrum of TFP when a TFP solution is added to sample water having a bromate ion concentration of 20 ⁇ g / L and acid conditions are established by adding hydrochloric acid.
  • FIG. 2 is a graph showing changes in fluorescence intensity (FI) with respect to changes in bromate ion concentration at each peak wavelength when the hydrochloric acid concentration is 6 mol / L.
  • 3A shows the fluorescence intensity (FI) and bromate ion concentration when the bromate ion concentration is 0 ⁇ g / L accompanying the change in hydrochloric acid concentration when the excitation wavelength and the fluorescence wavelength are 264 nm and 400 nm, respectively. It is a figure which shows the change of the absolute value ((DELTA) FI) of the fluorescence intensity difference when the fluorescence intensity when it is 0 microgram / L and the bromate ion concentration is 20 microgram / L.
  • FIG. 3B shows the fluorescence intensity (FI) and bromate ion concentration when the bromate ion concentration is 0 ⁇ g / L accompanying the change in hydrochloric acid concentration when the excitation wavelength and the fluorescence wavelength are 300 nm and 480 nm, respectively. It is a figure which shows the change of the absolute value ((DELTA) FI) of the fluorescence intensity difference when the fluorescence intensity when it is 0 microgram / L and the bromate ion concentration is 20 microgram / L.
  • FIG. 4 is a diagram showing a calibration curve between the fluorescence intensity (FI) obtained for each peak wavelength and the bromate ion concentration when the hydrochloric acid concentration is the optimum hydrochloric acid concentration at each peak wavelength.
  • 5A shows the fluorescence intensity (F.I.) of the sample water with bromate ion concentrations of 0 ⁇ g / L and 20 ⁇ g / L when the excitation wavelength and the fluorescence wavelength are 264 nm and 400 nm, respectively. ) And the change in absolute value ( ⁇ F.I.) of the difference in fluorescence intensity between the fluorescence intensity when the bromate ion concentration is 0 ⁇ g / L and the fluorescence intensity when the bromate ion concentration is 20 ⁇ g / L. It is.
  • FIG.I. fluorescence intensity
  • FIG. 5B shows the fluorescence intensity (FI) of the sample water with bromate ion concentrations of 0 ⁇ g / L and 20 ⁇ g / L with the elapse of the reaction time when the excitation wavelength and the fluorescence wavelength are 300 nm and 400 nm, respectively.
  • FI fluorescence intensity
  • ⁇ F.I. change in absolute value
  • 5C shows the fluorescence intensity (F.I.) of the sample water with bromate ion concentrations of 0 ⁇ g / L and 20 ⁇ g / L when the excitation wavelength and the fluorescence wavelength are 300 nm and 480 nm, respectively. ) And the change in absolute value ( ⁇ F.I.) of the difference in fluorescence intensity between the fluorescence intensity when the bromate ion concentration is 0 ⁇ g / L and the fluorescence intensity when the bromate ion concentration is 20 ⁇ g / L. It is.
  • FIG.I. fluorescence intensity
  • FIG. 6A shows the fluorescence intensity (FI) accompanying the change in nitrate ion concentration and the fluorescence intensity when the bromate ion concentration is 0 ⁇ g / L when the excitation wavelength and the fluorescence wavelength are 264 nm and 400 nm, respectively. It is a figure which shows the change of the absolute value ((DELTA) F.I.) Of a fluorescence intensity difference with the fluorescence intensity when a bromate ion concentration is 20 microgram / L.
