WO2013014854A1 - 発電機 - Google Patents

発電機 Download PDF

Info

Publication number
WO2013014854A1
WO2013014854A1 PCT/JP2012/004000 JP2012004000W WO2013014854A1 WO 2013014854 A1 WO2013014854 A1 WO 2013014854A1 JP 2012004000 W JP2012004000 W JP 2012004000W WO 2013014854 A1 WO2013014854 A1 WO 2013014854A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating body
vibration
generator
fluid
vibrating
Prior art date
Application number
PCT/JP2012/004000
Other languages
English (en)
French (fr)
Inventor
慎二 比江島
林 健一
Original Assignee
国立大学法人岡山大学
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学, 三井造船株式会社 filed Critical 国立大学法人岡山大学
Priority to CN201280028577.2A priority Critical patent/CN103843237B/zh
Priority to US14/233,555 priority patent/US9347332B2/en
Priority to AU2012288359A priority patent/AU2012288359B2/en
Priority to JP2012551412A priority patent/JP5303686B2/ja
Priority to ES12817134.5T priority patent/ES2643396T3/es
Priority to EP12817134.5A priority patent/EP2738925B1/en
Publication of WO2013014854A1 publication Critical patent/WO2013014854A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a generator that generates electric power by converting vibration energy into electric energy.
  • generators that convert the natural energy of fluids such as tidal currents and river flows into electrical energy are known.
  • a generator has a mechanism for rotating a rotor by rotating a rotating body such as a propeller blade by wind or water flow, for example.
  • a generator using a vibrating body that vibrates by being positioned in a fluid flow field includes a columnar body that is arranged so that the longitudinal direction intersects the fluid flow direction, and the permanent magnet moves in the coil due to the vibration of the columnar body to the coil. Generates an induced current to generate electricity. That is, the generator performs power generation by effectively using the vibration energy of the fluid excitation vibration of the vibrating body generated in the flow field.
  • an elastic member that elastically supports the columnar body is provided, and the elastic member can easily convert the natural energy of the fluid into the vibration energy of the columnar body.
  • the elastic member when an elastic member is used, it is difficult to withstand long-term operation because the elastic member may be fatigued and destroyed due to repeated vibration of the columnar body.
  • an object of the present invention is to provide a generator capable of obtaining electric power generated by vibration of a vibrating body generated by a fluid flow with a simple configuration.
  • One embodiment of the present invention is a generator provided in a fluid flow field.
  • the generator is A vibration that is a columnar vibrating body, wherein one end of the vibrating body is supported by an axis parallel to the flow direction of the fluid in a fluid flow field, and reciprocates around the axis by self-excited vibration.
  • Body A power generation unit that generates electrical energy in accordance with the reciprocating vibration of the vibrating body.
  • the vibrating body has a specific gravity smaller than the specific gravity of the fluid, and the position of the vibrating body supported by the shaft is on the lower end side in the vertical direction.
  • the vibrating body When the vibrating body is referred to as a first vibrating body, it has a specific gravity smaller than the specific gravity of the fluid on the upstream side or the downstream side in the fluid flow direction, and the lower end in the vertical direction is the fluid in the flow field of the fluid.
  • a columnar second vibrating body that is supported by an axis parallel to the flow direction and reciprocally vibrates, and a support portion that supports the first vibrating body and the second vibrating body in common. .
  • the distance between the axes of the first vibrating body and the second vibrating body is adjusted according to the flow velocity of the fluid. It is preferable to have a control unit.
  • the support portion may be formed to extend in the fluid flow direction, and the plurality of vibrating bodies may be supported on the support portion at intervals.
  • a vibration control body that controls reciprocating vibration of the vibration body, and the vibration control body is arranged in the flow field so as to be separated from the vibration body at least one of the upstream side and the downstream side of the vibration body. May be.
  • it has a control part which adjusts the distance between the axes of the vibration body and the vibration control body according to the flow velocity of the fluid by moving at least one of the position of the vibration body and the position of the vibration control body. It is preferable.
  • the power generation unit includes a conductor provided along a vibration path of the vibrating body and a magnetic field generator that is attached to the vibrating body and applies a magnetic field to the conductor so as to face each other.
  • the magnetic field applied to the conductor from the magnetic field generator may be changed by reciprocal vibration of the vibrating body to generate electrical energy.
  • the power generation unit includes a conductor attached to the vibrator and a magnetic field generator that is provided along a vibration path of the vibrator and applies a magnetic field to the conductor so as to face each other.
  • the magnetic field applied to the conductor from the magnetic field generator may be changed by reciprocal vibration of the vibrating body to generate electrical energy.
  • the fluid is a liquid having a liquid level
  • the position of the vibrating body supported by the shaft is on the upper end side in the vertical direction
  • the form which has the float connected with the said vibrating body which floats the said vibrating body on the liquid level of a liquid and gives a restoring force to the said reciprocating motion may be sufficient.
  • the float is a direction perpendicular to the axial direction of the shaft, and when viewed from above the liquid surface, a pair of arms extending in both directions with the shaft as a boundary And a pair of float bodies provided at each of the tips of the arms and having a specific gravity smaller than the specific gravity of the liquid,
  • the arm portion and the float body are provided so that, during the reciprocating motion, the restoring force is generated by immersing one float body in the liquid more than the other float body in the liquid. It is preferable that
  • the generator is provided with an adjusting mechanism for adjusting the length of the arm portion.
  • the electric power generated by the vibration of the vibrating body generated by the fluid flow can be obtained with a simple configuration.
  • FIG. 1st Embodiment It is a schematic block diagram of the generator of 1st Embodiment. It is the figure which demonstrated typically the generator shown in FIG. It is the figure which demonstrated the modification of the generator of 1st Embodiment typically.
  • (a)-(d) is the figure which demonstrated typically the other modification of the generator of 1st Embodiment.
  • (a)-(c) is a figure which shows the example of the change of the angular velocity of the vibrating body with respect to the diameter of the vibrating body in 1st Embodiment. It is the figure which demonstrated typically the other modification of the generator of 1st Embodiment. It is the figure which demonstrated typically the other modification of the generator of 1st Embodiment.
  • (A), (b) is a figure which shows typically the other example of the apparatus structure of 1st Embodiment. It is a figure which shows the result of the energy acquisition rate measured in the vibrating body of 1st Embodiment. It is a figure which shows the result of the energy acquisition rate measured about the modification of the vibrating body of 1st Embodiment. It is a figure which shows typically an example of the form of the conventional vibrating body. It is a schematic block diagram of the generator of 2nd Embodiment. It is a figure explaining another example of the generator of a 1st embodiment and a 2nd embodiment.
  • the generator of this embodiment is a device that converts natural energy of fluids such as tidal currents and river flows into electrical energy. Specifically, the generator generates vibration energy of a vibrating body by being located in the fluid flow field. A device that converts electrical energy.
  • the fluid may be a gas or a liquid.
  • the generator has a configuration that converts vibration energy of a vibrating body that vibrates with wind into electric energy, and wind power generation that rotates a rotor by rotating a rotating body such as a propeller blade with the wind. Different from the machine configuration.
  • the generator converts the vibration energy of the vibrator placed on the seabed or in the river to electrical energy by the tidal current on the seabed or the water current in rivers (including agricultural and industrial waterways). It differs from the structure of the hydroelectric generator which has the structure to convert and rotates a rotor with a water flow.
  • the generators of the first embodiment and the second embodiment described below are generators provided in a fluid flow field.
  • This generator is a columnar vibrator, and includes a columnar vibrator and a power generation unit.
  • One end portion of the vibrating body is supported by an axis parallel to the fluid flow direction in the fluid flow field, and reciprocates around the axis by self-excited vibration.
  • the power generation unit generates electrical energy according to the reciprocating vibration of the vibrating body.
  • the generator according to the first embodiment has a specific gravity smaller than the specific gravity of the fluid, and a columnar vibration that reciprocally vibrates by being supported by an axis parallel to the fluid flow direction in the fluid flow field at the lower end in the vertical direction. And a power generation unit that generates electrical energy according to the reciprocating vibration of the vibrating body.
  • the generator according to the first embodiment does not need to be provided with an elastic member used in a conventional generator that converts vibration energy into electric energy. For this reason, the generator of 1st Embodiment can obtain the electrical energy produced
  • the generator of 1st Embodiment does not use an elastic member, it is excellent in durability compared with the case where an elastic member is used.
  • FIG. 1 is a schematic configuration diagram of a generator 10 according to the first embodiment.
  • the generator 10 includes a vibrating body 12, a support portion 14, and a power generation portion 16 (see FIG. 2), and is provided in a fluid having a flow field F.
  • the vibrating body 12 is formed in a columnar shape extending in a direction orthogonal to the fluid flow direction (the arrow direction of the flow field F in FIG. 1), and has a specific gravity smaller than the specific gravity of the fluid. Further, since the vibrating body 12 is positioned in the fluid flow field F, the lower end in the vertical direction is pivotally supported by the support portion 14 parallel to the fluid flow direction in the flow field F and reciprocally vibrates.
  • the vibrating body 12 has a natural frequency determined by the mass and length of the vibrating body 12.
  • the vibrating body 12 may be composed of, for example, hollow vinyl chloride, fiber reinforced plastic, steel material, or the like.
  • the fluid when it is air, it is preferably composed of, for example, polyvinyl chloride, hypalon or the like.
  • the vibrating body 12 is a cylindrical body, but is not necessarily a cylindrical body, and may be a columnar body such as a triangular column, a rectangular column, or a polygonal column.
  • the Reynolds number is 10 5 to It is preferable to use the vibrator 12 having a diameter of 100 to 3000 mm so as to be within a range of 10 7 .
  • the length of the vibrating body 12 is preferably 50 to 2000 cm, for example.
  • the support portion 14 extends in parallel with the fluid flow direction, and pivotally supports a portion on the lower end side of the vibrating body 12 in the vertical direction. Moreover, since the vibrating body 12 has a specific gravity smaller than the specific gravity of the fluid, the buoyancy acting on the vibrating body 12 is greater than the gravity acting on the vibrating body 12. For this reason, the upward force B in the vertical direction always acts on the vibrating body 12 as a restoring force for returning the vibrating body 12 to the state extended in the vertical direction. Therefore, the vibrating body 12 reciprocates in a state where the vertical lower end side of the vibrating body 12 is pivotally supported by the support portion 14 by the Karman vortex excitation and the vertical upward force B. In this case, the vibrating body 12 acts as an inverted pendulum with the vertical lower end side as a fulcrum.
  • the power generation unit 16 includes, for example, a magnetic field generator 16a such as a permanent magnet and a conductor 16b such as a coil.
  • the magnetic field generator 16 a is attached to the tip on the upper end side in the vertical direction of the vibrating body 12 and moves together with the vibrating body 12.
  • the conductor 16b is provided at an interval along the vibration path of the vibrating body 12, and is disposed so as to face the magnetic field generator 16a that moves with the vibrating body 12 at an interval.
  • the vibration of the vibrating body 12 causes a relative movement between the conductor 16b and the magnetic field applied to the magnetic field generator 16a.
  • the strength of the magnetic field applied to the conductor 16b is increased.
  • a change is applied, electromagnetic induction is induced by a change in the strength of the magnetic field applied to the conductor 16b, and an induced current flowing through the conductor 16b is caused.
  • electrical energy is generated.
  • the vibration energy of the vibrating body 12 can be directly converted into electric energy, for example, power generation connected to the vibrating body 12 is compared with the case where the conversion to electric energy is performed indirectly. Compared with the case where electric power is generated by rotating the motor for use with the vibration energy of the vibrating body 12, the conversion efficiency from vibration energy to electric energy can be improved.
  • the generator of 1st Embodiment does not need to provide the elastic member for vibrating a vibrating body, it can reduce manufacturing cost as a result. Moreover, since the generator of this embodiment does not use an elastic member, it is excellent in durability compared with the case where an elastic member is used.