  • FIG. 6B shows the fluorescence intensity (FI) associated with the change in nitrate ion concentration and the fluorescence intensity when the bromate ion concentration is 0 ⁇ g / L when the excitation wavelength and the fluorescence wavelength are 300 nm and 480 nm, respectively. It is a figure which shows the change of the absolute value ((DELTA) F.I.) Of a fluorescence intensity difference with the fluorescence intensity when a bromate ion concentration is 20 microgram / L.
  • FIG. 7 is a graph showing changes in fluorescence intensity (FI) when the bromate ion concentration is 0 ⁇ g / L with respect to the change in chlorate ion concentration at each peak wavelength.
  • FIG. 1A and FIG. 1B show the TFP when TFP solution (294 ⁇ M) is added to sample water having bromate ion concentrations of 0 ⁇ g / L and 20 ⁇ g / L, respectively, and acidified by adding hydrochloric acid. It is a figure which shows an excitation fluorescence spectrum.
  • the excitation fluorescence spectrum was measured using a spectrofluorometer RF-5300PC manufactured by Shimadzu Corporation and a spectrofluorometer F-2700 manufactured by Hitachi High-Technologies Corporation.
  • FIG. 2 is a graph showing changes in fluorescence intensity (FI) with respect to changes in bromate ion concentration at each peak wavelength.
  • FI fluorescence intensity
  • the hydrochloric acid concentration is within a range of 4.5 mol / L [N] to 6 mol / L [N].
  • the difference in fluorescence intensity with respect to the change in hydrochloric acid concentration was maximum, and the linearity was maintained.
  • the optimum hydrochloric acid concentration was within the range of 4.5 mol / L [N] or more and 6 mol / L [N] or less, but sufficient reproducibility was not obtained with 4.5 mol / L [N].
  • the optimum hydrochloric acid concentration was 6 mol / L [N].
  • the hydrochloric acid concentration is 1.5 mol / L [N] or more and 3 mol / L [N].
  • the difference in fluorescence intensity with respect to the change in hydrochloric acid concentration was maximum, and the linearity was maintained.
  • the optimum hydrochloric acid concentration was in the range of 1.5 mol / L [N] or more and 3 mol / L [N]. However, the optimum hydrochloric acid concentration was 3 mol / L [N] for reproducibility.
  • the hydrochloric acid concentration can be reduced to about 1 ⁇ 2 of the conventional hydrochloric acid concentration by setting the excitation wavelength and the fluorescence wavelength to 264 nm and 400 nm, respectively.
  • the concentration of hydrochloric acid can be similarly reduced when the excitation wavelength and the fluorescence wavelength are 264 nm and 480 nm, respectively, and when the excitation wavelength and the fluorescence wavelength are 300 nm and 400 nm, respectively.
  • the hydrochloric acid concentration required for the measurement can be reduced.
  • FIG. 4 is a graph showing the results of measuring the fluorescence intensity (FI) with respect to the change in bromate ion concentration at the optimum hydrochloric acid concentration at each peak wavelength described above a plurality of times.
  • FI fluorescence intensity
  • the fluorescence wavelength was 480 nm
  • the variation in fluorescence intensity was large and the slope of the calibration curve was varied, but when the fluorescence wavelength was 400 nm, the variation in fluorescence intensity was small and the tilt was not varied.
  • the fluorescence intensity was measured at room temperature in the same manner as in the conventional measurement conditions with a hydrochloric acid concentration of 3 mol / L [N]