  • the energy acquisition rate ⁇ of the vibrating body 12 of the generator of the present embodiment is defined as follows, the energy acquisition rate ⁇ can achieve 76% under optimum conditions.
  • Energy acquisition rate ⁇ (%) (Maximum power of vibrating body 12) / (1/2 ⁇ ⁇ ⁇ d ⁇ L ⁇ U 3 ) ⁇ is the density of the fluid, d is the diameter of the vibrating body 12, L is the length of the vibrating body 12, and U is the flow velocity of the fluid.
  • FIG. 3 is a diagram schematically illustrating a modification of the generator 10 of the present embodiment.
  • This modification differs from the above embodiment in that the vibrating bodies 12a, 12b, 12c, 12d, 12e,... Are arranged in a line in the flow direction in the flow field F. Since other parts are the same as the configuration of the present embodiment, the description of the configuration and functions is omitted.
  • the vibrating bodies 12a, 12b, 12c, 12d, 12e,... are arranged close to each other.
  • the vibrating bodies 12a, 12b, 12c, 12d, and 12e will be described as a representative.
  • the interaxial distances of the vibrating bodies 12a, 12b, 12c, 12d, and 12e vary depending on the type of fluid, the conditions of the flow velocity, and the like, but the diameter d (the cylindrical shape of the vibrating bodies 12a, 12b, 12c, 12d, and 12e). Examples are 1 to 3 times the diameter d).
  • the lower ends in the vertical direction of the vibrating bodies 12a to 12e are pivotally supported by the support portion 14 in common.
  • a magnetic field generator (not shown) similar to the magnetic field generator 16a is provided at the top end of each of the vibrating bodies 12a to 12e in the vertical direction, and the vibrating body 12a
  • a conductor (not shown) similar to the conductor 16b shown in FIG. 2 is provided at a position along the vibration path of each of .about.12e and facing the magnetic field generator. Due to the vibration of the vibrating bodies 12a to 12e, a relative motion is generated between the conductor and the magnetic field applied by the magnetic field generator, and power is generated by this motion.
  • each of the vibrating bodies 12 a to 12 e is arranged in a line in the flow direction in the flow field F, so that large vibration energy is generated by the other vibrating bodies adjacent to the upstream side or the downstream side. be able to. More specifically, when the separation flow 18 formed by the vibrating body 12a affects the vibration of the vibrating body 12b adjacent to the downstream side, the vibrating body 12b has a vibration V having an amplified amplitude. Induced. The fluid flow velocity range for maintaining the vibration V is wide. Moreover, the vibration V is induced simultaneously with the vibration body 12b by receiving the influence of the vibration V of the vibration body 12b on the vibration body 12a.
  • the vibration V is induced in the vibrating bodies 12c to 12e as well as the vibrating bodies 12a and 12b. That is, in this modification, as compared with the case where the single vibrating body 12 is used as in the above embodiment, the vibration V is easily sustained even when the flow velocity of the fluid changes, and the amplitude is amplified. Exciting vibration (self-excited vibration) can be generated in each of the vibrating bodies 12a to 12e.
  • the vibrations of the vibrating bodies 12a to 12e are not in phase with each other. That is, the vibrations of the vibrating bodies 12a to 12e are independent of each other, and the vibration phases are different between the vibrating bodies 12a to 12e.
  • FIG. 4 is a diagram schematically illustrating another modification of the generator 10 of the present embodiment.
  • This modification is different from the above embodiment in that a vibration control body 20 that controls vibrations of the vibration bodies 12a and 12b is disposed in the flow field F. Since other parts are the same as the configuration of the present embodiment, the description of the configuration and functions is omitted.
  • the vibration control body 20 is a cylindrical body that is fixedly disposed around the vibration bodies 12a and 12b so as to be separated from the vibration bodies 12a and 12b and extends in the vertical direction.
  • the vibration control body 20 may be fixed to the support body 14, for example.
  • the vibration control body 20 has high rigidity and is not displaced by the fluid flow force or the vibrations of the fluids 12a and 12b even if it is disposed in the flow field F.
  • the diameter of the vibration control body 20 is the same as the diameter of the vibration body 12 that is a cylindrical body, and the length of the cylindrical body is also the same, but the diameter and the length may be different.
  • the vibration control body 20 is a cylindrical body, it may not necessarily be a cylindrical body, and may be a columnar body such as a triangular column, a rectangular column, or a polygonal column.
  • the vibration control body 20 can control the reciprocating vibration of the vibration bodies 12a and 12b by being arranged at least one of the upstream and downstream sides of the vibration bodies 12a and 12b so as to be separated from the vibration bodies 12a and 12b.
  • the control of the reciprocating vibration of the vibrating bodies 12a and 12b includes maintaining the vibration in accordance with the change in the flow velocity of the fluid, and further amplifying the amplitude of the vibration.
  • the vibration control body 20 may be located on the upstream side of the vibration bodies 12a and 12b in the flow field F as shown in FIG. 4A, or may be located on the downstream side as shown in FIG. 4B. May be. Further, the vibration control bodies 20 may be arranged along the flow direction of the flow field F, or the positions of the vibration control body 20 and the vibration body 12 in the direction orthogonal to the flow direction may be shifted from each other. Good. As shown in FIG. 4C, a plurality of vibration control bodies 20 may be provided so as to face each other through the support portion 14 in a direction orthogonal to the flow direction of the flow field F. In FIG. As shown, the vibrators 12a and 12b may be provided on the upstream side and the downstream side.
  • the inter-axis distance between the vibrating body 12 and the vibration control body 20 varies depending on the type of fluid, the condition of the flow velocity, and the like, but the diameter d (the diameter of the cylindrical shape of the vibrating body 12 and the vibration control body 20 is d). 1-3).
  • the inter-axis distance is set within a range in which the separation flow formed by the vibration control body 20 can efficiently control the vibrations of the vibration bodies 12a and 12b.
  • FIG. 5A to 5C show examples of changes in angular velocity of the vibrating bodies 12 and 12b with respect to the diameters of the vibrating bodies 12 and 12b when the vibrating body 12a or the vibration control body 20 is disposed close to the vibrating bodies 12 and 12b.
  • FIG. 5A a vibrating body 12a having a cylindrical body with a diameter of 115 mm is disposed on the upstream side of the flow field F, and the distance between the axes of the vibrating body 12a and the vibrating body 12b is 14 to 20 cm.
  • the solid line shows the change in the angular velocity ⁇ of the vibrating body 12b when the diameter d of the vibrating body 12b is variously changed under the condition that the fluid is water and the flow rate is 1 m / sec.
  • a change in the angular velocity ⁇ of the vibrating body 12b when the vibrating body 12b is arranged in the flow field F alone and the diameter d of the vibrating body 12b is variously changed is indicated by a broken line.
  • FIG. 5A shows that when the two vibrating bodies 12a and 12b are arranged close to each other, the angular velocity ⁇ of the vibrating body 12b changes variously by changing the diameter d of the vibrating body 12b. For example, it can be seen that the largest angular velocity response is obtained when the diameter d of the vibrating body 12b is 115 mm. 5A, the self-excited vibration induced in the vibrating bodies 12a and 12b by arranging the two vibrating bodies 12a and 12b close to each other is the Karman vortex excitation generated when the vibrating body 12b is used alone. It can be seen that a larger angular velocity response can be obtained compared to.
  • a vibration control body 20 having a cylindrical body with a diameter of 115 mm is arranged on the upstream side of the flow field F, and the distance between the axes of the vibration control body 20 and the vibration body 12 is 14 to 20 cm.
  • the change of the angular velocity ⁇ of the vibrating body 12 when the diameter d of the vibrating body 12 is variously changed under the condition that the fluid is water and the flow velocity is 1 m / second is indicated by a solid line.
  • the change in the angular velocity ⁇ of the vibrating body 12 when the diameter 12 of the vibrating body 12 is variously changed when the vibrating body 12 is arranged alone in the flow field F is indicated by a broken line. Yes. As shown in FIG.
  • the angular velocity ⁇ of the vibrating body 12 can be variously changed by changing the diameter d of the vibrating body 12. Recognize. In any diameter d, the angular velocity of the vibrating body 12 when the vibration control body 20 is arranged close to the upstream side of the vibrating body 12 may be larger than the angular velocity when the vibrating body 12 is used alone. Recognize.
  • a vibration control body 20 having a cylindrical body with a diameter of 115 mm is arranged on the downstream side of the flow field F, and the interaxial distance between the vibration control body 20 and the vibration body 12 is 14 to 20 cm.
  • the change of the angular velocity ⁇ of the vibrating body 12 when the diameter d of the vibrating body 12 is variously changed under the condition that the fluid is water and the flow velocity is 1 m / second is indicated by a solid line.
  • the change in the angular velocity ⁇ of the vibrating body 12 when the diameter 12 of the vibrating body 12 is variously changed when the vibrating body 12 is arranged alone in the flow field F is indicated by a broken line. Yes.
  • FIG. 5A the change in the angular velocity ⁇ of the vibrating body 12 when the diameter 12 of the vibrating body 12 is variously changed when the vibrating body 12 is arranged alone in the flow field F is indicated by a broken line. Yes. As shown in FIG.
  • the angular velocity ⁇ of the vibrating body 12 can be changed variously by changing the diameter d of the vibrating body 12. Recognize. Also, at any diameter d, the angular velocity of the vibrating body 12 when the vibration control body 20 is arranged close to the downstream side of the vibrating body 12 may be larger than the angular velocity when the vibrating body 12 is used alone. Recognize. As described above, it is preferable to use a plurality of the vibrating bodies 12 or the vibration control body 20 rather than using the vibrating body 12 alone because the angular velocity response can be increased.
  • FIG. 6 is a diagram schematically illustrating another modification of the generator 10 of the present embodiment.
  • This modification is different from the above embodiment in that an adjustment unit 22 for adjusting the natural frequency of the vibrating body 12 is provided. Since other parts are the same as the configuration of the present embodiment, the description of the configuration and functions is omitted.
  • the inside of the vibrating body 12 is formed in a hollow shape, and a rod 23 extending in the longitudinal direction of the vibrating body 12 is provided in the inside.
  • the rod 23 is provided with an adjusting portion 22 so as to be slidable in the longitudinal direction of the vibrating body 12.
  • a weight may be used as the adjustment unit 22.
  • the vibration amplitude of the vibrating body 12 is amplified by adjusting the natural frequency of the vibrating body 12 so as to resonate with the Karman vortex emission frequency generated in the vibrating body 12. be able to.
  • the dimensionlessness is determined by the flow velocity, the representative length of the vibrating bodies (for example, the diameter of the vibrating bodies, etc.) and the natural frequency.
  • the natural frequency By adjusting the natural frequency so that the flow velocity is within the vibration excitation range of the vibrating body 12, the amplitude of the vibrating body 12 can be amplified.
  • the natural frequency of the vibrating body 12 can be adjusted by moving the adjusting unit 22 in the longitudinal direction of the vibrating body 12, so compared to a vibrating body that does not have the adjusting unit 22,
  • the flow velocity range of the fluid for maintaining the vibration of the vibrating body 12 can be set wider, and the amplitude of the vibration can be amplified.
  • FIG. 7 is a diagram schematically illustrating another modification of the generator 10 of the present embodiment.
  • This modification differs in the structure of the electric power generation part 16 with respect to the said embodiment. Since other parts are the same as the configuration of the present embodiment, the description of the configuration and functions is omitted.
  • the conductor 16 b is attached to the tip of the vibrating body 12 on the upper end side in the vertical direction and moves together with the vibrating body 12.
  • a plurality of magnetic field generators 16 a are provided at intervals in the direction along the vibration path of the vibrating body 12, and are disposed so as to face each other with an interval from the conductor 16 b that moves together with the vibrating body 12. .
  • the vibration of the vibrating body 12 causes a relative movement between the conductor 16b and the magnetic field applied to the magnetic field generator 16a.
  • the strength of the magnetic field applied to the conductor 16b is increased.
  • a change is applied, electromagnetic induction is induced by a change in the strength of the magnetic field applied to the conductor 16b, and an induced current flowing through the conductor 16b is caused. Thereby, electrical energy is generated.
  • the vibration energy of the vibrating body 12 can be directly converted into electric energy, as in the above embodiment, so compared to the case where conversion into electric energy is performed indirectly,
  • the conversion efficiency from vibration energy to electrical energy can be improved as compared with the case where power generation is performed by rotating a power generation motor connected to the vibration body 12 by vibration energy of the vibration body 12.
  • the vibrating body 12 is a circular cylinder with a circular cross section.
  • a part of the circular shape of the cross section of the vibrating body 12 is a straight line 13a.
  • 13a and the straight lines 13a, 13a may have a shape intersecting at the convex portion 13b.
  • the orientation of the vibrating body 12 is preferably set so that the convex portion 13b faces the upstream side in the fluid long field F.
  • the cross-sectional shape having the angle ⁇ between the straight line 13a and the straight line 13a across the convex portion 13b may be such that the angle ⁇ changes according to the flow velocity and viscosity of the fluid.
  • the generation position of Karman vortices generated in the flow field F can be changed, so that the Karman excitation can be performed so that the energy acquisition rate ⁇ is maximized.
  • the angle ⁇ By changing the angle ⁇ , the state of laminar flow separation occurring on the surface of the vibrating body 12 in the flow field F changes, so that the behavior of the Karman vortex changes. For this reason, the energy acquisition rate ⁇ can be optimally adjusted by changing the angle ⁇ each time the flow velocity in the flow field F changes.
  • the cross-sectional shape having the convex portion 13b having the angle ⁇ as shown in FIG. 8 can also be applied to the vibration control body 20 shown in FIGS. 4 (a) to 4 (d).
  • the angle ⁇ may be changed according to the flow velocity and viscosity of the fluid. Since the vibration control body 20 has such a cross-sectional shape, the energy acquisition rate ⁇ can be adjusted to the maximum by changing the angle ⁇ according to the change in the flow velocity in the flow field F.
  • each of the moving bodies 12a to 12e includes a moving mechanism 24 that allows the vibrating bodies 12a to 12e to move freely along the support portion.
  • the generator may include a control unit 26 configured by a computer that controls the movement of the moving mechanism 24 and a velocity meter 28 that measures the flow velocity of the fluid. Information on the flow velocity measured by the anemometer 28 is sent to the control unit 26.
  • the control unit 26 records and holds the optimum inter-axis distance of the vibrating bodies 12a to 12e for each flow velocity.
  • the optimal inter-axis distance refers to the inter-axis distance when the energy acquisition rate ⁇ is maximized.
  • the optimum inter-axis distance of the vibrating bodies 12a to 12e is obtained, and an instruction to drive the moving mechanism 24 is issued so as to realize this inter-axis distance. Since the conditions under which the self-excited vibrations of the vibrating bodies 12a to 12e are generated vary depending on the flow velocity of the fluid, the interaxial distance of the vibrating bodies 12a to 12e can be adjusted by freely moving the positions of the vibrating bodies 12a to 12e. Can do.
  • control unit 26 adjusts the distance between the axes of the vibrating bodies 12a to 12e by moving at least one of the positions of the vibrating bodies 12a to 12e. Thereby, self-excited vibration can be generated so that the energy acquisition rate ⁇ is maximized.
  • FIG. 9B in the various forms shown in FIGS.
  • the transfer mechanism 24 that allows the vibrating bodies 12a and 12b and the vibration control body 20 to move freely in the flow direction so that the inter-axis distance of the 12b can be adjusted in the flow direction of the fluid is provided with the vibrating bodies 12a and 12b and the vibration control body. 20 may be provided. Even in this case, it is preferable to include a control unit 26 configured by a computer for controlling the movement of the moving mechanism 24 and a velocity meter 28 for measuring the flow velocity of the fluid. That is, the control unit 26 adjusts the distance between the axes of the vibration control body 20 and the vibration bodies 12a and 12b by moving at least one of the position of the vibration control body 20 and each position of the vibration bodies 12a and 12b.
  • FIG. 10 is a diagram showing the results of the energy acquisition rate ⁇ when the flow velocity, the length and the diameter d of the vibrating body 12 are changed using the vibrating body 12 shown in FIG.
  • FIG. 11 shows a vibration body 12a in which the vibration body 12b is removed from the form shown in FIG. 4A, that is, the vibration control body 20 and the vibration body 12a, and the flow velocity and the length of the vibration body 12a are changed. It is a figure which shows the result when calculating
  • the distance between the axes of the vibration control body 20 and the vibration body 12a at this time is 90 mm when the diameter is 75 mm and the length is 900 mm, and is 135 mm when the diameter is 115 mm and the length is 900 mm, and the diameter is 165 mm and the length is long.
  • the thickness is 900 mm, it is 190 mm.
  • it is used for calculation of energy acquisition rate (eta) by measuring the work rate of the vibrating body 12 or the vibrating body 12a performed with respect to the torque attenuator connected to the vibrating body 12 or the vibrating body 12a supposing a generator. The maximum power of the vibrating body 12 or the vibrating body 12a was acquired.
  • the vibrating body 12 and the vibrating body 12a are both configured using a vinyl chloride tube. From the result shown in FIG. 10, in the vibrating body 12 shown in FIG. 1, the energy acquisition rate ⁇ reaches 76% at the maximum, and 76% of the kinetic energy due to the fluid flow can be extracted by the vibration of the vibrating body 12. . On the other hand, when the vibrating body 12a shown in FIG. 11 is used, the energy acquisition rate ⁇ is 55% at the maximum. That is, it shows that 55% of the kinetic energy due to the fluid flow can be extracted by the vibration of the vibrating body 12a.
  • the energy acquisition rate ⁇ of the vibrating body 12 or the vibrating body 12a of the present embodiment and the modification exceeds 50%, and energy can be effectively extracted from the kinetic energy of the fluid by the vibration of the vibrating body. Recognize.
  • the energy acquisition rate ⁇ of the vibrating body 12 shown in FIG. 1 exceeds 70% and has a high value.
  • FIG. 12 in the form of a vibrating body in which a columnar vibrating body 100 is horizontally arranged in a flow field F and both ends of the vibrating body 100 are supported by elastic members 102 such as springs, Karman vortex excitation is performed.
  • the energy acquisition rate ⁇ when generated was 37% at the maximum. From this, it can be seen that the energy acquisition rate ⁇ in the present embodiment and the modification is higher than that in the conventional embodiment. Therefore, in this embodiment and the modification, the electric power generated by the vibration of the vibrating body can be efficiently obtained with a simple configuration.
  • the generator of 2nd Embodiment is a generator provided in the flow field of the liquid which has a liquid level similarly to 1st Embodiment.
  • the generator has a columnar vibrator and a power generation unit.
  • the vibrating body is pivotally supported by an axis parallel to the fluid flow direction at one end of the vibrating body. That is, the vibrating body is pivotally supported in the liquid on the upper end side of the vibrating body.
  • the vibrating body reciprocates around the axis by self-excited vibration in the liquid flow field.
  • the power generation unit generates electrical energy according to the reciprocating vibration of the vibrating body.
  • the generator according to the second embodiment does not need to be provided with an elastic member used in a conventional generator that converts vibration energy into electrical energy. For this reason, the generator of 2nd Embodiment can obtain the electrical energy produced
  • FIG. 13 is a schematic configuration diagram of the generator 10 according to the second embodiment.
  • the generator 50 includes a vibrating body 52, a support portion 54, a pair of floats 53, and a power generation portion 56, and is provided in the liquid having the flow field F or on the liquid surface.
  • the vibrating body 52 is formed in a column shape extending in a direction orthogonal to the liquid flow direction (the arrow direction of the flow field F in FIG. 1).
  • the specific gravity of the vibrating body may be larger or smaller than the specific gravity of the liquid. However, in order for the vibrating body to easily vibrate in the flow field F, the specific gravity of the vibrating body is preferably smaller than the specific gravity of the liquid.
  • Each of the pair of floats 53 includes a float main body 53a and a pair of arm portions 53b.
  • the arm portion 53 b extends in two directions in a direction orthogonal to the axial direction of the shaft of the support portion 54.
  • the pair of arm portions 53b are orthogonal to the axial direction of the shaft of the support portion 54, and both sides with the shaft of the support portion 54 as a boundary when the vibrating body 52 is viewed from above the liquid surface. Extends from the shaft in the direction of. In FIG. 13, when the vibrating body 52 is arranged downward in the vertical direction, the arm portion 53 b extends in a bilaterally symmetrical direction so as to form a Y shape.
  • the float body 53 a is provided at the tip of the arm portion 53 and has a crescent shape extending in a circumferential shape around the axis of the support portion 54.
  • the specific gravity of the float 53a is lighter than the specific gravity of the liquid.
  • the arm part 53b and the float main body 53a are provided. That is, the float 53 having the floats 53a and 53b functions as a restoring force generator.
  • the connection position of the arm portion 53b and the float body 53a, the length of the float body 53a, the extending direction of the arm portion 53b, and the length of the arm portion 53b are set so that the restoring force is preferably generated. ing.
  • the vibrating body 52 is preferably made of, for example, vinyl chloride, fiber reinforced plastic, steel, or the like.
  • the vibrating body 52 is a cylindrical body, but is not necessarily a cylindrical body, and may be a columnar body such as a triangular column, a rectangular column, or a polygonal column.
  • the Reynolds number is 10 5 to It is preferable to use the vibrator 52 having a diameter of 100 to 3000 mm so as to be within a range of 10 7 .
  • the length of the vibrating body 52 is preferably set to 50 to 2000 cm, for example.
  • the support portion 54 extends in parallel with the fluid flow direction, and pivotally supports a portion on the upper end side in the vertical direction of the vibrating body 52.
  • a float body 53 a is connected to the vibrating body 52.
  • the arm portion 53b has a length from the axis of the support portion 54 to the float main body 53.
  • an adjusting mechanism 53c that can be freely adjusted is provided.
  • a measurement / control device measures the frequency of self-excited vibration by the Karman vortex of the vibrating body 52, and adjusts the length of the arm portion 53b through the adjustment mechanism 53c in accordance with the frequency.
  • the frequency of the self-excited vibration of the vibrating body 52 varies depending on the flow velocity of the flow field F, for example. For this reason, adjusting the length of the arm portion 53b according to the measured frequency is suitable for optimally extracting electric energy from the flow field F.
  • the power generation unit 56 includes, for example, a magnetic field generator 56a such as a permanent magnet and a conductor 56b such as a coil.
  • the magnetic field generator 56 a is attached to the tip of the vibrating body 52 on the lower end side in the vertical direction and moves together with the vibrating body 52.
  • the conductor 56b is provided at intervals along the vibration path of the vibrating body 52, and is disposed so as to face the magnetic field generator 56a that moves together with the vibrating body 52 at an interval.
  • the vibration of the vibrating body 52 causes a relative motion between the conductor 56b and the applied magnetic field of the magnetic field generator 56a. As a result, the strength of the magnetic field applied to the conductor 56b is increased.
  • the electromagnetic induction is induced by a change in the strength of the magnetic field applied to the conductor 56b and an induced current flowing through the conductor 56b is generated. Thereby, electrical energy is generated.
  • the vibration energy of the vibrating body 52 can be directly converted into electric energy, for example, power generation connected to the vibrating body 52 is compared with the case where the conversion to electric energy is performed indirectly. Compared with the case where electric power is generated by rotating the motor for use with the vibration energy of the vibration body 52, the conversion efficiency from vibration energy to electric energy can be improved.
  • the form shown in FIG. 13 is a form in which the magnetic field generator 56 a is provided in the vibrator 52 and the conductor 56 b is provided in the liquid.
  • the magnetic field generator 56 a is provided in the liquid and the conductor 56 b is provided in the vibrator 52.
  • the vibration control body 20 (see FIGS. 4A to 4D) used in the first embodiment may be arranged on the upstream side or the downstream side of the vibration body 52.
  • the power generation unit 56 combines the magnetic field generator 56a and the conductor 56b to directly acquire electric energy from the vibrating body 52.
  • 56 can also use other forms.
  • the reciprocating rotational motion around the axis of the support portion 54 obtained by the vibrating body 52 is converted into a translational reciprocating motion using a rotation / translation conversion mechanism 60, and this reciprocating motion is converted into a hydraulic system 62.
  • the turbine is rotated through the turbine / power generation unit 66 to generate the power generation unit. Can also be converted into electrical energy.
  • Such a power generation mode can also be applied to the generator 10 of the first embodiment.
  • a camshaft mechanism or the like can be used as the rotation / translation conversion mechanism 60 and the translation / rotation conversion mechanism 64.
  • the generator of the second embodiment does not need to be provided with an elastic member for vibrating the vibrating body 52, the manufacturing cost can be reduced as a result.
  • the generator of 2nd Embodiment does not use an elastic member, it is excellent in durability compared with the case where an elastic member is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