  • no variation or the like was found in the fluorescence intensity. For this reason, the fluorescence intensity was measured at the same reaction temperature as in the conventional measurement conditions.
  • FIG. 5A, FIG. 5B, and FIG. 5C respectively show the excitation wavelength and the fluorescence wavelength of 264 nm and 400 nm, the excitation wavelength and the fluorescence wavelength of 300 nm and 400 nm, respectively, and the excitation wavelength and the fluorescence wavelength of 300 nm and 480 nm, respectively.
  • the bromide ion concentration is 0 ⁇ g / L and the bromide ion concentration is 0 ⁇ g / L with respect to the sample water having the bromate ion concentration of 0 ⁇ g / L and 20 ⁇ g / L, respectively.
  • FIGS. 6A and 6B show bromine accompanying changes in nitrate ion concentration (NO 3 ⁇ ) when the excitation wavelength and the fluorescence wavelength are 264 nm and 400 nm, respectively, and when the excitation wavelength and the fluorescence wavelength are 300 nm and 480 nm, respectively.
  • the excitation wavelength and the fluorescence wavelength which are the conventional measurement wavelengths, are 300 nm and 480 nm, respectively, the variation in the fluorescence intensity due to the change in the nitrate ion concentration is large, and the gradient of the intensity change also varies.
  • the bromate ion concentration could be calculated accurately. From this, it was found that by setting the excitation wavelength and the fluorescence wavelength to 264 nm and 400 nm, respectively, the bromate ion concentration can be measured with high accuracy without being affected by nitrate ions. Although not shown, it was confirmed that the bromate ion concentration can be measured with high accuracy without being affected by nitrate ions when the excitation wavelength and the fluorescence wavelength are 300 nm and 400 nm, respectively.
  • FIG. 7 is a graph showing changes in fluorescence intensity (FI) when the bromate ion concentration is 0 ⁇ g / L with respect to the change in chlorate ion concentration at each peak wavelength.
  • FI fluorescence intensity
  • the method for measuring bromate ions is to add a fluorescent substance whose fluorescence intensity changes due to coexistence with bromate ions to the sample water, and to add acidic by adding hydrochloric acid.
  • a first step which is a condition
  • a second step which measures the fluorescence intensity of the fluorescent material
  • a difference between the fluorescence intensity of the standard sample water not containing bromate ions and the measured fluorescence intensity is calculated as a fluorescence intensity difference.
  • a method for measuring bromate ion including three steps and a fourth step of calculating a bromate ion concentration from the calculated fluorescence intensity difference using a calibration curve between the fluorescence intensity difference and bromate ion concentration obtained in advance.
  • the second step when the excitation wavelength and the fluorescence wavelength are 264 nm and 400 nm, respectively, when the excitation wavelength and the fluorescence wavelength are 264 nm and 480 nm, respectively, and when the excitation wavelength and the fluorescence wavelength are Since comprises the step of measuring the fluorescence intensity when the one of the time respectively are 300nm and 400 nm, the bromate ion concentration can accurately measure while reducing the concentration of hydrochloric acid necessary for the measurement.
  • the present invention can be applied to a measurement process of bromate ion concentration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

 臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする第1工程と、蛍光物質の蛍光強度を計測する第2工程と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する第3工程と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する第4工程とを含む臭素酸イオンの測定方法において、第2工程が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測する工程を含む。

Description

臭素酸イオンの測定方法及び測定装置
 本発明は、試料水中の臭素酸イオン濃度を測定する臭素酸イオンの測定方法及び測定装置に関するものである。
 河川水等の水道原水中には臭化物イオン(Br)が含まれており、水道原水に対しオゾン処理を施すと、臭化物イオンとオゾンとが反応し、臭素酸イオン(BrO )が生成される。臭素酸イオンは、発がん性物質であると考えられている。このため、WHO(世界保健機構)は、飲料水中における臭素酸イオン濃度のガイドライン値を10μg/Lに定めている。また日本国では、2003年5月30日付けで公布された水質基準に関する省令の改正を行い、水道水中における臭素酸イオン濃度の基準値を10μg/Lと定めている。
 水中における臭素酸イオン濃度の測定方法として、イオンクロマトグラフ-ポストカラム吸光光度法(IC-PC法)が知られている。IC-PC法は、陰イオン交換カラムを用いて試料水中の臭素酸イオンを分離し、臭素酸イオンの溶出液に硫酸と亜硝酸ナトリウム・臭化ナトリウム混合液とを加えることによって臭素酸イオンを三臭化物イオンに変換し、三臭化物イオンの紫外光吸光度を測定することによって臭素酸イオンを定量する方法である。このIC-PC法では、2段階反応が行われ、第1段反応では臭化カリウム/硫酸溶液によって臭素酸を三臭化物イオンに変換し、第2段反応で亜硝酸ナトリウム溶液を用いて低濃度領域における検量線の直線性を確保する必要がある。このため、IC-PC法による臭素酸イオン濃度の測定操作は煩雑であり、プロセス機器への適用は難しい。
 このような背景から、近年、蛍光強度を利用して臭素酸イオン濃度を測定する方法が提案されている。この方法では、試料水に臭素酸イオンとの共存により反応する蛍光物質であるリフルオペラジン(TFP)と塩酸を添加し励起波長300nm及び蛍光波長480nmで蛍光強度を計測し、臭素酸イオンを含まない標準試料との蛍光強度差を算出する。そして、蛍光強度差と臭素酸イオン濃度との検量線を用いて算出された蛍光強度差から臭素酸イオン濃度を測定する。この方法によれば、臭素酸イオンを簡便、迅速、且つ、高精度に測定することができる。
特開平9-119925号公報 国際公開第09/116554号
 ところで、TFPは励起波長及び測定蛍光波長がそれぞれ300nm及び480nmである時に消光反応を示す。しかしながら、励起波長が300nmで、測定蛍光波長480nmのとき、検量線の直線性を確保できる最適な塩酸濃度は6Nときわめて高い。このため、従来の方法では、測定に用いる塩酸濃度が高いために、機器が腐食しやすく、またランニングコストが高くなる。さらに、この測定条件では、共存する硝酸イオンによって検量線の傾きが変化することにより臭素酸イオン濃度を正確に測定できないことがあった。このような背景から、測定に必要な塩酸濃度を低下させつつ臭素酸イオン濃度を共存物質の影響を受けずに精度高く測定可能な技術の提供が期待されていた。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、測定に必要な塩酸濃度を低下させつつ臭素酸イオン濃度を精度高く測定可能な臭素酸イオンの測定方法及び測定装置を提供することにある。
 本発明に係る臭素酸イオンの測定方法は、臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする第1工程と、蛍光物質の蛍光強度を計測する第2工程と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する第3工程と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する第4工程とを含む臭素酸イオンの測定方法において、前記第2工程が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測する工程を含む。
 本発明に係る臭素酸イオンの測定装置は、臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする手段と、蛍光物質の蛍光強度を計測する手段と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する手段と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する手段とを備える臭素酸イオンの測定装置において、前記計測する手段が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測する。
 本発明に係る臭素酸イオンの測定方法及び測定装置によれば、測定に必要な塩酸濃度を低下させつつ臭素酸イオン濃度を精度高く測定することができる。