 発電機は、流体の流れ場に設けられる発電機であって、柱状の振動体であって、前記振動体の一方の端部が、流体の流れ場において前記流体の流れ方向に平行な軸に軸支されて前記軸の周りに自励振動により往復運動する振動体と、前記振動体の往復振動に応じて電気エネルギーを生成する発電部と、を有する。

Description

発電機
 本発明は、振動エネルギーを電気エネルギーに変換することにより電力を発生する発電機に関する。
 従来より、潮流や河川流等の流体の自然エネルギーを電気エネルギーに変換する発電機が知られている。このような発電機では、例えば風や水流によってプロペラ翼等の回転体を回転させることによりロータを回転させる機構を有する。
 しかし、このような回転体は複雑な構造を有しているので、発電機の製造コストが増大することが懸念される。また、回転体を用いた場合には、流れ場内に存在する漂流物が回転体に巻き込まれることにより回転体が破損したり、流れ場内に存在する魚類等の生物が回転体に巻き込まれて傷つけられるおそれがある。
 一方、流体の流れ場内に位置することによって振動する振動体を利用した発電機が知られている。具体的には、この発電機は、流体の流れ方向に対し長手方向が交差するように配設された柱状体を備え、柱状体の振動により永久磁石がコイルの中を移動して前記コイルに誘導電流を発生させて発電する。
 すなわち、上記発電機は、流れ場内で発生する振動体の流体励起振動の振動エネルギーを有効利用して発電を行う。
特開2008-011669号公報
 ところで、上記発電機では、柱状体を弾性支持する弾性部材が設けられており、弾性部材によって流体の自然エネルギーから柱状体の振動エネルギーへの変換を容易に行うことができる。しかしながら、弾性部材を用いた場合には、柱状体の振動が絶えず繰り返されることによって弾性部材が疲労破壊するおそれがあるため、長期間の運用に耐えることは困難である。
 そこで、本発明は、流体の流れによって生じる振動体の振動により生成される電力を、簡単な構成で得ることができる発電機を提供することを目的とする。
 本発明の一態様は、流体の流れ場に設けられる発電機である。当該発電機は、
 柱状の振動体であって、前記振動体の一方の端部が、流体の流れ場において前記流体の流れ方向に平行な軸に軸支されて前記軸の周りに自励振動により往復運動する振動体と、
 前記振動体の往復振動に応じて電気エネルギーを生成する発電部と、を有する。
 その際、前記振動体は、流体の比重よりも小さい比重を有し、且つ、前記軸に軸支される前記振動体の位置は、鉛直方向下端側である。
 前記振動体を第1振動体というとき、前記流体の流れ方向の上流側あるいは下流側に、前記流体の比重よりも小さい比重を有し、且つ、鉛直方向下端側が前記流体の流れ場において前記流体の流れ方向に平行な軸に軸支されて往復振動する柱状の第2振動体を有し、前記第1振動体及び前記第2振動体を共通に軸支する支持部を有してもよい。
 この場合、前記第1振動体の位置及び前記第2振動体の位置の少なくとも一方を移動させることにより、前記第1振動体及び前記第2振動体の軸間距離を流体の流速に応じて調整する制御部を有することが好ましい。
 また、前記支持部は前記流体の流れ方向に沿って延びるように形成され、前記支持部には、複数の前記振動体が間隔をおいて支持されてもよい。
 さらに、前記振動体の往復振動を制御する振動制御体を有し、前記振動制御体は、前記流れ場において、前記振動体の上流側及び下流側の少なくとも一方に前記振動体に離間して配置されてもよい。
 この場合、前記振動体の位置と前記振動制御体の位置の少なくとも一方を移動させることにより、前記振動体と前記振動制御体との軸間距離を流体の流速に応じて調整する制御部を有することが好ましい。
 また、前記振動体の固有振動数を調整するための調整部を有してもよい。
 さらに、前記発電部は、前記振動体の振動経路に沿って設けられた導電体と、前記振動体に取付けられるとともに前記導電体に磁場を印加する磁場発生器とを互いに対向するように有し、前記磁場発生器から前記導電体に印加される磁場が前記振動体の往復振動によって変化することにより、電気エネルギーを生成してもよい。
 また、前記発電部は、前記振動体に取付けられた導電体と、前記振動体の振動経路に沿って設けられるとともに前記導電体に磁場を印加する磁場発生器とを互いに対向するように有し、前記磁場発生器から前記導電体に印加される磁場が前記振動体の往復振動によって変化することにより、電気エネルギーを生成してもよい。
 また、前記流体は液面を有する液体であり、
 前記軸に軸支される前記振動体の位置は、鉛直方向上端側にあり、
 さらに、前記振動体を液体の液面に浮上させ、前記往復運動に復元力を与える、前記振動体と接続したフロートを有する、形態であってもよい。
 前記形態の場合、前記フロートは、前記軸の軸方向に対して直交する方向であって、前記振動体を液面上方からみたとき前記軸を境にして両側の方向に延びた一対の腕部と、前記腕部の先端のそれぞれに設けられ、前記液体の比重に比べて比重が小さい一対のフロート本体と、を含み、
 前記往復運動時、前記一対のフロート本体のうち一方のフロート本体が他方のフロート本体に比べて、液体中に多く浸ることで前記復元力が発生するように、前記腕部および前記フロート本体が設けられていることが好ましい。
 さらに、前記発電機は、前記腕部の長さを調整する調整機構が設けられていることが好ましい。
 上述の発電機では、流体の流れによって生じる振動体の振動により生成される電力を、簡単な構成で得ることができる。
第1実施形態の発電機の概略構成図である。 図1に示す発電機を模式的に説明した図である。 第1実施形態の発電機の変形例を模式的に説明した図である。 (a)~(d)は、第1実施形態の発電機の他の変形例を模式的に説明した図である。 (a)~(c)は、第1実施形態における振動体の直径に対する振動体の角速度の変化の例を示す図である。 第1実施形態の発電機の他の変形例を模式的に説明した図である。 第1実施形態の発電機の他の変形例を模式的に説明した図である。 第1実施形態の振動体の断面形状の変形例を模式的に示す図である。 (a),(b)は、第1実施形態の装置構成の、他の例を模式的に示す図である。 第1実施形態の振動体において測定したエネルギー取得率の結果を示す図である。 第1実施形態の振動体の変形例について測定したエネルギー取得率の結果を示す図である。 従来の振動体の形態の一例を模式的に示す図である。 第2実施形態の発電機の概略構成図である。 第1実施形態及び第2実施形態の発電機のさらに別の例を説明する図である。
 以下、本発明の発電機について詳細に説明する。
 本実施形態の発電機は、潮流や河川流等の流体の自然エネルギーを電気エネルギーに変換する装置であり、具体的には、流体の流れ場内に位置することによって発生する振動体の振動エネルギーを電気エネルギーに変換する装置である。この発電機において、上記流体は気体であってもよいし、液体であってもよい。流体が気体の場合、上記発電機は、風によって振動する振動体の振動エネルギーを電気エネルギーに変換する構成を有し、風によってプロペラ翼等の回転体を回転させることによりロータを回転させる風力発電機の構成と異なる。一方、流体が液体の場合、上記発電機は、海底の潮流、あるいは河川(農業用水路や工業用水路を含む)における水流によって、海底に、あるいは河川内に配置した振動体の振動エネルギーを電気エネルギーに変換する構成を有し、水流によってロータを回転させる水力発電機の構成と異なる。
 以下説明する第1実施形態及び第2実施形態の発電機は、流体の流れ場に設けられる発電機である。この発電機は、柱状の振動体であって、柱状の振動体と発電部とを有する。振動体は、この振動体の一方の端部が、流体の流れ場において流体の流れ方向に平行な軸に軸支されて軸の周りに自励振動により往復運動する。発電部は、振動体の往復振動に応じて電気エネルギーを生成する。
(第1実施形態)
 第1実施形態の発電機は、流体の比重よりも小さい比重を有し、且つ、鉛直方向下端側が流体の流れ場において流体の流れ方向に平行な軸に軸支されて往復振動する柱状の振動体と、振動体の往復振動に応じて電気エネルギーを生成する発電部と、を有する。
 当該構成により、第1実施形態の発電機は、振動エネルギーを電気エネルギーに変換する従来の発電機に用いられる弾性部材を設ける必要がない。このため、第1実施形態の発電機は、流体の流れによって生じる振動体の振動により生成される電気エネルギーを、簡単な構成で得ることができる。また、第1実施形態の発電機は、弾性部材を用いていないため、弾性部材を用いた場合と比較して耐久性に優れている。
 図1は、第1実施形態の発電機10の概略構成図である。
 発電機10は、振動体12と支持部14と発電部16(図2参照)とを有し、流れ場Fを有する流体内に設けられている。振動体12は、流体の流れ方向(図1中では流れ場Fの矢印方向)に直交する方向に延びる柱状に形成されるとともに、流体の比重よりも小さい比重を有する。また、振動体12は、流体の流れ場F内に位置することによって、鉛直方向下端側が流れ場Fにおいて流体の流れ方向に平行な支持部14に軸支されて往復振動する。この往復振動は、流れ場F内に振動体12を位置することによって発生するカルマン渦励振によりなされる。また、振動体12は、振動体12の質量や長さによって定まる固有振動数を有する。
 ここで、振動体12が流体の比重よりも小さい比重を有するためには、振動体12は、流体が水の場合、例えば中空状の塩化ビニル、繊維強化プラスチック、鋼材等で構成されることが好ましく、流体が空気の場合、例えばポリ塩化ビニル、ハイパロン等で構成されることが好ましい。なお、流体が空気の場合には、振動体12の比重を空気よりも小さくするために、空気よりも比重が小さいヘリウムや水素を、中空状の振動体12内に充填することが好ましい。振動体12は、円柱体であるが、必ずしも円柱体でなくてもよく、三角柱、矩形柱、多角柱等の柱状体等であってもよい。なお、流体(例えば水)の流速が1~5m/秒の流れ場F内に円柱状の振動体12を配置した場合にカルマン渦励振を発生させるためには、例えば、レイノルズ数が10~10の範囲内となるように、直径が100~3000mmの振動体12を用いることが好ましい。また、振動体12の長さは、例えば、50~2000cmとすることが好ましい。
 支持部14は、流体の流れ方向に平行に延びるとともに、振動体12の鉛直方向下端側の部分を回動可能に軸支する。また、振動体12は、流体の比重よりも小さい比重を有しているため、振動体12に作用する浮力が振動体12に作用する重力よりも大きい。このため、振動体12には、鉛直方向上向きの力Bが、振動体12を鉛直方向に延びた状態に戻すための復元力として常に作用する。したがって、振動体12は、カルマン渦励振と鉛直方向上向きの力Bとにより、振動体12の鉛直方向下端側が支持部14に軸支された状態で往復運動する。この場合、振動体12は、鉛直方向下端側を支点とする倒立振子として作用する。
 次に、図2を参照して、発電部16の構成を説明する。発電部16は、例えば、永久磁石等の磁場発生器16aと、コイル等の導電体16bとを含む。磁場発生器16aは、振動体12の鉛直方向上端側の先端に取付けられて振動体12とともに運動する。一方、導電体16bは、振動体12の振動経路に沿って間隔をおいて設けられ、振動体12とともに運動する磁場発生器16aと間隔をおいて互いに対向するように配置されている。この発電部16では、振動体12の振動が、導電体16bと磁場発生器16aの印加磁場との間に相対的な運動を引き起こし、その結果、導電体16bに印加される磁場の強さに変化を与え、この導電体16bに印加される磁場の強さの変化によって電磁誘導を誘発し、導電体16bを流れる誘導電流を引き起こす。これにより、電気エネルギーが生成される。
 この場合、振動体12の振動エネルギーを電気エネルギーに直接的に変換することができるので、電気エネルギーへの変換が間接的に行われる場合と比較して、例えば、振動体12に接続された発電用モータを、振動体12の振動エネルギーによって回転させることにより発電する場合と比較して、振動エネルギーから電気エネルギーへの変換効率を向上させることができる。
 このように、第1実施形態の発電機は、振動体を振動させるための弾性部材を設ける必要がないので、結果として、製造コストを低減することができる。また、本実施形態の発電機は、弾性部材を用いていないため、弾性部材を用いた場合と比較して耐久性に優れている。
 本実施形態の発電機の振動体12のエネルギー取得率ηを下記のように定義するとき、エネルギー取得率ηは、最適条件において76%を実現することができる。
 エネルギー取得率η(%)
=(振動体12の最大の仕事率)/(1/2・ρ・d・L・U3
 ρは流体の密度、dは振動体12の直径、Lは振動体12の長さ、Uは流体の流速である。
(変形例1)
 図3は、本実施形態の発電機10の変形例を模式的に説明した図である。本変形例は、上記実施形態に対して、振動体12a,12b,12c,12d,12e,・・・が、流れ場F内に流れ方向に一列に配列されている点で異なる。これ以外の部分は、本実施形態の構成と同じであるので、構成及び機能の説明は省略する。