図1Aは、臭素酸イオン濃度が0μg/Lである試料水にTFP溶液を添加し、塩酸添加により酸性条件とした時のTFPの励起蛍光スペクトルを示す図である。 図1Bは、臭素酸イオン濃度が20μg/Lである試料水にTFP溶液を添加し、塩酸添加により酸性条件とした時のTFPの励起蛍光スペクトルを示す図である。 図2は、塩酸濃度が6mol/Lである時の各ピーク波長における臭素酸イオン濃度の変化に対する蛍光強度(F.I.)の変化を示す図である。 図3Aは、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時の、塩酸濃度の変化に伴う臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図3Bは、励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、塩酸濃度の変化に伴う臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図4は、塩酸濃度が各ピーク波長における最適塩酸濃度である時の各ピーク波長について求められた蛍光強度(F.I.)と臭素酸イオン濃度との検量線を示す図である。 図5Aは、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時の、臭素酸イオン濃度がそれぞれ0μg/L及び20μg/Lである試料水に関する反応時間の経過に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図5Bは、励起波長及び蛍光波長がそれぞれ300nm及び400nmである時の、臭素酸イオン濃度がそれぞれ0μg/L及び20μg/Lである試料水に関する反応時間の経過に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図5Cは、励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、臭素酸イオン濃度がそれぞれ0μg/L及び20μg/Lである試料水に関する反応時間の経過に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図6Aは、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時の、硝酸イオン濃度の変化に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図6Bは、励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、硝酸イオン濃度の変化に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。 図7は、各ピーク波長における塩素酸イオンの濃度変化に対する臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)の変化を示す図である。
 以下、図面を参照して、本発明の一実施形態である臭素酸イオンの測定方法について説明する。
〔蛍光スペクトル解析〕
 本発明の発明者らは、鋭意研究を重ねてきた結果、励起波長及び蛍光波長がそれぞれ300nm及び480nmである時以外にもTFPの蛍光強度が変化することを発見した。具体的には、図1A,図1Bはそれぞれ、臭素酸イオン濃度が0μg/L及び20μg/Lである試料水にTFP溶液(294μM)を添加し、塩酸添加により酸性条件とした時のTFPの励起蛍光スペクトルを示す図である。励起蛍光スペクトルは、株式会社島津製作所製の分光蛍光光度計RF-5300PC及び日立ハイテクノロジーズ株式会社製の分光蛍光光度計F-2700を用いて測定した。
 図1Aと図1Bとの比較から明らかなように、試料水中に臭素酸イオンが存在する場合には、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時(領域R1)、励起波長及び蛍光波長がそれぞれ300nm及び400nmである時(領域R2)、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時(領域R3)、及び励起波長及び蛍光波長がそれぞれ300nm及び480nmである時(領域R4)に、励起蛍光スペクトルのピークが測定された。
 そこで、本発明の発明者らは、励起蛍光スペクトルのピークが測定される励起波長及び蛍光波長(以下、ピーク波長と表記)における、臭素酸イオン濃度の変化に対する蛍光強度の変化を解析した。図2は、各ピーク波長における臭素酸イオン濃度の変化に対する蛍光強度(F.I.)の変化を示す図である。図2に示すように、蛍光波長が480nm(領域R3,R4のピーク波長)である時には、臭素酸イオン濃度の増加に伴い蛍光強度が減少する消光反応が生じることが確認された。これに対して、蛍光波長が400nm(領域R1,R2のピーク波長)である時には、臭素酸イオン濃度の増加に伴い蛍光強度が増加する蛍光反応が生じることが確認された。
〔最適塩酸濃度の評価〕
 次に、本発明の発明者らは、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時及び励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の最適塩酸濃度を評価した。図3A,図3Bはそれぞれ、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時及び励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、塩酸濃度(HCl)の変化に伴う臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。
 図3Bに示すように、従来の測定波長である励起波長及び蛍光波長がそれぞれ300nm及び480nmである時には、塩酸濃度が4.5mol/L[N]以上6mol/L[N]以下の範囲内において塩酸濃度の変化に対する蛍光強度差が最大であり、また直線性も保たれた。最適塩酸濃度は4.5mol/L[N]以上6mol/L[N]以下の範囲内であったが、4.5mol/L[N]では十分な再現性が得られなかったため、再現性から最適な塩酸濃度は6mol/L[N]であるとした。一方、図3Aに示すように、新たに確認されたピーク波長である励起波長及び蛍光波長がそれぞれ264nm及び400nmである時には、塩酸濃度が1.5mol/L[N]以上3mol/L[N]以下の範囲内において塩酸濃度の変化に対する蛍光強度差が最大であり、また直線性が保たれた。最適な塩酸濃度は1.5mol/L[N]以上3mol/L[N]の範囲内であったが、再現性から最適な塩酸濃度は3mol/L[N]であるとした。
 以上のことから、励起波長及び蛍光波長をそれぞれ264nm及び400nmとすることによって、従来の塩酸濃度の1/2程度に塩酸濃度を低下させることができることが発見された。なお、図示しないが、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時にも同様に、塩酸濃度を低下できることが知見された。従って、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ300nm及び400nmである時、及び励起波長及び蛍光波長がそれぞれ264nm及び480nmである時のうちのいずれかの時の蛍光強度を測定することによって、測定に必要な塩酸濃度を低下させることができる。
 なお、図4は、上述の各ピーク波長における最適塩酸濃度での臭素酸イオン濃度の変化に対する蛍光強度(F.I.)を複数回測定した結果を示す図である。図4に示すように、蛍光波長が480nmである時には蛍光強度のばらつきが大きく、検量線の傾きも変動したが、蛍光波長が400nmである時には蛍光強度のばらつきが小さく、傾きも変動しなかった。また、図示していないが塩酸濃度を3mol/L[N]として従来の測定条件と同様に室温で蛍光強度を測定したところ、蛍光強度にばらつき等が見受けられなかった。このため、従来の測定条件と同様の反応温度で蛍光強度を測定することとした。
 図5A,図5B,図5Cはそれぞれ、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ300nm及び400nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、臭素酸イオン濃度がそれぞれ0μg/L及び20μg/Lである試料水に関する、反応時間の経過に伴う蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。濃度3mol/L[N]の塩酸を添加した時間を反応時間0分として、臭素酸イオン濃度がそれぞれ0μg/L及び20μg/Lである試料水について反応時間の経過に伴う蛍光強度及び蛍光強度差の変化を各ピーク波長について測定したところ、図5A,図5B,図5Cに示すように、各ピーク波長において蛍光強度差は10分後に安定することが確認された。このため、従来の測定条件と同様の反応時間で蛍光強度を測定することとした。
〔硝酸イオンの影響の評価〕
 本発明の発明者らは、励起波長及び蛍光波長をそれぞれ264nm及び400nmとした時の蛍光強度に対する硝酸イオンの影響を評価した。図6A,図6Bはそれぞれ、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時及び励起波長及び蛍光波長がそれぞれ300nm及び480nmである時の、硝酸イオン濃度(NO )の変化に伴う臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)及び臭素酸イオン濃度が0μg/Lである時の蛍光強度と臭素酸イオン濃度が20μg/Lである時の蛍光強度との蛍光強度差の絶対値(ΔF.I.)の変化を示す図である。図6Bに示すように、従来の測定波長である励起波長及び蛍光波長がそれぞれ300nm及び480nmである時には、硝酸イオン濃度の変化に伴う蛍光強度のばらつきが大きく、また強度変化の傾きも変動するために、臭素酸イオン濃度を正確に算出することが困難であった。一方、図6Aに示すように、新たに確認されたピーク波長である励起波長及び蛍光波長がそれぞれ264nm及び400nmである時には、硝酸イオン濃度の変化に伴う蛍光強度のばらつきが小さく、傾きも変動しないため、臭素酸イオン濃度を正確に算出することができた。このことから、励起波長及び蛍光波長をそれぞれ264nm及び400nmとすることによって、硝酸イオンの影響を受けずに臭素酸イオン濃度を精度高く測定できることが知見された。なお、図示しないが、励起波長及び蛍光波長がそれぞれ300nm及び400nmである時にも同様に、硝酸イオンの影響を受けずに臭素酸イオン濃度を精度高く測定できることが確認された。
〔塩素酸イオンの影響の評価〕
 原水に対しオゾン処理を行う際、原水に遊離塩素が含まれている場合には、遊離塩素が蛍光強度の測定精度に影響を及ぼす。また、原水に遊離塩素が含まれている場合、オゾン処理によって塩素酸イオン(ClO )が生成する。そこで、本発明の発明者らは、臭素酸イオン濃度0μg/Lの溶液について、各ピーク波長における塩素酸イオンの濃度変化に対する蛍光強度の変化を測定した。図7は、各ピーク波長における塩素酸イオンの濃度変化に対する臭素酸イオン濃度が0μg/Lの時の蛍光強度(F.I.)の変化を示す図である。図7に示すように、各ピーク波長における蛍光強度は塩素酸イオンの濃度が変化しても大きく変化しなかった。このことから、塩素酸イオンは蛍光強度を正確に測定する上では妨害物質とはならないことを確認できた。
 以上の説明から明らかなように、本発明の一実施形態である臭素酸イオンの測定方法は、臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする第1工程と、蛍光物質の蛍光強度を計測する第2工程と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する第3工程と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する第4工程とを含む臭素酸イオンの測定方法において、前記第2工程が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測する工程を含むので、測定に必要な塩酸濃度を低下させつつ臭素酸イオン濃度を精度高く測定できる。
 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 本発明は、臭素酸イオン濃度の測定処理に適用することができる。