 本変形例では、振動体12a,12b,12c,12d,12e,・・・は、互いに近接して配置されている。以降の説明では、振動体12a,12b,12c,12d,12e,・・・のうち、振動体12a,12b,12c,12d,12eを代表して説明する。なお、振動体12a,12b,12c,12d,12eの軸間距離は、流体の種類や流速の条件等によって変化するが、直径d(振動体12a,12b,12c,12d,12eの円柱形状の直径をdとする)の1~3倍が例示される。
 振動体12a~12eそれぞれの鉛直方向下端側は、支持部14によって共通に軸支されている。また、振動体12a~12eそれぞれの鉛直方向上端側の先端には、図2に示す振動体12と同様に、磁場発生器16aと同様の磁場発生器(図示省略)が設けられ、振動体12a~12eそれぞれの振動経路に沿った位置であって、磁場発生器と対向する位置には、図2に示す導電体16bと同様の導電体(図示省略)が設けられる。振動体12a~12eの振動により、導電体と磁場発生器の印加磁場との間で相対的な運動が発生し、この運動によって、発電が行われる。
 このような発電機10では、振動体12a~12eのそれぞれを流れ場F内に流れ方向に一列に配列することにより、上流側あるいは下流側に隣接する他の振動体により大きな振動エネルギーを発生させることができる。具体的に説明すると、振動体12aにて形成された剥離流れ18が、下流側に隣接する振動体12bの振動に影響を与えることにより、振動体12bには、振幅が増幅された振動Vが誘起される。この振動Vを持続するための流体の流速範囲は広い。また、振動体12aには、振動体12bの振動Vの影響を受けることにより、振動Vが振動体12bと同時に誘起される。さらに、振動体12c~12eにも、振動体12a,12bと同様に振動Vが誘起される。すなわち、本変形例では、上記実施形態のように単独の振動体12を用いた場合と比較して、流体の流速が変化しても振動Vが持続し易く、且つ、振幅が増幅された自己励起的な振動(自励振動)を振動体12a~12eのそれぞれに発生させることができる。
 なお、振動体12a~12eそれぞれの振動は互いに同位相ではない。すなわち、振動体12a~12eの振動はそれぞれ独立であって、振動の位相は振動体12a~12e間で互いに異なる。
 本変形例では、振動体12a~12e、・・・・による振動伝搬効果を利用することにより、流体励起振動を用いて風、潮流、河川流などの自然エネルギーから発電する発電機に有効利用することができる。また、本変形例では、図1,2に示すような単独の振動体12を用いる場合よりも多くの電気エネルギーを取り出す点で有効である。さらに、本変形例では、複数の振動体を互いに近接して配置することができるので、発電機の占有面積に対して取得可能な電気エネルギーの割合を向上させることができる。
(変形例2)
 図4は、本実施形態の発電機10の他の変形例を模式的に説明した図である。本変形例は、上記実施形態に対して、振動体12a,12bの振動を制御する振動制御体20が流れ場F内に配置されている点で異なる。これ以外の部分は、本実施形態の構成と同じであるので、構成及び機能の説明は省略する。
 振動制御体20は、振動体12a,12bの周りに振動体12a,12bに離間して固定配置され、鉛直方向に延びる円柱体である。振動制御体20は、例えば、支持体14に固定されてよい。また、振動制御体20は、高い剛性を有し、流れ場F内に配置されても流体の流力あるいは12a,12bの振動によって変位しない。なお、振動制御体20の直径は、円柱体である振動体12の直径と同じであり、円柱体の長さも同じであるが、直径及び長さは異なっていてもよい。また、振動制御体20は、円柱体であるが、必ずしも円柱体でなくてもよく、三角柱、矩形柱、多角柱等の柱状体等であってもよい。
 振動制御体20は、振動体12a,12bの上流側及び下流側の少なくとも一方に振動体12a,12bに離間して配置されることにより、振動体12a,12bの往復振動を制御することができる。ここで、振動体12a,12bの往復振動の制御とは、流体の流速の変化に応じて振動を持続すること、さらには、振動の振幅を増幅することを含む。
 振動制御体20は、図4(a)に示すように、流れ場Fにおける振動体12a,12bの上流側に位置してもよいし、図4(b)に示すように、下流側に位置してもよい。また、振動制御体20は、流れ場Fの流れ方向に沿って配列してもよいし、振動制御体20および振動体12の、流れ方向に対して直交する方向の位置が互いにずれていてもよい。振動制御体20は、図4(c)に示すように、流れ場Fの流れ方向に直交する方向に支持部14を介して対向するように複数設けてもよいし、図4(d)に示すように、振動体12a,12bの上流側および下流側に設けてもよい。
 振動体12と振動制御体20との間の軸間距離は、流体の種類や流速の条件等によって変化するが、直径d(振動体12および振動制御体20の円柱形状の直径をdとする)の1~3倍が例示される。上記軸間距離は、振動制御体20にて形成された剥離流れが、振動体12a,12bの振動を効率よく制御できる範囲で設定される。
 図5(a)~(c)は、振動体12,12bに振動体12aあるいは振動制御体20を近接配置した場合の振動体12,12bの直径に対する振動体12,12bの角速度の変化の例を示す図である。
 図5(a)は、直径が115mmの円柱体を成した振動体12aを流れ場Fの上流側に配置し、振動体12aと振動体12bとの間の軸間距離を14~20cmとし、流体を水として、流速を1m/秒とした条件の下、振動体12bの直径dを種々変更したときの振動体12bの角速度ωの変化を実線で示している。なお、比較として、振動体12bを単独で流れ場Fに配置した場合に振動体12bの直径dを種々変更したときの振動体12bの角速度ωの変化を破線で示している。前述したように、2つの振動体12a,12bを近接配置した場合には、振動が持続するための流速範囲が広く、且つ、振動の振幅が増幅された自励振動が振動体12a,12bに誘起される。一方、振動体12bを単独で用いた場合、振動体12bは、カルマン渦励振により振動する。
 図5(a)より、2つの振動体12a,12bを近接配置した場合には、振動体12bの直径dを変化させることにより、振動体12bの角速度ωが種々変化することがわかる。例えば、振動体12bの直径d=115mmの場合には、最も大きい角速度応答が得られることがわかる。また、図5(a)より、2つの振動体12a,12bを近接配置することにより振動体12a,12bに誘起される自励振動は、振動体12bを単独で用いた場合に生じるカルマン渦励振と比較して、大きな角速度応答が得られることがわかる。
 図5(b)は、直径が115mmの円柱体を成した振動制御体20を流れ場Fの上流側に配置し、振動制御体20と振動体12との間の軸間距離を14~20cmとし、流体を水として、流速を1m/秒とした条件の下、振動体12の直径dを種々変更したときの振動体12の角速度ωの変化を実線で示している。なお、図5(a)と同様に、振動体12を単独で流れ場Fに配置した場合に振動体12の直径dを種々変更したときの振動体12の角速度ωの変化を破線で示している。図5(b)より、振動体12の上流側に振動制御体20を近接配置した場合には、振動体12の直径dを変化させることにより、振動体12の角速度ωが種々変化することがわかる。また、何れの直径dにおいても、振動体12の上流側に振動制御体20を近接配置した場合の振動体12の角速度は、振動体12を単独で用いた場合の角速度よりも大きくなることがわかる。
 図5(c)は、直径が115mmの円柱体を成した振動制御体20を流れ場Fの下流側に配置し、振動制御体20と振動体12との間の軸間距離を14~20cmとし、流体を水として、流速を1m/秒とした条件の下、振動体12の直径dを種々変更したときの振動体12の角速度ωの変化を実線で示している。なお、図5(a)と同様に、振動体12を単独で流れ場Fに配置した場合に振動体12の直径dを種々変更したときの振動体12の角速度ωの変化を破線で示している。図5(c)より、振動体12の下流側に振動制御体20を近接配置した場合には、振動体12の直径dを変化させることにより、振動体12の角速度ωが種々変化することがわかる。また、何れの直径dにおいても、振動体12の下流側に振動制御体20を近接配置した場合の振動体12の角速度は、振動体12を単独で用いた場合の角速度よりも大きくなることがわかる。
 以上のように、振動体12を単独で用いるよりも、振動体12を複数、あるいは振動制御体20とともに用いることが、角速度応答を大きくすることができる点で、好ましい。
(変形例3)
 図6は、本実施形態の発電機10の他の変形例を模式的に説明した図である。本変形例は、上記実施形態に対して、振動体12の固有振動数を調整するための調整部22を有する点で異なる。これ以外の部分は、本実施形態の構成と同じであるので、構成及び機能の説明は省略する。
 振動体12の内部は中空状に形成され、この内部には、振動体12の長手方向に延びるロッド23が設けられている。このロッド23には、調整部22が振動体12の長手方向に摺動可能に設けられている。調整部22には、例えば錘を用いてもよい。
 調整部22が振動体12内部を移動することにより、振動体12の固有振動数が変化する。具体的に説明すると、例えば、調整部22が、鉛直方向上方側、すなわち支持部14から離れる方向に移動した場合には、慣性モーメントが増加することにより、振動体12の固有振動数が低下する。一方、調整部22が、鉛直方向下方側、すなわち支持部14に近づく方向に移動した場合には、慣性モーメントが減少することにより、振動体12の固有振動数が増加する。したがって、振動体12を単独で用いる場合には、振動体12に生じるカルマン渦放出周波数と共振するように振動体12の固有振動数を調整することにより、振動体12の振動の振幅を増幅することができる。一方、振動体12を複数用いたり、振動体12とともに振動制御体20を用いる場合には、流速、振動体の代表長(例えば、振動体の直径等)及び固有振動数で決定される無次元流速が振動体12の振動励起範囲内に収まるように固有振動数を調整することによって、振動体12の振幅を増幅することができる。
 このようにして、調整部22を振動体12の長手方向に移動させることにより、振動体12の固有振動数を調整することができるので、調整部22を設けていない振動体と比較して、振動体12の振動を持続するための流体の流速範囲をより広く設定することができるとともに、振動の振幅を増幅することができる。
(変形例4)
 図7は、本実施形態の発電機10の他の変形例を模式的に説明した図である。本変形例は、上記実施形態に対して、発電部16の構成が異なる。これ以外の部分は、本実施形態の構成と同じであるので、構成及び機能の説明は省略する。
 本変形例の発電部16では、導電体16bは、振動体12の鉛直方向上端側の先端に取付けられて振動体12とともに運動する。一方、磁場発生器16aは、振動体12の振動経路に沿った方向に間隔をおいて複数設けられ、振動体12とともに運動する導電体16bと間隔をおいて互いに対向するように配置されている。この発電部16では、振動体12の振動が、導電体16bと磁場発生器16aの印加磁場との間に相対的な運動を引き起こし、その結果、導電体16bに印加される磁場の強さに変化を与え、この導電体16bに印加される磁場の強さの変化によって電磁誘導を誘発し、導電体16bを流れる誘導電流を引き起こす。これにより、電気エネルギーが生成される。
 本変形例においても、上記実施形態と同様に、振動体12の振動エネルギーを電気エネルギーに直接的に変換することができるので、電気エネルギーへの変換が間接的に行われる場合と比較して、例えば、振動体12に接続された発電用モータを、振動体12の振動エネルギーによって回転させることにより発電する場合と比較して、振動エネルギーから電気エネルギーへの変換効率を向上させることができる。
(その他の変形例)
 上記実施形態および変形例1~4において、振動体12はいずれも断面が円形状の円柱を用いたが、図8に示すように、振動体12の断面形状の円形状の一部が直線13a,13aと、直線13a,13a同士が凸部13bで交わる形状を有してもよい。この場合、凸部13bは、流体の長れ場F内の上流側に向くように、振動体12の向きが設定されることが好ましい。このように、凸部13bを挟んで直線13aと直線13aとの間で角度θを持つ断面形状は、流体の流速や粘性に応じて上記角度θが変化するものであってもよい。上記角度θを変化させることにより、流れ場F内で発生するカルマン渦の発生位置を変化させることで、エネルギー取得率ηが最大になるようにカルマン励振をさせることができる。角度θを変化させることにより、流れ場F内で振動体12の表面で生じる層流剥離の状態が変化するので、カルマン渦の挙動が変化する。このため、流れ場F内の流速が変わるたびに上記角度θを変化させることで、エネルギー取得率ηを最適に調整することもできる。
 図8に示すような角度θの凸部13bを持つ断面形状は、図4(a)~(d)に示される振動制御体20においても適用することができる。また、振動制御体20においても、流体の流速や粘性に応じて角度θが変化してもよい。このような断面形状を振動制御体20が持つことで、流れ場F内の流速の変化に応じて角度θを変化させることにより、エネルギー取得率ηが最大になるように調整することができる。
 また、図3に示す複数の振動体12a~12eの配列において、図9(a)に示すように、配列方向(流体の流れ方向)の軸間距離を流れ場Fの流体の流速に応じて変化させるように振動体12a~12eを構成することもできる。具体的には、振動体12a~12eが支持部14の上に沿って自在に移動することができる移動機構24を移動体12a~12eのそれぞれが備える。この場合、発電機は、移動機構24の移動を制御するコンピュータで構成される制御部26と、流体の流速を計測する流速計28とを備えるとよい。流速計28が計測した流速の情報は、制御部26に送られる。制御部26は、振動体12a~12eの最適な軸間距離を流速毎に記録保持しておく。最適な軸間距離とは、エネルギー取得率ηが最大になる時の軸間距離をいう。制御部26から流速計28で計測した流速に基いて振動体12a~12eの最適な軸間距離を求め、この軸間距離を実現するように、移動機構24を駆動する指示を出す。流体の流速によって振動体12a~12eの自励振動が発生する条件は変化するため、振動体12a~12eの位置を自在に移動させることにより、振動体12a~12eの軸間距離を調整することができる。すなわち、制御部26は、振動体12a~12eの位置の少なくとも1つを移動させることにより、振動体12a~12eの軸間距離を調整する。これにより、エネルギー取得率ηが最大になるように自励振動を発生させることができる。
 図9(b)に示すように、図4(a)~(d)に示す種々の形態においても、振動体12a,12b等の軸間距離の他に、振動制御体20と振動体12a,12bの軸間距離を流体の流れ方向で調整できるように、振動体12a,12b及び振動制御体20が流れ方向で自在に移動することができる移送機構24を振動体12a,12b及び振動制御体20は備えてもよい。この場合においても、移動機構24の移動を制御する、コンピュータで構成される制御部26と、流体の流速を計測する流速計28とを備えるとよい。すなわち、制御部26は、振動制御体20の位置と振動体12a,12bの各位置の少なくとも1つを移動させることにより、振動制御体20及び振動体12a,12bの軸間距離を調整する。
 図10は、図1に示す振動体12を用いて、流速及び振動体12の長さ及び直径dを変化させた時のエネルギー取得率ηの結果を示す図である。図11は、図4(a)に示す形態から振動体12bを除いた形態、すなわち振動制御体20及び振動体12aからなる形態において、流速および振動体12aの長さを変化させて振動体12aのエネルギー取得率ηを求めた時の結果を示す図である。このときの振動制御体20と振動体12aとの間の軸間距離は、直径75mm、長さ900mmのとき、90mmであり、直径115mm、長さ900mmのとき、135mmであり、直径165mm、長さ900mmのとき、190mmである。なお、発電機を想定して振動体12あるいは振動体12aに接続したトルク減衰器に対して行う振動体12あるいは振動体12aの仕事率を計測することにより、エネルギー取得率ηの算出に用いる、振動体12あるいは振動体12aの最大の仕事率を取得した。
 振動体12及び振動体12aは、いずれも塩化ビニル管を用いて構成した。
 図10に示す結果から、図1に示す振動体12では、エネルギー取得率ηが最大で76%に達し、流体の流れによる運動エネルギーの76%を振動体12の振動によって取り出すことができることを示す。一方、図11に示す振動体12aを用いた場合、エネルギー取得率ηが最大で55%である。すなわち、流体の流れによる運動エネルギーの55%を振動体12aの振動によって取り出すことができることを示す。このように、本実施形態及び変形例の振動体12あるいは振動体12aのエネルギー取得率ηは50%を越え、流体の運動エネルギーから、振動体の振動によって有効にエネルギーを取り出すことができるのがわかる。特に、図1に示す振動体12のエネルギー取得率ηは70%を越え、高い値を有する。図12に示すように、流れ場F内に円柱形状の振動体100を水平方向に配置し、振動体100の両端をバネ等の弾性部材102で支持した振動体の形態では、カルマン渦励振を発生させたときのエネルギー取得率ηは最大でも37%であった。これより、本実施形態及び変形例におけるエネルギー取得率ηは従来の形態に比べて高いことがわかる。したがって、本実施形態及び変形例において、振動体の振動により生成される電力を、簡単な構成で効率よく得ることができる。
(第2実施形態)
 第2実施形態の発電機は、第1実施形態と同様に、液面を有する液体の流れ場に設けられる発電機である。発電機は、柱状の振動体と発電部を有する。
 振動体は、振動体の一方の端で流体の流れ方向に平行な軸に軸支されている。すなわち、振動体は液体中で、振動体の上端側で軸支されている。振動体は、液体の流れ場において、軸の周りに自励振動により往復運動する。発電部は、振動体の往復振動に応じて電気エネルギーを生成する。
 当該構成により、第2実施形態の発電機は、振動エネルギーを電気エネルギーに変換する従来の発電機に用いられる弾性部材を設ける必要がない。このため、第2実施形態の発電機は、流体の流れによって生じる振動体の振動により生成される電気エネルギーを、簡単な構成で得ることができる。また、第2実施形態の発電機は、弾性部材を用いていないため、弾性部材を用いた場合と比較して耐久性に優れている。
 図13は、第2実施形態の発電機10の概略構成図である。
 発電機50は、振動体52と支持部54と一対のフロート53と発電部56とを有し、流れ場Fを有する液体内または液体表面上に設けられている。振動体52は、液体の流れ方向(図1中では流れ場Fの矢印方向)に直交する方向に延びる柱状に形成される。振動体の比重は、液体の比重よりも大きくても小さくてもよい。しかし、振動体が流れ場F内で振動しやすくするためには、振動体の比重は液体の比重より小さいことが好ましい。また、振動体52は、液体の流れ場F内に位置することによって、鉛直方向上端側が流れ場Fにおいて流体の流れ方向に平行な支持部54に軸支されて第1の実施形態と同様に、往復振動する。この往復振動は、流れ場F内に振動体52を位置することによって発生するカルマン渦励振によりなされる。一対のフロート53のそれぞれは、フロート本体53aと一対の腕部53bとを有する。腕部53bは、支持部54の軸の軸方向に対して直交する方向に2方向に延びている。具体的には、一対の腕部53bは、支持部54の軸の軸方向に対して直交する方向であって、振動体52を液面上方からみたとき支持部54の軸を境にして両側の方向に軸から延びている。図13では、振動体52が鉛直方向下方に向いて配置されるとき、腕部53bは、Y字形状を成すように、左右対称の方向に延びている。フロート体53aは、腕部53の先端に設けられ、支持部54の軸を中心とした円周状に延びる三日月形状を成している。フロート体53aの比重は、液体の比重より軽い。
 このため、上記自励振動による振動体52の往復運動時、一対のフロート本体53aのうち一方のフロート本体53aが他方のフロート本体53aに比べて、液体中に多く浸ることで復元力が発生するように、腕部53bおよびフロート本体53aが設けられている。すなわち、フロート53a,53bを有するフロート53は復元力生成部として機能する。具体的には、腕部53bとフロート本体53aの接続位置、フロート本体53aの長さ、腕部53bの延在方向、腕部53bの長さが、上記復元力が好ましく発生するように設定されている。
 ここで、振動体52は、流体が水の場合、例えば塩化ビニル、繊維強化プラスチック、鋼材等で構成されることが好ましい。振動体52は、円柱体であるが、必ずしも円柱体でなくてもよく、三角柱、矩形柱、多角柱等の柱状体等であってもよい。なお、流体(例えば水)の流速が1~5m/秒の流れ場F内に円柱状の振動体12を配置した場合にカルマン渦励振を発生させるためには、例えば、レイノルズ数が10~10の範囲内となるように、直径が100~3000mmの振動体52を用いることが好ましい。また、振動体52の長さは、例えば、50~2000cmとすることが好ましい。
 支持部54は、流体の流れ方向に平行に延びるとともに、振動体52の鉛直方向上端側の部分を回動可能に軸支する。また、振動体52にはフロート本体53aが接続されている。このため、振動体52の往復運動中、両側のフロート本体53aの液体中に浸る体積が異なり、浮力に差分が生じることにより往復運動に復元力を与える。したがって、振動体52がこの復元力により振動システムをつくる。このため、上記カルマン渦による自励振動の周波数と振動体52と復元力による振動システムの周波数とを一致させることにより、共振を発生させ、大きな往復運動を実現することができる。振動システムでは、腕部53bの支持部54の軸からフロート本体53までの長さによって振動の周波数が変化するため、腕部53bには、支持部54の軸からフロート本体53までの長さが自在に調整できる調整機構53cが設けられていることが好ましい。例えば、図示されない測定・制御装置が、振動体52のカルマン渦により自励振動する周波数を計測し、この周波数に応じて、調整機構53cを通して腕部53bの長さを伸縮自在に調整する。振動体52の自励振動の周波数は、例えば流れ場Fの流速によって変化する。このため、計測した周波数に応じて、腕部53bの長さを調整することは、流れ場Fから電気エネルギーを最適に取り出すために好適である。
 発電部56は、例えば、永久磁石等の磁場発生器56aと、コイル等の導電体56bとを含む。磁場発生器56aは、振動体52の鉛直方向下端側の先端に取付けられて振動体52とともに運動する。一方、導電体56bは、振動体52の振動経路に沿って間隔をおいて設けられ、振動体52とともに運動する磁場発生器56aと間隔をおいて互いに対向するように配置されている。この発電部56では、振動体52の振動が、導電体56bと磁場発生器56aの印加磁場との間に相対的な運動を引き起こし、その結果、導電体56bに印加される磁場の強さに変化を与え、この導電体56bに印加される磁場の強さの変化によって電磁誘導を誘発し、導電体56bを流れる誘導電流を引き起こす。これにより、電気エネルギーが生成される。
 この場合、振動体52の振動エネルギーを電気エネルギーに直接的に変換することができるので、電気エネルギーへの変換が間接的に行われる場合と比較して、例えば、振動体52に接続された発電用モータを、振動体52の振動エネルギーによって回転させることにより発電する場合と比較して、振動エネルギーから電気エネルギーへの変換効率を向上させることができる。
 図13に示す形態は、磁場発生器56aを振動体52に設け、導電体56bを液体中に設ける形態であるが、磁場発生器56aを液体中に設け、導電体56bを振動体52に設ける形態を用いることもできる。
 また、第2実施形態では、第1実施形態で用いる振動制御体20(図4A~図4D参照)を振動体52の上流側あるいは下流側に配置してもよい。
 さらに、第2実施形態では、第1実施形態と同様に、発電部56は、磁場発生器56a及び導電体56bを組み合わせて、振動体52から直接電気エネルギーを取得する形態であるが、発電部56は、これ以外の形態を用いることもできる。図14に示すように、振動体52で得られた支持部54の軸周りの往復回転運動を、回転/並進変換機構60を用いて並進往復運動に変換し、この往復運動を、油圧システム62を用いて離間した位置に伝達し、さらに、並進往復運動を、並進/回転変換機構64を用いて回転運動に変換し、この回転運動を、タービン/発電部66を通してタービンを回転させて発電部で電気エネルギーに変換することもできる。このような発電形態は、第1実施形態の発電機10にも適用することができる。回転/並進変換機構60及び並進/回転変換機構64は、カムシャフト機構等を用いることができる。
 このように、第2実施形態の発電機は、振動体52を振動させるための弾性部材を設ける必要がないので、結果として、製造コストを低減することができる。また、第2実施形態の発電機は、弾性部材を用いていないため、弾性部材を用いた場合と比較して耐久性に優れている。
 以上、本発明の発電機について詳細に説明したが、本発明は上記実施形態および変形例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10,50 発電機
12,12a,12b,12c,12d,12e,52 振動体
13a 直線
13b 凸部
14,54 支持部
16,56 発電部
16a,56a 磁場発生器
16b,56b 導電体
18 剥離流れ
20 振動制御体
22 調整部
24 移動機構
26 制御部
28 流速計
53 フロート
53a フロート本体
53b 腕部
53c 調整機構
53d 復元力生成部
60 回転/並進変換機構
62 油圧システム
64 並進/回転変換機構
66 タービン/発電部