Claims (2)

  1.  臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする第1工程と、蛍光物質の蛍光強度を計測する第2工程と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する第3工程と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する第4工程とを含む臭素酸イオンの測定方法において、
     前記第2工程が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測する工程を含むこと
     を特徴とする臭素酸イオンの測定方法。
  2.  臭素酸イオン臭素酸イオンとの共存によって蛍光強度が変化する蛍光物質を試料水に添加し、塩酸添加により酸性条件とする手段と、蛍光物質の蛍光強度を計測する手段と、臭素酸イオンを含まない標準試料水の蛍光強度と計測された蛍光強度との差を蛍光強度差として算出する手段と、予め求めた蛍光強度差と臭素酸イオン濃度との検量線を用いて、算出された蛍光強度差から臭素酸イオン濃度を算出する手段とを備える臭素酸イオンの測定装置において、
     前記計測する手段が、励起波長及び蛍光波長がそれぞれ264nm及び400nmである時、励起波長及び蛍光波長がそれぞれ264nm及び480nmである時、及び励起波長及び蛍光波長がそれぞれ300nm及び400nmである時のうちのいずれかの時の蛍光強度を計測すること
     を特徴とする臭素酸イオンの測定装置。
PCT/JP2012/068014 2011-07-25 2012-07-13 臭素酸イオンの測定方法及び測定装置 WO2013015142A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280035182.5A CN103649730B (zh) 2011-07-25 2012-07-13 溴酸根离子的测定方法和测定装置
US14/146,073 US9023654B2 (en) 2011-07-25 2014-01-02 Method and apparatus for measuring bromate ions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-162170 2011-07-25
JP2011162170A JP5759820B2 (ja) 2011-07-25 2011-07-25 臭素酸イオンの測定方法及び測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/146,073 Continuation US9023654B2 (en) 2011-07-25 2014-01-02 Method and apparatus for measuring bromate ions

Publications (1)

Publication Number Publication Date
WO2013015142A1 true WO2013015142A1 (ja) 2013-01-31

Family

ID=47600993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068014 WO2013015142A1 (ja) 2011-07-25 2012-07-13 臭素酸イオンの測定方法及び測定装置

Country Status (4)

Country Link
US (1) US9023654B2 (ja)
JP (1) JP5759820B2 (ja)
CN (1) CN103649730B (ja)
WO (1) WO2013015142A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245661A (zh) * 2013-05-17 2013-08-14 福建出入境检验检疫局检验检疫技术中心 一种饮用水中溴酸盐快速检测方法
WO2013190935A1 (ja) * 2012-06-18 2013-12-27 メタウォーター株式会社 臭素酸イオンの測定方法及び測定装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226100B (zh) * 2013-04-09 2015-06-03 深圳先进技术研究院 一种量子产率的测试方法
CN103543134B (zh) * 2013-09-27 2016-06-29 内蒙古包钢钢联股份有限公司 氢化物发生-原子荧光光谱法测定铁矿石中铅含量的方法
CN103983624A (zh) * 2014-05-14 2014-08-13 广西师范大学 一种测定化学需氧量的荧光方法
JP6250505B2 (ja) 2014-09-09 2017-12-20 メタウォーター株式会社 臭素酸イオン濃度の測定方法および測定システム
CN104237189B (zh) * 2014-09-28 2016-07-13 南京大学 一种印染行业废水污染的快速识别和定量分析的方法
CN104406950B (zh) * 2014-12-11 2017-02-22 福州大学 一种同时测定溴酸盐和亚氯酸盐的荧光分析法
CN105510291A (zh) * 2016-01-15 2016-04-20 厦门大学 海洋沉积物铀含量的液体激光荧光测定方法
CN105911039B (zh) * 2016-04-22 2019-06-21 东华大学 一种利用罗丹明类荧光探针检测三价铬离子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119925A (ja) * 1995-10-26 1997-05-06 Yokogawa Analytical Syst Kk 被測定液中の微量イオン種測定方法及び装置
JP2006022339A (ja) * 2005-09-05 2006-01-26 Japan Science & Technology Agency フッ化アルキルケイ素高分子化合物を用いたハロゲンイオン検出素子材料
WO2009116554A1 (ja) * 2008-03-19 2009-09-24 メタウォーター株式会社 臭素酸イオンの測定方法および装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509644B2 (ja) * 2004-05-14 2010-07-21 株式会社東芝 オゾンガス注入制御システム
CN101456617A (zh) * 2009-01-04 2009-06-17 上海大学 一种去除饮用水中溴酸根离子的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119925A (ja) * 1995-10-26 1997-05-06 Yokogawa Analytical Syst Kk 被測定液中の微量イオン種測定方法及び装置
JP2006022339A (ja) * 2005-09-05 2006-01-26 Japan Science & Technology Agency フッ化アルキルケイ素高分子化合物を用いたハロゲンイオン検出素子材料
WO2009116554A1 (ja) * 2008-03-19 2009-09-24 メタウォーター株式会社 臭素酸イオンの測定方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATSUMI KITA ET AL.: "Basic Examination of Fluorometric Method for Bromate Ion Using Trifluoperazine", JOURNAL OF EICA, vol. 16, no. 2/3, 15 October 2011 (2011-10-15), pages 89 - 92 *
TAKAO OTOMO ET AL.: "Trifluoperazine o Mochiiru ppb Level Shusosan Ion no Keiko Kenshutsu - FIA no Kaihatsu", DAI 70 KAI ABSTRACTS OF THE SYMPOSIUM OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, 2 May 2009 (2009-05-02), pages 235, Y1061 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190935A1 (ja) * 2012-06-18 2013-12-27 メタウォーター株式会社 臭素酸イオンの測定方法及び測定装置
CN103245661A (zh) * 2013-05-17 2013-08-14 福建出入境检验检疫局检验检疫技术中心 一种饮用水中溴酸盐快速检测方法