Claims (13)

  1.  流体の流れ場に設けられる発電機であって、
     柱状の振動体であって、前記振動体の一方の端部が、流体の流れ場において前記流体の流れ方向に平行な軸に軸支されて前記軸の周りに自励振動により往復運動する振動体と、
     前記振動体の往復振動に応じて電気エネルギーを生成する発電部と、を有する、
     ことを特徴とする発電機。
  2.  前記振動体は、流体の比重よりも小さい比重を有し、且つ、前記軸に軸支される前記振動体の位置は、鉛直方向下端側である、請求項1に記載の発電機。
  3.  前記振動体を第1振動体というとき、前記流体の流れ方向の上流側あるいは下流側に、前記流体の比重よりも小さい比重を有し、且つ、鉛直方向下端側が前記流体の流れ場において前記流体の流れ方向に平行な軸に軸支されて往復振動する柱状の第2振動体を有し、
     前記第1振動体及び前記第2振動体を共通に軸支する支持部を有する、請求項2に記載の発電機。
  4.  前記第1振動体の位置及び前記第2振動体の位置の少なくとも一方を移動させることにより、前記第1振動体及び前記第2振動体の軸間距離を流体の流速に応じて調整する制御部を有する、請求項3に記載の発電機。
  5.  前記振動体の往復振動を制御する振動制御体を有し、
     前記振動制御体は、前記流れ場において、前記振動体の上流側及び下流側の少なくとも一方に前記振動体に離間して配置される、請求項1~4のいずれか1項に記載の発電機。
  6.  前記振動体の位置と前記振動制御体の位置の少なくとも一方を移動させることにより、前記振動体と前記振動制御体との軸間距離を流体の流速に応じて調整する制御部を有する、請求項5に記載の発電機。
  7.  前記振動体の固有振動数を調整するための調整部を有する、請求項1~6のいずれか1項に記載の発電機。
  8.  前記発電部は、前記振動体の振動経路に沿って設けられた導電体と、前記振動体に取付けられるとともに前記導電体に磁場を印加する磁場発生器とを互いに対向するように有し、前記磁場発生器から前記導電体に印加される磁場が前記振動体の往復振動によって変化することにより、電気エネルギーを生成する、請求項1~7のいずれか1項に記載の発電機。
  9.  前記発電部は、前記振動体に取付けられた導電体と、前記振動体の振動経路に沿って設けられるとともに前記導電体に磁場を印加する磁場発生器とを互いに対向するように有し、前記磁場発生器から前記導電体に印加される磁場が前記振動体の往復振動によって変化することにより、電気エネルギーを生成する、請求項1~7のいずれか1項に記載の発電機。
  10.  前記流体は液面を有する液体であり、
     前記軸に軸支される前記振動体の位置は、鉛直方向上端側にあり、
     さらに、前記往復運動に復元力を与える、前記振動体と接続した復元力生成部を有する、請求項1に記載の発電機。
  11.  前記復元力生成部は、前記振動体を液体の液面に浮上させるフロートである、請求項10に記載の発電機。
  12.  前記フロートは、前記軸の軸方向に対して直交する方向であって、前記振動体を液面上方からみたとき前記軸を境にして両側の方向に延びた一対の腕部と、前記腕部の先端のそれぞれに設けられ、前記液体の比重に比べて比重が小さい一対のフロート本体と、を含み、
     前記往復運動時、前記一対のフロート本体のうち一方のフロート本体が他方のフロート本体に比べて、液体中に多く浸ることで前記復元力が発生するように、前記腕部および前記フロート本体が設けられている、請求項11に記載の発電機。
  13.  前記腕部の長さを調整する調整機構が設けられている、請求項11または12に記載の発電機。
PCT/JP2012/004000 2011-07-28 2012-06-20 発電機 WO2013014854A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280028577.2A CN103843237B (zh) 2011-07-28 2012-06-20 发电机
US14/233,555 US9347332B2 (en) 2011-07-28 2012-06-20 Dynamo with columnar oscillator
AU2012288359A AU2012288359B2 (en) 2011-07-28 2012-06-20 Dynamo
JP2012551412A JP5303686B2 (ja) 2011-07-28 2012-06-20 発電機
ES12817134.5T ES2643396T3 (es) 2011-07-28 2012-06-20 Dinamo
EP12817134.5A EP2738925B1 (en) 2011-07-28 2012-06-20 Dynamo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-165349 2011-07-28
JP2011165349 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013014854A1 true WO2013014854A1 (ja) 2013-01-31

Family

ID=47600732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004000 WO2013014854A1 (ja) 2011-07-28 2012-06-20 発電機

Country Status (7)