Also Published As

Publication number Publication date
US20140113381A1 (en) 2014-04-24
US9023654B2 (en) 2015-05-05
CN103649730A (zh) 2014-03-19
JP2013024807A (ja) 2013-02-04
CN103649730B (zh) 2016-03-02
JP5759820B2 (ja) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2013015142A1 (ja) 臭素酸イオンの測定方法及び測定装置
Pinkernell et al. Methods for the photometric determination of reactive bromine and chlorine species with ABTS
Shah et al. Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters
Hajati et al. Application of high order derivative spectrophotometry to resolve the spectra overlap between BG and MB for the simultaneous determination of them: Ruthenium nanoparticle loaded activated carbon as adsorbent
Kinani et al. Analysis of inorganic chloramines in water
JP5319658B2 (ja) 臭素酸イオンの測定方法および装置
JP6067250B2 (ja) 臭素酸イオンの測定方法及び測定装置
Uriarte et al. Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images
Nagul et al. The use of on-line UV photoreduction in the flow analysis determination of dissolved reactive phosphate in natural waters
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
Thomas et al. Colorimetric detection of copper ions in sub-micromolar concentrations using a triarylamine-linked resin bead
Afkhami et al. Kinetic-spectrophotometric determination of trace amounts of As (III) based on its inhibitory effect on the redox reaction between bromate and hydrochloric acid
JP6547507B2 (ja) 残留塩素測定システム、残留塩素測定方法、及びプログラム
CN111948303A (zh) 一种利用探针化合物检测羟基自由基浓度的方法
CN103616277A (zh) 一种不使用汞盐和银盐的化学需氧量测定方法
Baek et al. Fluorescence sensing of peracetic acid by oxidative cleavage of phenylselenyl ether of 4-hydroxynaphthalimide
Hosseini et al. Spectrophotometric determination of chlorate ions in drinking water
JP2019535006A5 (ja)
Zheng et al. Chromo-chemodosimetric detection for Fe 2+ by Fenton reagent-induced chromophore-decolorizing of halogenated phenolsulfonphthalein derivatives
Johnson et al. Photolytic spectroscopic quantification of residual chlorine in potable waters
Shishehbori et al. Kinetic spectrophotometric method for trace amounts determination of bromide in pharmaceutical samples using Janus Green-bromate system
JP2005077151A (ja) 全窒素測定方法
KR101244614B1 (ko) 수용액내 암모니아성질소의 측정방법
JP2013007604A (ja) 亜硝酸イオンの定量方法
Cauduro Determination of major, minor and trace elements in rice flour using the 4200 Microwave Plasma-Atomic Emission Spectrometer (MP-AES)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817406

Country of ref document: EP

Kind code of ref document: A1