Country Link
US (1) US9347332B2 (ja)
EP (1) EP2738925B1 (ja)
JP (1) JP5303686B2 (ja)
CN (1) CN103843237B (ja)
AU (1) AU2012288359B2 (ja)
ES (1) ES2643396T3 (ja)
WO (1) WO2013014854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076236A (ko) * 2014-12-22 2016-06-30 울산대학교 산학협력단 역위상 진자 움직임 기반 에너지 하베스터
JP2018053891A (ja) * 2016-09-07 2018-04-05 株式会社ハイドロヴィーナス 運動体、運動体複合体、及び、エネルギー変換装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017906A1 (fr) * 2014-02-26 2015-08-28 Waves Ruiz Centrale houlomotrice a flotteurs decales
JP6567331B2 (ja) * 2015-06-10 2019-08-28 ナブテスコ株式会社 非接触発電機
CN106899190B (zh) * 2015-12-21 2019-01-11 上海交通大学 一种利用磁通转向提高发电效率的微型振动能量采集装置
CN105896874B (zh) * 2016-04-09 2018-02-23 哈尔滨工业大学 基于卡门涡街原理的风力发电装置
CN106230226A (zh) * 2016-07-22 2016-12-14 东北师范大学 超低转速潮流能脉冲发电机
CN106887925B (zh) * 2017-03-31 2023-12-15 天津大学 一种采用主动流动控制的流致振动发电装置
US10367434B2 (en) * 2017-05-30 2019-07-30 Saudi Arabian Oil Company Harvesting energy from fluid flow
RU2699439C1 (ru) * 2018-05-11 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" Поплавковая волновая электростанция
US11187044B2 (en) 2019-12-10 2021-11-30 Saudi Arabian Oil Company Production cavern
US11339636B2 (en) 2020-05-04 2022-05-24 Saudi Arabian Oil Company Determining the integrity of an isolated zone in a wellbore
US11460330B2 (en) 2020-07-06 2022-10-04 Saudi Arabian Oil Company Reducing noise in a vortex flow meter
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11519767B2 (en) 2020-09-08 2022-12-06 Saudi Arabian Oil Company Determining fluid parameters
US11530597B2 (en) 2021-02-18 2022-12-20 Saudi Arabian Oil Company Downhole wireless communication
US11603756B2 (en) 2021-03-03 2023-03-14 Saudi Arabian Oil Company Downhole wireless communication
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11619114B2 (en) 2021-04-15 2023-04-04 Saudi Arabian Oil Company Entering a lateral branch of a wellbore with an assembly
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells
CN114400857B (zh) * 2021-12-24 2024-01-30 西安理工大学 基于海尔贝克阵列的潮汐能涡流无叶片电磁发电装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135454A (ja) * 1974-04-16 1975-10-27
JPS6128765A (ja) * 1984-07-20 1986-02-08 Hoxan Corp 流体内に設置して用いる発電装置
JPS6128766A (ja) * 1984-07-20 1986-02-08 Hoxan Corp 流体内に設置して用いる発電装置
JP2001157433A (ja) * 1999-11-26 2001-06-08 Fujitsu Ltd 流体による振動発電装置
JP2003164136A (ja) * 2001-11-22 2003-06-06 Kawasaki Heavy Ind Ltd 流体力発電装置
JP2006132397A (ja) * 2004-11-04 2006-05-25 Akita Univ 流力振動を利用した圧電セラミックによる発電方法及び装置
JP2006291842A (ja) * 2005-04-11 2006-10-26 Taiheiyo Cement Corp 風力発電装置
JP2007195364A (ja) * 2006-01-20 2007-08-02 Yoshinobu Hayashi 往復運動利用型発電方法
JP2008011669A (ja) 2006-06-30 2008-01-17 Nagaoka Univ Of Technology 流体による振動発電装置
JP2010136535A (ja) * 2008-12-04 2010-06-17 Nec Corp 発電装置、流体用センサ及び流体用センサ網
JP2011120360A (ja) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd 発電装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1018678A (en) * 1911-07-20 1912-02-27 Francis Marion Nelson Wave-motor.
US3204110A (en) * 1961-07-07 1965-08-31 Masuda Yoshio Ocean wave electric generator
US3965365A (en) * 1975-01-14 1976-06-22 Parr Edward L Power generating machine actuated by ocean swells
US4076463A (en) * 1976-10-26 1978-02-28 Mordechai Welczer Wave motor
GB1574379A (en) * 1977-08-24 1980-09-03 English Electric Co Ltd Turbines and like rotary machines
US4279124A (en) * 1977-12-06 1981-07-21 Schremp Edward J System for extracting subsurface wave energy
US4319454A (en) * 1979-10-09 1982-03-16 Lucia Louis V Wave action power plant
US4389843A (en) * 1981-03-27 1983-06-28 John Lamberti Water wave energy transducer
US4408455A (en) * 1981-05-18 1983-10-11 Montgomery Melville G Wave action energy generating system
US4480966A (en) * 1981-07-29 1984-11-06 Octopus Systems, Inc. Apparatus for converting the surface motion of a liquid body into usable power
JPS61261676A (ja) * 1985-05-15 1986-11-19 Hitachi Zosen Corp 波力発電装置
US5324169A (en) * 1993-04-09 1994-06-28 Brown George L Oscillating, lateral thrust power generator
US6022173A (en) * 1994-01-13 2000-02-08 Saxon; Saint E. Underwater trenching system
US6876094B2 (en) * 1999-11-12 2005-04-05 Sarcos, Lc Resonant electrical generation system
WO2003058054A1 (en) 2002-01-08 2003-07-17 Swedish Seabased Energy Ab Wave-power unit and plant for the production of electric power and a method of generating electric power
US6781253B2 (en) * 2002-03-26 2004-08-24 Edwin Newman Converting ocean energy into electrical energy using bourdon tubes and cartesian divers
SE524227C2 (sv) * 2002-07-09 2004-07-13 Lars Oestholm Anordning och metod vid alstrande av lyftkraft för utvinning av energi ur ett förbiströmmande medium
US7579704B2 (en) * 2003-10-14 2009-08-25 Wave Star Energy Aps Wave power apparatus having a float and means for locking the float in a position above the ocean surface
GB2408075A (en) * 2003-10-16 2005-05-18 Univ Manchester Device for utilising wave energy
US7042112B2 (en) * 2004-02-03 2006-05-09 Seawood Designs Inc. Wave energy conversion system
FR2876751B1 (fr) * 2004-10-15 2007-01-19 Centre Nat Rech Scient Cnrse Appareil pour convertir l'energie des vagues en energie electrique
GB0501553D0 (en) * 2005-01-26 2005-03-02 Nordeng Scot Ltd Method and apparatus for energy generation
DE102005017040A1 (de) * 2005-04-13 2006-11-09 Sergej Kasantschjan Wellenkraftanlage
US8701403B2 (en) * 2005-11-07 2014-04-22 Gwave Llc System for producing energy through the action of waves
GB2434409A (en) * 2006-01-24 2007-07-25 William Kingston Tidal energy system
US20070176430A1 (en) * 2006-02-01 2007-08-02 Hammig Mark D Fluid Powered Oscillator
JP4814644B2 (ja) * 2006-02-01 2011-11-16 富士重工業株式会社 風力発電装置
AU2007284071B2 (en) * 2006-08-14 2013-04-04 Seadov Pty Ltd Energy extraction method and apparatus
US20080088132A1 (en) * 2006-10-17 2008-04-17 Laube Von Laubenfels Walter He Wave rider
US8008792B2 (en) * 2007-09-07 2011-08-30 Dennis Gray Energy transformation device
US7839009B2 (en) * 2008-02-28 2010-11-23 Philip A Rink Buoyant blade free stream tidal power device
US8310079B2 (en) * 2008-07-14 2012-11-13 William Kingston Tidal energy system
JP2012505349A (ja) * 2008-10-09 2012-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 波力エネルギー変換装置
US8026620B2 (en) * 2008-11-14 2011-09-27 Hobdy Miles Wave energy converter
US20100237631A1 (en) * 2009-03-20 2010-09-23 Howard Yu Oscillating Power Generator
CN102597495B (zh) * 2009-08-19 2015-07-08 亚历山大·韦杰费尔特 波动作用发电系统
GB2473659B (en) * 2009-09-19 2012-04-11 Bruce Gregory Dynamically tuned wave energy conversion system
AU2011227345A1 (en) * 2010-03-18 2012-11-01 Resolute Marine Energy, Inc. Wave-energy converter
AT509918B1 (de) * 2010-06-07 2013-09-15 Eichhorn Karl Vorrichtung zur umwandlung von kinetischer energie in elektrische energie
US20130269333A1 (en) * 2010-10-21 2013-10-17 Arthur Robert Williams Full-water-column surge-type wave-energy converter
ITBG20110048A1 (it) * 2011-11-25 2013-05-26 R E M S P A Revolution Energy Maker Sistema di produzione di energia da fonti rinnovabili

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135454A (ja) * 1974-04-16 1975-10-27
JPS6128765A (ja) * 1984-07-20 1986-02-08 Hoxan Corp 流体内に設置して用いる発電装置
JPS6128766A (ja) * 1984-07-20 1986-02-08 Hoxan Corp 流体内に設置して用いる発電装置
JP2001157433A (ja) * 1999-11-26 2001-06-08 Fujitsu Ltd 流体による振動発電装置
JP2003164136A (ja) * 2001-11-22 2003-06-06 Kawasaki Heavy Ind Ltd 流体力発電装置
JP2006132397A (ja) * 2004-11-04 2006-05-25 Akita Univ 流力振動を利用した圧電セラミックによる発電方法及び装置
JP2006291842A (ja) * 2005-04-11 2006-10-26 Taiheiyo Cement Corp 風力発電装置
JP2007195364A (ja) * 2006-01-20 2007-08-02 Yoshinobu Hayashi 往復運動利用型発電方法
JP2008011669A (ja) 2006-06-30 2008-01-17 Nagaoka Univ Of Technology 流体による振動発電装置
JP2010136535A (ja) * 2008-12-04 2010-06-17 Nec Corp 発電装置、流体用センサ及び流体用センサ網
JP2011120360A (ja) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd 発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738925A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076236A (ko) * 2014-12-22 2016-06-30 울산대학교 산학협력단 역위상 진자 움직임 기반 에너지 하베스터
KR101684024B1 (ko) 2014-12-22 2016-12-07 울산대학교 산학협력단 역위상 진자 움직임 기반 에너지 하베스터
JP2018053891A (ja) * 2016-09-07 2018-04-05 株式会社ハイドロヴィーナス 運動体、運動体複合体、及び、エネルギー変換装置

Also Published As

Publication number Publication date
EP2738925B1 (en) 2017-08-09
AU2012288359B2 (en) 2015-05-28
US9347332B2 (en) 2016-05-24
CN103843237B (zh) 2017-08-04
US20140167418A1 (en) 2014-06-19
EP2738925A1 (en) 2014-06-04
JPWO2013014854A1 (ja) 2015-02-23
JP5303686B2 (ja) 2013-10-02
AU2012288359A1 (en) 2014-02-13
CN103843237A (zh) 2014-06-04
EP2738925A4 (en) 2015-12-16
ES2643396T3 (es) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5303686B2 (ja) 発電機
JP6762292B2 (ja) 発電機および発電方法
US9222465B2 (en) Non-rotating wind energy generator
US8519554B2 (en) Device and method for harvesting energy from flow-induced oscillations
JP2020522229A (ja) 流体流からのエネルギーの採取
US20080277941A1 (en) Generation of Electrical Power From Fluid Flows
JP6967526B2 (ja) 発電機
Daqaq et al. Micropower generation using cross-flow instabilities: a review of the literature and its implications
CN105006992B (zh) 双点弹性支撑圆柱涡激振动流体动能转换装置
JP2003164136A (ja) 流体力発電装置
JP4923245B2 (ja) 流体による振動発電装置
KR100994706B1 (ko) 풍력 진동 압전식 에너지 하비스터
CN104564492B (zh) 一种基于可变形双层透空箱型支座的流致振动发电装置
CN104968930A (zh) 能量转换器和能量转换系统
JP6001732B1 (ja) 流体利用による双安定型非線形振り子発電機
JP5376326B2 (ja) 流体力発電装置および発電方法
JP2010096077A (ja) 水のエネルギを電力に変換する方法及び装置
KR101246722B1 (ko) 타원단면 실린더 와유기진동 에너지 추출장치
JP2014005796A (ja) 複数の振動子を備えたエネルギー変換装置およびその製造方法
JP6961865B2 (ja) 運動体、運動体複合体、及び、エネルギー変換装置
RU2637529C1 (ru) Преобразователь внешней кинетической энергии в электроэнергию
JP2023018466A (ja) 振動発電装置及び移動体
JP2003097408A (ja) 揺動を利用したエネルギー変換装置
JP2024523591A (ja) エネルギー蓄積型タービンの運動シミュレーション実験装置及びその制御方法
CN115859705A (zh) 一种基于主动旋转椭圆柱的流致振动能量利用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012551412

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14233555

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012288359

Country of ref document: AU

Date of ref document: 20120620

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012817134

Country of ref document: EP